
HAL Id: hal-01659931
https://hal.inria.fr/hal-01659931

Submitted on 9 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CDN-as-a-Service Provision over a Telecom Operator’s
Cloud

Pantelis Frangoudis, Louiza Yala, Adlen Ksentini

To cite this version:
Pantelis Frangoudis, Louiza Yala, Adlen Ksentini. CDN-as-a-Service Provision over a Telecom Opera-
tor’s Cloud. IEEE Transactions on Network and Service Management, IEEE, 2017, 14 (3), pp.702-716.
�10.1109/TNSM.2017.2710300�. �hal-01659931�

https://hal.inria.fr/hal-01659931
https://hal.archives-ouvertes.fr

1

CDN-as-a-Service Provision over a Telecom
Operator’s Cloud

Pantelis A. Frangoudis, Louiza Yala, and Adlen Ksentini, Senior Member, IEEE

Abstract—We present the design and implementation of a
Content-Delivery-Network-as-a-Service (CDNaaS) architecture,
which allows a telecom operator to open up its cloud infrastruc-
ture for content providers to deploy virtual CDN instances on
demand, at regions where the operator has presence. Using north-
bound REST APIs, content providers can express performance
requirements and demand specifications, which are translated
to an appropriate service placement on the underlying cloud
substrate. Our architecture is extensible, supporting various
different CDN flavors, and, in turn, different schemes for cloud
resource allocation and management. In order to decide on the
latter in an optimal manner from an infrastructure cost and
a service quality perspective, knowledge of the performance
capabilities of the underlying technologies and compute resources
is critical. Therefore, to gain insight which can be applied to the
design of such mechanisms, but also with further implications
on service pricing and SLA design, we carry out a measurement
campaign to evaluate the capabilities of key enabling technologies
for CDNaaS provision. In particular, we focus on virtualization
and containerization technologies for implementing virtual CDN
functions to deliver a generic HTTP service, as well as an HTTP
video streaming one, empirically capturing the relationship
between performance and service workload, both from a system
operator and a user-centric viewpoint.

Index Terms—Content delivery networks, experimental ap-
proaches, cloud computing, network functions virtualization,
network planning and service deployment, quality of experience,
virtualization.

I. INTRODUCTION

Internet traffic is dominated by data distributed over Con-
tent Delivery Network (CDN) infrastructures, and the current
Internet ecosystem is, to a significant extent, shaped by the
interactions of different key actors with often conflicting
objectives, including Over-the-Top (OTT) content providers,
IP transit providers, CDN infrastructure providers and ISPs [1].

Content distributed over the top creates a bidirectional
dependence between CDN and network providers: CDN cus-
tomers, and, in turn, end users, depend on the underlying
network infrastructure, and user experience is affected by its
conditions. Network operators, on the other hand, are vulner-
able to the traffic dynamics caused by time-varying shifts in
content demand. At the same time, network providers wish to
take advantage of their regional presence and proximity to end
users to enter the content delivery market.

P.A. Frangoudis and A. Ksentini are with the Communication Sys-
tems Department, EURECOM, Sophia Antipolis, France (e-mail: pan-
telis.frangoudis@eurecom.fr; adlen.ksentini@eurecom.fr). L. Yala is with
IRISA/University of Rennes 1, Rennes, France (e-mail: louiza.yala@irisa.fr).

This work was supported in part by the French FUI-18 DVD2C project. The
work of P.A. Frangoudis was carried out while he was with IRISA/University
of Rennes 1.

This has led to the emergence of telco CDNs, i.e., con-
tent delivery infrastructures owned and operated by network
providers. In this case, the network operator installs data
centers at its points of presence (or other points strategically
located in its network) and offers a CDN service advertising
high-performance delivery due to user proximity. From the
perspective of a content provider, traditional and telco CDNs
are not competitive, but, rather, complementary services: A
telco has the advantage of proximity to end users, but typ-
ically this is limited to specific geographic locations where
it has presence. In contrast, traditional CDN players compete
offering a global service.

In this work, with cloud orchestration frameworks and
Network Functions Virtualization (NFV) as our enabling tech-
nologies, we design a scheme which offers the flexibility
to a telecom operator to lease its CDN infrastructure in a
dynamic manner, offering a virtual CDN (vCDN) service that
can be deployed on demand over the operator’s private cloud.
This can be considered as an evolution towards opening a
telco CDN to potentially (but not exclusively) smaller-scale
content providers. Our basic design goals are (i) to offer a
well-specified, extensible northbound interface to customers,
which will allow them to express service demand specifica-
tions and performance constraints, ensuring them sufficient
control at the service level, but abstracting internal network
and infrastructure details, and (ii) to be able to combine
customer-provided demand dimensioning information (e.g.,
target number of users/video streams per region) with network
and compute infrastructure awareness for optimal resource
allocation. For the latter, we argue for a measurement driven
approach: It is important to know the capabilities of the
underlying technologies and be aware of the relationship
between service workload and user experience in order to
take informed resource allocation, placement, and real-time
management decisions, maintaining the level of service agreed
with the customer while minimizing operational costs; the
experimental results we present in this work serve to this end.

Our work thus aims to provide the technical elements
to build mechanisms for cost- and quality-optimized CD-
NaaS provision. These elements consist in the architecture
support to develop algorithms and mechanisms for service
delivery (resource allocation, service placement, and elastic
resource/service management included) and in the necessary
quantitative insight to guide them. We consider these mecha-
nisms, however, as a separate line of research which deserves
attention in its own right and do not focus on it specifically
in this article. We make the following contributions:

• (Section III) We design and implement a cloud-based

2

architecture for the provision of a virtual CDN service tai-
lored to telecom providers,and present results of testbed
experiments from our prototype implementation on top
of OpenStack [2]. Our design features REST APIs which
enable content providers to lease virtual CDN resources
on demand. We have designed our scheme with extensi-
bility in mind, with the potential of applying a wealth
of sophisticated dimensioning, resource allocation and
elastic resource management algorithms, and being able
to support different types of virtualized CDN services
towards a generic Any-as-a-Service provisioning model.

• (Section IV) We carry out an extensive experimental
campaign to explore the capabilities and limitations of
the virtualization technologies we apply, quantifying the
relationship between workload and performance from a
system operator and a user perspective.

• (Section V) We propose potential uses of our results (i)
to drive resource allocation/service placement algorithms
that aim to optimally satisfy customer demand, and (ii)
to provide insight to the system operator for SLA design.

II. BACKGROUND AND RELATED WORK

A. ISP-CDN interactions and the emergence of telco-CDNs
In typical CDNs, content delivery functionality is replicated

across a number of servers, potentially at a global scale.
Content providers delegate the process of delivering their
content to CDNs, and the latter select the most appropriate
servers to respond to user requests for content items, balancing
among maximizing user experience, minimizing delivery cost,
and optimally managing CDN server load. CDN performance
critically depends on the conditions in the underlying network
path between the user and the content location, which however,
being managed by network providers, is outside the control of
the CDN. Without CDN-ISP collaboration, the CDN relies
on estimates which are often not accurate. On the other
hand, this network-unaware server selection process can cause
unpredictable traffic shifts which can significantly impact the
operation of the ISP network. Therefore, both ISPs and CDNs
face a fundamental challenge, which is analyzed by Frank et
al. [3] along with a thorough description of the technical issues
and typical architectures for content delivery over the Internet.

Incentives for collaboration between ISPs and CDNs thus
emerge and different strategies can be followed, from a non-
cooperative case, where the CDN operates over the top in a
network-agnostic manner, to the case where the ISP deploys
and controls its own CDN infrastructure, which is the target
environment for our work. This can happen either by develop-
ing its own content delivery solution, or by acquring a license
to CDN software (licensed CDN), potentially sharing revenue
with the CDN provider. Since our architecture implies a
telecom-operated CDN, many of the technical and managereal
challenges stemming from the need for ISP-CDN collaboration
are alleviated, since the whole infrastructure is administered by
a single entity. Other options involve CDN operators directly
installing their servers inside the ISP network and/or setting
up specific interconnection agreements.

Poese et al. [4] elaborate on mechanisms for the ISP to offer
assistance to the CDN, without it being necessary for each

party to reveal sensitive details about their internal workings.
They propose enhancements to the ISP’s DNS infrastructure
in order to direct user requests to the most appropriate server,
taking into account optimization criteria set by the ISP and
aiming to improve user experience.

In this context, NetPaaS [5] provides the interfaces and the
management tools to CDN operators to deploy their service
in an ISP-assisted manner, at the same time offering informed
user request to content server assignment. It operates for both
physical CDN deployments (bare metal servers placed by
the CDN in the ISP network) and virtual ones, if they are
supported. Our approach assumes a different ownership model,
i.e., the ISP is in full charge of the underlying infrastructure
and the CDN service. Second, in our case, the customer
is the content provider which requests the deployment of a
CDN service in a Software-as-a-Service (SaaS) manner, while
for NetPaaS the service offering is at the infrastructure or
the platform level and the CDN is in full control of the
virtual resources. Third, the resource allocation decision in
our case is carried out fully by the service operator (ISP)
based on measurement-driven empirical models. We should
further note that our focus is more on the infrastructure support
for CDNaaS provision, including an NFV-MANO-compatible
architecture design (Section III-F), than on CDN-service-level
details. As such, our system can support various CDN-level
functionalities and can further expand towards supporting
licensed CDN cases, where the service operator deploys and
controls the licensed CDN software as a set of VNFs.

ISP-CDN collaboration models are analyzed by Herbaut et
al. [6] using game-theoretic tools, identifying that this collab-
oration can be implemented on top of an NFV infrastructure
and can be mutually beneficial under certain circumstances.
In that model, the NVF platform is hosted by the ISP and
forms a marketplace (see also the work in the context of the T-
NOVA [7], [8] EU-funded FP7 project) where CDN operators
can upload VNFs, which can in turn be chained by the ISP into
different types of CDN services and under different pricing
options. Business-wise, our approach is more on the telco
CDN side, and, thus, more ISP-centric: The network provider
fully controls both the NFV/cloud platform and the content
delivery service. Technology-wise, although both appoaches
share some common ground, we focus more on the technical
aspects of such a scheme, providing a detailed architecture
design and its implementation.

A driving force behind the deployment of telecom-operator-
owned content delivery infrastructures is the fact that telcos
aim at empowering their role in the content delivery value
chain by exploiting their key advantages of network control
and end-user proximity, a role that is traditionally challenged
by over-the-top content delivery without their strong involve-
ment. The economics of such vertically integrated CDNs are
studied by Maillé et al. [9], who make some interesting
observations on the incentives of an ISP to operate its own
CDN: In the face of competition with other ISPs not operating
a CDN, and depending on the price sensitivity of users, while
from a user experience and a regulator perspective a vertically
integrated CDN is always beneficial, for their specific model
settings there are circumstances under which the ISP has in-

3

centives not to run its own CDN. This implies that the decision
of a network operator to run a CDN should be carefully
studied. Although there is generally a clear business case
for ISP-CDN integration, as also demonstrated by network
providers rolling out their own CDN infrastructures, a study
of such incentives and economic interactions between the
involved actors is outside the scope of this article.

Despite some key advantages with respect to nework aware-
ness, which can improve user experience and thus, poten-
tially, the customer base, telco CDNs are limited by their
regional coverage. A strategy to overcome this limitation
is CDN federation, which is also a subject of the IETF
CDN Interconnection (CDNI) Working Group [10]. Given the
complementary competitive advantages of telco and traditional
CDNs, Lee et al. [11] perform a game-theoretic analysis of
the strategic interactions between the two types of players.
Importantly, they study the conditions that can lead to alliances
among telco CDNs and provide evidence that if a telco CDN
properly manages to offer better service quality exploiting
its competitive advantages (e.g., joint traffic engineering and
content distribution), market benefits are possible. Telco CDN
federation can take various forms. As Lee et al. show [12],
there are cases under which the potential for full resource
pooling and revenue sharing among the federation is benefi-
cial, although in most cases resource pooling on its own brings
more benefits to each individual telecom operator.

For an overview of some challenges, design goals and
principles for a telco CDN, the reader is referred to the work
of Spagna et al. [13].

B. Data Center Virtualization

Our work is conceptually related with the Virtualized Data
Center (VCD) abstraction [14]. In both cases, following a
customer request, a set of cloud resources are allocated,
operating in isolation on a shared infrastructure, potentially
scaling dynamically. However, the VCD abstraction is closer
to the Infrastructure-as-a-Service model, where the customer
leases resources in the form of VMs with specific compute,
storage and bandwidth guarantees, appearing as a dedicated
(but virtual) data center for the execution of arbitrary platforms
and applications. The vCDN mostly follows the SaaS model:
The customer (content provider) requests for the instantiation
of a virtual CDN infrastructure on top of a telco cloud
for the diffusion of its content. As such, the infrastructure-
and platform-level functionality is managed by the service
operator. The content provider is agnostic to the infrastructure
and potentially even the platform being used. We should note
that at the data center network level, the necessary network
virtualization functionality needs to be in place in order to
offer the appropriate traffic isolation and network resource
provisioning in a naturally multi-tenant environment. For a
survey on data center network virtualization technologies, the
reader is referred to the work of Bari et al. [15].

C. Network Functions Virtualization

Network Functions Virtualization (NFV) is becoming a key
technology for future large-scale service delivery [16]. NFV

involves carrying out in software networking tasks that were
traditionally performed by costly, special-purpose hardware.
It is facilitated by developments in cloud computing and
networking technologies, which have helped run such func-
tionality on top of commodity hardware, offering on-demand
scaling and automatic reconfiguration capabilities, decoupling
the necessary service logic from the underlying hardware, and
at the same time allowing (i) network operators to deploy
and manage services with more flexibility and reduced capital
and operational expenses, including space and energy costs,
(ii) third-party application/service providers to innovate the
market, lowering the technological barriers stemming from
compatibility issues, and (iii) telecom equipment vendors to
focus on the functionality of their solutions and to expand their
service portfolio.

NFV is being applied to a diverse set of functions. In
our case, the basic components of our architecture (service
orchestration, virtual infrastructure management, etc.) and the
components of the CDN service (caches, load balancers, name
servers, etc.) are implemented as VNFs.

It should be noted that intense NFV standardization efforts
are currently underway. The European Telecommunications
Standards Institute (ETSI) has specified a Management and
Orchestration framework for NFV (NFV-MANO [17]), and
one of the proposed NFV use cases is the provision of
virtualized CDN services [18, Use Case #8]. We put our design
in the context of NFV-MANO in Section III-F.

One of the challenges in NFV is appropriate function
placement. Clayman et al. [19] propose a VNF management
and orchestration framework and experiment with different
virtual router placement algorithms. In a similar spirit, Moens
and De Turck [20] present a theoretical model for VNF
resource allocation, focusing on an environment where a base
load is handled by physical hardware, and virtual resources
are utilized on demand to deal with load bursts.

As pointed out by Wood et al. [21], the flexibility offered
by NFV comes with a performance cost due to virtualization.
They therefore identify the need for a carefully designed NFV
platform, coupled with a sophisticated SDN control plane. Our
work addresses such challenges, by experimentally quantifying
the performance capabilities of core enabling virtualization
technologies, and by offering expressive management and
control interfaces to customers and flexible service represen-
tations, which enable to focus on optimal virtual service con-
struction considering customer and operator cost, performance,
and quality constraints.

D. Our prior work

This article significantly extends our prior work [22], where
we introduced an early version of our scheme. Here, we
present a more advanced modular architecture design and im-
plementation, and the experimental evaluation of our prototype
on a small-scale cloud testbed. We further present an extended
performance comparison of key virtualization technologies to
support CDNaaS, both from a user-centric and an operator-
centric viewpoint, and propose diverse uses of our results.

4

III. A FRAMEWORK FOR CDNAAS PROVISION

A. Features

We present an architecture which allows a network operator
to virtualize its CDN infrastructure and lease it to content
providers on demand. Our approach can be viewed as an
evolution of the telco CDN model, offering the operator the
flexibility to provide lower-cost CDN solutions. These could
appear more attractive to small-to-medium content providers,
but other options are possible. For instance, the virtual CDN
instantiated by a customer can be coupled with other CDN
infrastructures; the flexibility offered by our design allows the
customer to, e.g., use the leased infrastructure to respond to
predicted traffic surges at specific regions, taking advantage of
the network operator’s regional presence. From the perspective
of the CDNaaS provider, our design allows for more efficient
use of its infrastructure resources, compared to a less dynamic
resource reservation model with static allocation of data center
resources to customers. Our approach can also operate trans-
parently over federated clouds, which can be a strategy that
telecom operators may follow to address potential limitations
due to restricted geographical coverage.

B. Architecture

Our design involves various functional blocks, commu-
nicating via well-specified interfaces. This decouples their
operation from any physical location, allowing the CDNaaS
provider to execute any of these blocks autonomously as
virtual functions over its own (or any) cloud infrastructure.
Our layered and modular design also aims to abstract the
details of the underlying cloud infrastructure and thus avoid
lock-in to a specific cloud management platform. One of our
core design principles is to expose open APIs to customers,
but also among the components of our architecture, and to
design with extensibility in mind, so that our scheme can
be extended towards a generic Any-as-a-Service model. In
this section we provide the main components of our CDNaaS
architecture (Fig. 1), their functionality and their interactions.
An early version of our design was presented in our prior
work [22].

1) Customer Interface Manager: Our system provides a
RESTful northbound API, through which customers can re-
quest to deploy a vCDN over the telco cloud. This API
exposes information on the supported vCDN service types and
the regions the operator has presence, abstracting information
about the underlying network and cloud infrastructure, and
mediating the communication between customers and the Ser-
vice Orchestrator (SO). Using the northbound API, a customer
can specify its service requirements per region that it wishes
to cover, and in particular (i) demand specifications, i.e., how
many clients it wishes to serve per region, and what is the
service lease duration, and (ii) quality specifications, which
can be considered as specific Service-Level Objectives (SLOs),
such as target Quality of Experience (QoE) ratings, desired
response times, target availability levels, etc. After a service
has been successfully deployed, this API returns an entry point
to the vCDN instance so that the customer can manage its
deployment (e.g., infuse content in the vCDN).

2) Service Instance Descriptor Repository (SIDR): Each
service supported by our scheme has some inherent require-
ments and constraints. These are encoded in a service instance
template, which provides information such as the minimum
number of VNF instances of a specific type that need to
be deployed for a vCDN service instance, constraints with
respect to the processing and memory resources that should
be available to each virtual machine (VM), etc. Although
we mainly focus on the provision of a virtualized CDN
service, our design includes an extensible service template
description language which can support further services. The
SIDR component stores these service instance templates and
provides them to the Service Orchestrator to drive service
deployment decisions.

3) Service Orchestrator (SO): The Service Orchestrator
coordinates vCDN service deployment. After receiving a re-
quest from the customer, it derives an appropriate resource
allocation and VNF placement, taking into consideration (i)
the inherent service requirements, as expressed in the service
instance template, (ii) the client demand and quality specifica-
tions, included in the service request, and (iii) its operational
capacity. Depending on the specific vCDN flavor1 selected
by the customer, the appropriate algorithms are executed,
resources are reserved, and the instantiation and termination of
the vCDN are scheduled for the desired times, as requested by
the customer. The result of the execution of these algorithms
is a Service Instance Graph (SIG), which maps VNF instances
(VMs) to physical nodes. The SIG is then passed on to the
Resource Orchestrator (RO) for deployment.

4) Resource Orchestrator (RO): The RO component is
responsible for the deployment of a service instance on the
underlying telco cloud. The cloud infrastructure is managed
by the Virtualized Infrastructure Manager (VIM) component,
in the ETSI NFV-MANO [17] terminology. In our implemen-
tation we are using OpenStack, the de facto VIM platform. The
RO receives the SIG that the SO derives following a customer
request, and uses the northbound VIM API to launch and
configure VNF instances. Note that the RO takes care of spe-
cific technical details, such as IP address management for the
deployed instances, but also implements the necessary service-
level logic (e.g., the boot-time configuration of DNS servers
to appropriately handle geolocation or the setup of cache
virtual instances to proxy user requests to origin servers); this
logic may differ across the various vCDN flavors available
from the operator. Since the RO is the only component which
directly interacts with the telco cloud, the other components
of our design are agnostic to low level platform interfaces and
technical details. Changes at the infrastructure level need only
be reflected in the RO.

5) Instance Manager (IM): There are specific management
tasks which are common across any vCDN flavor, such as
vCDN instantiation and termination. However, more elaborate
critical functions need to be performed in a different way
for different vCDN types. This functionality is carried out by

1We define a vCDN flavor as a specific vCDN type available to customers,
which comes with its own internal operation, service-level components (e.g.,
video streaming servers, caches, DNS resolvers, load balancers, etc.), resource
allocation algorithms, and service management and monitoring features.

5

Fig. 1. CDNaaS architectural components and service life cycle.

the IM and pertains to both the SO and the RO layers. For
example, complex dynamic resource management algorithms
can be implemented here, which use the SO and RO APIs to
scale up or scale down a vCDN service instance when deemed
appropriate. Such functionality requires real-time service-level
monitoring, which is also performed by the IM.

C. vCDN service-level components and life cycle

In our reference vCDN deployment scenario, a video con-
tent provider operates its origin server(s) in its premises or
in external public or private clouds, where it places original
video content. Then, it uses the customer-facing API to request
the instantiation of a vCDN covering specific regions where
the operator has presence, to serve a target maximum number
of parallel video streams (demand specification) with the
desirable video QoE (quality specification) for a given period.

The vCDN instance that will be created will include a
number of caches distributed across the operator’s regional
data centers. The vCDN service supports a two-level load
balancing: A user’s DNS request for the URL of a content
item is resolved to the appropriate regional data center, based
on the user’s geographic location, as inferred from the latter’s
IP address (DNS geo-location). Then, HTTP requests are
balancing across all cache VNF instances deployed in a
regional data center.

Upon receiving the customer request, the SO runs an
algorithm to calculate (and reserve) the resources necessary
and a VNF instance placement on the appropriate regional data
centers in the form of a SIG, and uses the RO API to request
its deployment on the provider’s infrastructure. The RO, which
is responsible for translating the abstract service representation
(SIG) to an actual deployment, automatically configures one or
more DNS VNF instances for request geolocation, configures
cache VNF instances so that they proxy all user requests
towards the content origin server(s), and configures each
region’s load balancers. Eventually, the customer entry point,

with specific information on the vCDN instance (such as the
IP address of the DNS server) is included in the API response.

During the operation of the vCDN instance, it is monitored
at the service level and reconfigured if necessary (e.g., scaling
up the allocated CPU resources to cope with increased demand
to maintain the desired QoE level) by the IM. The vCDN
service is terminated and the respective resources are released
either automatically, when the lease specified in the customer
request expires, or when the customer explicitly requests its
termination using the northbound API.

D. Implementation

1) Technologies: As a proof of concept, we have imple-
mented our CDNaaS architecture on top of OpenStack. VNF
instances (caches, DNS servers, etc.) are executed as Debian
Linux virtual machines on kvm [23] hypervisors (compute
nodes, in the OpenStack terminology). We are using nginx [24]
to implement HTTP server/caching functionality, a choice
motivated by its wide adoption.

The components of our scheme (customer interface, SIDR,
SO, RO) have been implemented in Python and communicate
over HTTP by exchanging JSON-encoded information. Ser-
vice templates and service instance graphs are also representd
as JSON objects. Our RESTful northbound API has also made
it straightforward to create a web-based customer front end.

2) Service plugins: To deal with the different requirements
of the various vCDN versions offered by the operator and
to ensure the system’s extensibility, we introduced the notion
of the service plugin. Our software architecture provides a
plugin interface which exposes hooks for its main components,
where the funtionality pertinent to each one if them is to be
implemented. In particular, for each vCDN type, a service
plugin needs to be developed, with the following functionality
per component:
Service Orchestrator: The resource allocation and VNF
placement algorithm for the specific vCDN type, the output of

6

which is a SIG, is specified here. The SO plugin functionality
is also responsible for reserving the resources that will be
needed for the vCDN service instance, if these are available.
Resource Orchestrator: Using the RO API, the SIG is
deployed over the underlying cloud infrastructure. The plugin
is responsible for the service-level functionality, i.e., appropri-
ately configuring VNF instances at boot time.
Instance Manager: After successful service deployment, the
SO starts an instance management function, which carries
out the appropriate monitoring tasks and executes dynamic
resource management algorithms. Elasticity functions are im-
plemented here. For example, for a video streaming service,
the Instance Manager method of the service plugin may peri-
odically monitor the number of the active HTTP connections
of each deployed cache instance to estimate QoE; if it detects
that there is a risk of not being able to maintain customer
quality constraints, it can invoke the appropriate SO and RO
API calls to scale up the service by allocating more compute
resources.

Therefore, to offer a new type of service, the following steps
are necessary for the system operator:

1) Create the appropriate virtual machine images and reg-
ister them with the OpenStack image service.

2) Implement and install the service plugin (in our case,
plugins are automatically loaded by the SO component).

3) Create a service template and register it with the SIDR
component using the SIDR API.

E. vCDN flavors
A content provider can retrieve a list of the supported

flavors by accessing the service catalogue via the CDNaaS
customer-facing API. Each flavor is implemented by a service
plugin. We note that our prototype already supports various
vCDN types, with different operational characteristics (e.g.,
hosting content origin servers in the vCDN vs. outside it,
in other public/private clouds or in the content provider’s
premises) and resource allocation schemes. These schemes
range from the simple unelastic case where a fixed number
of resources (specified in the service template) is deployed,
only aiming to have presence at all regions requested by
the customer and without considering service quality, to a
more sophisticated QoE-aware elastic service. In the latter,
the compute resource allocation and VNF placement algorithm
implemented in the plugin aims to guarantee customer QoE
constraints [25], constantly monitoring service workload and
scaling up/down resources to match current end-user demand
and minimize operator cost. The details of such mechanisms
are outside the scope of this article. We should note that the
possibilities for further CDN flavors are numerous, and could
also even include licensed CDN software, deployed on demand
by the operator over the telco cloud/NFV infrastructure with
the appropriate amount of resources allocated by the CDNaaS
service orchestrator given the expressed end user demand.

F. Our framework in the context of the ETSI NFV-MANO
specification

Our design is in line with the ETSI Network Func-
tions Virtualization-Management and Orchestration (NFV-

MANO) [17] spirit and best practices, and the components
of our architecture map to functional blocks of the MANO
specification: The functionality provided by the SO and the RO
is part of the Virtual Network Function Orchestrator (VNFO)
component in NFV-MANO, while we use OpenStack as the
de facto Virtualized Infrastructure Management (VIM) suite.
IM, in turn, maps to the VNF Manager (VNFM) MANO
component, and SIDR implements functionality that would be
the responsibility of the VNF Catalogue component.

It should be noted that NFV-MANO allows for various dif-
ferent architectural and functional options [26, §6.3.2, §6.4.1].
We opted for a split NFVO functionality, where the RO
is a separate architectural component which operates as the
sole proxy between the VIM and the SO or IM instances,
“hiding” the details of the VIM northbound interface. This
approach has two advantages in our case. First, by decoupling
the NVFO and RO operations, it facilitates future extensions
of our scheme towards multi-administrative-domain cases,
where the CDNaaS operator can also lease resources on cloud
infrastructures managed by other providers (each with their
own ROs, potentially managing heterogeneous VIMs), still
itself controlling service orchestration. Second, by mediating
the communication between SO/IMs and the VIM (indirect
mode), our design avoids being locked to a specific VIM
framework; the underlying technology can change, but all
software components except for the RO will be unaffected.

G. Service deployment time
We present results on the time it takes for a vCDN service

instance to be deployed and be operational. Our results are
useful for having an estimate of how long it would take
for the customer’s content (e.g., video steams) to be initially
available to its end users, as a function of the size of the
vCDN deployment. We also attempt to identify the main
factors influencing service instantiation time, which can drive
future efforts on fine tuning and optimizing the performance
of our CDNaaS scheme (e.g., by developing algorithms for
VM image placement across an operator’s data centers).

We set up a cloud testbed with two compute nodes; the
cloud controller was collocated with one of the two. We
hosted our CDNaaS orchestration services (customer API, SO,
SIDR, RO) on a separate computer, from which the necessary
calls to the OpenStack API following a vCDN deployment
request were performed. To evaluate the effects of the network
conditions on service deployment times, we configured the
mean round-trip times in the controller-compute and API
client-controller paths to d, using the Linux tc/netem utility.
Our testbed setup is shown in Figure 2. In our example setup,
following a customer request, a vCDN is deployed with the
following service-level components:

• A number (two, in our example) of web proxy/cache VNF
instances per compute node (each such node represents
a regional Data Center). One load balancer per region is
responsible for evenly distributing HTTP requests among
region-local VNF instances.

• One name server VNF.
The kvm [23] hypervisor is used to host guest VMs. Each
proxy/cache VNF instance is created from a 1.6 GB Debian

7

CDNaaS orchestration
services

Controller+Compute
node (DC1)

Compute node (DC2)

d

d

Fig. 2. Testbed configuration. An OpenStack setup with two compute nodes
was created. The OpenStack controller was collocated with one of them. A
separate machine was hosting our CDNaaS orchestration services (customer
API, SO, SIDR, RO), over which we carried out vCDN service deployment
requests. The average RTT in each path was configured to d.

VM image running nginx [24], configured at boot time to act
as a reverse proxy to an origin server hosted at the customer
premises (its IP address and web server port are provided by
the customer over the northbound API).

The time to deploy this service is determined by the
following factors:

• The time taken to boot and configure the necessary VNF
instances, as well as the other service components, such
as load balancers.

• The signaling overhead due to the message exchanges
between the controller and the compute nodes and be-
tween the OpenStack API client (in our case, the RO
component) and the controller.

• The time to transfer the VNF images from the image
store to compute nodes.

Therefore, significant parameters that influence the service
deployment time are the delay in the paths between the entities
of our architecture, the size of the VM images to transfer, and
the number and amount of traffic of API calls towards the
underlying cloud infrastructure that need to be carried out.

OpenStack allows VM images to be cached locally at
compute nodes, which can significantly speed up deployment
time. However, there could be cases where an image is not
available locally at boot time (e.g., if this functionality is for
some reason unavailable, or if it is the first time a specific
VM is to be launched on a specific host). Our experiments
demonstrate that, in such cases, service deployment time is
dominated by the time to transfer the image.

Fig. 3 presents the time it takes for our example vCDN
deployment to become fully operational in a single data center.
In this case, for each DC, two proxy VNFs are launched
and the load balancer is configured. We compare deployment
times for the case where the compute node is collocated with
the controller and the image store (local DC) vs. the case
for a remote compute node deployment (remote DC), for
various link RTT values and when image caching is enabled or
not. When image caching is disabled, the deployment time is
dominated by the time to transfer the 1.6 GB image to the
remote host. We also observe that even when launching a
VM at a host collocated with the image store, deployment
times without image caching are noticeably increased. Finally,
increased RTT values in the two links also contribute signifi-
cantly to the perceived delay, since they affect both signalling
(e.g., OpenStack API calls) and data (image transfer) traffic.
As expected, the effect of the RTT is more important for a

remote DC deployment, more than doubling total delay when
per link RTT increases from 100 ms to 500 ms.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

RTT-0.7ms RTT-100ms RTT-500ms

T
im

e
 (

s
)

Time to launch the service on a DC
(transfer-boot-configure web proxy VNF instances, set up load balancer)

Cached VNF images, local DC

Cached VNF images, remote DC

Not cached, local DC

Not cached, remote DC

Fig. 3. Time until a vCDN deployment on a single data center becomes fully
operational, under different experimental settings.

In an ideal CDNaaS implementation, the VNF instances
per region would be launched in parallel and the SO/RO
would monitor their status until they become active. Then,
each instance would be registered with the local load balancer.
Since OpenStack does not allow such registration requests to
be carried out in parallel, we estimate the time it takes for the
VNF instances in a specific host/region to become operational
as the maximum time it takes for a VM to boot (since they
are instantiated in parallel), plus the time it takes for all
VMs to be sequentially registered with the load balancer. To
evaluate the effect of the number of VNF instances per DC,
we first measured the time it takes for a single load balancer
member registration request to complete under different RTT
conditions, and then estimated the time it takes to deploy the
service on a local or a remote DC as the number of such VNF
instances increases. Since the time to register a proxy/cache
VNF instance with the load balancer ranges from 1.5 s (when
RTT = 0.7 ms) to 2.4 s (for RTT = 500 ms), we see a small
but noticeable increase in deployment times, as the number of
instances grows. Fig. 4 and Fig. 5 present these results when
image caching is enabled and disabled, respectively.

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

s
)

Time to launch the service on a DC
as the number of VNF instances increases (cached images)

RTT=0.7ms, local DC

RTT=0.7ms, remote DC

RTT=500ms, local DC

RTT=500ms, remote DC

Fig. 4. Time until a vCDN deployment in a single data center becomes fully
operational as a function of the number of VNF instances to be launched,
when VM images are already cached.

8

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

s
)

Time to launch the service on a DC
as the number of VNF instances increases (no cached images)

RTT=0.7ms, local DC

RTT=0.7ms, remote DC

RTT=500ms, local DC

RTT=500ms, remote DC

Fig. 5. Time until a vCDN deployment in a single data center becomes fully
operational as a function of the number of VNF instances to be launched,
when VM images are not cached. For the case of a remote data center, image
transfer times dominate the overall service instantiation time.

IV. ENABLING TECHNOLOGIES AND THEIR PERFORMANCE

A critical aspect of CDNaaS provision is appropriately
balancing between service quality and operational cost. Our
proposed design, which offers customers the option to target
specific levels of user demand and define end-user QoE
thresholds, forces the system to operate under customer (qual-
ity) and operator (capacity) constraints. Therefore, resource
management (and, in turn, pricing-related) decisions need to
be taken with awareness of the capabilities and capacity of the
underlying cloud and virtualization technologies.

In the direction of offering the necessary insight to the
CDNaaS operator for such decisions, we carry out extensive
measurements to quantify the performance of key enabling
technologies and its relationship with service workload.

Service performance has many factors affecting it: Network
capacity and conditions, resources (CPU, memory, storage)
allocated to the service, current demand (concurrent number
of users accessing the service), the specific virtualization
technologies and their configuration, the software used to
implement a service, the cloud platform, etc. Our study is
compute-oriented: Of our particular interest is to derive the
relationship of virtualized service performance vs. workload
on a single virtual CPU (vCPU), our unit of processing (or,
otherwise put, our unit of scaling), which in our experiments
corresponds to a single CPU core of a physical host.

Managing network resources (guaranteeing their availability
per vCDN instance, ensuring traffic isolation, dealing with
transient traffic variations, etc.) is critical and challenging,
however outside the scope of this article. We assume that the
network operator who is in charge of the CDNaaS architecture
has full control of the network infrastructure and full aware-
ness of its conditions.2 As such, it can appropriately provision
the network paths between the virtual instances and end users
and perform the necessary traffic engineering tasks, tackling
network-related issues independently of compute resource
allocation. It should also be noted that given a specific level

2This is a realistic assumption made in all other works that deal with the
role of the ISP in CDN provision, even if the ISP is not in charge of the CDN
itself; for more details, see [3].

of demand (e.g., in terms of the maximum number of parallel
video streams), deciding on the amount of network resources
necessary is more straightforward. However, a measurement
study like the one we present here is needed for optimizing
the allocation of compute resources in a QoE-aware manner.

Our results can be interpreted under two perspectives: the
operator perspective, where the focus is on the performance
bounds of the technologies used (e.g., server request through-
put), and the user perspective, where our metrics of interest are
QoE-oriented (e.g., response time, video viewing experience).
For this purpose, we experiment with a generic HTTP service,
but also with an HTTP video streaming application.

A. Virtualization technologies and testbed configuration

We perform a comparative study of two candidate technolo-
gies to implement VNFs, each with different characteristics,
namely virtualization and containerization. In the first case, we
use virtual machines on top of the kvm hypervisor, and, in the
second, docker containers [27]. Note that both technologies
are supported by OpenStack, our cloud computing software
of choice. For a comparison of the features and the internal
workings of the two technologies the reader is referred to the
work of Dua et al. [28]. Felter et al. [29], on the other hand,
present a thorough experimental evaluation of their associated
overhead for specific applications.

We execute our tests on an HP Z800 workstation with a 16-
core Intel Xeon processor and 32 GB of RAM, running Ubuntu
14.10. We are benchmarking the performance of the popular
nginx HTTP server, which is the technology we are using
in our proof-of-concept CDNaaS implementation. We have
carefully tuned nginx and the operating system (both host and
guest) for high performance, and in order to alleviate network
and I/O bottlenecks. Nginx works by spawning a number of
worker processes, which handle user requests. The optimal
strategy is to launch one worker per CPU core available. To
deal with large numbers of concurrent users, we increased
the maximum number of allowed concurrent connections per
worker (and the respective operating system limits on the
number of open file descriptors), and set the tcp_tw_reuse
operating system option, to allow for reusing sockets that are
in the TIME_WAIT state.

One of the aspects that we wish to quantify is the scal-
ability of the service as a function of the CPU resources
available. Intuitively, this should scale linearly with the number
of available vCPUs (cores); our intuition is experimentally
verified. To achieve the appropriate level of isolation, for each
of our experiments, we pin the server VM/container and the
load generation tool to separate core sets using the taskset
utility, and give the highest priority to the respective processes
using the nice command.

To benchmark our server, we use the weighttp tool [30].
Being multi-threaded, it takes advantage of the availability of
multiple CPU cores, ensuring that the HTTP traffic generator
does not become the performance bottleneck.

Before the experiments, we also verified that network I/O
is not the bottleneck. For the experiments using kvm, we acti-
vated the vhost-net module, which enables in-kernel handling

9

TABLE I
STARTUP TIMES FOR A KVM DEBIAN IMAGE AND A DOCKER CONTAINER

Mean (s) 95% confidence interval
kvm 11.489 (11.178, 11.8)

docker 1.129 (1.124, 1.135)

of packets between the guest and the host, reducing context
switching and packet copying overheads. By using two virtual
Ethernet interfaces on the guest and connecting each one of
them to a tap device on the host, we measured (using iperf)
a 30 Gbps aggregate host-to-guest TCP throughput, enough to
saturate our HTTP server. For docker, to avoid the overhead
associated with Network Address Translation (NAT) in host-
to-guest communication, we launched containers using host-
mode networking. Thus, containers have direct access to the
host networking stack. We also experimentally verified that
disk I/O was not a bottleneck, since the file downloaded by
the load generator sessions was served from the disk cache. We
also repeated our experiments with the web server configured
to serve files from a memory-mapped tmpfs file system, and
our results were unaffected.

B. Startup time comparison

One of the advantages of container technologies is that they
are more lightweight compared to VMs. In contrast, to start
an HTTP server/cache VNF instance hosted in a VM typically
requires booting a full operating system. By startup time we
define the time interval from launching a VM/container until
it is capable of responding to HTTP. To measure it, we start
the VM/container and simultaneously scan the TCP port the
web server listens to using nmap [31] from the host, until
the port is detected open (i.e., the HTTP server is ready).
Table I presents mean startup times for a kvm Debian image
and a docker container (average of 50 experiments, 95%
confidence intervals). We notice that the startup time for kvm
was approximately 11.5 s, while for docker it was an order of
magnitude smaller.

It should be noted that in a cloud environment, booting
a VNF instance also involves transferring the VM image or
container from the image store to the actual host(s) where it
will be executed. As we have shown in Section III-G, if image
caching is not enabled, this can have a significant effect on
the time to launch a vCDN instance.

C. Performance of a generic HTTP service

We then experimentally study HTTP performance un-
der different settings using the following metrics: (i) the
HTTP/caching server’s request throughput, i.e., the number
of requests per second that it can process, and (ii) its response
times.

1) Request throughput: An important aspect of HTTP
server performance is the rate at which it can serve user
requests. Being able to estimate the request throughput of a
VNF instance with specific processing characteristics allows
the CDNaaS provider to calculate the number of instances
to deploy to cater for the demand of a specific customer,

and appropriately respond to demand dynamics by up/down-
scaling the deployment. Request throughput is a function of the
processing capabilities of the server, its software architecture,
the number of parallel users accessing the server, the size of
the files to serve, and its disk and network I/O capacity.

We carried out a set of experiments to measure how our
nginx-based HTTP server/cache VNF scales with the CPU
processors available and the number of concurrent users. In
our first test, to study these two properties in isolation, we
minimized the effect of disk and network I/O by having HTTP
clients request a special URI which corresponds to a single-
pixel transparent GIF (the response body amounts to 43 bytes);
this is a resource embedded in the HTTP server and causes
zero disk I/O. We then emulated parallel users by varying
the number of concurrent HTTP sessions on the client side
(weighttp). Each emulated user constantly performed HTTP
requests and we measured the HTTP request throughput when
1 or 2 CPU cores were allocated to the server. The results of
this test are shown in Fig. 6. We notice that request throughput
scales roughly linearly with the number of CPU cores.3

Interestingly, we notice that docker achieves approximately
10K requests/s more than kvm for large numbers of parallel
users. Each point in the figure represents a request throughput
value calculated from the execution of 100M requests.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

R
e
q
u
e
s
t
th

ro
u
g
h
p
u
t
[r

e
q
/s

]

Concurrent connections

HTTP request throughput as a function of the number of concurrent connections
(embedded object, 43 bytes)

kvm-1 vCPU
docker-1 vCPU

kvm-2 vCPU
docker-2 vCPU

Fig. 6. HTTP request throughput for increasing numbers of parallel connec-
tions. We compare the use of docker and kvm and the impact of utilizing
more CPU resources.

We further experimented with HTTP object sizes which
correspond to a video service. To select realistic such sizes,
we encoded a 720p HD video4 using H.264/AVC [33], and
prepared it for Dynamic Adaptive Streaming over HTTP
(DASH) [34] delivery using the DASHEncoder [35] tool.
Under DASH technologies, the client receives a Media Pre-
sentation Description (MPD) file, which includes information
on the available representations (different qualities) of the
same video, which is segmented in chunks. It then proceeds
to download the video chunk-by-chunk, potentially switching
among the available video representations (and thus bitrates)
to better adapt to network conditions. Table II shows average,

3Although the figures show only the case for 1 vs. 2 vCPUs, our experi-
ments with higher numbers of vCPUs demonstrate the same linear scaling.

4We used the Blender Foundation’s “Big Buck Bunny” [32] open-source
movie. The same video sequence is used in our video QoE tests presented in
section IV-D.

10

TABLE II
CHUNK SIZES (BYTES) FOR OUR TEST H.264/AVC DASH VIDEO

SEQUENCES.

Min Average Max
Low quality (250 Kbps) 69852 73262 250785

High quality (2500 Kbps) 80755 434830 843744

minimum, and maximum chunk sizes for our test video, for the
low (250 Kbps) and high (1.7 Mbps) quality representations.

Table III presents the achieved HTTP request throughput
for different numbers of simultaneous connections (1000 vs.
10000) when all clients are requesting (i) 73 KB video chunks
(low quality), and (ii) 435 KB video chunks (high quality).
We notice the expected response rate decrease as the size of
the requested objects increases. One vCPU can sustain a high-
quality video request throughput of ∼8600 requests/s when the
HTTP server is containerized, compared to ∼3800 requests/s
when run in a kvm VM for 10000 parallel HTTP connections.

TABLE III
HTTP REQUEST THROUGHPUT FOR DIFFERENT OBJECT SIZES AND

NUMBERS OF CONCURRENT CONNECTIONS.

73 KB 435 KB
connections docker kvm docker kvm

1000 15928 12578 8723 6165
10000 15270 9897 8649 3822

2) Response times: Our other performance metric is related
with user experience. We measured HTTP response times as
a function of the virtualization technology used, the number
of parallel connections, and CPU resource availability. We
launched 90% of the concurrent HTTP connections using
weighttp and we recorded response times for the remaining
10% using ab [36], due to its latency measurement capabili-
ties. All figures of this section present empirical Cumulative
Distribution Functions (CDF) of response times; each point
represents the percentage of requests which were served in a
time less than or equal to a specific value on the x-axis.

Fig. 7 compares a virtualized (kvm) to a containerized
(docker) HTTP server, to which one CPU core is allocated.
As shown, an increase in the number of parallel connections
results in higher latencies, due to the connection management
overhead on the server. Docker achieves lower response times,
since it incurs less overhead for interacting with the operating
system and for network I/O (especially given our host-mode
configuration, which gives it native access to the host’s net-
working stack). Scaling up processing capacity by adding more
vCPUs can significantly reduce latency in both cases.

When clients request larger objects, response times increase.
This increase is noticeable in both cases. For kvm (Fig. 8a) it
reaches more than 200 ms for 35% of the requests for a 73 KB
file when the server VM runs on a single CPU core and there
are 1000 concurrent connections (star points). Docker (Fig. 8b)
performs better: In the same settings, 98% of the requests
are completed in less than 35 ms (blue curve, star points).
Adding a second vCPU improves performance significantly in
both cases (square points). This latency improvement when

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e

s
ts

 [
%

]

Response time [ms]

Response time distributions
(kvm vs. docker, 1 vCPU, clients requesting a 43-byte embedded resource)

kvm-100 connections
docker-100 connections

kvm-1k connections
docker-1k connections

Fig. 7. Comparison of the response time distributions of a virtualized vs. a
containerized HTTP server, for different numbers of concurrent connections.
Parallel HTTP connections request a minimal embedded object (43-byte empty
GIF file).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

P
e

rc
e
n
ta

g
e
 o

f
re

q
u
e
s
ts

 [
%

]

Response time [ms]

Response time distributions
(kvm, 1000 parallel connections)

Empty GIF (43B)-1 vCPU
Empty GIF (43B)-2 vCPU

73KB chunk-1 vCPU
73KB chunk- 2 vCPU

(a) kvm

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
s
ts

 [
%

]

Response time [ms]

Response time distributions
(docker, 1000 parallel connections)

Empty GIF (43B)-1 vCPU
Empty GIF (43B)-2 vCPU

73KB chunk-1 vCPU
73KB chunk-2 vCPU

(b) docker

Fig. 8. Response time distributions for different sizes of the requested objects.

we scale up CPU resources is more evident as server load
(number of parallel connections) grows, as shown in Fig. 9.

D. Performance of an HTTP video streaming service

In a similar spirit as in our previous experiments, we
measure the performance capabilities of an HTTP video server
on a single vCPU in the presence of multiple parallel video
sessions. Following a user-centric approach, we empirically
quantify the relationship between service workload and QoE

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e

s
ts

 [
%

]

Response time [ms]

Response time distributions
(kvm, clients requesting a 43-byte embedded resource)

1 vCPU, 1000 connections
2 vCPU, 1000 connections

1 vCPU, 10k connections
2 vCPU, 10k connections

Fig. 9. Response time distributions for a server hosted in a kvm VM as the
number of available vCPUs scales, for different numbers of parallel HTTP
connections. Clients request a minimal embedded object (43-byte empty GIF
file).

in video-service-related terms. We use a vanilla nginx server,
which serves user requests for video content prepared for
DASH delivery, while on the client side we measure QoE
on a DASH video player in the presence of multiple parallel
emulated video streams.

1) Measurement methodology: Our QoE metric is the Mean
Opinion Score (MOS), i.e., the expected rating that a panel
of users would give to the quality of the transmitted video
in a 1-5 (poor-excellent) scale. To estimate it we apply the
Pseudo-Subjective Quality Assessment (PSQA) [37] approach.
PSQA consists in training a Random Neural Network (RNN)
based on experiments with physical subjects under controlled
conditions, where a set of parameters affecting quality is
monitored and the ratings of users are recorded. The trained
RNN classifier can then be applied in real time and output
the expected MOS for specific values of the input parameters.
Singh et al. [38] have applied PSQA to estimate QoE for
H.264/AVC-encoded video delivered over HTTP, and we are
using their tool in our experiments.

The PSQA tool operates on 16 s video segments. As our
test video sequences are larger (475 s), we calculate a MOS
value for each 16 s window. Since we cannot argue that user
experience is independent for consecutive time instances, we
maintain a moving average of the calculated MOS in order to
capture recency effects according to the following equation:

MOSi+1 = 0.3MOSi + 0.7si+1,

where MOSi is the moving average up to window i and si+1

is the MOS sample calculated for the (i+ 1)-th window.
The input parameters for the QoE estimation tool (appro-

priately normalized [38]) are the following:
• The number of interruptions in the 16 s window.
• The average and the maximum interruption duration.
• The average value of the Quantization Parameter (QP)

across all picture macroblocks in the measurement win-
dow. QP is an indication of picture quality (the higher
the QP, the lower the video bitrate and quality).

To acquire the required input, we extended the vlc open-
source media player with specific monitoring functionality,

i.e., with the ability to record QP values, and playout in-
terruptions and their duration. Furthermore, we modified the
vlc DASH plugin to disable video rate adaptation, thus only
serving the video representation with the selected bitrate.

We further make the following assumptions with respect to
QoE calculation:

• If at a specific 16 s window there is an interruption longer
than 8 s (half of the measurement window), we consider
that the MOS is 1.0 (minimum value possible). This is
because the RNN used shows saturation when quality is
very bad and its training focused on being more accurate
when quality is good, at the expense of inaccuracies when
interruptions are very large or very frequent [38].

• If the video playout is terminated prematurely or if
the video fails to start, e.g., due to connection reset
problems (something we observed frequently for large
server loads), we consider that MOS = 1.0 for all video
windows which follow playout termination.

We use the same DASH test video sequence which we pre-
pared for our previous experiments, with each chunk carrying
two seconds of video. In all the experiments that follow, the
video client is configured to request only the high-quality
video representation (no rate adaptation; mean chunk size
of 435 KB; video bitrate of 1.7 Mbps). To emulate multiple
simultaneous viewers, we generated parallel HTTP sessions
using a modified version of the wrk HTTP load generator5

which allowed for specifying the exact request rate. Each of
the parallel wrk connections was downloading a 435 KB file
at the video rate (i.e., 1 chunk/2 s).

At each experiment, repeated a number of times to ac-
quire the necessary number of QoE samples for statistical
confidence, we varied the number of parallel emulated video
sessions, at the same time recording QoE-related information
on a vlc instance accessing a DASH video from the server.

We used the same host/guest configurations as in our
previous experiments. Depending on the experiment, we varied
the server workload appropriately to find the load points after
which interruptions, and thus quality degradation, start to take
place. (In other words, we do not report QoE results for
all “low” load values, since QoE was unaffected.) We are
interested in the performance of the video service when using
one vCPU; the results we present when using two vCPUs
serve just to demonstrate that the service indeed scales and to
verify that performance degradation for high loads is not due
to network bottlenecks.

2) Results: Fig. 10 presents the average MOS value ob-
served across all 16 s video samples for each case. We observe
that a vanilla nginx server can sustain up to more than 5000
parallel HD video sessions with an excellent quality when
kvm is in use and the guest uses one vCPU. For loads of more
than 6000 parallel users, video interruptions start to take place,
which reduce QoE, especially as load grows. The frequency
(Fig. 11) of such playout interruptions follows an increasing
trend with server load, reaching, on average, more than 2.5
per minute when there are 12000 parallel video streams.

5https://github.com/giltene/wrk2

12

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000 25000 30000

M
O

S

Number of parallel video sessions

MOS comparison

kvm [1 vCPU]
kvm [2 vCPU]

docker [1 vCPU]
docker [2 vCPU]

Fig. 10. Average QoE as a function of the number of parallel users accessing
a HD video from a web server. Each point is the mean of a few hundreds of
QoE samples (MOS values), presented with 95% confidence intervals.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5000 10000 15000 20000 25000 30000

In
te

rr
u

p
ti
o

n
s
/m

in

Number of parallel video sessions

Interruption frequency

kvm
docker

docker [2 vCPU]

Fig. 11. Interruption frequency (in interruptions/minute) as server load grows.

A similar trend is observed when docker is used. How-
ever, the respective figures for docker reveal that for the
same compute resources allocated performance is much better.
While for kvm video interruptions start to happen when load
exceeds 5500 users, docker on a single vCPU maintains an
uninterrupted video service even for double the number of
concurrent streams (12000). Performance scales approximately
in a linear fashion when adding one vCPU. In this case, a
docker container can serve more than 23000 users without
interruptions, and even when 25000 users are served in parallel
from a 2-vCPU container, MOS reaches 4.8 in the 1-5 scale.

These results are in line with our request throughput ex-
periments. For example, in Section IV-C1 we found that on a
single vCPU docker can sustain 8.6K requests/s for the chunk
size that corresponds to the HQ video (see Table III). The fact
that, for the same configuration, with more than 17K parallel
video streams (i.e., 8.5K requests/s, given that each chunk
carries 2 s of video) MOS starts to more drastically degrade
is a user-centric expression of the same phenomenon.

From a user experience perspective, another interesting
metric would be the ratio of viewing time that QoE is

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

R
a

ti
o

 o
f

s
a

m
p

le
s
 w

it
h

 M
O

S
 ≤

 X

MOS

Distribution of MOS samples
[each sample is the QoE estimated for a 16s window]

6K sessions
12K sessions

Fig. 12. Empirical CDF of the QoE of video samples for two different server
loads when the service is hosted in a kvm virtual machine.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

R
a

ti
o

 o
f

M
O

S
 s

a
m

p
le

s

Number of parallel video sessions

Ratio of MOS samples where MOS > 3.6 [HQ video]

kvm [1 vCPU]
kvm [2 vCPU]

docker [1 vCPU]
docker [2 vCPU]

Fig. 13. Probability that quality in a sample is acceptable (i.e., MOS > 3.6).

above a specific threshold (or, in other words, the ratio of
samples in which QoE is above this threshold). This could
also be encoded in an SLA of a different format, where the
customer is interested in ensuring that end users will enjoy
an acceptable QoE level for more than a specific percentage
of the video viewing time. To evaluate this metric we resort
to the empirical cumulative distribution function of the QoE
samples we collected in our experiments, examples of which
for kvm (1 vCPU) we present in Fig. 12. This interpretation is
depicted in Fig. 13, where we present the probability that QoE
for a 16 s sample exceeds a MOS threshold of 3.6, which, in
various contexts (e.g., VoIP), is considered acceptable quality.

V. USES OF OUR RESULTS

Our experiments provide insight on the capabilities of the
enabling technologies for our CDNaaS vision. This can be
applied to devise appropriate resource allocation and manage-
ment strategies. Our findings indicate that virtualization comes
with a larger overhead compared to using containers. This
observation is in line with other works in the literature [29].
However, it should be noted that, despite their performance

13

and flexibility benefits, containerization technologies for cloud
computing have only recently gained popularity, while virtu-
alization can be considered more mature in this context.

We have identified two main uses of such quantitative
results: (i) Optimally deciding on the amount of resources
to deploy and on their configuration, in order to match
customer demand, and (ii) deriving pricing strategies for the
offered virtual CDN service. Part of our ongoing work focuses
particularly on these two aspects.

A. Service dimensioning

Via our northbound API, a customer can express specific
service demand characteristics, such as a target maximum
number of concurrent users that will be accessing its service
per region. Also, the request can include a quality specifi-
cation, which, for a video streaming application, takes the
form of a minimum MOS for the end users and for specific
video characteristics (e.g., high definition video). With this
information in place, and with the empirical model of QoE as
a function of workload that we derived, the CDNaaS provider
can optimize the amount of the resources to allocate.

We have shown that such informed resource allocation
decisions save on operator costs while improving on user
experience in our prior work [25]. In particular, we designed
an algorithm which calculates the number of vCPUs necessary
(minimum cost solution with respect to compute resources)
to serve a specific customer-specified demand under capacity
(operator) and quality (customer) constraints for a video
streaming service over vCDN.

The amount of CPU resources allocated needs to be dis-
tributed to a number of virtual instances across the physical
hosts in a region’s data centers. How exactly these resources
are allocated and how the respective instances are placed is a
matter of addressing the tradeoff between reliability and cost:
Splitting resources across instances and distributing the latter
across multiple physical hosts can result in higher service
availability, but also increased operational cost (e.g., power
consumption) for the operator, which may be reflected in
the service price. Our current focus is on studying multi-
objective optimization formulations for the joint CPU resource
allocation and virtual instance placement problem, where
customer preferences are translated to specific weightings for
the two conflicting objectives. An extensive review of models
and algoritms for the relevant problem of VM allocation in
cloud data centers is provided by Mann [39].

B. Pricing models and SLA design, monitoring and enforce-
ment

From another perspective, our measurement results can be
used as input by the system operator to design SLAs and
apply different pricing models for the vCDN service. In the
following discussion, we assume the case where the service-
level objective for the customer is a response time guarantee.
As shown in Fig. 14, the operator can select specific points
representing response times for a specific request percentile:
For example, using kvm (1 vCPU), 90% of the requests
for low-quality video chunks can be completed in less than

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

s
ts

 [
%

]

Response time [ms]

Response time distribution
(kvm, 25K parallel video streams)

SLA target point

Fig. 14. Response time distribution for low-quality video chunks. Kvm is
used as the hypervisor and 1 vCPU is allocated to the HTTP server instance.
The square point indicates the 90th percentile of the time to complete an
HTTP request for a 70 KB file; this objective could be encoded in an SLA.

564.5 ms when the traffic volume handled by the VNF instance
corresponds to 25000 parallel video streams (this value for
docker is 33.185 ms; the respective figure is omitted due to
lack of space). Sustaining larger workloads while meeting this
specific response time requirement, which can be encoded in
an SLA, necessitates allocating more resources (e.g., launching
a new instance or scaling up an existing one with more
vCPUs).

Taking such information into account, the operator can offer
different pricing schemes. Two examples follow:

a) Flat-rate, non-scalable deployment: This is a basic
service which provides no elasticity. The price is set based on
an initial demand estimate that is provided by the customer
(content provider): On service instantiation, the customer can
express a target number of end-user HTTP sessions per region,
with a specific objective with respect to response times. The
service provider then decides on the amount of resources
(HTTP server VNF instances and the respective vCPUs) that
have to be placed to cover this demand, and, in turn, the price.
In case of a surge in traffic demand, no guarantees are provided
and no service re-dimensioning takes place.

b) On-demand elastic service: Here the operator adver-
tises guaranteed response time SLAs. The customer expresses
an initial demand and the operator translates it to an initial
number of VNF instances (and vCPUs). The number of
ongoing HTTP connections per instance is monitored via the
service-level monitoring/management interface and, when nec-
essary, the service provider decides to up- or down-scale the
service in order to match the target response time distribution.
For example, if the total number of parallel user sessions
increases beyond a threshold such that the SLA objective
cannot be met, a new instance is launched and user requests
for content are appropriately redistributed.

Under the elastic model, the operator can apply on-demand
pricing: A base price is derived from the initial content
provider’s service request, and the price is scaled following
the additional resources that need to be deployed to meet
the target response times encoded in the agreed-upon SLA.

14

Note that video quality can be appropriately combined with
the above models as another pricing dimension.

Finally, we remark that the reported response time distribu-
tions are mainly bounded by the CPU capabilities of the VNF
platform and the host-to-guest communication overhead, and
do not include the additional delay imposed in the user-VNF
instance path. However, this path is monitored and controlled
by the network operator, which can exploit internal infor-
mation to derive a more accurate response time distribution
(e.g., by shifting the curve appropriately to account for fixed
network-level overheads), apply specific “safety margins” in
the advertised response time guarantees, or accordingly provi-
sion this path with network resources to avoid SLA violations.

VI. CONCLUSION

We presented the design and implementation of an architec-
ture allowing a telecom operator to offer a cloud-based vCDN
service to content providers on demand. Our approach, which
is in line with current standardization efforts on Network
Functions Virtualization, improves on resource management
and service provision flexibility compared to traditional telco
CDNs, thus having the potential of empowering the role of
telecom operators in the content delivery value chain. Our
CDNaaS design is extensible. It supports the deployment of
a multitude of different CDN flavors, each with their own
features and resource management schemes. For the latter,
a better understanding of the performance capabilities of the
underlying virtualization technologies as to vCDN provision is
necessary. We therefore carried out an extensive experimental
evaluation of state-of-the-art containerization and virtualiza-
tion schemes on top of which a vCDN service can be built,
and derived empirically the relationship between workload and
service performance under specific technology configurations.
With these results as a basis, our ongoing and future research
concentrate on their two main uses that we have identified in
this article: cloud resource allocation and elastic management,
and designing SLAs and CDNaaS pricing structures.

REFERENCES

[1] R. T. Ma, J. C. Lui, and V. Misra, “On the evolution of the Internet
economic ecosystem,” in Proc. WWW, 2013.

[2] OpenStack. [Online]. Available: https://www.openstack.org/
[3] B. Frank, I. Poese, G. Smaragdakis, A. Feldmann, B. Maggs, S. Uhlig,

V. Aggarwal, and F. Schneider, “Collaboration Opportunities for Content
Delivery and Network Infrastructures,” ACM SIGCOMM ebook on
Recent Advances in Networking, vol. 1, August 2013.

[4] I. Poese, B. Frank, B. Ager, G. Smaragdakis, S. Uhlig, and A. Feldmann,
“Improving content delivery with PaDIS,” IEEE Internet Comput.,
vol. 16, no. 3, pp. 46–52, 2012.

[5] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs,
J. Rake, S. Uhlig, and R. Weber, “Pushing CDN-ISP Collaboration to
the Limit,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp.
34–44, Jul. 2013.

[6] N. Herbaut, D. Négru, Y. Chen, P. A. Frangoudis, and A. Ksentini,
“Content delivery networks as a virtual network function: A win-win
ISP-CDN collaboration,” in Proc. IEEE Globecom, 2016.

[7] FP7 T-NOVA. [Online]. Available: http://www.t-nova.eu
[8] G. Xilouris, E. Trouva, F. Lobillo, J. Soares, J. Carapinha, M. McGrath,

G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi, and A. Kour-
tis, “T-NOVA: A marketplace for virtualized network functions,” in Proc.
EuCNC, 2014.

[9] P. Maillé, G. Simon, and B. Tuffin, “Vertical integration of CDN and
network operator: Model and analysis,” in Proc. IEEE MASCOTS, 2016.

[10] Content Delivery Network Interconnection (CDNI) Working Group.
IETF. [Online]. Available: https://datatracker.ietf.org/wg/cdni/

[11] H. Lee, D. Lee, and Y. Yi, “On the economic impact of telco cdns and
their alliance on the cdn market,” in Proc. IEEE ICC, 2014.

[12] H. Lee, L. Duan, and Y. Yi, “On the competition of CDN companies:
Impact of new telco-CDNs’ federation,” in Proc. WiOpt, 2016.

[13] S. Spagna, M. Liebsch, R. Baldessari, S. Niccolini, S. Schmid, R. Gar-
roppo, K. Ozawa, and J. Awano, “Design principles of an operator-
owned highly distributed content delivery network,” IEEE Commun.
Mag., vol. 51, no. 4, pp. 132–140, April 2013.

[14] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: A data center network virtualization architecture
with bandwidth guarantees,” in Proc. ACM CoNEXT, 2010.

[15] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928,
Feb. 2013.

[16] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Commun. Mag.,
vol. 51, no. 11, pp. 24–31, November 2013.

[17] Network Functions Virtualisation (NFV); Management and Orchestra-
tion, ETSI Group Specification NFV-MAN 001, Dec. 2014.

[18] Network Functions Virtualisation (NFV); Use Cases, ETSI Group Spec-
ification NFV 001, Oct. 2013.

[19] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in Proc. IEEE NOMS,
2014.

[20] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in Proc. IFIP CNSM, 2014.

[21] T. Wood, K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward
a software-based network: integrating software defined networking and
network function virtualization,” IEEE Network, vol. 29, no. 3, pp. 36–
41, May 2015.

[22] P. A. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture
for on-demand service deployment over a telco CDN,” in Proc. IEEE
ICC, 2016.

[23] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux virtual machine monitor,” in Proc. Linux Symposium, 2007.

[24] nginx. [Online]. Available: http://nginx.org
[25] L. Yala, P. A. Frangoudis, and A. Ksentini, “QoE-Aware Computing

Resource Allocation for CDN-as-a-Service Provision,” in Proc. IEEE
Globecom, 2016.

[26] Network Functions Virtualisation (NFV); Management and Orchestra-
tion; Report on Architectural Options, ETSI Group Specification NFV-
IFA 009, Jul. 2016.

[27] Docker. [Online]. Available: https://www.docker.com/
[28] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization

to support PaaS,” in Proc. IEEE International Conference on Cloud
Engineering (IC2E ’14), 2014.

[29] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,”
IBM Research, Tech. Rep. RC25482, July 2014. [Online]. Available:
http://goo.gl/ytEvt9

[30] weighttp. [Online]. Available: http://redmine.lighttpd.net/projects/
weighttp/wiki

[31] Nmap - the network mapper. [Online]. Available: https://nmap.org/
[32] Big Buck Bunny. [Online]. Available: https://peach.blender.org/
[33] Series H: Audiovisual and Multimedia Systems – Infrastructure of

audiovisual services – Coding of moving video – Advanced video coding
for generic audiovisual services, ITU-T Recommendation H.264, Feb.
2016.

[34] Information technology – Dynamic adaptive streaming over HTTP
(DASH) – Part 1: Media presentation description and segment formats,
ISO/IEC Standard 23 009-1:2014, May 2014.

[35] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming
over HTTP dataset,” in Proc. 3rd ACM MMSys, 2012.

[36] ab - Apache HTTP server benchmarking tool. [Online]. Available:
https://httpd.apache.org/docs/2.2/programs/ab.html

[37] G. Rubino, “Quantifying the Quality of Audio and Video Transmissions
over the Internet: The PSQA Approach,” in Communication Networks
& Computer Systems, J. A. Barria, Ed. Imperial College Press, 2005.

[38] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino, “Quality of experience
estimation for adaptive HTTP/TCP video streaming using H.264/AVC,”
in Proc. IEEE CCNC, 2012.

[39] Z. A. Mann, “Allocation of virtual machines in cloud data centers–a
survey of problem models and optimization algorithms,” ACM Comput.
Surv., vol. 48, no. 1, pp. 11:1–11:34, Aug. 2015.

15

Pantelis A. Frangoudis received the B.Sc. (2003),
M.Sc. (2005), and Ph.D. (2012) degrees in Com-
puter Science from the Department of Informat-
ics, Athens University of Economics and Business,
Greece. From October 2012 to January 2017 he
was with team Dionysos, IRISA/INRIA/University
of Rennes 1, Rennes, France, which he joined under
an ERCIM post-doctoral fellowship (2012-2013).
He is currently a post-doctoral researcher at the
Communication Systems Department, EURECOM,
Sophia Antipolis, France. His research interests in-

clude mobile and wireless networking, Internet multimedia, network security,
future Internet architectures, cloud computing, and QoE monitoring and
management.

Louiza Yala is currently a Ph.D. student at Uni-
versity of Rennes 1, France, and a member of the
IRISA/INRIA team Dionysos. She received a M.Sc.
degree (2014) in networking from the University
of Bejaia, Algeria, and a M.Sc. degree (2015) in
Technologies for Information Processing and Sys-
tems Analysis from the University of Technology of
Compiègne, France. Her research interests include
network virtualization, Internet multimedia, Content
Delivery Networks, and QoE.

Adlen Ksentini received his M.Sc. degree in
telecommunication and multimedia networking from
the University of Versailles Saint-Quentin-en-
Yvelines, and his Ph.D. degree in computer science
from the University of Cergy-Pontoise in 2005, with
a dissertation on QoS provisioning in IEEE 802.11-
based networks. From 2006 to 2016, he worked at
the University of Rennes 1 as an assistant professor.
During this period, he was a member of the Dionysos
Team with INRIA, Rennes. Since March 2016, he
has been working as an assistant professor in the

Communication Systems Department of EURECOM. He has been involved
in several national and European projects on QoS and QoE support in future
wireless, network virtualization, cloud networking, and mobile networks.
He has co-authored over 100 technical journal and international conference
papers. He received the best paper award from IEEE IWCMC 2016, IEEE
ICC 2012, and ACM MSWiM 2005. He has been awarded the 2017 IEEE
Comsoc Fred W. Ellersick (best IEEE Communications Magazine’s paper).
Adlen Ksentini has been acting as TPC Symposium Chair for IEEE ICC
2016/2017, IEEE GLOBECOM 2017, IEEE Cloudnet 2017 and IEEE 5G
Forum 2018. He was a Guest Editor of IEEE Wireless Communications, IEEE
Communications Magazine, and two issues of ComSoc MMTC Letters. He
has been on the Technical Program Committees of major IEEE ComSoc,
ICC/GLOBECOM, ICME, WCNC, and PIMRC conferences. He is currently
the Vice-Chair of the IEEE COMSOC Technical Committee on Software
(TCS).

