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Abstract. We derive the equations of second order dissipative fluid dynamics from the
relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart [1].
We present a frame independent calculation of all first- and second-order terms and their
coeflicients using a linearised collision integral. Therefore, we restore all terms that were
previously neglected in the original papers of W. Israel and J. M. Stewart.

1 Introduction

Relativistic fluid dynamics has been applied successfully to describe the dynamics of the hot and dense
matter created in relativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) [2]. It
is also expected to play an important role in understanding of future experiments at the Large Hadron
Collider (LHC) and at the Facility for Antiproton and Ion Research (FAIR).

On the other hand, the theoretical foundations of relativistic dissipative fluid dynamics are not fully
established yet. Relativistic kinetic theory of dilute gases provides a framework for relativistic fluid
dynamics which can be derived systematically from the Boltzmann equation. However, this procedure
is not unique and has been subject of many past and recent studies.

In this paper we present a short but self-contained derivation of dissipative fluid dynamics from
kinetic theory following the widely used approach by Israel and Stewart (IS) which is a generalization
of Grad’s method of moments [3] to relativistic systems. We show that the resulting equations contain
several new second order terms and coefficients [4] which were absent in the treatment by IS and
others in the past.

Notation: We define the space-time coordinates choosing ¢ = 1, and the covariant and contravari-
ant four-vectors, x, = g, X" = (t,—x,-y,—z) and ¥ = ¢""x, = (t,x,y,2), where ¢ = g, =
diag(1,—-1,—1,—-1) is the metric of flat space-time. The normalized hydrodynamic four-velocity of
matter is u*, such that w*u, = 1. The transverse projection operator 44" = g*” — uu”, is used to de-
compose four-vectors or tensors into parts parallel and orthogonal to »*. The transverse projection of
four-vectors is denoted by A = A4 A”. The transverse and traceless projection of second-rank tensors
is defined as A“” = A7 A% = [% (Af:AE +A;AZ,) - %A”"Aaﬁ] A%, The gradient, d, = /0", of an
arbitrary tensor can be decomposed as, 0, A = u, DA*#r + V, AH1-#n  where the comoving time-
derivative, D = u#d,, is also denoted by an over-dot, A" = DA, and V,, = Aﬁaﬁ is the gradient operator.
The symmetric and antisymmetric parts of a second rank tensors are denoted by A®”) = (A* + A™) /2
and AW = (A® — A™) /2, respectively. Using the above notations the relativistic generalization of the
Cauchy-Stokes decomposition is d,u, = u,it, + %GAW + 0y + wyy, where we defined the expansion
scalar @ = V,u”, the shear tensor o = V#u*, and the vorticity tensor W = VI,
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2 Fluid dynamics from kinetic theory

In relativistic kinetic theory of single component gases, particles with mass m and four-momenta
P = (p°, p) where p® = +/p? + m2, at space-time coordinate x* = (t,x) are characterized by the
invariant single particle distribution function f = f(¢, X, p). Assuming that there are no external forces,
the space-time evolution of f in a dilute gas with binary collisions is given by the relativistic Boltzmann
transport equation [5],

Plouf =CIf], (D

where C [f] is the collision integral. The explicit form of the collision integral is
1 ’ ’ o7 ! ot F 7 7y 1
Clfl=5 f dwidw'do; Wp, p1. p's PO FLFR - FAFF] )

where dw = gd*p/ [p0(27rh)3]; g is the number of internal degrees of freedom and the transition rate

is proportional to the cross section W(p, p1, p’, p}) ~ o. Here f = 1 — af denotes the correction due
to boson and fermion statistics with a = —1 and a = +1, while a = 0 for classical gases.

For later convenience let us separate the four-momenta of particles into two parts using an arbitrary
fluid dynamic flow velocity u*. Thus p* = Eu* + p*’, where E = p*u,, is the energy of the particle in
the Local Rest Frame (LRF), where u’ﬁRF =(1,0,0,0), and p® = A*p, is the LRF momentum. The
macroscopic fields such as the particle four-flow and energy-momentum tensor are defined as the first

and second moment of the single particle distribution function,

N(t,x) = (p") = (Eyi + (p»), 3)
T(6.%) = (p'p") = (E*y” + %A”Wﬁpapm +(EpYu + EpP i+ (pYpT). @)

where the brackets, (...) = f dw...f, denote the integral of f in momentum space. Similarly, we can
define higher moments or fluxes, these are F*!#» = (p ... p*), and they obey the recurrence relation
Fritng, = m>Fr-#2 where p“p, = m* was used.

The conservation of particle number or charge and of energy and momentum in individual colli-
sions lead to the equations of relativistic fluid dynamics [5],

aﬂN”EfdwC[f]:O, G#T”"EfdprC[f]=0, (%)

while the divergence of higher moments leads to the balance of fluxes,

5 FH -t = f dwp" .. pCLf] = Pt (©)

where the P!+ denotes the production term for the n-th moment of the Boltzmann equation. Simi-
larly to F*1-+#n, the production term also satisfies the recurrence relation, P*t-#g, . == m?PH a2

The above equations are valid for an arbitrary solution f of the Boltzmann equation. However, in
case the microscopic time and length scales are much shorter than the macroscopic ones, the system
relaxes to the so-called local equilibrium state. In local equilibrium the single particle distribution
function has a specific isotropic form resulting from a locally maximal entropy with vanishing entropy
production,

fo = [exp(=ao + BoE) +a] ™", 7)

where By = 1/T is the inverse temperature and ag = u/T is the ratio of chemical potential u and
temperature, both in units of kg = 1. Using the local equilibrium distribution function in Egs. (3,4) we
define,

1
ng=(Ey,  eo=(E", P0=—§<Aaﬁpapﬁ>oa ®)
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where the brackets, (.. .)g = f dw. .. fy, and ng = Nyu, is the particle number density, ey = T§"u,u, is
the energy density and py = —Tg "4,,/3 is the isotropic pressure, in equilibrium. Here we introduced

the particle four-current N¥(fy) = Ng and energy-momentum tensor T#"(fy) = Tgv. Thus the local
equilibrium approximation defines a perfect fluid with only five unknown fields u*, ny and ep, such
that

Ng = nou*, (©)]

Ty = eouu” — pod"”, (10)
where the pressure pg is defined through an Equation of State (EOS). The temperature, chemical
potential and entropy are also defined by the laws of equilibrium thermodynamics.

If the system is out-of equilibrium the distribution function changes. Let us denote this difference
by, 6f = f — fo, therefore the averages in Egs. (3,4) define 14 new fields on the Lh.s.,

nz(E):(E>0+(E>5=n0+6n, (]])
e = (E?) = (E*)o +(E*)s = e + de, (12)
1 1 1

P = =3 papp) = =3 pappdo = 34V Papgls = po+ 11, (13)

Ve = (p¥) = (p¥)s, (14)

W = (Ep¥) = (Ep¥);, (15)

= (p¥p”y = (p¥p"s, (16)

where (...)s = fda) ...0f,and n = N*u, = ng + on is the particle number density, e = T u,u, =
eo + de is the energy density and p = po + [ = -T*4,,/3 is the isotropic pressure decomposed

into equilibrium pressure and bulk viscous pressure parts. Here, V¥ = A4**N, is the particle diffusion
current with V¥u, = 0, WH = A/“’Taﬁuﬁ is the energy-momentum diffusion current with W#u,, = 0,
while the orthogonal and traceless part of T+ defines the stress tensor, 7 = T*", where n*'u, = 0
and 7*"g,, = 0. Now, we can write the fundamental fluid dynamical quantities as

Nt = Ng + ON* = (ng + on)u* + V*, am
T = TH + 6T* = (eo + Se)u'u” — (po + IDNA" + 2WHu” + 7. (18)

At this point the flow of matter #* is usually specified using the definition of Eckart [6] or of Lan-
dau and Lifshitz [7]. Eckart chose the flow of conserved particles (if there are any) to define u* =
N* [\JNHN,,, while Landau and Lifshitz chose the flow of energy-momentum u# = T+ u, \/TFu, T ,zuP.
This implies that either the particle diffusion current or the energy-momentum diffusion current van-
ishes, V¥ = 0 or W* = 0. These physically different choices are related to each other and define the
heat-flow,

g = WH = VH(e+ p)/n=WH = VH(ey+ po)/ng + O3 . (19)

In the following we will not restrict the calculations by fixing a frame of reference.

3 The method of moments

One of the methods successfully used to derive the equations of dissipative fluid dynamics was intro-
duced by H. Grad [3,8] and later generalized to relativistic systems by Israel and Stewart [1,9-11].
This method uses the conservation laws together with the balance equation for the third moment and
its production term to obtain the equations of motion for the 14-fields.

Let us specify the distribution function as f(y) = (¢™¥ + a)~!, where the equilibrium distribution
function is recovered when y = yo = ap —SoE. If the system is not too far away from local equilibrium
the argument of the equilibrium distribution function changes by dy = y — yo < 1, therefore

F@) = fWo) + £ Wo)dy + ' Wo)oy* /2 + ... + Oy, (20)

07005-p.3
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where f'(yo) = fofo. The method of IS specifies the deviation from equilibrium in terms of a polyno-
mial expansion in the momentum four-vector p* up to quadratic order,

w
oy =a—p'Bu+ p'p’wy =a—-PE - plu, + Ew— EAWP;;PV + 2Ew'p, + w<’”>pppv, 21

where g = 4u, and w = wu,u, = w4, are scalars, ¥ = B and w* = w<“>ﬁuﬁ are four-vectors
orthogonal to u*, and w*” is the traceless and orthogonal part of w*”.
Substituting the previous two equations into Egs. (3,4) we get

Nt = [Lo + aJio — BJa + w(Jz0 — 30| u — Jot# + 20504, (22)
5
T = [y + aJyx — BJ30 + w(Jso — Ja)] ut'u” — [—121 —aty +BJ3 — w(J41 - §J42)]AW

= 2 (v = 20w ) + 20w (23)
Here we introduced the auxiliary thermodynamic integrals, 1,,4(@o, Bo) and J,4(o, Bo),

1 ¢ 1
Ly= ———— | doE"™ 2 (p"p’a,) fo, Jpg= ————
a (2q+1)!!f @ (P2 4) for g (2g+ D!

where n and g < [n/2] are integers and (2¢g + 1)!! denotes the double factorial. For a classical gas
Jng(a = 0) = I,,. These two integrals are related by BoJ,g = —Lu-1,g-1 + (1 = 2q) 1,4, dlg = Jugdao -
Tui1.gdBo, and Bod Tk = [~Tu1. 41 + (0 = 201 4| daro+| g1 = (0 = 2q + 1), | dBy where d stands
for both the proper time and spatial derivatives [12].

Furthermore, comparing Eqs. (17, 18) with Eqgs. (22, 23) we can express the fluid dynamical fields
in terms of the thermodynamic integrals and the parameters of the distribution function,

f dwE" (p'p'd)’ fofo. (24)

no = I, ey = Iy, po =y, (25)

on = aJig — I + w(J3 — J31), oe = aJy — fJ30 + w(Jao — Ja1), (26)
5

I = —-aJy +BJ3 — w(J41 - §J42) , (27)

VH = —1211/’+2J3|w”, wWH =—J3|U’u+2]41wy, (28)

ﬂ”v = 2]42w<”v> . (29)

The above relations can be inverted to extract the parameters of the non-equilibrium distribution func-
tion in terms of the 14 fluid dynamical fields, n = ng + on,e = eg + de, V¥, W{, iV and p = po + I1.
Without loss of generality the scalar quantities can be inferred from Eqgs. (25,26), however the current
method does not provide enough independent equations for closure. Therefore, one usually employs
a so-called matching or fitting condition where the non-equilibrium particle and energy densities are
assumed to be unchanged at least up to first order in deviations from equilibrium. Hence, following IS
we fix on = de = 0. This also means that the EOS is given by, py = po(eo, n9), and the temperature and
chemical potential are fixed by the equilibrium state. Alternatively one could use different matching
conditions [13] or even different thermodynamical theories, see for example Refs. [14—16]. Thus from
the above equations and constraints we get

a = Al B =Appll, w=~Anpll, (30)
o= —BVUVIJ + Z;WU"V'u , Wt = —vavﬂ + BWWWIJ , (31)
W = Crunt”, (32)
where we introduced
Arte = A [mz —4(J30J31 — 120141)/Dzo] , Anp = Amw [4 J10ds1 — J20J31) /D], (33)
—3Dyoll
Ay = = : (34)
4[3J21(J30J31 — J20J41) + 3J31(J10J41 — J20J31) — 5J42D0]
By, = Ja1 /D3y, Bw, = J31/D31, Byw = J31/(2D31), Bww = J21/(2D31), (35)
Crw = 2J)7" (36)
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— 2
and Dm[ = n—l,q]n+l,q - Jn .

Here we note that using the definition of heat-flow together with the definition of enthalpy per
particle 1 = (eo+po)/no = J31/J21, one can equivalently choose v = -8B}, V¥ +B;uq’1 and w = B;wq’l,
where 87, = )7, B;u = J31/D3; = By, and B’qw = J51/(2D31) = By, however we prefer to write

the equations in terms of V¥ and W*.
3.1 The balance equations from the third moment
The equations of motion for the nine dissipative fields can be calculated from the third or higher

moment of the Boltzmann equation. Therefore using Eq. (6) for n > 2, the equations for bulk viscous
pressure, heat and diffusion currents, and stress tensor can be formally written as

Uy, .. .uﬂna,lF”""””ﬂ = Uy, Uy, PP 37

Ay - Uy, O FH -+t = A Uy« o Uy, P (38)
A _ oty

ALty oty O FF A = AP Ly, PR (39)

Here we follow the method of IS and augment the equations of fluid dynamics Eqgs. (5) which are
Egs. (6) forn = 0 and n = 1 with the next equation for n = 2 that is §,F** = P*, Using the
14-moment approximation, F*** and its production term P** become functions of the nine dissipative
fields. This means that one discards irreducible tensors of rank higher than two, which usually do not
appear in fluid dynamics. Of course one could obtain the equations of motion from higher moments of
the Boltzmann equation, however, we note that the resulting equations of motion would be formally
identical but yield different transport coefficients as shown in Ref. [17].

In the following we explicitly calculate the equations of motion for the dissipative fields as done by
Israel and Stewart, but here we restore all the terms that they neglected. Hence, using Eqs. (30,31,32)
the third moment leads to

FP = (pp'pty = (Lo + Yal) '’ u + 3 (I3 — ald/3) u® A" + 3y W u® + 3y} vEu'u?
+ 3y WA + 3y VEAD + Byn (40)
where we introduced the following variables

J30(J30J31 = Ja0Ja1) + Jao(J10J41 — J20J31) — 51 D29

¥a = D1 (Us0d31 = Jaodar) + J31(Jiodar — JaJ31) = 5J42Dao/3 55
oV = (Undsi = J31da) /Dsr s vy =y /5, 42)
¥\ =-Du/Dsi, ¢ =m*/5-y)/5, (43)
U3 =Js2/Ja. (44)

The equations of motion follow from the different projections of the balance equation of the third
moment. Thus Eq. (37) leads the equation for the bulk viscous pressure /7,

, . . 5
M#MVP”V = I3+ lﬁ4H + 1/1417 + ([3() - 2[31 + §1ﬁ4n)9
+ 0y WH) = 20 Wit + 8, () VF) = 20) Vit — 243 O, . (45)
The vector equation Eq. (38) for W# and V¥ is

uy AP = (130 — 20 + %mn) i+ W[+ @) = o]+ v i) + @ -y

M
+ 4,

1 . .
" (131 - §mn) — Uy WO u, + Y W =y VY0 u, + g V“]

+ W) =YW+ ) — eV O + (D — Y )T + s Aid,n™ . (46)
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The equation for the stress tensor 7*” can be calculated from Eq. (39),
1
P& =2 (131 - gmn) 04 + 27—y YW + 20y — iV + 2(WHY 4y 9w

+2(VE0 Y + gy o0 VI0) + e + s (29 + 70) + 2y “ou” (47)

Next we evaluate the production term using the r.h.s. of the Boltzmann equation. Using the distri-
bution function from Eq. (20) in Eq. (2), the linearized production term is given by

1 -
P = ) fdwdwldw’dw’l W(p, p1, 0", P foflofofio e WotVitvotyo)/2
X pllpv [p/aplﬁ + pl]ap]ﬁ apB _ plﬂpf] Wap = Cﬂvaﬁwaﬁ , (48)

where the collision tensor, C¥*% = C#)@) is symmetric upon the interchange of two incoming or
outgoing particles. Furthermore, the collision tensor is traceless C*"%g,z = C***%g,, = 0, and obeys
time-reversal symmetry, C**® = C®*#_Using these properties we decompose the collision tensor as,

Co

A 1
cHaB = ?0 [SM"uVu“uﬁ - (u”u"A"ﬁ + u"uﬁA’”) + gA’“’A"ﬁ + 4Bou¥ Ay 4 5 @ B (49)

where Ag = C*"Pu,u,uqug, By = C*"Pud,y g /3, Co = CH%A,, g, Therefore using the above
equations we easily get the Lh.s. of the balance equations,

uu, P* = 4A0w/3 = Cll , (50)
u, AP = 2Bgu* = Cy V¥ + CywWH, (51)
P = Cou™™ |5 = Con” (52)

where C17 = —(4A0ﬂnw/3), CV = _2B()va, CW = 2B()wa and C,r = COC,,w/S.

3.2 The relaxation equations

The relaxation equations follow from the balance equations (45, 46, 47) and the linearized collision
integral, Egs. (50,51,52). Here we write the equations in a frame independent form since it is easy to
re-write them in the Eckart frame, where V¥ = 0 and ¢* = W¥, or in the Landau and Lifshitz frame,
where W¥ = 0 and then ¢* = —hV*.

The relaxation equation for bulk viscosity is

Il = —59 - Tnﬁ + anwﬂb't” - lnw@,,W” + ﬂnwW’lV”ao

- {60179 + Tnvvlll;{” - lnvaﬂvﬂ + /lan”VMCY() + /117”71"”/0'#\, , (53)
where we introduced G4 = J0Jq0 — Jn-1,0J4+1,0 and
(= - (noD30 + (eo + po)G23 — Bodar) » T = Y , (54)
CuD» : Cn
B = tr/{ = ¥aDyo/ (noD3g + (ep + po)G23z — Podar) » (55)
o = — 20" + W' | Gu Ty = _—1 2w+ ,B—V (56)
N e " D) me= RN
-1 Go3 D5
Inw = — [yl + =], Iy 57
nw CH (l;l’] + DZO) 7V (1/11 DZO) ( )
1 (0w 'l 1 (oyY oY
Agw = — | ——+hr'—|,  Agy=—|—"L+n'L], 58
mw Cn (6@0 6/30 v Cn aao 6/30 ( )
-1 G23) ( 9[’4 5 G23 )
At = — 2¢3 + — |, = — -+ —]. 59
m 17 ( ¥ Dy 0 =Fn W46 3 YDy (59
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The relaxation equation for the flow of energy-momentum and conserved charge is

WH — hVH = —¢ Viag — W + hoy VE + 1 W™ — hry Vo™

%w+m
= TrdTit" — Tty + Ly VP IT — 1y 45,0,7™ + AgnITVF @t + Agnm”' Va0

= S WHO + 5, VR0 — Ay W™ + By Vo
Bo Bo

where we used that Cy = —hCy and defined,

Cw J31’ v Cw\"' e+po)’ v Cy hCw’
_ _ (,w . BoJa J31 B A
P = ot/ = (l//1 T+ Po) hBoDs1 Py =Porvle= h*BoD31
Bo s Poar _ b o3
Ty = ( Ya + 3 36y + — p— ﬂo@ﬁ
/30]41 - ,30J41
qu -~ s
CW 3 6() + po C eO + po
-1 (Oys | _ 0Y4 1 (03  _ 003
P 2 oL (W 1)
ol = 3CW (ﬁao - 6,3() ’ ™ C aa() - 6,3()
do = L (10 Bolu _ LT
oW s e+ po)’ VV_CV A
wYV 5 4ﬂ0]41 J ( WY 5 mz)
ow=p (—+—+— Siy=Bv|—=—+>-—]1.
WPV W0 T 3T (e + pou A I

The equation of motion for the shear stress tensor is

Y = 2pot — 1,7 4 20, T + 20y W + 200 V) 4+ 2Ly VEWY 4 20 VY

— 20w WY g — 20,0 VEV g — 256,76 — 27,,7r(<fo"’)“ + ZT,,ﬂgle)a ,

where
n= 2‘ n=-2, Br = 72l 20) = s/ 2Ly),
Ann——;g, ﬂnw—c—l(% h‘?;;z) nV:;_l(%‘{’ _laiﬂ(z)]’
et ], il 3]
lnw=‘22”, znv=lé—", ﬁ,,('/“ 5).

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

Note that we made extensive use of the following identities, V¥8y = h~'V¢aq — Boit* and VFy =

—1 (31// oy .
(0&0 +h )V"ao —,B()%Mﬂ~

The above relaxation equations are usually written and solved in a form which is given dividing
the relaxation equations by their respective relaxation times. This leads to coefficients which do not
depend on the cross section. Here we list them in the ultrarelativistic limit, where m/T — 0, e = 3p

and /1 = 0, in both the Eckart and Landau and Lifshitz frames,

_ 57’10 A _/lWW 9 1 _/lvv 7
STV T A
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ﬁévﬂ=i—(::—>103[2;0, ‘V,,=i—"v”e—h4%';jo, 5lw=§ﬁw, Siv=pv (74
B = 000 f= 0, gl =t g sl o)

and
'8”_)4%70’ 'B’/:W:/IZ:V_)HZ(;;)O’ ﬁﬁvz/:ir_:_’—?,ﬂn(z:;o, 52=%ﬁn, (76)
ﬁ;W:T::/_’_g’ ﬁ;vzzr_:_’%’ ﬁfrwzlz_f_’%’ ﬁzlzvzl;_r_:_’_%ﬁo~ (77)

4 Conclusions

In this work we derived the equations of second order dissipative fluid dynamics with all first- and
second-order terms from the Boltzmann equation using the 14-moment method with a linearized col-
lision integral. We also expressed all coefficients multiplying the second order terms independent of
the choice of frame and showed that some of these coefficients are different in different frames.
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