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Abstract. We derive the equations of second order dissipative fluid dynamics from the
relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart [1].
We present a frame independent calculation of all first- and second-order terms and their
coefficients using a linearised collision integral. Therefore, we restore all terms that were
previously neglected in the original papers of W. Israel and J. M. Stewart.

1 Introduction

Relativistic fluid dynamics has been applied successfully to describe the dynamics of the hot and dense
matter created in relativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) [2]. It
is also expected to play an important role in understanding of future experiments at the Large Hadron
Collider (LHC) and at the Facility for Antiproton and Ion Research (FAIR).

On the other hand, the theoretical foundations of relativistic dissipative fluid dynamics are not fully
established yet. Relativistic kinetic theory of dilute gases provides a framework for relativistic fluid
dynamics which can be derived systematically from the Boltzmann equation. However, this procedure
is not unique and has been subject of many past and recent studies.

In this paper we present a short but self-contained derivation of dissipative fluid dynamics from
kinetic theory following the widely used approach by Israel and Stewart (IS) which is a generalization
of Grad’s method of moments [3] to relativistic systems. We show that the resulting equations contain
several new second order terms and coefficients [4] which were absent in the treatment by IS and
others in the past.

Notation: We define the space-time coordinates choosing c = 1, and the covariant and contravari-
ant four-vectors, xµ = gµνxν ≡ (t,−x,−y,−z) and xµ = gµνxν ≡ (t, x, y, z), where gµν = gµν =

diag(1,−1,−1,−1) is the metric of flat space-time. The normalized hydrodynamic four-velocity of
matter is uµ, such that uµuµ = 1. The transverse projection operator ∆µν ≡ gµν − uµuν, is used to de-
compose four-vectors or tensors into parts parallel and orthogonal to uµ. The transverse projection of
four-vectors is denoted by A〈µ〉 = ∆µνAν. The transverse and traceless projection of second-rank tensors
is defined as A〈µν〉 ≡ ∆

µν

αβ
Aαβ ≡

[

1
2

(

∆
µ
α∆

ν
β
+ ∆να∆

µ

β

)

− 1
3∆

µν∆αβ
]

Aαβ. The gradient, ∂µ ≡ ∂/∂xµ, of an
arbitrary tensor can be decomposed as, ∂αAµ1...µn = uαDAµ1...µn + ∇αAµ1...µn , where the comoving time-
derivative, D ≡ uµ∂µ, is also denoted by an over-dot, Ȧµ ≡ DAµ, and∇α ≡ ∆

β
α∂β is the gradient operator.

The symmetric and antisymmetric parts of a second rank tensors are denoted by A(µν) ≡ (Aµν + Aνµ) /2
and A[µν] ≡ (Aµν − Aνµ) /2, respectively. Using the above notations the relativistic generalization of the
Cauchy-Stokes decomposition is ∂µuν = uµu̇ν + 1

3θ∆µν + σµν + ωµν, where we defined the expansion
scalar θ ≡ ∇µuµ, the shear tensor σµν ≡ ∇〈µuν〉, and the vorticity tensor ωµν ≡ ∇[µuν].
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2 Fluid dynamics from kinetic theory

In relativistic kinetic theory of single component gases, particles with mass m and four-momenta
pµ = (p0, p) where p0 =

√

p2 + m2, at space-time coordinate xµ = (t, x) are characterized by the
invariant single particle distribution function f = f (t, x, p). Assuming that there are no external forces,
the space-time evolution of f in a dilute gas with binary collisions is given by the relativistic Boltzmann
transport equation [5],

pµ∂µ f = C
[

f
]

, (1)

where C
[

f
]

is the collision integral. The explicit form of the collision integral is

C[ f ] =
1
2

∫

dω1dω′dω′1 W(p, p1, p′, p′1)
[

f ′ f ′1 f̃ f̃1 − f f1 f̃ ′ f̃ ′1
]

, (2)

where dω ≡ gd3 p/
[

p0(2π~)3
]

; g is the number of internal degrees of freedom and the transition rate

is proportional to the cross section W(p, p1, p′, p′1) ∼ σ. Here f̃ ≡ 1 − a f denotes the correction due
to boson and fermion statistics with a = −1 and a = +1, while a = 0 for classical gases.

For later convenience let us separate the four-momenta of particles into two parts using an arbitrary
fluid dynamic flow velocity uµ. Thus pµ = Euµ + p〈µ〉, where E = pµuµ is the energy of the particle in
the Local Rest Frame (LRF), where uµLRF = (1, 0, 0, 0), and p〈µ〉 = ∆µνpν is the LRF momentum. The
macroscopic fields such as the particle four-flow and energy-momentum tensor are defined as the first
and second moment of the single particle distribution function,

Nµ(t, x) ≡ 〈pµ〉 = 〈E〉uµ + 〈p〈µ〉〉 , (3)

T µν(t, x) ≡ 〈pµpν〉 = 〈E2〉uµuν +
1
3
∆µν〈∆αβpαpβ〉 + 〈Ep〈µ〉〉uν + 〈Ep〈ν〉〉uµ + 〈p〈µpν〉〉 , (4)

where the brackets, 〈. . .〉 ≡
∫

dω . . . f , denote the integral of f in momentum space. Similarly, we can
define higher moments or fluxes, these are Fµ1...µn ≡ 〈pµ1 . . . pµn〉, and they obey the recurrence relation
Fµ1...µngµn−1µn = m2Fµ1...µn−2 , where pµpµ = m2 was used.

The conservation of particle number or charge and of energy and momentum in individual colli-
sions lead to the equations of relativistic fluid dynamics [5],

∂µNµ ≡

∫

dωC
[

f
]

= 0 , ∂µT
µν ≡

∫

dω pνC
[

f
]

= 0 , (5)

while the divergence of higher moments leads to the balance of fluxes,

∂λFµ1...µnλ ≡

∫

dωpµ1 . . . pµnC
[

f
]

= Pµ1...µn , (6)

where the Pµ1...µn denotes the production term for the n-th moment of the Boltzmann equation. Simi-
larly to Fµ1...µn , the production term also satisfies the recurrence relation, Pµ1...µngµn−1µn = m2Pµ1...µn−2 .

The above equations are valid for an arbitrary solution f of the Boltzmann equation. However, in
case the microscopic time and length scales are much shorter than the macroscopic ones, the system
relaxes to the so-called local equilibrium state. In local equilibrium the single particle distribution
function has a specific isotropic form resulting from a locally maximal entropy with vanishing entropy
production,

f0 =
[

exp(−α0 + β0E) + a
]−1

, (7)

where β0 = 1/T is the inverse temperature and α0 = µ/T is the ratio of chemical potential µ and
temperature, both in units of kB = 1. Using the local equilibrium distribution function in Eqs. (3,4) we
define,

n0 = 〈E〉0 , e0 = 〈E
2〉0 , p0 = −

1
3
〈∆αβpαpβ〉0 , (8)
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where the brackets, 〈. . .〉0 ≡
∫

dω . . . f0, and n0 = Nµ

0 uµ is the particle number density, e0 = T µν

0 uµuν is
the energy density and p0 = −T µν

0 ∆µν/3 is the isotropic pressure, in equilibrium. Here we introduced
the particle four-current Nµ( f0) ≡ Nµ

0 and energy-momentum tensor T µν( f0) ≡ T µν

0 . Thus the local
equilibrium approximation defines a perfect fluid with only five unknown fields uµ, n0 and e0, such
that

Nµ

0 ≡ n0uµ , (9)

T µν

0 ≡ e0uµuν − p0∆
µν , (10)

where the pressure p0 is defined through an Equation of State (EOS). The temperature, chemical
potential and entropy are also defined by the laws of equilibrium thermodynamics.

If the system is out-of equilibrium the distribution function changes. Let us denote this difference
by, δ f = f − f0, therefore the averages in Eqs. (3,4) define 14 new fields on the l.h.s.,

n ≡ 〈E〉 = 〈E〉0 + 〈E〉δ = n0 + δn , (11)

e ≡ 〈E2〉 = 〈E2〉0 + 〈E
2〉δ = e0 + δe , (12)

p ≡ −
1
3
〈∆αβpαpβ〉 = −

1
3
〈∆αβpαpβ〉0 −

1
3
〈∆αβpαpβ〉δ = p0 + Π , (13)

Vµ ≡ 〈p〈µ〉〉 = 〈p〈µ〉〉δ , (14)

Wµ ≡ 〈Ep〈µ〉〉 = 〈Ep〈µ〉〉δ , (15)

πµν ≡ 〈p〈µpν〉〉 = 〈p〈µpν〉〉δ , (16)

where 〈. . .〉δ ≡
∫

dω . . . δ f , and n = Nµuµ = n0 + δn is the particle number density, e = T µνuµuν =
e0 + δe is the energy density and p = p0 + Π = −T µν∆µν/3 is the isotropic pressure decomposed
into equilibrium pressure and bulk viscous pressure parts. Here, Vµ = ∆µαNα is the particle diffusion
current with Vµuµ = 0, Wµ = ∆µαTαβuβ is the energy-momentum diffusion current with Wµuµ = 0,
while the orthogonal and traceless part of T µν defines the stress tensor, πµν = T 〈µν〉, where πµνuµ = 0
and πµνgµν = 0. Now, we can write the fundamental fluid dynamical quantities as

Nµ ≡ Nµ

0 + δNµ = (n0 + δn)uµ + Vµ , (17)

T µν ≡ T µν

0 + δT µν = (e0 + δe)uµuν − (p0 + Π)∆µν + 2W (µuν) + πµν . (18)

At this point the flow of matter uµ is usually specified using the definition of Eckart [6] or of Lan-
dau and Lifshitz [7]. Eckart chose the flow of conserved particles (if there are any) to define uµ =
Nµ/

√

NµNµ, while Landau and Lifshitz chose the flow of energy-momentum uµ = T µνuν/
√

T µαuαTµβuβ.
This implies that either the particle diffusion current or the energy-momentum diffusion current van-
ishes, Vµ = 0 or Wµ = 0. These physically different choices are related to each other and define the
heat-flow,

qµ ≡ Wµ − Vµ(e + p)/n ≃ Wµ − Vµ(e0 + p0)/n0 + O2 . (19)

In the following we will not restrict the calculations by fixing a frame of reference.

3 The method of moments

One of the methods successfully used to derive the equations of dissipative fluid dynamics was intro-
duced by H. Grad [3,8] and later generalized to relativistic systems by Israel and Stewart [1,9–11].
This method uses the conservation laws together with the balance equation for the third moment and
its production term to obtain the equations of motion for the 14-fields.

Let us specify the distribution function as f (y) = (e−y + a)−1, where the equilibrium distribution
function is recovered when y = y0 ≡ α0−β0E. If the system is not too far away from local equilibrium
the argument of the equilibrium distribution function changes by δy = y − y0 ≪ 1, therefore

f (y) = f (y0) + f ′(y0)δy + f ′′(y0)δy2/2 + . . . + On , (20)
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where f ′(y0) = f0 f̃0. The method of IS specifies the deviation from equilibrium in terms of a polyno-
mial expansion in the momentum four-vector pµ up to quadratic order,

δy ≡ α − pµβµ + pµpνwµν = α − βE − pµvµ + E2w −
w

3
∆µνpµpν + 2Ewµpµ + w

〈µν〉pµpν , (21)

where β = βµuµ and w = wµνuµuν = −wµν∆µν are scalars, vµ = β〈µ〉 and wµ = w〈µ〉βuβ are four-vectors
orthogonal to uµ, and w〈µν〉 is the traceless and orthogonal part of wµν.

Substituting the previous two equations into Eqs. (3,4) we get

Nµ =
[

I10 + αJ10 − βJ20 + w(J30 − J31)
]

uµ − J21v
µ + 2J31w

µ , (22)

T µν =
[

I20 + αJ20 − βJ30 + w(J40 − J41)
]

uµuν −

[

−I21 − αJ21 + βJ31 − w

(

J41 −
5
3

J42

)]

∆µν

− 2
(

J31v
(µ − 2J41w

(µ
)

uν) + 2J42w
〈µν〉 . (23)

Here we introduced the auxiliary thermodynamic integrals, Inq(α0, β0) and Jnq(α0, β0),

Inq ≡
1

(2q + 1)!!

∫

dω En−2q
(

pµpν∆µν
)q

f0 , Jnq ≡
1

(2q + 1)!!

∫

dω En−2q
(

pµpν∆µν
)q

f0 f̃0 , (24)

where n and q ≤ [n/2] are integers and (2q + 1)!! denotes the double factorial. For a classical gas
Jnq(a = 0) = Inq. These two integrals are related by β0Jnq = −In−1,q−1 + (n− 2q)In−1,q, dInq = Jnqdα0 −

Jn+1,qdβ0, and β0dJnk =
[

−Jn−1,q−1 + (n − 2q)Jn−1,q

]

dα0+
[

Jn,q−1 − (n − 2q + 1)Jnq

]

dβ0 where d stands
for both the proper time and spatial derivatives [12].

Furthermore, comparing Eqs. (17, 18) with Eqs. (22, 23) we can express the fluid dynamical fields
in terms of the thermodynamic integrals and the parameters of the distribution function,

n0 = I10 , e0 = I20 , p0 = −I21 , (25)

δn = αJ10 − βJ20 + w(J30 − J31) , δe = αJ20 − βJ30 + w(J40 − J41) , (26)

Π = −αJ21 + βJ31 − w

(

J41 −
5
3

J42

)

, (27)

Vµ = −J21v
µ + 2J31w

µ , Wµ = −J31v
µ + 2J41w

µ , (28)

πµν = 2J42w
〈µν〉 . (29)

The above relations can be inverted to extract the parameters of the non-equilibrium distribution func-
tion in terms of the 14 fluid dynamical fields, n = n0 + δn, e = e0 + δe,Vµ,Wµ, πµν and p = p0 + Π .
Without loss of generality the scalar quantities can be inferred from Eqs. (25,26), however the current
method does not provide enough independent equations for closure. Therefore, one usually employs
a so-called matching or fitting condition where the non-equilibrium particle and energy densities are
assumed to be unchanged at least up to first order in deviations from equilibrium. Hence, following IS
we fix δn = δe = 0. This also means that the EOS is given by, p0 = p0(e0, n0), and the temperature and
chemical potential are fixed by the equilibrium state. Alternatively one could use different matching
conditions [13] or even different thermodynamical theories, see for example Refs. [14–16]. Thus from
the above equations and constraints we get

α = AΠαΠ , β = AΠβΠ , w = −AΠwΠ , (30)

vµ = −BVvV
µ + BWvW

µ , wµ = −BVwVµ + BWwWµ , (31)

w〈µν〉 = Cπwπ
µν , (32)

where we introduced

AΠα = AΠw

[

m2 − 4 (J30J31 − J20J41) /D20

]

, AΠβ = AΠw [4 (J10J41 − J20J31) /D20] , (33)

AΠw =
−3D20Π

4 [3J21(J30J31 − J20J41) + 3J31(J10J41 − J20 J31) − 5J42D20]
, (34)

BVv = J41/D31 , BWv = J31/D31 , BVw = J31/(2D31) , BWw = J21/(2D31) , (35)

Cπw = (2J42)−1 , (36)
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and Dnq = Jn−1,qJn+1,q − J2
nq.

Here we note that using the definition of heat-flow together with the definition of enthalpy per
particle h ≡ (e0+p0)/n0 = J31/J21, one can equivalently choose vµ = −B′VvV

µ+B′qvq
µ and wµ = B′qwqµ,

where B′Vv ≡ (J21)−1, B′qv ≡ J31/D31 = BWv and B′qw ≡ J21/(2D31) = BWw, however we prefer to write
the equations in terms of Vµ and Wµ.

3.1 The balance equations from the third moment

The equations of motion for the nine dissipative fields can be calculated from the third or higher
moment of the Boltzmann equation. Therefore using Eq. (6) for n ≥ 2, the equations for bulk viscous
pressure, heat and diffusion currents, and stress tensor can be formally written as

uµ1 . . . uµn∂λFµ1...µnλ = uµ1 . . . uµn Pµ1...µn , (37)

∆αµ1
uµ2 . . . uµn∂λFµ1...µnλ = ∆αµ1

uµ2 . . . uµn Pµ1...µn , (38)

∆
αβ
µ1µ2

uµ3 . . . uµn∂λFµ1...µnλ = ∆
αβ
µ1µ2

uµ3 . . . uµn Pµ1...µn . (39)

Here we follow the method of IS and augment the equations of fluid dynamics Eqs. (5) which are
Eqs. (6) for n = 0 and n = 1 with the next equation for n = 2 that is ∂λFµνλ = Pµν. Using the
14-moment approximation, Fµνλ and its production term Pµν become functions of the nine dissipative
fields. This means that one discards irreducible tensors of rank higher than two, which usually do not
appear in fluid dynamics. Of course one could obtain the equations of motion from higher moments of
the Boltzmann equation, however, we note that the resulting equations of motion would be formally
identical but yield different transport coefficients as shown in Ref. [17].

In the following we explicitly calculate the equations of motion for the dissipative fields as done by
Israel and Stewart, but here we restore all the terms that they neglected. Hence, using Eqs. (30,31,32)
the third moment leads to

Fµνλ ≡ 〈pµpνpλ〉 = (I30 + ψ4Π) uµuνuλ + 3 (I31 − ψ4Π/3) u(µ∆νλ) + 3ψW
1 W (µuνuλ) + 3ψV

1 V (µuνuλ)

+ 3ψW
2 W (µ∆νλ) + 3ψV

2 V (µ∆νλ) + 3ψ3π
(µνuλ) , (40)

where we introduced the following variables

ψ4 = −
J30(J30J31 − J20J41) + J40(J10J41 − J20 J31) − J51D20

J21(J30J31 − J20 J41) + J31(J10J41 − J20 J31) − 5J42D20/3
, (41)

ψW
1 = (J21J51 − J31 J41) /D31 , ψW

2 = −ψ
W
1 /5 , (42)

ψV
1 = −D41/D31 , ψV

2 = m2/5 − ψV
1 /5 , (43)

ψ3 = J52/J42 . (44)

The equations of motion follow from the different projections of the balance equation of the third
moment. Thus Eq. (37) leads the equation for the bulk viscous pressure Π ,

uµuνP
µν = İ30 + ψ4Π̇ + ψ̇4Π +

(

I30 − 2I31 +
5
3
ψ4Π

)

θ

+ ∂µ(ψW
1 Wµ) − 2ψW

1 Wµu̇µ + ∂µ(ψV
1 Vµ) − 2ψV

1 Vµu̇µ − 2ψ3π
µν∂µuν . (45)

The vector equation Eq. (38) for Wµ and Vµ is

uν∆
µ
αPνα =

(

I30 − 2I31 +
5
3
ψ4Π

)

u̇µ +Wµ
[

ψ̇W
1 + (ψW

1 − ψ
W
2 )θ

]

+ Vµ
[

ψ̇V
1 + (ψV

1 − ψ
V
2 )θ

]

+ ∆
µ
α

[

∂α
(

I31 −
1
3
ψ4Π

)

− ψW
2 Wν∂αuν + ψ

W
1 Ẇα − ψV

2 Vν∂αuν + ψ
V
1 V̇α

]

+ (ψW
1 − ψ

W
2 )Wν∂νu

µ + (ψV
1 − ψ

V
2 )Vν∂νu

µ + (∂νψ3 − ψ3u̇ν)πµν + ψ3∆
µ
α∂νπ

αν . (46)
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The equation for the stress tensor πµν can be calculated from Eq. (39),

P〈µν〉 = 2

(

I31 −
1
3
ψ4Π

)

∂〈µuν〉 + 2(ψW
1 − ψ

W
2 )u̇〈µWν〉 + 2(ψV

1 − ψ
V
2 )u̇〈µVν〉 + 2

(

W〈µ∂ν〉ψW
2 + ψ

W
2 ∂
〈νWµ〉

)

+ 2
(

V〈µ∂ν〉ψV
2 + ψ

V
2 ∂
〈νVµ〉

)

+ ψ̇3π
µν + ψ3

(

π̇〈µν〉 + πµνθ
)

+ 2ψ3π
λ〈µ∂λuν〉 . (47)

Next we evaluate the production term using the r.h.s. of the Boltzmann equation. Using the distri-
bution function from Eq. (20) in Eq. (2), the linearized production term is given by

Pµν ≡
1
2

∫

dωdω1dω′dω′1 W(p, p1, p′, p′1) f ′0 f ′1,0 f0 f1,0 e−(y′0+y
′
1,0+y0+y1,0)/2

× pµpν
[

p′αp′β + p′α1 p′β1 − pαpβ − pα1 pβ1
]

wαβ = Cµναβwαβ , (48)

where the collision tensor, Cµναβ = C(µν)(αβ), is symmetric upon the interchange of two incoming or
outgoing particles. Furthermore, the collision tensor is traceless Cµναβgαβ = Cµναβgµν = 0, and obeys
time-reversal symmetry, Cµναβ = Cαβµν. Using these properties we decompose the collision tensor as,

Cµναβ =
A0

3

[

3uµuνuαuβ −
(

uµuν∆αβ + uαuβ∆µν
)

+
1
3
∆µν∆αβ

]

+ 4B0u(µ∆ν)(αuβ) +
C0

5
∆µ〈α∆β〉ν , (49)

where A0 = Cµναβuµuνuαuβ, B0 = Cµναβu(µ∆ν)(αuβ)/3, C0 = Cµναβ∆µ〈α∆β〉ν. Therefore using the above
equations we easily get the l.h.s. of the balance equations,

uµuνP
µν ≡ 4A0w/3 = CΠΠ , (50)

uν∆
µ
αPνα ≡ 2B0w

µ = CVVµ + CWWµ , (51)

P〈µν〉 ≡ C0w
〈µν〉/5 = Cππµν , (52)

where CΠ = −(4A0AΠw/3), CV = −2B0BVw, CW = 2B0BWw and Cπ = C0Cπw/5.

3.2 The relaxation equations

The relaxation equations follow from the balance equations (45, 46, 47) and the linearized collision
integral, Eqs. (50,51,52). Here we write the equations in a frame independent form since it is easy to
re-write them in the Eckart frame, where Vµ = 0 and qµ = Wµ, or in the Landau and Lifshitz frame,
where Wµ = 0 and then qµ = −hVµ.

The relaxation equation for bulk viscosity is

Π = −ζθ − τΠ Π̇ + τΠWWµu̇µ − lΠW∂µWµ + λΠWWµ∇µα0

− ζδ0Πθ + τΠVVµu̇µ − lΠV∂µV
µ + λΠVVµ∇µα0 + λΠππ

µνσµν , (53)

where we introduced Gnq = Jn0Jq0 − Jn−1,0Jq+1,0 and

ζ =
−1
CΠD20

(n0D30 + (e0 + p0)G23 − β0J41) , τΠ = −
ψ4

CΠ
, (54)

βΠ = τΠ/ζ = ψ4D20/ (n0D30 + (e0 + p0)G23 − β0 J41) , (55)

τΠW =
−1
CΠ













2ψW
1 + β0

∂ψW
1

∂β0
+

G23

D20













, τΠV =
−1
CΠ













2ψV
1 + β

∂ψV
1

∂β0













, (56)

lΠW =
−1
CΠ

(

ψW
1 +

G23

D20

)

, lΠV =
−1
CΠ

(

ψV
1 +

D30

D20

)

, (57)

λΠW =
1
CΠ













∂ψW
1

∂α0
+ h−1 ∂ψ

W
1

∂β0













, λΠV =
1
CΠ













∂ψV
1

∂α0
+ h−1 ∂ψ

V
1

∂β0













, (58)

λΠπ =
−1
CΠ

(

2ψ3 +
G23

D20

)

, δ0 = βΠ

(

ψ̇4

ψ4θ
+

5
3
+

G23

ψ4D20

)

. (59)
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The relaxation equation for the flow of energy-momentum and conserved charge is

Wµ − hVµ = −κ
n

β2
0(e + p)

∇µα0 − τW Ẇ〈µ〉 + hτV V̇〈µ〉 + τWWνω
µν − hτVVνω

µν

− τqΠΠ u̇µ − τqππ
µνu̇ν + lqΠ∇

µΠ − lqπ∆
µ
α∂νπ

αν + λqΠΠ∇
µα0 + λqππ

µν∇να0

−
κ

β0
δ1WWµθ + h

κ

β0
δ1VVµθ − λWWWνσ

µν + hλVVVνσ
µν , (60)

where we used that CV = −hCW and defined,

κ =
hβ2

0

CW

D31

J31
, τW = −

1
CW

(

ψW
1 +

β0 J41

e0 + p0

)

, τV = −
ψV

1

CV
=

ψV
1

hCW
, (61)

βW = β0τW/κ = −

(

ψW
1 +

β0 J41

e0 + p0

)

J31

hβ0D31
, βV = β0τV/κ =

ψV
1 J31

h2β0D31
, (62)

τqΠ =
−1
CW

(

5
3
ψ4 +

β0

3
∂ψ4

∂β0
+

β0J41

e0 + p0

)

, τqπ =
1
CW

(

ψ3 + β0
∂ψ3

∂β0

)

, (63)

lqΠ =
−1
CW

(

ψ4

3
+

β0 J41

e0 + p0

)

, lqπ =
−1
CW

(

ψ3 +
β0J41

e0 + p0

)

, (64)

λqΠ =
−1

3CW

(

∂ψ4

∂α0
+ h−1 ∂ψ4

∂β0

)

, λqπ =
1
CW

(

∂ψ3

∂α0
+ h−1 ∂ψ3

∂β0

)

, (65)

λWW =
−1
CW













7ψW
1

5
+

β0J41

e0 + p0













, λVV =
−1
CV













7ψV
1

5
−

2m2

5













, (66)

δ1W = βW













ψ̇W
1

ψW
1 θ
+

5
3
+

4β0J41

3(e0 + p0)ψW
1













, δ1V = βV













ψ̇V
1

ψV
1 θ
+

5
3
−

m2

3













. (67)

The equation of motion for the shear stress tensor is

πµν = 2ησµν − τππ̇〈µν〉 + 2λπΠΠσµν + 2τπWW〈µu̇ν〉 + 2τπVV〈µu̇ν〉 + 2lπW∇
〈µWν〉 + 2lπV∇

〈µVν〉

− 2λπWW〈µ∇ν〉α0 − 2λπVV〈µ∇ν〉α0 − 2ηδ2π
µνθ − 2τππ

〈µ
α σ

ν〉α + 2τππ
〈µ
α ω

ν〉α , (68)

where

η =
I31

Cπ
, τπ = −

ψ3

Cπ
, βπ = τπ/(2η) = −ψ3/(2I31) , (69)

λπΠ = −
ψ4

3Cπ
, λπW =

−1
Cπ













∂ψW
2

∂α0
+ h−1 ∂ψ

W
2

∂β0













, λπV =
−1
Cπ













∂ψV
2

∂α0
+ h−1 ∂ψ

V
2

∂β0













, (70)

τπW =
1
Cπ













6
5
ψW

1 − β0
∂ψW

2

∂β0













, τπV =
1
Cπ













m2

5
+

6
5
ψV

1 − β0
∂ψV

2

∂β0













, (71)

lπW =
ψW

2

Cπ
, lπV =

ψV
2

Cπ
, δ2 = βπ

(

ψ̇3

ψ3θ
+

5
3

)

. (72)

Note that we made extensive use of the following identities, ∇µβ0 = h−1∇µα0 − β0u̇µ and ∇µψ =
(

∂ψ

∂α0
+ h−1 ∂ψ

∂β0

)

∇µα0 − β0
∂ψ

∂β0
u̇µ.

The above relaxation equations are usually written and solved in a form which is given dividing
the relaxation equations by their respective relaxation times. This leads to coefficients which do not
depend on the cross section. Here we list them in the ultrarelativistic limit, where m/T → 0, e = 3p
and Π = 0, in both the Eckart and Landau and Lifshitz frames,

βW = βV →
5n0

4β0 p2
0

, βλWW =
λWW

τW
→

9
5
, βλVV =

λVV

τV
→

7
5
, (73)
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βλWπ =
λqπ

τW
→

3n0

10β0 p0
, βλVπ =

λqπ

τV
→ −h

3n0

40p0
, δ1W =

2
3
βW , δ1V = βV (74)

βτWπ =
τqπ

τW
→ 0 , βτVπ =

τqπ

τV
→ 0 , βl

Wπ =
lqπ
τW
→

1
5
, βl

Vπ =
lqπ
τV
→ −h

β0

20
, (75)

and

βπ →
3

4p0
, βλπW =

λπW

τπ
→

n0

12β0 p0
, βλπV =

λπV

τπ
→ −

n0

3β2
0 p0

, δ2 =
4
3
βπ , (76)

βτπW =
τπW

τπ
→ −

5
3
, βτπV =

τπV

τπ
→

8
3β0

, βl
πW =

lπW

τπ
→

1
3
, βl

πV =
lπV

τπ
→ −

2
3β0

. (77)

4 Conclusions

In this work we derived the equations of second order dissipative fluid dynamics with all first- and
second-order terms from the Boltzmann equation using the 14-moment method with a linearized col-
lision integral. We also expressed all coefficients multiplying the second order terms independent of
the choice of frame and showed that some of these coefficients are different in different frames.
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