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ABSTRACT 
The method described here is to measure thermal conductivity of super insulating materials. 
The principle is based on a simple transient experiment and a single temperature 
measurement. The main idea is to control the heat flux diffusion in the sample by the 
adjunction of a semi infinite highly conductive medium. 
An analytical 3D model for transient heat transfer was developed. The resolution of the 
inverse problem enables the thermophysical properties of insulating materials to be 
identified.  

Introduction 

Designing an experimental device to estimate thermophysical conductive properties of 

superinsulating materials is generally difficult. 

1D permanent transfer in the case of a guarded hot box apparatus (see Mumaw, 1973) requires 

many precautions (regulated heat sink, fluxmeters, regulated guard ring etc.). 

The use of the transient flash method (see Parker et al , 1961; Degiovanni, 1977) to measure 

thermal diffusivity is also difficult due to the influence of heat losses around the sample. Some authors 

(see Martin et al, 1994) have tried to improve the experiment by adding 2 metal plates on either side of 

the sample. However, the experiment becomes more complicated and the influence of the lateral heat 

losses is only attenuated. 



Lastly, the popular hot wire method (see Carslaw and Jaeger, 1959) remains easier to implement. 

However, even if the cylindrical semi infinite medium assumption avoids the problem of considering heat 

losses and the ends of the medium, some loss effects are possible at the ends of the wire. Moreover, large 

temperature gradients around the wire, due to the geometry, can introduce some estimation errors in the 

case of non linear transfer. 

The new device proposed here tries to combine all the advantages of the previous methods. The 

main idea is to control the heat flux diffusion inside the insulating sample by addition of a highly 

conductive metal support. No regulated heat sink and flux meter is then needed. A probe similar to the 

hot wire system is used to measure only one temperature evolution on a planar heating device. Therefore, 

the transfer becomes quite ID and steady, even if a model considering 3D geometry and transient state is 

necessary. 

This device is then a simple complementary approach of hot wire method in order to comfirm 

this kind of measurement. 

The principle of the experiment is first explained and a 3D model is proposed. Asymptotic 

expansions give the first step of a 3 parameters estimation method. 

Experimental validation is shown with convenient appropriate size recommendations. 

Modelling 

The device described in figure 1 can be modelised using the following system: 
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evolution 
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FIG 1 
Scheme of the device and Main geometrical parameters of the device 



Transfer inside the heating layer (medium 1): 
This layer is metallic and considered to be infinitely thin. Thus temperature distribution is 

assumed to be uniform versus z-direction. It yelds then: 

at," 
(pcp)1 e, ~ = Q + ~2 (z = e I ) (1) 

Where Q is the Joule effect heat flux and ~2(z = e / )  describes the heat flux penetrating inside 

the insulating sample (medium 2). 

Transfer inside the insulating sample (medium 2) and inside the conductive medium (medium 3): 

Heat transfert is here assumed to be purely conductive and the sample isotropic. It yields then in 

cylindrical coordinates: 

0277, 102T,* ~ 4 c92T[ 1 o>t7, * i=2,3 (2) 
- ~ r 2  + r - - ~ - - r  2 ) Oz e - a  Ot 

with flux and temperature continuity at interfaces between media land 2, and media 2 and 3. 

Flux is assumed to be null at r=R. 
Initially, the whole system is assumed to be at uniform temperature To. A new variable is then 

considered such as ~ = ~" - To. 

To write the previous system in a less complex form, Laplace and Hankel transforms yiels : 

R -pt (3) Oi(O~,,z,p)= fo ~o T,(r,z,t)e Jo(~,r)rdtdr 

Then equation (2) becomes an ordinary differential equation: 

with o~,: roots of a transcendental equation 

approximation of a,, : 

a o =Oandt~,R=nrc+ 

with heat flux definition such as: 

q'~ (a ,,, p, z) = -2~ 

(4) 

such as: Jl(Ot R)=O. We use the mumerical 

zr 3 

4 (8n~r+4) 

dO, (a., p, z) 
dz 

(5) 



Expressions (4) and (5) are then equivallent to a quadripole presentation (see Batsale et al, 1994) 

such as : 

q 
dzL~,(o~,,p,z)j-k_(p%),p+a # °JLgti(%,p, zJJ (6) 

The solution of (6) gives a simple relationship between temperature and flux vector at the limits 

of each medium such as: 

O,(o~., P, L ej ) 1 _Fo,(,~o, p, ~ e,) I r A  
,-1 = D, ] |  i / (7-a) 

ilt,(a,,p,j~=le, ) C, ll#.(a..p,~j=le,) 1 

with 

A = D, = cosh(K,e i) B, = sinh(K,e i) 
,~,iKi 

C i = X,K, sinh(K,e,) and K, = . ~  
V a, 

(7 -b) 

Medium 3 is considered as semi-infinite so that the transformed temperature distribution is under 

the form: 

0 3(a., p, z) = O j(oc., p, e I + e 2) exp(-K,)z (8) 

Then it yields the following: 

1 03(a ., p, z) = exp(-K3z) 
~.sK3 

andtlt3(°~.,P,Z)l .... +~ =- ,~  dO3(an'p'z) =A~KsO3(a.,p,e~+e2) 
" d Z  z ~ e l + e  2 " 

(9) 

The entire system can be described in transformed space as: 

O ,(a., p,O) l "1 Lp~(a,.,p,O)j=[(pcp)lelp O][A2 Bzl[O3(tzn, P.el+e2 ) 
1 JEt2 D2]L% = .a.~K,O3(a,,, P, e, + e2) j 

(lO) 

The transformed temperature measured on the heating plate is then: 

O~(a.,p,O)= {A 2 + B2.~.sK3 }llt l(a ., p,O) 
C 2 + A2(pc p) e~p + ~.3K3 {B2(pc p) e,p + D 2 } 

( l l )  



Such an expression is rather complex and can be inverted in real space by numerical 

computation. Nevertheless, some asymptotic expansions can give some insights to the physical behaviour 

of the system. 

Physical Behaviour of the System Through Asymptotic Assumptions of the Model 

Asymptotic behaviour of (11 ) when ( (pcp)1 el = 0 ~ t --~ oo and ~ --~ oo) 

Expression (11) yields then: 

th(ot, e2 ) QbJ , (ot,.b ) 
O l (a  n, p,O) = (12) 

.a. tiC,, pO:,, 

In real space a relationship between the temperature measured at the center of the plate (r=0) 

gives: 

• e2Qb 2 2Qb 2 ~-. th(a.e2)  J,(os.b) = Rc Q (13) 

- Where Rc is the constriction resistance between the heating plate and the semi-infinite cool 

plate. The definition of Rc is then : 

= ( e  2 ~ .  th(O~ea) J , (Ot .b ) )  b 2 
_ Jo(Ot,,R)J 

(14) 

- )l,j ~ 0o is assumed to be equivalent to Dirichlet zero temperature condition at z=el+e2+e3 

depth. 

Asymptotic behaviour of (11) when ( (pcp)l el = 0 and (pcp)2 e2 = 0 ) 

O, (a . ,  p,O) = 
1 Q b J , ( c t b )  th(o~,e2) Q b J , ( ~ , b )  

+ - -  (15) 
~ , ) 3  a/tp p a .  A2a . p a .  

In real space, a relationship between the temperature measured at the center of the plate (r=0) 

gives: 

Qb e 4~ + RcQ T(O,O, t) = R2 j - ~ , )  3 (16) 



Such an approximated expression as (16) is more convenient to understand the physical evolution 

of temperature T(r=O,z=O,t) (see an example of comparison between expression (11) and (16) on figure 

2). 

Asymptotic behaviour 

I 

I RcQ expression (12) 

i ~ Complete model exprt 
T,' 
~ -  . . . . . . .  4 - - -  

,ssion I1) 

4; 
FIG 2 

Example of comparison between expressions (11) and (16). 

The first term depends only on the properties of medium 3, The second term (constant) depends 
only on thermal conductivity 2,2 and geometrical parameters 

A first estimation method can be deduced: 

* estimation of - - Q  with the slope versus ~ (see figure 2). ~ ) . ~  
* estimation of RcQ with the origin ordinate (extrapolated). 

* the value of (pCp)~ is fixed at (pc~,)~ to begin the numerical estimation. 

Since the Joule effect energy is estimated by electrical measurement on the heating resistance, 

estimation of effusivity 4,~,x(pcp)3 of medium 3 is a good way to verify the conservation of the heat 

flow inside the system. 

This non dependance between thermophysical properties of media 2 and 3 can constitute the 

basic step to implement a classical numerical estimation method which minimize the norm between 

experimental values and exact expression (11). We have used a Nelder Mead minimization algorithm ( 

see Press et al, 1986). 



Exneriment and Results 

Description of the device: 

The scheme of the device is given on figure l-a. 

The heating probe is made with two thin foil resistances (MINCO type [15]) in which a K-type 

thermocouple is inserted to measure the temperature evolution of the probe. An electric generator 

supplies an step power exitation to the probe. The thermocouple signal is recorded on a digital 

oscilloscope. 

The only precaution with the samples is to respect the size, parallelism and symmetry. 

A 10 cm thick brass cylinder is used as a conductive semi infinite medium. 

The validation of the device has been made using other classical methods (such as hot wire, hot 

plane,...). 

Experimental temperature evolution is given on figure (3) and nominal values are given in table 

1. 
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FIG 3 
Experimental temperature evolution. 

TABLE 1 
Nominal values: 

Excitation heat flux Q=444.48 Wm -2 

Thermal conductivity of medium 3 X3= 150 W.m ~ .K- 



Volumetric thermal capacity of medium 3 

Volumetric thermal capacity of medium 3 

Lateral dimensions 1 

Lateral dimensions of medium 2 and 3 

Thickness of medium 1 

Thickness of medium 2 

(pcp)3 =3.6 106 J.m3.K "1 

(pcp)l=3.26 106 J.m3.K -I 

b=4.5 10 .3 m 

R=5 10 .2 m 

el=2.10 "4 m 

e2=5.4.10 -3 m 

The material used is a sample of furnace thermal insulation: Isosilikat (table 2). 

TABLE 2 
Results 

Hot Wire method Constructor data Our method 

~, (W/mK) 0.086 0.088 0.087 

(pct,)2 (J.rnJ.l~ 1) 2.33 105 2.69 l0  s 

Ej (J.mZ.Kts "1/2) 2.32 10 4 2.23 104 

We have observed that the rough estimation from the expression is very accurate. 

Calculation of the constriction resistance Rc (14), gives an excellent first estimation of the 

thermal conductivity ~z. In the proposed case, we obtain ~a=0.087 W/mK. We begin the numerical 

estimation with this first value. 

Study of measurement noise influence : 

This problem can be studied with the linear least square approach (Beck et Arnold, 1977). The 
^ 

measurement temperature T(t  ) is linked to real temperature T ( t )  by the following expression : 

7"(t) = T( t )+  e r (t) (17) 

Where er(t  ) is a random variable called ,, measurement error ,,. The mean value is assumed to 

be zero and stantard deviation to be constant for each t considered, such as (from expression (16)). 

• • /~, ~ ,  
= = [X (18) 

/32 ~2  



Where  [X] is the sensi t ive matrix and : 

Qb e 
/6' = R24-~-~/;t~(pc. )~ (19) 

/62 = RcO 
The optimal est imation is then : 

fi = ( [X y [X ])-' [X ~I" with fi =[/6,,/62] r (20) 

A 

The  est imation parameters  vector can be writ ten : t6 = / 6  + eft,  where  /6 is the real parametres  

vector  and e~ is ~, the est imation parameters  error ~ 

Then  eft is l inked to e r by the relat ionship : 

cov[ea ]= ( [X]  r [X])-' (r 2 (21) 

with X sensit ivit ies matrix and o" stantard deviat ion on noise measurement  : 

cov[ e r ] = ¢r2[I] (22) 

With  l inear express ion (16), we obtain the covariance matrix (figure 4) 

~e~, ~ I -2 .6510 .5 - 1 0  3 
covi / = / 3 (23) 

Le,~.] L- 1 0  4 . 0 2 1 0  2 
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FIG 4 

Result  of the asymptotic assumption (16). 



These values indicate a very good occuracy. So we can estimate parameters but we can also 

know the estimation error on these parameters. Therefore slight systematic errors can occur with the 

determination of the other remaining thermophysical properties such as ~2, pc2, etc ... 

Remarks: 

* Limitations relative to thermal contact resistances : 

One of the main assumptions here is to neglect the thermal contact resistances between layers 1, 

2 and 3. This induces a limitation with the samples to be measured. One criterion can be established: 

e2 - -  >> 10 -4 W4rn2K (24) 
42 

* Choice of the sizes 

We plot on figure 5, the evolution T,o~q" where T,-o,,v is the temperature evolution at r=O and z=e 

in the case of convective losses on the lateral face of the sample is considered. 

b*=b/R, e2*=e2/R and biot number Bi=h*R/~,=16.7 
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FIG 5 
T,,o,fl" fonction of b and e2 
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In order to fit with the previous assumption (adiabacity on lateral faces), it is important that the 

dimensions of the system be R >> b and b = e 2 . In practise, we take b=e2=R/lO. 

Conclusion 

The new device proposed here is complementary of the classical hot wire method. Our method 

remains simple, but we can control the heat flux diffusion in the sample. 

We have shown that the calculation of the constriction resistance in the studied material quickly 

gives an exellent first estimation of the thermal conductivity. We can estimate the thermal conductivity 

and the volumic heat capacity with a classical numerical estimation which minimizes the norm beetween 

experimental result and complete model. We can also estimate the error on the parameters. 

Nomenclature 

A,B,C,D 
Q 
Rc 
T 
a 

r , z  

p 
t 

E 
b , R  
e 

~t 
0 
pcp 

i 

Quadripole elements 
Excitation heat flux 
Contact thermal resistance 
Temperature 
Thermal diffusivity 
Spatial coordinate 
Laplace parameter 
Time 
Thermal effusivity 
Lateral dimensions 
Thickness 
Thermal conductivity 
Laplace-Hankel flux 
Laplace-Hankel temperature 
Volumetric thermal capacity 
Hankel parameter 
indice relative to i-layer 
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