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Abstract. Developers invest much e�ort into validating con�guration
during startup of free/libre and open source software (FLOSS) applica-
tions. Nevertheless, hardly any tools exist to validate con�guration �les
to detect miscon�gurations earlier. This paper aims at understanding the
challenges to provide better tools for con�guration validation. We use
mixed methodology: (1) We analyzed 2,683 run-time con�guration ac-
cesses in the source-code of 16 applications comprising 50 million lines of
code. (2) We conducted a questionnaire survey with 162 FLOSS contrib-
utors completing the survey. We report our experiences about building
up a FLOSS community that tackles the issues by unifying con�guration
validation with an external con�guration access speci�cation.
We discovered that information necessary for validation is often miss-
ing in the applications and FLOSS developers dislike dependencies on
external packages for such validations.

1 Introduction

Con�guration settings in�uence the behavior of software and are used ubiqui-
tously today. Con�guration access is done by the part of applications concerned
with fetching con�guration settings from con�guration �les, environment vari-
ables, etc. at run-time. Con�guration validation detects con�guration settings
which do not ful�ll the user's expectations, for example, setting a web browser's
proxy to a server that is not reachable in the currently connected network.

While con�guration access seems to be straightforward, system administra-
tors experience many surprises on a daily basis. In the systems community the is-
sue is well-known as miscon�guration [37,30,1,36]. Miscon�gurations cause large-
scale outages of Internet services [19]. Yin et al. [37] claim that �a majority of
miscon�gurations (70.0%∼85.5%) are due to mistakes in setting con�guration�.

Xu et al. argue that often con�guration access code and not system admin-
istrators are to blame [35]. Often (38.1%∼53.7%) miscon�guration is caused by
illegal settings which clearly violate syntactic or semantic rules [37]. Thus most
errors could be caught with a consistency checker executed before con�guration
changes. Nevertheless, only in 7.2% to 15.5% cases do error messages pinpoint
the error [37]. Free/libre and open source software (FLOSS) applications often
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do not validate their settings before startup or even later [34]. System adminis-
trators have to �nd their own ad-hoc ways [3,4,13,31,39].

Other factors also in�uence con�guration settings. We will call validation that
considers more than the settings of a single application global validation. Faulty
global validation causes issues in 46.3%∼61.9% of cases [37]. For example, when
a web browser is started in a di�erent network, previously working proxy settings
will fail to work. Our holistic approach rejects miscon�gurations early on.

These issues lead to our research question: Why do we lack tools for global
validation, and how can we help developers provide them?

Our contributions are as follows:

� We showed that getenv is omnipresent and popular (Section 3).
� We unveiled challenges related to current con�guration systems (Section 4).
� We implemented a tool implementing the unearthed requirements (Section 5).
� The tool is available as free software at https://www.libelektra.org.

2 Methodology

Our methodological foundation builds on �theory building from cases� [10,11].
In the present paper we will use two di�erent methodologies embedded in a
framework: source-code analysis and a questionnaire.

2.1 Source-code Analysis

We study getenv, which is an application programming interface (API) to access
environment variables. We chose it because it is the only widely standardized
con�guration access API (including C, C++, and POSIX) and available in many
programming languages. In earlier work [26], we showed that getenv is used at
run-time ubiquitously. getenv is often combined with other techniques (e. g.,
con�g �les), sometimes overriding con�guration �le settings. Furthermore, envi-
ronment variables are not part of con�guration settings dialogues, i. e., they are
certainly not validated.

We carefully selected 16 applications across di�erent domains. We included
large applications with a thriving community but also others for diversity. We
used the versions of the applications as included in Debian 8 (Jessie) as shown
later in Table 1. We downloaded package sources from http://snapshot.debian.

org. To determine the code size we used Cloc 1.60 [7].
We manually counted all getenv occurrences for the version speci�ed in Ta-

ble 1. Then we categorized the resulting 2,683 code snippets around getenv. We
looked if getenv occurrences depend on some other con�guration. Such situa-
tions occur when con�guration settings interact; for example, fallback chains of
con�guration access points depend on each other. Such fallback chains are hints
to global con�guration access, which we wanted to �nd. As our last experiment,
we searched for places where global validation would be useful, and investigated
how helpful the documentation of the getenv parameters is.

https://www.libelektra.org
http://snapshot.debian.org
http://snapshot.debian.org


Threats to Validity: For evaluating usefulness (as only done in the last exper-
iment), by nature, subjectivity is involved. In particular, it is possible that we
overlooked dependences. We will report the numbers we found but we consider
the experiment as exploratory and not as something that could be repeated with
the same numbers as outcome. The individual examples, however, are insightful.

2.2 Questionnaire

We carefully prepared a questionnaire with FLOSS developers in mind. Then we
conducted pilot surveys with developers, colleagues and experts for surveys. In
the iterations we improved the questions and made the layout more appealing.

In order to reach the target group, we posted requests to �ll out the survey
in the respective FLOSS communication channels. To obtain a higher quality,
we awarded non-anonymous answers with small donations to FLOSS-related
projects. We used the non-anonymous answers to cross-check statistics.

We asked some personal questions about age, education, occupation, and
FLOSS participation to have the important characteristics of our participants.

We used Limesurvey version 2.50+ for conducting the survey. We will report
the percentages relative to the number of persons (n) who answered a particular
question. We report means and standard deviations (s) of samples for n ≥ 95.
We used the Kolmogorov-Smirnov test [15] for smaller samples.
Threats to Validity: For the validity of our survey it is important that only
FLOSS contributors participate. The donation might have persuaded some par-
ticipants to �ll out parts of the survey even though they had no particular
experience. Thus we explicitly asked about contributions to speci�c projects.

The survey re�ects the beliefs of participants. Thus we used other methods
to distill facts about the applications. Because opinions help to understand goals
and reasons, the survey is an important part of the overall study. It should be
considered as supplement to the source-code analysis.
Demographics: The front page of the survey was shown to 672 persons, 286
gave at least one answer, 162 completed the questionnaire, and 116 persons en-
tered their email addresses. The age of the population (n = 220) has a mean of 32
years (s = 9). The degrees in the population (n = 244) are: master (38%), bach-
elor (25%), student (18%), no degree (13%), or PhD (6%). As their occupation,
56% of the persons selected software developer, 21% system administrator, and
16% researcher (multiple choice question, n = 287). Participants reported work
on up to �ve di�erent FLOSS projects. For the �rst project, they estimated their
participation with a mean of 5.3 years (s = 5, n = 180). 60% of them reported
a second FLOSS project, 36% a third, 17% a fourth, and 9% a �fth.
Raw data and questions are available at https://rawdata.libelektra.org.

3 Con�guration Access

Before we start exploring our research question, we need to validate that our
evaluated con�guration accesses are indeed relevant and popular. In this section
we investigate which con�guration access methods FLOSS developers use.

https://rawdata.libelektra.org


3.1 Which Methods for Con�guration Access are Popular?

Finding 1a: We observed that getenv is omnipresent with 2,683 occurrences.

The source code of the applications we analyzed has 4,650 textual getenv oc-
currences. 2,683 of them were actual getenv invocations, 1,967 were occurrences
in comments, ChangeLog, build system, or similar. (See Table 1 for details.)

Finding 1b: Three kinds of con�guration access are equally popular: Command-
line arguments, environment variables, and con�guration �les. Developers are
highly satis�ed with them. Others are used less and less liked.

Command-line arguments (92%, n = 222), environment variables (e.g., via
getenv) (79%, n = 218), and con�guration �les (74%, n = 218) are the most
popular ways to access con�guration. Other systems, such as X/Q/GSettings,
KCon�g, dconf, plist, or Windows Registry, were used less (≤ 13%, n ≥ 185).

Participants rarely found it (very) frustrating to work with the popular sys-
tems: getenv (10%, n = 198), con�guration �les (6%, n = 190), and command-
line options (4%, n = 210). Less-used systems frustrated more (≥ 14%, n ≥ 27).

3.2 What is the Purpose of getenv?

Finding 1c: Like other con�guration accesses, getenv is used to access con�g-
uration settings (57%). Sometimes it bypasses main con�guration access.

Of the 2,683 getenv invocations, 1,531, i. e., 57%, relate to run-time con�g-
uration settings and not debugging, build-system, or similar. Further investiga-
tions in this paper elaborate on these 1,531 getenv occurrences.

We found occurrences where getenv obviously bypasses main con�guration
access, for example, to con�gure the location of con�guration �les.

Also in the survey we asked about the purpose of getenv (n = 177). The
reasons to use it vary: in a multiple choice question 55% say they would use it
for debugging/testing, 45% would use getenv to bypass the main con�guration
access, and 20% would use getenv if con�guration were unlikely to be changed.

Finding 1d: In many cases getenv parameters are shared between applications.

In the source code we investigated which parameters were passed to getenv.
We found that 716 parameters were shareable parameters such as PATH. In the
survey 53% say they use getenv for con�guration integration (n = 177).

Finding 1e: Parameters of getenv are often undocumented.

The function parameter passed to getenv invocations tells us which con-
�guration setting is accessed. In an Internet search using the application's and
getenv parameter's name with startpage.com, we found documentation for
only 283 of the non-shared getenv parameters but not for the 387 others.

The FLOSS projects deal with the missing documentation of getenv parame-
ters in di�erent ways. Most projects simply claim their getenv usage as internal,
saying the environment should not be used for con�guration by end users, even
if there is no other way of achieving some goal. Often we miss a speci�cation
describing which parameters are available.

startpage.com


In some other projects, the developers invest e�ort to create lists of available
parameters. For example, in Libreo�ce developers try to �nd getenv occurrences
automatically with grep, which fails with getenv aliases3.
Discussion: The getenv API has some severe limitations and is sometimes a
second-class citizen. One limitation is that return values of getenv invocations
cannot be updated by other processes. For example, getenv("http_proxy")
within a running process will still return the old proxy, even if the user changed
it elsewhere. Nevertheless, getenv supports all characteristics of con�guration
access and can be used to investigate challenges in con�guration validation.
Implication: Con�guration APIs should avoid returning outdated values. En-
vironment variables, however, are no replacement for con�guration �les, thus
they do not support persistent changes by applications. There is currently no
satisfactory solution in FLOSS for global, shareable con�guration settings.

4 Con�guration Validation

Having established which con�guration accesses are popular (including, but not
limited to, getenv), we will investigate challenges of con�guration validation.

4.1 Which are the Concerns Regarding Global Validation?

Finding 2a: Developers have concerns about adding dependencies for global val-
idation (84%) and reducing con�guration (30%) but desire good defaults (80%).

Many persons (30%, n = 150) think that the number of con�guration settings
should not be reduced. But 43% said it should be reduced to prevent errors.

We got mixed answers (n = 177) to the question �Which e�ort do you think is
worthwhile for providing better con�guration experience?� Most persons (80%)
agree that proper defaults are important. Most methods exceed the e�ort con-
sidered tolerable by the majority of participants: Only getenv would be used by
the majority (53%). System APIs would be used by 44%. Fewer (30%) would
use OS-speci�c data. Only 21% of the participants would use dedicated libraries,
19% parse other con�guration �les, and 16% use external APIs that add new
dependencies.
Discussion: To avoid dependencies, FLOSS developers currently expect users
to con�gure their applications to be consistent with the global con�guration.
Implication: The results indicate demand for dependency injection to have
global validation without direct dependencies.

4.2 Which Challenges Prevent us from Supporting Validation?

Finding 2b: Present con�guration validation is encoded in a way unusable for
external validation or introspection tools.

In none of the 16 applications was the validation code kept separately, e.g.,
in a library. Instead it was scattered around like other cross-cutting concerns.

3 https://bugs.documentfoundation.org/show_bug.cgi?id=37338
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Finding 2c: Developers are unable to support global validation, even if the
problem is well-known and they put e�ort into it. We found out that information
essential to check or �x constraints is not available within the applications.

In Table 1 we present a list of applications and the getenv occurrences we
analyzed. The column textual getenv contains the number of literal getenv oc-
currences, as we used it for the analysis of the histories. The column lines per
getenv shows how often manually counted getenv occurs in code. The column
depend getenv presents manually counted getenv occurrences that depend on,
or are used by, other con�guration code.

application version 1k lines

of code

textual

getenv

counted

getenv

lines per

getenv

depend

getenv

0ad 0.0.17 474 114 55 8,617 43
Akonadi 1.13.0 37 16 13 2,863 6
Chromium 45.0.2454 18,032 1,213 770 23,418 281
Curl 7.38.0 249 278 53 4,705 25
Eclipse 3.8.1 3,312 114 40 82,793 23
Evolution 3.12.9 673 33 23 29,252 5
GCC 4.9.2 6,851 727 377 18,172 143
Firefox 38.3.0esr 12,395 1,052 788 15,730 271
Gimp 2.8.14 902 80 56 16,102 21
Inkscape 0.48.5 480 27 19 25,255 13
Ipe 7.1.4 116 29 21 5,529 14
Libreo�ce 4.3.3 5,482 427 284 19,304 143
Lynx 2.8.9dev1 192 112 89 2,157 66
Man 2.7.0.2 142 248 62 2,293 42
Smplayer 14.9.0 ds0 76 1 1 76,170 1
Wget 1.16 143 179 32 4,456 18

Total 49,556 4,650 2,683 18,470 1115
Median 477 114 54 24

Table 1. Automatic and manual count of getenv occurrences.

Most of these places (1115, i. e., 73%) were dependent on some other con�gu-
ration. We found 204 places where some kind of con�guration dependencies were
forgotten. In 58 cases we found several hints, e.g., fallback chains with missing
cases or complaints on the Internet about the not considered dependency.

We give a real-life example from the Eclipse source of how easily dependencies
are forgotten. The missing dependencies lead to missing validation, which leads
to frustrating user experience. If Eclipse wants to instantiate an internal web
browser, some users get an error saying that MOZILLA_FIVE_HOME is not set.
On GitHub alone, issues mentioning the variable were reported 71 times. The
underlying issue usually is that the software package webkitgtk is missing4. The

4 https://groups.google.com/forum/#!topic/xmind/5SjPTy0MmEo
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developers even considered the dependency (installation paths) for RPM-based
systems by parsing gre.conf. But for other users on non-RPM-based systems
the fallback is to query MOZILLA_FIVE_HOME which leads to the misleading error.
In Eclipse the workarounds (including parsing gre.conf) needed 213 lines of
code. Furthermore, most of the 9006 code snippets we found on GitHub referring
to the variable are small wrappers trying to set MOZILLA_FIVE_HOME correctly.
Discussion: While the package managers easily answer where the missing �les
are located, within the application there is no reasonable way to �nd out. We
found similar issues concerning network, �rewall, hardware settings, etc.
Implication: Applications have a need to access global con�guration settings.

5 Experience Report on Supporting Global Validation

Elektra is a library that aims at providing uni�ed access to con�guration settings
as key/value pairs. It integrates a speci�cation language for global validation.
Here we will discuss how Elektra ful�lls the requirements unearthed by the study
before describing the challenges to adoption that Elektra faced in the past.

5.1 Unify Con�guration

We summarize requirements for con�guration tools derived from the �ndings of
Section 3.
Requirement 1a−c: Developers use di�erent mechanisms for con�guration ac-
cesses interchangeably or to bypass limitations of others. To avoid the need for
bypasses, Elektra bootstraps itself at startup, making it possible for con�gura-
tion settings to describe the con�guration access, e. g., which con�guration �les
should be used. To allow administrators to use all popular techniques, Elektra
reads from di�erent sources such as con�guration �les, system settings, and en-
vironment variables. Elektra integrates many di�erent con�guration �le formats
such as INI, XML, etc., and it supports noti�cations to always keep application's
con�guration settings in sync with the persistent con�guration settings.
Requirement 1d: FLOSS developers demand a way to share con�guration set-
tings. We implemented a layer similar to a virtual �le system, which enables
applications and system administrators to mount con�guration �les [29]. This
technique enables applications to access con�guration settings of any other appli-
cation. Using links and transformations [22] one can even con�gure applications
to use other other settings without any support from the application itself.
Requirement 1e: There should be a way to document con�guration settings.
Elektra introduces speci�cations for con�guration settings [24]. These speci�ca-
tions should also include documentation. But even if they do not, users at least
know which con�guration settings exist, and which values are valid for them.

5.2 Validate Con�guration

Requirement 2a: Dependencies exclusively needed for con�guration settings
should be avoided. Elektra introduces plugins that enable a system-level depen-



dency injection. Developers specify validations in speci�cations, without the need
for their application to depend on additional external libraries. In plugins exe-
cuted on con�guration access, the settings get validated or default settings get
calculated. Elektra only uses the C standard library and no other external depen-
dencies [20]. Nevertheless, even the dependency on Elektra itself can be avoided.
Elektra supports intercepting of library calls such as getenv [26,27]. Using this
technique, applications think they use environment variables, while in reality
they query Elektra.
Requirement 2b: Con�guration settings and validations should be open to in-
trospection. Similarly to getenv, Elektra provides an API, but it aims to over-
come the limitations of previous abstractions and interfaces. Elektra allows many
con�guration �les to be integrated with a uniform key/value API. Even the spec-
i�cations of accesses, dependencies, and validations are accessible via the same
API. Thus system administrators and applications can use the API to introspect
con�guration settings. Applications need the permission to open the con�gura-
tion �les.
Requirement 2c: Global validation should be supported. Elektra supports global
validation through a range of di�erent checker plugins. These plugins do not
only check data for consistency but also check if con�guration settings con�ict
with reality. For example, one plugin checks for presence of �les or directories,
while another plugin checks if a host name can be resolved. Checks are executed
whenever Elektra's API is used for writing. This way also all administrator tools
sitting on top of Elektra reject invalid con�guration settings. Elektra also allows
to integrate system information such as hardware settings via plugins.

5.3 Community Building

The Elektra Initiative is a community that started with the straightforward idea
to have a single API for con�guration access. Other projects watched how it
progressed, but adoptions occurred rarely. Due to various grave issues in the
�rst versions, the API needed several redesigns. Obviously, API changes are
not very popular and Elektra lost most of its users at this time. Despite many
marketing e�orts to change the situation, it was predominantly companies and
not FLOSS software that used Elektra. This slow adoption was unfortunate but
an opportunity to continue making changes. Unfortunately, the changes were
not done wisely, instead we introduced mostly unnecessary features. Here the
Elektra Initiative had its low and turning-point.

Then the goals shifted towards a more technical solution: We avoid mar-
keting campaigns to persuade everyone to use the API with arguments like �it
will give bene�ts once everyone migrates� but instead it should o�er immediate
advantages previous APIs did not have. This meant Elektra went into a highly
competitive market facing the di�culty of being better than any other con�g-
uration library. As a distinctive feature, we started to aim for global validation
but without giving up compatibility to current con�guration �les.

These changes made the core more complicated, which led to a recruiting
problem. The documentation was for a long time only a master thesis [20], which



was a very unsatisfactory situation. The next e�orts were to make the project
community-friendly again. We started to improve quality by regression tests,
�xing reports of code analysis tools, and adding code comments and assertions.
Then we started overhauling documentation, writing tutorials, and created a
website. Last but not least, we started releasing every two months with �xes
and new features in every release. These changes led to more than a dozen
contributors, Elektra being packaged for many distributions, and acceptance of
a paper on Elektra in �The Journal of Open Source Software� [23].

6 Community Feedback and Future Work

The survey validated Elektra's goals: Many agreed (80%, n = 153) that a solu-
tion must be lightweight and e�cient; and that a con�guration library must be
available anywhere and anytime (84%, n = 153). Many persons (70%, n = 150)
consider it important that the community is supportive. Even more persons
want bugs to be �xed promptly (88%, n = 150). Because 76% persons �nd
it important that applications directly ship documentation (n = 157), exter-
nal speci�cations should have documentation. Nearly everyone (96%, n = 173)
agrees that con�guration integration, such as global validation, would at least
moderately improve user experience. Thus we will continue research in this area.

A participant said: �Must be extensible/adaptable. If it is, users can take care
of many of the above aspects themselves�. We agree and continue to pioneer mod-
ularity. For example, many persons found readability of con�gurations important
(65%, n = 152) but could not agree which formats are readable.

Another person wrote: �It must o�er a compelling reason to switch from e.g
gsettings. For example a killer feature that others don't have, etc. Otherwise, the
status quo wins.� Elektra's �killer feature� can be global validation.

From our experience with Elektra, it was also clear that we need to put much
more e�ort into API stability. Thus we avoid breaking changes to the API. We
are about to provide easy-to-use high-level APIs for di�erent use cases.

The 1.0 release of Elektra is still pending: (1) The speci�cation language
for validation/transformation/dependency injection is not completely de�ned.
(2) The con�guration parsers have limitations, e. g., they do not always preserve
comments or order. (3) Elektra puts some unnecessary limitations on the plugins.

7 Related Work

Many other con�guration libraries have validation capabilities, for example,
Apache Commons Con�guration. Unlike Elektra they do not have external speci-
�cations. Instead they require developers to hardcode them into the applications.

Other papers describe the technical details of Elektra [29,20,23]. In particu-
lar frontend code generation avoids errors in con�guration access [28,21]. Other
work describes Elektra's speci�cation language [22,24] and how applications par-
ticipate without code modi�cations [25,26].



Crowston et al. [6] created a survey of empirical research for FLOSS. Michl-
mayr et al. [16] investigated quality issues of FLOSS using interviews. We were
able to con�rm that documentation often is lacking. Barcomb et al. [2] used a
questionnaire to investigate how developers acquire FLOSS skills.

PCheck [34] validates con�guration �les early. Unlike Elektra, it is not free
software and does not support application-speci�c checks or plugins. Some work
was done to automatically resolve miscon�guration [33,30,1,38]. These approaches
aim at solving already manifested issues, Elektra aims at resolving them earlier.
Xu et al. [36] surveyed further possibilities.

Nosál et al. [17,18] investigated similar abstractions but with a focus on
language mapping. Denisov [8] collected requirements for con�guration libraries.

Berger et al. [5] and Villela et al. [32] created a questionnaire that asks about
variability modeling. Our survey focused on a di�erent target group.

8 Conclusions

In this paper we examined challenges in con�guration access and presented a
solution. We addressed the research question: Why do we lack tools for global
validation and how can we help developers provide them? The answer is that
validations are encoded in the software in a way (1) unusable by external tools,
and (2) incapable of using global knowledge of the system. The answer is backed
up by both a questionnaire and a source analysis.

To overcome developers' con�guration issues, we need to externalize con�gu-
ration access speci�cations and use a uni�ed con�guration library. The empirical
data backs up that this is possible and wanted. It is possible, because currently
di�erent con�guration accesses are used interchangeably. It is wanted, because
users stated that di�erent forms of con�guration access sources should be able
to override each other.

Based on our survey we might have to rethink how to reduce the number
of con�guration settings because many developers do not agree with complete
removal of less-used settings. The survey also showed that external dependen-
cies in con�guration access code are a contradictory topic: Developers want good
defaults, but do not want to pay for them with dependencies. Elektra's way of im-
plementing dependency injection and globally calculating default settings ful�lls
both goals. Because of the externalization of con�guration access speci�cations,
users can even introspect the (default) settings that applications receive.

Finally, we described FLOSS community e�orts to improve on the issues.
The results show that a dependency injection at the system level is feasible and
practical. It has the potential to be accepted by developers if they perceive global
integration and validation as �killer feature�. The current status of the FLOSS
project can be tracked at https://www.libelektra.org.
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