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Abstract We describe how to compute very far decimals of π and how to pro-
vide formal guarantees that the decimals we compute are correct. In particular,
we report on an experiment where 1 million decimals of π and the billionth
hexadecimal (without the preceding ones) have been computed in a formally
verified way. Three methods have been studied, the first one relying on a spigot
formula to obtain at a reasonable cost only one distant digit (more precisely
a hexadecimal digit, because the numeration basis is 16) and the other two
relying on arithmetic-geometric means. All proofs and computations can be
made inside the Coq system. We detail the new formalized material that was
necessary for this achievement and the techniques employed to guarantee the
accuracy of the computed digits, in spite of the necessity to work with fixed
precision numerical computation.

Keywords Formal proofs in real analysis · Coq proof assistant · Arithmetic
Geometric Means · Bailey & Borwein & Plouffe formula · BBP · PI

1 Introduction

The number π has been exciting the curiosity of mathematicians for centuries.
Ingenious formulas to compute this number manually were devised since antiq-
uity with Archimede’s exhaustion method and a notable step forward achieved
in the eighteenth century, when John Machin devised the famous formula he
used to compute one hundred decimals of π.
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Today, thanks to electronic computers, the representation of π in fractional
notation is known up to tens of trillions of decimal digits. Establishing such
records raises some questions. How do we know that the digits computed by
the record-setting algorithms are correct? The accepted approach is to perform
two computations using two different algorithms. In particular, with the help
of a spigot formula, it is possible to perform a statistical verification, simply
checking that a few randomly spread digits are computed correctly.

In this article, we study the best known spigot formula, an algorithm able
to compute a faraway digit at a cost that is much lower than computing all the
digits up to that position. We also study two algorithms based on arithmetic
geometric means, which are based on iterations that double the number of
digits known at each step. For these algorithms, we perform all the proofs in
real analysis that show that they do converge towards π, giving the rate of
convergence, and we then show that all the computations in a framework of
fixed precision computations, where computations are only approximated by
rational numbers with a fixed denominator, are indeed correct, with a formally
proved bound on the difference between the result and π. Last we show how
we implement the computations in the framework of our theorem prover.

The first algorithm, due to Bailey, Borwein, and Plouffe relies on a formula
of the following shape, known as the BBP formula [4].

π =

∞
∑

i=0

1

16i

(

4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

.

Because each term of the sum is multiplied by 1
16i it appears that approx-

imately n terms of the infinite sum are needed to compute the value of the
nth hexadecimal digit. Moreover, if we are only interested in the value of the
nth digit, the sum of terms can be partitioned in two parts, where the first
contains the terms such that i ≤ n and the second contains terms that will
only contribute when carries need to be propagated.

We shall describe how this algorithm is proved correct and what techniques
are used to make this algorithm run inside the Coq theorem prover.

The second and third algorithms rely on a process known as the arithmetic-
geometric mean. This process considers two inputs a and b and successively
computes two sequences an and bn such that a0 = a, b0 = b, and

an+1 =
an + bn

2
bn+1 =

√

anbn

In the particular case where a = 1 and b = x, the values an and bn are
functions of x that are easily shown to be continuous and differentiable and it
is useful to consider the two functions

yn(x) =
an(x)

bn(x)
zn =

b′n(x)

a′n(x)

A first computation of π is expressed by the following equality:

π = (2 +
√
2)

∞
∏

n=1

1 + yn(
1√
2
)

1 + zn(
1√
2
)
.
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Truncations of this infinite product are shown to approximate π with a number
of decimals that doubles every time a factor is added. This is the basis for the
second algorithm.

The third algorithm also uses the arithmetic geometric mean for 1 and 1√
2
,

but performs a sum and a single division:

π = lim
n→∞

4(an(1,
1√
2
))2

1−∑n−1
i=1 2i−1(ai−1(1,

1√
2
)− bi−1(1,

1√
2
))2

It is sensible to use index n in the numerator and n − 1 in the sum of the
denominator, because this gives approximations with comparable precisions
of their respective limits. This is the basis for the third algorithm. This third
algorithm was introduced in 1976 independently by Brent and Salamin [14,37].
It is the one implemented in the mpfr library for high-precision computation
[21] to compute π.

In this paper, we will recapitulate the mathematical proofs of these algo-
rithms (sections 2 and 3), and show what parts of existing libraries of real
analysis we were able to reuse and what parts we needed to extend.

For each of the algorithms, we study first the mathematical foundations,
then we concentrate on implementations where all computations are done with
a single-precision fixed-point arithmetic, which amounts to forcing all inter-
mediate results to be rational numbers with a common denominator. This
framework imposes that we perform more proofs concerning bounds on accu-
mulated rounding errors.

Context of this work. All the work described in this paper was done using
the Coq proof assistant [19]. This system provides a library describing the
basic definition of real analysis, known as the standard Coq library for reals,
where the existence of the type of real numbers as an ordered, archimedian, and
complete field with decidable comparison is assumed. This choice of foundation
makes that mathematics based on this library is inherently classical, and real
numbers are abstract values which cannot be exploited in the programming
language that comes in Coq’s type theory.

The standard Coq library for reals provides notions like convergent se-
quences, series, power series, integrals, and derivatives. In particular, the sine
and cosine functions are defined as power series, π is defined as twice the first
positive root of the cosine function, and the library provides a first approxi-
mation of π

2 as being between 7
8 and 7

4 . It also provides a formal description
of Machin formulas, relating computation of π to a variety of computations
of arctangent at rational arguments, so that it is already possible to compute
relatively close approximations of π, as illustrated in [6].

The standard Coq library implements principles that were designed at the
end of the 1990s, where values whose existence is questionable should always be
guarded by a proof of existence. These principles turned out to be impractical
for ambitious formalized mathematics in real analysis, and a new library called
Coquelicot [11] was designed to extend the standard Coq library and achieve a
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more friendly and regular interface for most of the concepts, especially limits,
derivatives, and integrals. The developments described in this paper rely on
Coquelicot.

Many of the intermediate level steps of these proofs are performed auto-
matically. The important parts of our working context in this respect are the
Psatz library, especially the psatzl tactic [9], which solves reliably all ques-
tions that can be described as linear arithmetic problems in real numbers and
lia [9], which solves similar problems in integers and natural numbers. An-
other tool that was used more and more intensively during the development of
our formal proofs is the interval tactic [34], which uses interval arithmetic to
prove bounds on mathematical formulas of intermediate complexity. Inciden-
tally, the interval tactic also provides a simple way to prove that π belongs
to an interval with rational coefficients.

Intensive computations are performed using a library for computing with
very large integers, called BigZ [24]. It is quite notable that this library contains
an implementation of an optimized algorithm to compute square roots of large
integers [7].

2 The BBP formula

In this section we first recapitulate the main mathematical formula that makes
it possible to compute a single hexadecimal at a low cost [4].

Then, we describe an implementation of an algorithm that performs the
relevant computation and can be run directly inside the Coq theorem prover.

2.1 Proof of the BBP formula

2.1.1 The mathematical Proof

We give here a detailed proof of the formula established by David Bayley,
Peter Borwein and Simon Plouffe. The level of detail is chosen to mirror the
difficulties encountered in the formalization work.

π =

∞
∑

i=0

1

16i
(

4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6
) (1)

We first study the properties of the sum Sk for a given k such that 1 < k:

Sk =

∞
∑

i=0

1

16i(8i+ k)
(2)

By using the notation [f(x)]
y
0 = f(y) − f(0) and the laws of integration, we

get

Sk =
√
2
k

∞
∑

i=0

[

xk+8i

8i+ k

]

1√
2

0

=
√
2
k

∞
∑

i=0

∫ 1√
2

0

xk−1+8i dx (3)
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Thanks to uniform convergence, the series and the integral can be exchanged
and we can then factor out xk−1 and recognize a geometric series in x8.

Sk =
√
2
k
∫ 1√

2

0

∞
∑

i=0

xk−1+8i dx =
√
2
k
∫ 1√

2

0

xk−1

1− x8
dx (4)

Now replacing the Sk values in the right hand side of (1), we get:

S = 4S1 − 2S4 − S5 − S6 =

∫ 1√
2

0

4
√
2− 8x3 − 4

√
2x4 − 8x5

1− x8
dx (5)

Then, with the variable change y =
√
2x and algebraic calculations on the

integrand

S =

∫ 1

0

4− 4y

y2 − 2y + 2
+

4

1 + (y − 1)2
+ 4

y

y2 − 2
dy (6)

We recognize here the respective derivatives of−2 ln(y2−2y+2), 4 arctan(y−1)
and 2 ln(2 − y2). Most of these functions have null or compensating values at
the bounds of the integral, leaving only one interesting term:

S =
[

−2 ln(y2 − 2y + 2) + 4 arctan(y − 1) + 2 ln(2− y2)
]1

0

= −4 arctan(−1) = π

2.1.2 The formalization of the proof

The current version of our formal proof, compatible with Coq version 8.5 and
8.6 [19] is available on the world-wide web [8]. To formalize this proof, we use
the Coquelicot library intensively. This library deals with series, power series,
integrals and provides some theorems linking these notions that we need for
our proof. In Coquelicot, series (named Series) are defined as in standard
mathematics as the sum of the terms of an infinite sequence (of type nat → R
in our case) and power series (PSeries) are the series of terms of the form
anx

n. The beginning of the formalisation follows the proof (steps (2) to (3)).
Then, one of the key arguments of the proof is the exchange of the integral
sign and the series allowing the transition from equation (3) to equation (4).
The corresponding theorem provided by Coquelicot is the following:

Lemma RInt_PSeries (a : nat -> R) (x : R) :

Rbar_lt (Rabs x) (CV_radius a) ->

RInt (PSeries a) 0 x = PSeries (PS_Int a) x.

where (PSeries (PS Int a)) is the series whose (n+1)-th term is an

n+1x
n+1

coming from the equality:
∫ x

0 anx
n =

[

an

n+1x
n+1
]x

0
. We use this lemma as a

rewriting rule from right to left.
Note that the RInt PSeries theorem assumes that the integrated function

is a power series (not a simple series), that is, a series whose terms have the
form aix

i. In our case, the term of the series is xk−1+8i, that is xk−1x8i. To
transform it into an equivalent power series we have first to transform the series
∑

i x
8i into a power series. For that purpose, we define the hole function.
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Definition hole (n : nat) (a : nat -> R) (i : nat) :=

if n mod k =? 0 then a (i / n) else 0.

and prove the equality given in the following lemma.

Lemma fill_holes k a x :

k <> 0 -> ex_pseries a (x ^ k) ->

PSeries (hole k a) x = Series (fun n => a n * x ^ (k * n)).

The premise written in the second line of fill holes expresses that the series
∑

i ai(x
k)i converges. This equality expresses that the series of term ai(x

k)i

is equivalent to the power series which terms are an/k when n is a multiple of
k and 0 otherwise.

Then by combining fill holes with the Coquelicot function (PS incr n

a n), that shifts the coefficients of the series
∑∞

i=0 aix
n+i to transform it into

∑i=n−1
i=0 0.xi+

∑∞
i=n ai−nx

i that is a power series, we prove the PSeries hole

lemma.

Lemma PSeries_hole x a d k :

0 <= x < 1 ->

Series (fun i : nat => a * x ^ (d + S n * i)) =

PSeries (PS_incr_n (hole (S k) (fun _ : nat => a)) n) x

Moreover, the RInt PSeries theorem contains the hypothesis that the ab-
solute value of the upper bound of the integral, that is |x|, is less than the
radius of convergence of the power series associated to a. This is proved in the
following lemma.

Lemma PS_cv x a :

(forall n : nat, 0 <= a n <= 1) ->

0 <= x -> x < 1 -> Rbar_lt (Rabs x) (CV_radius a)

It should be noted that in our case an is either 1 or 0 and the hypothesis
forall n : nat, 0 <= a n <= 1 is easily satisfied.

In summary, the first part of the proof is formalized by the Sk Rint lemma:

Lemma Sk_Rint k (a := fun i => / (16 ^ i * (8 * i + k))) :

0 < k ->

Series a =

sqrt 2 ^ k *

RInt (fun x => x ^ (n - 1) / (1 - x ^ 8)) 0 (/ sqrt 2).

that computes the value of Sk given by (4) from the definition (2) of Sk.
The remaining of the formalized proof follows closely the mathematical

proof described in the previous section. We first perform an integration by
substitution (starting from equation (5)), replacing the variable x by

√
2x, by

rewriting (from right to left) with the RInt_comp_lin Coquelicot lemma.

Lemma RInt_comp_lin f u v a b :

RInt (fun y : R => u * f (u * y + v)) a b =

RInt f (u * a + v) (u * b + v)
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This lemma assumes that the substitution function is a linear function, which
is the case here.
Then we decompose S into three parts (by computation) to obtain equa-
tion (6), actually decomposed into three integrals that are computed in lemmas
RInt Spart1, RInt Spart2, and RInt Spart3 respectively. For instance:

Lemma RInt_Spart3 :

RInt (fun x => (4 * x) / (x ^ 2 - 2)) 0 1 = 2 * (ln 1 - ln 2).

Finally, we obtain the final result, based on the equality arctan 1 = π
4 .

2.2 Computing the nth decimal of π using the Plouffe formula

We now describe how the formula (1) can be used to compute a particular
decimal of π effectively. This formula is a summation of four terms where each
term has the form 1/16i(8i+ k) for some k. Digits are then expressed in hex-
adecimal (base 16). Natural numbers strictly less than 2p are used to simulate
a modular arithmetic with p bits, where p is the precision of computation. We
first explain how the computation of Sk =

∑

i 1/16
i(8i+ k) for a given k is

performed. Then, we describe how the four computations are combined to get
the final digit.

We want to get the digit at position d. The first operation is to scale
the sum Sk by a factor m = 16d−1 2p to be able to use integer arithmetic.
In what follows, we need that p is greater than four. If we consider ⌊mSk⌋
(the integer part of mSk), the digit we are looking for is composed of its bits
p, p − 1, p − 2, p − 3 that can be computed using basic integer operations:
(⌊mSk⌋ mod 2p)/2p−4. Using integer arithmetic, we are going to compute an
approximation of ⌊mSk⌋ mod 2p by splitting the sum into three parts

mSk =
∑

0≤i<d

m

16i(8i+ k)
+

∑

d≤i<d+p/4

m

16i(8i+ k)
+

∑

d+p/4≤i

m

16i(8i+ k)
(7)

In the first part, the inner term can be rewritten as 2p16d−1−i

8i+k where both
divisor and dividend are natural numbers. The division can be performed in
several stages. To understand this, it is worth comparing the fractional and

integer part of 16d−1−i

8i+k with the bits of 2p16d−1−i

8i+k .
For illustration, let us consider the case where i = 0, k = 3, p = 4, and

d = 2. The number we wish to compute is

24162−1

3

and we only need to know the first 4 bits, that is we need to know this number
modulo 24. The ratio is 85.333, and modulo 16 this is 5. Now, we can look at
the number 24 16

3 . If we note q and r the quotient and the remainder of the
division on the left (when viewed as an integer division), we have

24
16

3
= 24q +

24r

3
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Since we eventually want to take this number modulo 24, the left part of the
sum, 24q, does not impact the result and we only need to compute r, in other

words 16 mod 3. In our illustration case, we have 16 mod 3 = 1 and 24×1
3 = 5.333,

so we do recover the right 4 bits. Also, because we are only interested in bits
that are part of the integral part of the result, we can use integer division to
perform the last operation.

These computations are performed in the following Coq function, that
progresses by modifying a state datatype containing the current index and the
current sum. In this function, we also take care of keeping the sum under 2p,
because we are only concerned with this sum modulo 2p.

Inductive NstateF := NStateF (i : nat) (res : nat).

Doing an iteration is performed by

Definition NiterF k (st : NstateF) :=

let (i, res) := st in

let r := 8 * i + k in

let res := res + (2 ^ p * (16 ^ (d - 1 - i) mod r)) / r in

let res := if res < 2 ^ p then res else res - 2 ^ p in

NStateF (i + 1) res.

The summation is performed by d iterations:

Definition NiterL k := iter d (NiterF k) (NStateF 0 0).

The result of NiterL is a natural number. What we need to prove is that it is
a modular result and it is not so far from the real value. As we have turned
an exact division into a division over natural numbers, the error is at most 1.
After d iterations, it is at most d. This is stated by the following lemma.

Lemma sumLE k (f := fun i => ((16 ^ d / 16) * 2 ^ p) /

(16 ^ i * (8 * i + k))) :

0 < k ->

let (_, res) := NiterL p d k in

exists u : nat, 0 <= sum_f_R0 f (d - 1) - res - u * 2 ^ p < d.

where sum f R0 f n represents the summation f(0) + f(1) + . . .+ f(n).
Let us now turn our attention to the second part of the iteration of for-

mula (7).
∑

d≤i<d+p/4

m

16i(8i+ k)
=

∑

d≤i<d+p/4

2p16d−1−i

8i+ k
.

All the terms of this sum are less than 2p. As terms get smaller by a factor
of at least 16, we consider only p/4 terms. We first build a datatype that
contains the current index, the current shift and the current result:

Inductive NstateG := NStateG (i : nat) (s : nat) (res : nat).

We then define what is a step:
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Definition NiterG k (st : NstateG) :=

let (i, s, res) := st in

let r := 8 * i + k in

let res := res + (s / r) in

NStateG (i + 1) (s / 16) res.

and we iterate p/4 times:

Definition NiterR k :=

iter (p / 4) (NiterG k) (NStateG d (2 ^ (p - 4)) 0).

Here we do not need any modulo since the result fits in p bits and as the
contribution of each iteration makes an error of at most one unit with the
division by r, the total error is then bounded by p/4. This is stated by the
following lemma.

Lemma sumRE k (f := fun i =>

((16 ^ d / 16) * 2 ^ p) /

(16 ^ (d + i) * (8 * (d + i) + k))) :

0 < k -> 0 < p / 4 ->

let (_, _, s1) := NiterR k in

0 <= sum_f_R0 f (p / 4 - 1) - s1 < p / 4.

The last summation is even simpler. We do not need to perform any com-
putation. all the terms are smaller than 1 and quickly decreasing. It is then
easy to prove that this summation is strictly smaller than 1.

Adding the two computations, we get our approximation.

Definition NsumV k :=

let (_, res1) := NiterL k in

let (_, _, res2) := NiterR k in res1 + res2.

We know that it is an under approximation and the error is less than d+p/4+1.
We are now ready to define our function that extracts the digit:

Definition NpiDigit :=

let delta := d + p / 4 + 1 in

if (3 < p) then

if 8 * delta < 2 ^ (p - 4) then

let Y := 4 * (NsumV 1) +

(9 * 2^ p -

(2 * NsumV 4 + NsumV 5 + NsumV 6 + 4 * delta)) in

let v1 := (Y + 8 * delta) mod 2 ^ p / 2 ^ (p - 4) in

let v2 := Y mod 2 ^ p / 2 ^ (p - 4) in

if v1 = v2 then Some v2 else None

else None

else None.

This deserves a few comments. In this function, the variable delta represents
the error that is done by one application of NsumV. When adding the different
sums, we are then going to make an overall error of 8 * delta. Moreover,
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we know that NsumV is an under approximation. The variable Y computes an
under approximation of the result: for those sums that appear negatively, the
under approximation is obtained adding delta to the sum before taking the
opposite. This explains the fragment ... + 4 * delta that appears on the
seventh line. Each of the sums obtained by NsumV actually is a natural number
s smaller than 2p, when it is multiplied by a negative coefficient, this should
be represented by 2p − s. Accumulating all the compensating instances of 2p

leads to the fragment 9 * 2 ^ p - ... that appears on the sixth line.
After all these computations, Y + 8 * delta is an over approximation. If

both Y and Y + 8 * delta give the same digit, we are sure that this digit is
valid.

The correctness of the NpiDigit function is proved with respect to the
definition of what is the digit at place d in base b of a real number r, i.e. we
take the integer part of rbd and we take the modulo b:

Definition Rdigit (b : nat) (d : nat) (r : R) :=

(Int_part ((Rabs r) * (b ^ d))) mod b.

The correctness is simply stated as

Lemma NpiDigit_correct k :

NpiDigit = Some k -> Rdigit 16 d PI = k.

Note that this is a partial correctness statement. A program that always re-
turns None also satisfies this statement. If we look at the actual program, it is
clear that one can precompute a p that fulfills the first two tests, the equality
test is another story. A long sequence of 0 (or F) may require a very high
precision.

This program is executable but almost useless since it is based on a Peano
representation of the natural numbers. Our next step was to derive an equiv-
alent program using a more efficient representation of natural numbers, pro-
vided by the type BigN [24]. This code also receives some optimizations to
implement faster operations of multiplications and divisions by powers of 2
and fast modular exponentiations.

Computing within Coq that 2 is the millionth decimal in hexadecimal of
π with a precision of 28 bits (27 are required for the first two tests and 28
for the equality test) takes less than 2 minutes. In order to reach the billionth
decimal, we implement a very naive parallelization for a machine with at least
four cores: each sum is computed on a different core generating a theorem then
the final result is computed using these four theorems. With this technique,
we get the millionth decimal, 2, in 25 seconds and the billionth decimal, 8, in
19 hours. Note that we could further parallelize inside the individual sums to
compute partial sums and then use Coq theorems to glue them together.

3 Algorithms to compute π based on arithmetic geometric means

In principle, all the mathematics that we had to describe formally in our
study of arithmetic geometric means and the number π are available from the
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mathematical litterature, essentially from the monograph by J. M. Borwein
and P. B. Borwein [13] and the initial papers by R. Brent [14], E. Salamin [37].
However, we had difficulties using these sources as a reference, because they
rely on an extensive mathematical culture from the reader. As a result, we
were actually guided by a variety of sources on the world-wide web, including
an exam for the selection of French high-school mathematical teachers [2]. It
feels useful to repeat these mathematical facts in a first section, hoping that
they are exposed at a sufficiently elementary level to be understood by a wider
audience. However, some details may still be missing from this exposition and
they can be recovered from the formal development itself.

This section describes two algorithms, but their mathematical justification
has a lot in common. The first algorithm that we present came to us as the
object of an exam for high-school teachers [2], but in reality this algorithm
is neither the first one to have been designed by mathematicians, nor the
most efficient of the two. However, it is interesting that it brings us good
tools to help proving the second one, which is actually more traditional (that
second algorithm dates from 1976 [14,37], and it is the one implemented in
the mpfr library [21]) and more efficient (we shall see that it requires much
less divisions).

In a second part of our study, we concentrate on the accumulation of errors
during the computations and show that we can also prove bounds on this.
This part of our study is more original, as it is almost never covered in the
mathematical litterature, however it re-uses most of the results we exposed in
a previous article [5].

3.1 Mathematical basics for arithmetic geometric means

Here we enumerate a large collection of steps that make it possible to go from
the basic notion of arithmetic-geometric means to the computation of a value
of π, together with estimates of the quality of approximations.

This is a long section, consisting of many simple facts, but some of the de-
tailed computations are left untold. Explanations given between the formulas
should be helpful for the reader to recover most of the steps. However, missing
information can be found directly in the actual formal development [8].

The arithmetic-geometric process. As already explained in section 1, the arith-
metic-geometric mean of two numbers a and b is obtained by defining sequences
an and bn such that a0 = a, b0 = b and

an+1 =
an + bn

2
bn+1 =

√

anbn

A few tests using high precision calculators show that the two sequences
an and bn converge rapidly to a common value M(a, b), with the number
of common digits doubling at each iteration. The sequence an provides over
approximations and the sequence bn under approximations. Here is an example



12 Yves Bertot et al.

computation (for each line, we stopped printing values at the first differing
digit between an and bn).

a b
0 1 0.5
1 0.75 0.70. . .
2 0.7285. . . 0.7282. . .
3 0.72839552. . . 0.72839550. . .
4 0.7283955155234534.. . 0.7283955155234533.. .

The function M(a, b) also benefits from a scalar multiplication property:

M(ka, kb) = kM(a, b) M(a, b) = aM(1,
b

a
) (8)

For the sake of computing approximations of π, we will mostly be interested
in the sequences an and bn stemming from a0 = 1 and b0 = 1√

2
.

Elliptic integrals. We will be interested in complete elliptic integrals of the first
kind, noted K(k). The usual definition of these integrals has the following form

K(k) =

∫ π
2

0

dθ
√

1− k2 sin2 θ
(9)

But it can be proved that the following equality holds, when setting a = 1 and
b =

√
1− k2, and using a change of variable (we only use the form I(a, b)):

K(k) = I(a, b) =

∫ +∞

0

dt
√

(a2 + t2)(b2 + t2)
(10)

Note that the integrand in I is symmetric, so that I(a, b) is also half of the
integral with infinities as bounds. With the change of variables s = 1

2 (x− ab
x ),

then reasoning by induction and taking the limit, we also have the following
equalities

I(a, b) = I(
a+ b

2
,
√
ab) = I(an, bn) = I(M(a, b),M(a, b)) =

π

2M(a, b)
. (11)

Equivalence when x → 0 and derivatives. Another interesting property for
elliptic integrals of the first kind can be obtained by the variable change u = x

t
on the integral on the right-hand side of equation (10).

I(1, x) = 2

∫

√
x

0

dt
√

(1 + t2)(x+ t2)
(12)

Studying this integral when x tends to 0 gives the equivalences for I and M :

I(1, x) ∼ 2 ln(
1√
x
) M(1, x) ∼ −π

2 lnx
when x → 0+. (13)
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For the rest of this section, we will assume that x is a value in the open
interval (0, 1) and that a0 = 1 and b0 = x. Coming back to the sequences an
and bn, the following property can be established.

M

(

an+1,
√

a2n+1 − b2n+1

)

=
1

2
M
(

an,
√

a2n − b2n

)

(14)

We can repeat n times and use the fact that a20 − b20 = 1− x2.

2nM
(

an,
√

a2n − b2n

)

= 2nanM

(

1,

√

a2n − b2n
an

)

= M
(

1,
√

1− x2
)

(15)

Still under the assumption of a0 = 1 and b0 = x, we define kn as follows:

kn(x) =

ln

(

an√
a2
n−b2n

)

2n
(16)

Through separate calculation, involving Equation (13) and the definition of k,
we establish the following properties.

lim
n→∞

kn(x) =
π

2

M(1, x)

M(1,
√
1− x2)

k′n =
b2n

x(1− x2)
(17)

These derivatives converge uniformly to their limit. Moreover, the sequence
of derivatives of an is growing and converges uniformly. This guarantees that
x 7→ M(1, x) is also differentiable and and its derivative is the limit of the
derivatives of an. We can then obtain the following two equations, the second
is our main central formula.

(

π

2

M(1, x)

M(1,
√
1− x2)

)′

=
M(1, x)2

x(1 − x2)
π = 2

√
2

M(1, 1√
2
)3

(M(1, x))′ (
1√
2
)

(18)

We define the functions yn = an

bn
and zn =

b′n
a′
n
. These sequence satisfy

y0 =
1

x
yn+1 =

1 + yn
2
√
yn

z1 =
1√
x

zn+1 =
1 + znyn

(1 + zn)
√
yn

(19)

and the following important chain of comparisons.

yn+1 ≤ zn+1 ≤ √
yn (20)
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Computing with yn and zn (the Borwein algorithm). The first algorithm we
will present, proposed by J. M. Borwein and P. B.Borwein, consists in approxi-
mating M using the sequences yn and zn. The value M(1, x)3 is approximated
using anb

2
n and (M(1, x))′ using a′n, all values being taken in 1√

2
.

From the definition, we can easily derive the following properties:

1 + yn = 2
an+1b

2
n+1

anb2n
1 + zn = 2

a′n+1

a′n
(21)

Repeating the products, we get the following definition of a sequence πn and
the proof of its limit:

π0 = (2 +
√
2) πn = π0

n
∏

i=1

1 + yi
1 + zi

lim
n→∞

πn = π (22)

Convergence speed. For an arbitrary x in the open interval (0, 1), using a
Taylor expansion of the function y 7→ 1+y

2
√
y of order two, and then reasoning

by induction, we get the following results:

yn+1(x) − 1 ≤ (yn(x) − 1)2

8
yn+1(x) ≤ 8

(

(y1(x)− 1)

8

)2n

(23)

For x = 1√
2
, we obtain the following bound:

yn+1(
1√
2
)− 1 ≤ 8× 531−2n (24)

Using the comparisons of line (20) and then reasoning by induction we obtain
our final error estimate:

0 ≤ πp+1 − π ≤ πp+1

(

yp+1(
1√
2
)− 1

)

≤ 4π0531
−2p (25)

Computing one million decimals. The first element of the sequence πn that
is close to π with an error smaller than 1010

6

is obtained for n satisfying the
following comparison.

n ≥
ln
(

106 ln 10−ln(4π0)
ln 531

)

ln 2
∼ 18.5 (26)

For one million hexadecimals, n only needs to be larger than 18.75.
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Computing with an infinite sum (the Brent-Salamin algorithm). The formula
described in this section probably appears in Gauss’ work and is repeated
by King [31]. It was published and clarified for implementation on modern
computers by Brent [14] and Salamin [37]. A good account of the historical
aspects is given by Almkvist and Berndt [1]. Our presentation relies on a
mathematical exposition given by Gourevitch [23].

In the variant proposed by Brent and Salamin, we compute the right-hand

side of the main central formula by computing a2n and the ratio
b′n
bn
. We first

introduce a third function cn.

cn =
1

2
(an−1 − bn−1) (27)

The derivative of function kn can be expressed with cn and after combination
with equation 17, this gives a formula for the derivative of an

bn
at 1√

2
.

(

an
bn

)′

(
1√
2
) =

−2n+1
√
2 anc

2
n

bn
(28)

The derivative of this ratio can be compared to the difference of the ratio of
b′n over bn at two successive indices, which can be repeated n times.

b′n+1

bn+1
− b′n

bn
=

bn
2an

(

an
bn

)′ b′n+1

bn+1
=

b′1
b1

−
√
2

n−1
∑

k=1

2kc2n (29)

We can then use equations (27) and (18), where M3(1, 1√
2
) is the limit of a2nbn

to obtain the final definition and limit.

π′
n =

4 a2n

1−∑n−1
k=1 2

k−1(ak−1 − bk−1)2
π = lim

n→∞
π′
n (30)

Speed of convergence. We can link the Brent-Salamin algorithm with the Bor-
wein algorithm in the following manner:

π′
n = 2

√
2
a2nbn
b′n

= 2
√
2
yn
zn

anb
2
n

a′n
=

yn
zn

πn (31)

Combining bounds (20), (24), and (25) we obtain this first approximation.

|π′
n+1 − π| ≤ 68× 531−2n−1

(32)

This first approximation is too coarse, as it gives the impression that π′
n+1 is

needed when πn is enough (the exponent of 2 in bound (32) is n − 1 while
it is n in bound (25)). We can make it better by noting that the difference
between π and πn+2 is O(531−2n) and the difference between πn+2 and πn+1

is significantly smaller than 531−2n−1

, while not being O(531−2n).

|π′
n+1 − π| ≤ (132 + 384× 2n)× 531−2n (33)
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For one million decimals of π, we can still use n = 19.
Each algorithm computes n square roots to compute πn or π′

n. However,
the first one uses 3n division to obtain value πn, while the second one only
performs divisions by 2, which are less costly, and a single full division at the
end of the computation to compute π′

n. In our experiments computing these
algorithms inside Coq, the second one is twice as fast.

3.2 Formalization issues for arithmetic geometric means

In this section, we describe the parts of our development where we had to
proceed differently from the mathematical exposition in section 3.1. Many
difficulties arose from gaps in the existing libraries for real analysis.

The arithmetic geometric mean functions. For a given a0 = a and b0 = b, the
functions an and bn actually are functions of a and b that are defined mutually
recursively. Instead of a mutual recursion between two functions, we chose to
simply describe a function ag that takes three arguments and returns a pair
of two arguments. This can be written in the following manner:

Fixpoint ag (a b : R) (n : nat) :=

match n with

0 => (a, b)

| S p => ag ((a + b) / 2) (sqrt (a * b)) p

end.

This functions takes three arguments, two of which are real numbers, and the
third one is a natural number. When the natural number is 0, then the result is
the pair of the real numbers, thus expressing that a0 = a and b0 = b. When the
natural number is the successor of some p, then the two real number arguments
are modified in accordance to the arithmetic-geometric mean process, and then
the p-th argument of the sequence starting with these new values is computed.

As an abbreviation we also use the following definitions, for the special
case when the first input is 1.

Definition a_ (n : nat) (x : R) := fst (ag 1 x n).

Definition b_ (n : nat) (x : R) := snd (ag 1 x n).

The function ag step seems to perform the operation in a different order,
but in fact we can really show that an+1 = an+bn

2 and bn+1 =
√
anbn as

expected, thanks to a proof by induction on n. This is expressed with theorems
of the following form:

Lemma a_step n x : a_ (S n) x = (a_ n x + b_ n x) / 2.

Lemma b_step n x : b_ (S n) x = sqrt (a_ n x * b_ n x).
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Limits and filters. Cartan [15] proposed in 1937 a general notion that made
it possible to develop notions of limits in a uniform way, whether they con-
cern limits of continuous function of limits of sequences. This notion, known
as filters is provided in formalized mathematics in Isabelle [30] and more re-
cently in the Coquelicot library [11]. It is also present in a simplified form as
convergence nets in Hol-Light [28].

Filters are not real numbers, but objects designed to represent ways to
approach a limit. There are many kinds of filters, attached to a wide variety
of types, but for our purposes we will mostly be interested in seven kinds of
filters.

– eventually represents the limit towards ∞, but only for natural numbers,
– locally x represents a limit approaching a real number x from any side,
– at point x represents a limit that is actually not a limit but an exact

value: you approach x because you are bound to be exactly x,
– at right x represents a limit approaching x from the right, that is, only

taking values that are greater than x (and not x itself),
– at left x represents a limit approaching x from the left,
– Rbar locally p infty describes a limit going to +∞,
– Rbar locally m infty describes a limit going to −∞.

There is a general notion called filterlim f F1 F2 to express that the value
returned by f tends to a value described by the filter F2 when its input is
described by F1. For instance, we constructed formal proofs for the following
two theorems:

Lemma lim_atan_p_infty :

filterlim atan (Rbar_locally p_infty) (at_left (PI / 2)).

Lemma lim_atan_m_infty :

filterlim atan (Rbar_locally m_infty) (at_right (-PI / 2)).

In principle, filters make it possible to avoid the usual ε− δ proofs of topology
and analysis, using faster techniques to relate input and output filters for
continuous functions [30]. In practice, for precise proofs like the ones above
(which use the at right and at left filters), we still need to revert to a
traditional ε− δ framework.

Improper integrals. The Coq standard library of real numbers has been pro-
viding proper integrals for a long time, more precisely Riemann integrals. The
Coquelicot library adds an incomplete treatement of improper integrals on top
of this. For improper integrals the bounds are described as limits rather than
as direct real numbers. For the needs of this experiment, we need to be able
to cut improper integrals into pieces, perform variable changes, and compute
the improper integral

∫ +∞

−∞

dt

1 + t2
= π (34)
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The Coquelicot library provides two predicates to describe improper integrals,
the first one has the form1

is_Rint_gen f B1 B2 v

The meaning of this predicate is “the improper integral of function f be-
tween bounds B1 and B2 converges and has value v”. The second predicate
is named ex_Rint_gen and it simply takes the same first three arguments as
is_Rint_gen, to express that there exists a value v such that is_Rint_gen

holds. The Coquelicot library does not provide a functional form, but there
is a general tool to construct functions from relations where one argument is
uniquely determined by the others, called iota in that library.

Concerning elliptic integrals, as a first step we need to express the conver-
gence of the improper integral in equation (10). For this we need a general
theorem of bounded convergence, which is described formally in our develop-
ment, because it is not provided by the library. Informally, the statement is
that the improper integral of a positive function is guaranteed to converge if
that function is bounded above by another function that is known to converge.
Here is the formal statement of this theorem:

Lemma ex_RInt_gen_bound (g : R -> R) (f : R -> R) F G

{PF : ProperFilter F} {PG : ProperFilter G} :

filter_Rlt F G ->

ex_RInt_gen g F G ->

filter_prod F G

(fun p => (forall x, fst p < x < snd p -> 0 <= f x <= g x) /\

ex_RInt f (fst p) (snd p)) ->

ex_RInt_gen f F G.

This statement exhibits a concept that we needed to devise, the concept of
comparison between filters on the real line, which we denote filter Rlt. This
concept will be described in further detail in a later section. Three other lines
in this theorem statement deserve more explanations, the lines starting at
filter prod. These lines express that a property must ultimately be satisfied
for pairs p of real numbers whose components tend simultaneously to the
limits described by the filters F and G, which here also serve as bounds for
two generalized Riemann integrals. This property is the conjunction of two
facts, first for any argument between the pair of numbers, the function f is
non-negative and less than or equal to g at that argument, second the function
f is Riemann-integrable between the pair of numbers.

Using this theorem of bounded convergence, we can prove that the function

x 7→ 1
√

(x2 + a2)(x2 + b2)

1 the name can be decomposed in is R for Riemann, Int for Integral, and gen for gener-
alized.
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is integrable between −∞ and +∞ as soon as both a and b are positive, using
the function

x 7→ 1

m2(
(

x
m

)2
+ 1)

as the bounding function, wherem = min(a, b), and then proving that this one
is integrable by showing that its integral is related to the arctangent function.

Having proved the integrability, we then define a function that returns the
following integral value:

∫ +∞

−∞

dx
√

(x2 + a2)(x2 + b2)

The definition is done in the following two steps:

Definition ellf (a b : R) x :=

/sqrt ((x ^ 2 + a ^ 2) * (x ^ 2 + b ^ 2)).

Definition ell (a b : R) :=

iota (fun v => is_RInt_gen (ellf a b)

(Rbar_locally m_infty) (Rbar_locally p_infty) v).

The value of ell a b is properly defined when a and b are positive. This is
expressed with the following theorems, and will be guaranteed in all other
theorems where ell occurs.

Lemma is_RInt_gen_ell a b : 0 < a -> 0 < b ->

is_RInt_gen (ellf a b)

(Rbar_locally m_infty) (Rbar_locally p_infty) (ell a b).

Lemma ell_unique a b v : 0 < a -> 0 < b ->

is_RInt_gen (ellf a b)

(Rbar_locally m_infty) (Rbar_locally p_infty) v ->

v = ell a b.

An order on filters. On several occasions, we need to express that the bounds
of improper integrals follow the natural order on the real line. However, these
bounds may refer to no real point. For instance, there is no real number that
corresponds to the limit 0+, but it is still clear that this limit represents a
place on the real line which is smaller than 1 or +∞. This kind of comparison
is necessary in the statement of ex_RInt_gen_bound, as stated above, because
the comparison between functions would be vacuously true when the bounds
of the interval are interchanged.

We decided to introduce a new concept, written filter Rlt F G to ex-
press that when x tends to F and y tends to G, we know that ultimately x < y.
To be more precise about the definition of filter Rlt, we need to know more
about the nature of filters.

Filters simply are sets of sets. Every filter contains the complete set of
elements of the type being considered, it is stable by intersection, and it is
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stable by the operation of taking a superset. Moreover, when a filter does
not contain the empty set, it is called a proper filter. For instance, the filter
Rbar locally p infty contains all intervals of the form (a,+∞) and their
supersets, the filter locally x contains all open balls centered in x and their
supersets, and the filter at right x contains the intersections of all members
of locally x with the interval (x,+∞).

With two filters F1 and F2 on types T1 and T2, it is possible to construct a
product filter on T1 × T2, which contains all cartesian products of a set in F1

and a set in F2 and their supersets. This corresponds to pairs of points which
tend simultaneously towards the limits described by F1 and F2.

To define a comparison between filters on the real line, we state that F1 is
less than F2 if there exists a middle point m, so that the product filter F1×F2

accepts the set of pairs v1, v2 such that v1 < m < v2. In other words, this means
that as v1 tends to F1 and v2 to F2, it ultimately holds that v1 < m < v2. In
yet other words, if there exists an m such that the filter F1 contains (−∞,m)
and F2 contains (m,+∞), then F1 is less than F2. These are expressed by the
following definition and the following theorem:

Definition filter_Rlt F1 F2 :=

exists m, filter_prod F1 F2 (fun p => fst p < m < snd p).

Lemma filter_Rlt_witness m (F1 F2 : (R -> Prop) -> Prop) :

F1 (Rgt m) -> F2 (Rlt m) -> filter_Rlt F1 F2.

We proved a few comparisons between filters, for instance at right x is
smaller than Rbar locally p infty for any real x, at left a is smaller than
at right b if a ≤ b, but at right c is only smaller than at left d when
c < d.

We can reproduce for improper integrals the results given by the Chasles re-
lations for proper Riemann integrals. Here is an example of a Chasles relation:
i f f is integrable between a and c and a ≤ b ≤ c, then f is integrable between
a and b and between b c, and the integrals satisfy the following relation:

∫ c

a

f(x) dx =

∫ b

a

f(x) dx +

∫ c

b

f(x) dx

This theorem is provided in the Coquelicot library for a, b, and c taken as real
numbers. With the order of filters, we can simply re-formulate this theorem
for a and c being arbitrary filters, and b being a real number between them.
This is expressed as follows:

Lemma ex_RInt_gen_cut (a : R) (F G: (R -> Prop) -> Prop)

{FF : ProperFilter F} {FG : ProperFilter G} (f : R -> R) :

filter_Rlt F (at_point a) -> filter_Rlt (at_point a) G ->

ex_RInt_gen f F G -> ex_RInt_gen f (at_point a) G.

We are still considering whether this theorem should be improved, using the
filter locally a instead of at point a for the intermediate integration bound.

The theorem ex_RInt_gen_cut is used three times, once to establish equa-
tion (11) and twice to establish equation (12) at page 12.
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From improper to proper integrals. Through variable changes, improper inte-
grals can be transformed into proper integrals and vice-versa. For instance,
the change of variable leading to equation (11) actually leads to the corre-
spondence.

∫ +∞

0

dt
√

(a2 + t2)(b2 + t2)
=

1

2

∫ +∞

−∞

ds
√

((a+b
2 )2 + s2)(ab + s2)

The lower bounds of the two integrals correspond to each other with respect
to the variable change s = 1

2 (t − ab
t ), but the first lower bound needs to be

considered proper for later uses, while the lower bound for the second integral
is necessarily improper. To make it possible to change from one to the other,
we establish a theorem that makes it possible to transform a limit bound into
a real one.

Lemma is_RInt_gen_at_right_at_point (f : R -> R) (a : R) F

{FF : ProperFilter F v} :

locally a (continuous f) -> is_RInt_gen f (at_right a) F v ->

is_RInt_gen f (at_point a) F v.

This theorem contains an hypothesis stating that f should be well behaved
around the real point being considered, the lower bound. In this case, we use an
hypothesis of continuity around this point, but this hypothesis could probably
be made weaker.

Limit equivalence. Equations (13.1) and (13.2) at page 12 rely on the concept
of equivalent functions at a limit. For our development, we have not devel-
oped a separate concept for this, instead we expressed statements as the ratio
between the equivalent functions having limit 1 when the input tends to the
limit of interest. For instance equation (13.1) is expressed formally using the
following lemma:

Lemma M1x_at_0 : filterlim (fun x => M 1 x / (- PI / (2 * ln x)))

(at_right 0) (locally 1).

In this theorem, the fact that x tends to 0 on the right is expressed by using
the filter (at_right 0).

We did not develop a general library of equivalence, but we still gave ourself
a tool following the transitivity of this equivalence relation. This theorem is
expressed in the following manner:

Lemma equiv_trans F {FF : Filter F} (f g h : R -> R) :

F (fun x => g x <> 0) -> F (fun x => h x <> 0) ->

filterlim (fun x => f x / g x) F (locally 1) ->

filterlim (fun x => g x / h x) F (locally 1) ->

filterlim (fun x => f x / h x) F (locally 1).

The hypotheses like F (fun x => g x <> 0) express that in the vicinity of
the limit denoted by F, the function should be non-zero. The rest of the the-
orem expresses that if f is equivalent to g and g is equivalent to h, then f is
equivalent to h. To perform this proof, we need to leave the realm of filters
and fall back on the traditional ε− δ framework.
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Uniform convergence and derivatives. During our experiments, we found that
the concept of uniform convergence does not fit well in the framework of fil-
ters as provided by the Coquelicot library. The sensible approach would be
to consider a notion of balls on the space of functions, where a function g is
inside the ball centered in f if the value of g(x) is never further from the value
of f(x) than the ball radius, for every x in the input type. One would then
need to instantiate the general structures of topology provided by Coqueli-
cot to this notion of ball, in particular the structures of UniformSpace and
NormedModule. In practice, this does not provide all the tools we need, because
we actually want to restrict the concept of uniform convergence to subsets of
the whole type. In this case the structure of UniformSpace is still appropri-
ate, but the concept of NormedModule is not, because two functions that differ
outside the considered subset may have distance 0 when only considering their
values inside the subset.

The alternative is provided by a treatment of uniform convergence that
was developed in Coq’s standard library of real numbers at the end of the
1990’s, with a notion denoted CVU f g c r, where f is a sequence of functions
from R to R, g is a function from R to R, c is a number in R and r is a
positive real number. The meaning is that the sequence of function f converges
uniformly towards g inside the ball centered in c of radius r. We needed a
formal description of a theorem stating that when the derivatives f ′

n of a
convergent sequence of functions fn tend uniformly to a limit function g′, this
function g′ is the derivative of the limit of the sequence fn.

There is already a similar theorem in Coq’s standard library, with the
following statement:

derivable_pt_lim_CVU :

forall fn fn’ f g x c r,

Boule c r x ->

(forall y n, Boule c r y ->

derivable_pt_lim (fn n) y (fn’ n y)) ->

(forall y, Boule c r y -> Un_cv (fun n : nat => fn n y) (f y)) ->

CVU fn’ g c r ->

(forall y : R, Boule c r y -> continuity_pt g y) ->

derivable_pt_lim f x (g x)

However, this theorem is sometimes impractical to use, because it requires
that we already know the limit derivative to be continuous, a condition that
can actually be removed. For this reason, we developed a new formal proof for
the theorem, with the following statement2

Lemma CVU_derivable :

forall f f’ g g’ c r,

CVU f’ g’ c r ->

(forall x, Boule c r x -> Un_cv (fun n => f n x) (g x)) ->

2 It turns out that the theorem derivable pt lim CVU was already introduced by a pre-
vious study on the implementation of π in the Coq standard library of real numbers [6].
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(forall n x, Boule c r x ->

derivable_pt_lim (f n) x (f’ n x)) ->

forall x, Boule c r x -> derivable_pt_lim g x (g’ x).

In this theorem’s statement, the third line expresses that the derivatives f’

converge uniformly towards the function g’, the fourth line expresses that the
functions f converge simply towards the function g inside the ball of center c
and radius r, the fifth and sixth line express that the functions f are differen-
tiable everywhere inside the ball and the derivative is f’, and the seventh line
concludes that the function g is differentiable everywhere inside the ball and
the derivative is g’. While most of the theorems we wrote are expressed using
concepts from the Coquelicot library, this one is only expressed with concepts
coming from Coq’s standard library of real numbers, but all these concepts,
apart from CVU, have a Coquelicot equivalent (and Coquelicot provides the
foreign function interface): Boule c r x is equivalent to Ball c r x in Co-
quelicot, Un cv f l is equivalent to filterlim f Eventually (locally l),
and derivable_pt_lim is equivalent to is_derive.

We used the theorem CVU_derivable twice in our development, once to
establish that function x 7→ M(1, x) is differentiable everywhere in the open
interval (0, 1) and the sequence of derivatives of the an functions converges to
its derivative, and once to establish that the derivatives of the kn functions
converge to M2(1, x)/(x(1− x2)), as in equation (18).

Automatic proofs. In this development, we make an extensive use of divisions
and square root. To reason about these functions, it is often necessary to show
that the argument is non-zero (for division), or positive (for square root).
There are very few automatic tools to establish this kind of results in general
about real numbers, especially in our case, where we rely on a few transcen-
dental functions. For linear arithmetic formulas, there exists a tool call psatzl
R [9], that is very useful and robust in handling of conjunctions and its use of
facts from the current context. Unfortunately, we have many expressions that
are not linear. We decided to implement a semi-automatic tactic for the spe-
cific purpose of proving that numbers are positive, with the following ordered
heuristics:

– Any positive number is non-zero,
– all exponentials are positive,
– π, 1, and 2 are positive,
– the power, inverse, square root of positive numbers is positive,
– the product of positive numbers is positive,
– the sum of an absolute value or a square and a positive number is positive,
– the sum of two positive numbers are positive,
– the minimum of two positive numbers is positive,
– a number recognized by the psatzl R tactic to be positive is positive.

This semi-automatic tactic can easily be implemented using Coq’s tactic pro-
gramming language Ltac. We named this tactic lt0 and it is used extensively
in our development.
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Given a function like x 7→ 1/
√

(x2 + a2)(x2 + b2), the Coquelicot library
provides automatic tools (mainly a tactic called auto derive) to show that
this function is differentiable under conditions that are explicitly computed.
For this to work, the tool needs to rely on a database of facts concerning
all functions involved. In this case, the database must of course contain facts
about exponentiation, square roots, and the inverse function. As a result, the
tactic auto derive produces conditions, expressing that (x2 + a2)(x2 + b2)
must be positive and the whole square root expression must be non zero.

The tactic auto derive is used more than 40 times in our development,
mostly because there is no automatic tool to show the continuity of func-
tions and we rely on a theorem that states that any differentiable function is
continuous, so that we often prove derivability only to prove continuity.

When proving that the functions an and bn are differentiable, we need to
rely on a more elementary proof tool, called auto derive fun. When given
a function to derive, which contains functions that are not known in the
database, it builds an extra hypothesis, which says that the whole expres-
sion is differentiable as soon as the unknown functions are differentiable. This
is especially useful in this case, because the proof that bn is differentiable is
done recursively, so that there is no pre-existing theorem stating that an and
bn are differentiable when studying the derivative of bn+1. For instance, we
can call the following tactic:

auto_derive_fun (fun y => sqrt (a_ n y * b_ n y)); intros D.

This creates a new hypothesis named D with the following statement:

D : forall x : R,

ex_derive (fun x0 : R => a_ n x0) x /\

ex_derive (fun x0 : R => b_ n x0) x /\

0 < a_ n x * b_ n x /\ True ->

is_derive (fun x0 : R => sqrt (a_ n x0 * b_ n x0)) x

((1 * Derive (fun x0 : R => a_ n x0) x * b_ n x +

a_ n x * (1 * Derive (fun x0 : R => b_ n x0) x)) *

/ (2 * sqrt (a_ n x * b_ n x)))

Another place where automation provides valuable help is when we wish
to find good approximations or bounds for values. The interval tactic [34]
works on goals consisting of such comparisons and solves them right away,
as long as it knows about all the functions involved. Here is an example of a
comparison that is easily solved by this tactic:

(1 + ((1 + sqrt 2)/(2 * sqrt (sqrt 2))))

/ (1 + / sqrt (/ sqrt 2)) < 1

An example of expression where interval fails, is when the expressions
being considered are far too large. In our case, we wish to prove that

4π0
1

531219
≤ 1

10106+4

The numbers being considered are too close to 0 for interval to work.
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The solution to this problem is to first use monotonicity properties of either
the logarithm function (in the current version of our development) or the expo-
nential function (in the first version), thus resorting to symbolic computation
before finishing off with the interval tactic.

The interval tactic already knows about the π constant, so that it is quite
artificial to combine our result from formula (25) and this tactic to obtain
approximations of π but we can still make this experiment and establish that
the member π3 of the sequence is a good enough approximation to know all
first 10 digits of π. Here is the statement:

Lemma first_computation :

3141592653/10 ^ 9 < agmpi 3 /\

agmpi 3 + 4 * agmpi 0 * Rpower 531 (- 2 ^ 2)

< 3141592654/10 ^ 9.

We simply expand fully agmpi, simplify instances of yn and zn using the equa-
tions (21), and then ask the interval tactic to finish the comparisons. We
need to instruct the tactic to use 40 bits of precision. This takes some time
(about a second for each of the two comparisons), and we conjecture that the
expansion of all functions leads to sub-expression duplication, leading also to
duplication of work. When aiming for more distant decimals, we will need to
apply another solution.

4 Computing large numbers of decimals

Theorem provers based on type theory have the advantage that they provide
computation capabilities on inductive types. For instance, the Coq system
provides a type of integers that supports comfortable computations for integers
with size going up to 10100. Here is an example computation, which feels
instantaneous to the user.

Compute (2 ^331)%Z.

= 174980057982640953949800178169409709228253554471456994914

06164851279623993595007385788105416184430592

: Z

By their very nature, real numbers cannot be provided as an inductive datatype
in type theory. Thus the Compute command will not perform any computation
for the similar expression concerning real numbers. The reason is that while
some real numbers are defined like integers by applying simple finite operations
on basic constants like 0 and 1, other are only obtained by applying a limiting
process, which cannot be represented by a finite computation. Thus, it does
not make sense to ask to compute an expression like

√
2 in the real numbers,

because there is no way to provide a better representation of this number than
its definition. On the other hand, what we usually mean by computing

√
2 is

to provide a suitable approximation of this number. This is supported in the
Coq system by the interval tactic, but only when we are in the process of
constructing a proof, as in the following example:
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Lemma anything : 12 / 10 < sqrt 2.

Proof.

interval_intro (sqrt 2).

1 subgoal

H : 759250124 * / 536870912 <= sqrt 2 <= 759250125 * / 536870912

============================

12 / 10 < sqrt 2

What we see in this dialog is that the system creates a new hypothesis (named
H) that provides a new fact giving an approximation of

√
2. In this hypothesis,

the common numerator appearing in both fractions is actually the number
229. Concerning notations, readers will have to know that Coq writes / a

for the inverse of a, so that 3 * / 2 is 3 times the inverse of 2. A human
mathematician would normally write 3 / 2 and Coq also accepts this syntax.

One may argue that 759250124 * / 536870912 is not much better than
sqrt 2 to represent that number, and actually this ratio is not exact, but it
can be used to help proving that

√
2 is larger or smaller than another number.

Direct computation on the integer datatype can also be used to approxi-
mate computations in real numbers. For instance, we can compute the same
numerator for an approximation of

√
2 by computing the integer square root

of 2× (229)2.

Compute (Z.sqrt (2 * (2 ^ 29) ^ 2)).

= 759250124%Z

: Z

This approach of computing integer values for numerators of rational numbers
with a fixed denominator is the one we are going to exploit to compute the
first million digits of π, using three advantages provided by the Coq system:

1. The Coq system provides an implementation of big integers, which can
withstand computations of the order of 1010

12

.
2. The big integers library already contains an efficient implementation of

integer square roots.
3. The Coq system provides a computation methodology where code is com-

piled into OCaml and then into binary format for fast computation.

4.1 A framework for high-precision computation

If we choose to represent every computation on real numbers by a computa-
tion on corresponding approximations of these numbers, we need to express
how each operation will be performed and interpreted. We simply provide five
values and functions that implement the elementary values of R and the ele-
mentary operations: multiplication, addition, division, the number 1, and the
number 2.
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We choose to represent the real number x by the integer ⌊mx⌋ where m is a
scaling factor that is mostly fixed for the whole computation. For readability,
it is often practical to use a power of 10 as a scaling factor, but in this paper,
we will also see that we can benefit from also using scaling factors that are
powers of 2 or powers of 16. Actually, it is not even necessary that the scaling
factor be any power of a small number, but it turns out that it is the most
practical case.

Conversely, we shall note [[n]] the real value represented by the integer n.
Simply, this number is n

m .
When m is the scaling factor, the real number 1 is represented by the

integer m and the real number 2 is represented by the number 2 × m. So
[[m]] = 1, [[2m]] = 2. So, we define the following two functions to describe the
representations of 1 and 2 with respect to a given scaling factor, in Coq syntax
where we use the name magnifier for the scaling factor.

Definition h1 (magnifier : bigZ) := magnifier.

Definition h2 magnifier := (2 * magnifier)%bigZ.

When multiplying two real numbers x and y, we need to multiply their
representations and take care of the scaling. To understand how to handle the
scaling, we should look at the following equality:

[[n1]][[n2]] =
n1

m

n2

m

To obtain the integer that will represent this result, we need to multiply the
product of the represented numbers by m and then take the largest integer
below. This is

⌊n1 × n2

m
⌋

The combination of the division operation and taking the largest integer below
is performed by integer division. So we define our high-precision multiplication
as follow.

Definition hmult (magnifier x y : bigZ) :=

(x * y / magnifier)%bigZ.

For division and square root, we reason similarly.
For addition, nothing needs to be implemented, we can directly use integer

computation. The scaling factor is transmitted naturally (and linearly from
the operands to the result). Similarly, multiplication by an integer can be
represented directly with integer multiplication, without having to first scale
the integer.

Here are a few examples. To compute 1
3 to a precision of 10−5, we can run

the following computation.

Compute let magnifier := (10 ^ 5)%bigZ in

hdiv magnifier magnifier (3 * magnifier).

= 33333%bigZ

: BigZ.t_
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The following illustrates how to compute
√
2 to the same precision.

Compute let magnifier := (10 ^ 5)%bigZ in

hsqrt magnifier (2 * magnifier).

= 141421%bigZ

: BigZ.t_

In both examples, the real number of interest has the order of magnitude of
1 and is represented by a 5 or 6 digit integer. When we want to compute one
million decimals of π we should handle integers whose decimal representation
has approximately one million digits. Computation with this kind of numbers
takes time. As an example, we propose a computation that handles the 1
million digit representation of

√
2 and avoids displaying this number (it only

checks that the millionth decimal is odd).

Time Eval native_compute in

BigZ.odd (BigZ.sqrt (2 * 10 ^ (2 * 10 ^ 6))).

= true

: bool

Finished transaction in 91.278 secs (90.218u,0.617s) (successful)

This example also illustrates the use of a different evaluation strategy in the
Coq system, called native compute. This evaluation strategy relies on com-
piling the executed code in OCaml and then on relying on the most efficient
variant of the OCaml compiler to produce a code that is executed and whose
results are integrated in the memory of the Coq system [10]. This strategy
relies on the OCaml compiler and the operating system linker in ways that
are more demanding than traditional uses of Coq. Still it is the same compiler
that is being used as the one used to compile the Coq system, so that the
trusted base is not changed drastically in this new approach.

When it comes to time constraints, all scaling factors are not as efficient.
In conventional computer arithmetics, it is well-known that multiplications by
powers of 2 are less costly, because they can simply be implemented by shifts
on the binary representation of numbers. This property is also true for Coq’s

implementation of big integers. If we compare the computation of
√√

2 when
the scaling factor is 1010

6

or 23321929, we get a performance ratio of 1.5, the
latter setting is faster even though the scaling factor and the intermediate
values are slightly larger.

It is also interesting to understand how to stage computations, so that we
avoid performing the same computation twice. For this problem, we have to be
careful, because values that are precomputed don’t have the same size as their
original description, and this may not be supported by the native compute

chain of evaluation. Indeed, the following experiment fails.

Require Import BigZ.

Definition mag := Eval native_compute in (10 ^ (10 ^ 6))%bigZ.

Time Definition z1 := Eval native_compute in
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let v := mag in (BigZ.sqrt (v * BigZ.sqrt (v * v * 2)))%bigZ.

This examples makes Coq fail, because the definition of mag with the pragma

Eval native compute in makes that the value 1010
6

is precomputed, thus
creating a huge object of the Gallina language, which is then passed as a pro-
gram for the OCaml compiler to compile when constructing z1. The compiler
fails because the input program is too large.

On the other hand, the following computation succeeds:

Eval native_compute in

let v := (10 ^ (10 ^ 6))%bigZ in

(BigZ.sqrt (v * BigZ.sqrt (v * v * 2))).

4.2 The full approximating algorithm

Using all elementary operations described in the previous section, we can de-
scribe the recursive algorithm to compute approximations of πn in the follow-
ing manner.

Fixpoint hpi_rec (magnifier : bigZ)

(n : nat) (s2 y z prod : bigZ) {struct n} : bigZ :=

match n with

| 0%nat =>

hmult magnifier (h2 magnifier + s2) prod

| S p =>

let sy := hsqrt magnifier y in

let ny := hdiv magnifier (h1 magnifier + y) (2 * sy) in

let nz :=

hdiv magnifier (h1 magnifier + hmult magnifier z y)

(hmult magnifier (h1 magnifier + z) sy) in

hpi_rec magnifier p s2 ny nz

(hmult magnifier prod

(hdiv magnifier (h1 magnifier + ny)

(h1 magnifier + nz)))

end.

This function takes as input the scaling factor magnifier, a number of itera-
tion n, the integer s2 representing

√
2, the integer y representing yp for some

natural number p larger than 0, the integer z representing zp, and the integer
prod representing the value

p
∏

i=1

1 + yi(
1√
2
)

1 + zi(
1√
2
)

It computes an integer approximating πn+p×magnifier, but not exactly this
number. The number s2 is passed as an argument to make sure it is not
computed twice, because it is already needed to compute the initial values of
y, z, and prod. This recursive function is wrapped in the following functions.
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Definition hs2 (magnifier : bigZ) :=

hsqrt magnifier (h2 magnifier).

Definition hsyz (magnifier : bigZ) :=

let hs2 := hs2 magnifier in

let hss2 := hsqrt magnifier hs2 in

(hs2, (hdiv magnifier (h1 magnifier + hs2) (2 * hss2)), hss2).

Definition hpi (magnifier : bigZ) (n : nat) :=

match n with

| 0%nat =>

(h2 magnifier + (hs2 magnifier))%bigZ

| S p =>

let ’(s2, y1 , z1) := hsyz magnifier in

hpi_rec magnifier p s2 y1 z1

(hdiv magnifier (h1 magnifier + y1)

(h1 magnifier + z1))

end.

We can use this function hpi to compute approximations of π at a variety of
precisions. Here is a collection of trials performed on a powerful machine.

scale(iterations) 1010
4

(14) 233220(14) 1010
5

(17) 2332193(17)
time 9s 4s 5m30s 2m30s

This table illustrates the advantage there is to compute with a scaling factor
that is a power of 2. Each column where the scaling factor is a power of 2 gives
an approximation that is slightly more precise than the column to its left, at
a fraction of the cost in time. Even if our objective is to obtain decimals of
π, it should be efficient to first perform the computations of all the iterations
with a magnifier that is a power of 2, only to change the scaling factor at the
end of the computation, this is the solution we choose eventually.

There remains a question about how much precision is lost when so many
computations are performed with elementary operations that each provide
only approximations of the mathematical operation. Experimental evidence
shows that when computing 17 iterations with a magnifier of 1010

5

the last
two digits are wrong. The next section shows how we prove bounds on the
accumulated error in the concrete computation.

5 Proofs about approximate computations

When proving facts about approximate computations, we want to abstract
away from the fact that the computations are performed with a datatype that
provides fast computation with big integers. What really matters is that we
approximate each operation on real numbers by another operation on real
numbers and we have a clear description of how the approximation works. In
the next section, we describe the abstract setting and the proofs performed
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in this setting. In a later section, we show how this abstract setting is related
to the concrete setting of computing with integers and with the particular
datatype of big integers.

5.1 Abstract reasoning on approximate computations

In the case of fixed precision computation as we described in the previous
section, we know that all operations are approximated from below by a value
which is no further than a fixed allowance e. This does not guarantee that
all values are approximated from below, because one of the approximated
operations is division, and dividing by an approximation from below may yield
an approximation from above.

For this reason, most of our formal proofs about approximations are per-
formed in a section where we assume the existence of a collection of functions
and their properties.

The header of our working section has the following content.

Variables (e : R) (r_div : R -> R -> R) (r_sqrt : R -> R)

(r_mult : R -> R -> R).

Hypothesis ce : 0 < e < /1000.

Hypothesis r_mult_spec :

forall x y, 0 <= x -> 0 <= y ->

x * y - e < r_mult x y <= x * y.

In this header, we introduce a constant e, which is used to bound the error
made in each elementary operation, we assume that e is positive and suitably
small, and then we describe how each rounded operation behaves with respect
to the mathematical operation it is supposed to represent. For multiplication,
the hypothesis named r mult spec describes that the inputs are expected to
be positive numbers, and that the result of r mul x y is smaller than or equal
to the product, but the difference is smaller than e in absolute value. We
have similar specification hypotheses for the rounded division r div and the
rounded square root r sqrt. We then use these rounded operations to describe
the computations performed in the algorithm.

We can now study how the computation of the various sequences of the
algorithm are rounded, and how errors accumulate. Considering the sequence
yn, the computation at each step is represented by the following expression.

r_div (1 + y) (2 * (r_sqrt y))

In this expression, we have to assume that y comes from a previous compu-
tation, and for this reason it is tainted with some error h. The question we
wish to address has the following form: if we know that yn is tainted with an
error h that is smaller that a given allowance e′, can we show that yn+1 is
tainted with an error that is smaller than f(e′) for some well-behaved function
f? How much bigger than e must e′ be?
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We were able to answer two questions:

– if the accumulated error on computing yn is smaller than e′, then the
accumulated error on computing yn+1 is also smaller than e′ (so for the
sequence yn, the function f is the identity function),

– the allowance e′ needs to be at least 2e (and not more).

This is quite surprising. Errors don’t really accumulate for this sequence.
In retrospect, there are good reasons for this. Rounding errors in the di-

vision operation make the result go down, but rounding errors in the square
root make the result go up. On the other hand, the input value yn may be
tainted by an error h, but this error is only multiplied by the derivative of the
function

y 7→ 1 + y

2
√
y

It happens that this derivative never exceeds 1
14 in the region of interest.

As an illustration, let’s assume yn = 1.100, we want to compute yn+1, and
we are working with three digits of precision. The value of

√
1.1 is 1.04880 . . .

but it is rounded down to 1.048. 2
√
1.1 is 1.09761 . . . but the rounded com-

putation give 2.096, yn+1 is 1.00113. In our computation, we actually com-
pute (1 + 1.1)/2.096) = 1.00190. This is an over approximation of yn+1,
but this is rounded down to 1.001: the last rounding down compensates the
over-approximation introduced when dividing by the previously rounded down
square root. If our input representation of yn is an approximation, for example
we compute with 1.098 or 1.102, we still obtain 1.001.

In the end, the lemma we are able to prove has the following statement.

Lemma y_error e’ y h :

e’ < /10 -> e <= e’ / 2 -> 1 <= y <= 71/50 -> Rabs h < e’ ->

let y1 := (1 + y)/(2 * sqrt y) in

y1 - e’ < r_div (1 + (y + h)) (2 * (r_sqrt (y + h))) < y1 + e’.

The proof is organized in four parts, where the first part consists in replacing
the operations with rounding by expressions where an explicit error ratio is
displayed. We basically construct a value e1, taken in the interval [− 1

2 , 0], so
that the following equality holds.

r_sqrt (y + h) = sqrt (y + h) + e1 * e’

We prefer to define e1 as a ratio between constant bounds, rather than a value
in an interval whose bounds are expressed in e’, because the automatic tactic
interval handles values between numeric constants better. We do the same
for the division, introducing a ratio e2.

The second part of the proof consists in showing that the propagated error
from previous computations has limited impact on the final error. This is
stated as follows.

set (y2 := (1 + (y + h)) / (2 * sqrt (y + h))).

assert (propagated_error : Rabs (y2 - y1) < e’ / 14).
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This step is proved by applying the mean value theorem, using the derivative
of the function y 7→ 1+y

2
√
y , which was already computed during the proof of

convergence of the yn sequence. The interval tactic is practical here to show
the absolute value of the derivative of that function at any point between y

and y + h is below 1
14 . The mean value theorem makes it possible to factor out

the input error in the comparisons, so that we eventually obtain a comparison
of an expression with a constant, which we resolve using the interval tactic.

The other two parts of the proof are concerned with providing a bound
for the impact of the rounding errors introduced by the current computation.
Each part is concerned with one direction, and in each case only one of the
two possible rounding errors need to be considered.

The proof for the lemma y error is quite long (just under 100 lines), but
this is only a preliminary step for the proof of lemma z error, which shows
that the errors accumulated when computing the zn sequence can also be
bounded in a constant fashion. The statement of this lemma has the following
shape.

Lemma z_error e’ y z h h’ :

e’ < /50 -> e <= e’ / 4 -> 1 < y < 51/50 -> 1 < z < 6/5 ->

Rabs h < e’ -> Rabs h’ < e’ ->

let v := (1 + z * y)/((1 + z) * sqrt y) in

v - e’ < r_div (1 + r_mult (z + h’) (y + h))

(r_mult (1 + (z + h’)) (r_sqrt (y + h))) < v + e’.

In this statement, the fragment

r_div (1 + r_mult (z + h’) (y + h))

(r_mult (1 + (z + h’) (r_sqrt (y + h)))

represents the computed expression with rounding operations, using inputs
that are tainted by errors h and h’, while the fragment

(1 + z * y) /((1 + z) * sqrt y)

represents the ratio 1+zy
(1+z)

√
y .

This proof is more complex. In this case, we are also able to show that
errors do not grow as we compute more elements of the sequence: they stay
stable at about 4 times the elementary rounding error introduced by each
rounding operation. The proof of this lemma is around 170 lines long.

The next step in the computation is to compute the product of ratios
∏ 1+y

1+z . For each ratio, we establish a bound on the error as expressed by the
following lemma.

Lemma quotient_error : forall e’ y z h h’, e’ < / 40 ->

Rabs h < e’ / 2 -> Rabs h’ < e’ -> e <= e’ / 4 ->

1 < y < 51 / 50 -> 1 < z < 6 / 5 ->

Rabs (r_div (1 + (y + h)) (1 + (z + h’)) -

(1 + y)/(1 + z)) < 13 / 10 * e’.
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The difference between the second hypothesis (on Rabs h) and the third hy-
pothesis Rabs h’ handles the fact that we don’t have as precise a bound on
error for the computation of yn and for zn. The result is that the error on the
ratio is bounded at a value just above 5 times the elementary error e.

It remains to prove a bound on the error introduced when computing the
iterated product. This is done by induction on the number of iterations. The
following lemma is used as the induction step: when p represents the product
of k terms and v represents one of the ratios, the product of p and v with
accumulated errors, adding the error for the rounded multiplication increases
by 23

20 the error on the ratio.

Lemma product_error_step :

forall p v e1 e2 h h’, 0 <= e1 <= /100 -> 0 <= e2 <= /100 ->

e < /5 * e2 -> /2 < p < 921/1000 ->

/2 < v <= 1 -> Rabs h < e1 -> Rabs h’ < e2 ->

Rabs (r_mult (p + h) (v + h’) - p * v) < e1 + 23/20 * e2.

At this point we write functions rpi rec and rpi so that they mirror ex-
actly the functions hpi rec and hpi. The main difference is that rpi rec ma-
nipulates real numbers while hpi rec manipulates integers. Aside from this,
rpi rec performs a multiplication using r mult wherever hpi rec performs a
multiplication using hmult.

We can now combine all results about the sub-expressions, scale all errors
with respect to the elementary error, and obtain a bound on accumulated
errors in rpi rec, as expressed in the following lemma.

Lemma rpi_rec_correct (p n : nat) y z prod :

(1 <= p)%nat -> 4 * (3/2) * (p + n) * e < /100 ->

Rabs (y - y_ p (/sqrt 2)) < 2 * e ->

Rabs (z - z_ p (/sqrt 2)) < 4 * e ->

Rabs (prod - pr p) < 4 * (3/2) * p * e ->

Rabs (rpi_rec n y z prod - agmpi (p + n)) <

(2 + sqrt 2) * 4 * (3/2) * (p + n) * e + 2 * e.

Note that this statement guarantees a bound on errors only if the magnitude
of the error e is small enough when compared with the inverse of the number
of iterations p + n. In practice, this is not a constraint because we tend to
make the error magnitude vanish twice exponentially.

In the end, we have to check the approximations for the initial values given
as argument to rpi rec. This yields a satisfying rounding error lemma.

Lemma rpi_correct : forall n, (1 <= n)%nat -> 6 * n * e < /100 ->

Rabs (rpi n - agmpi n) < (21 * n + 2) * e.

In other words, we can guarantee that πn is computed with an error that grows
proportionally to 21n+ 2.

A similar study for the Brent-Salamin algorithm yields the following error
estimate:
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Lemma rsalamin_correct (n : nat) :

0 <= e <= / 10 ^ (n + 6) / 3 ^ (n + 1) ->

Rabs (rsalamin n - salamin_formula (n + 1)) <=

(160 * (3 / 2) ^ (n + 1) + 80 * 3 ^ (n + 1) + 100) * e.

This error grows exponentially with respect to n, which means that the number
of needed extra digits to ensure a given distant decimal is still linear in n.
When computing the number of required extra digits for 1 million, we obtain
12 (because n is 19).

5.2 From abstract rounding to integer computations

In our concrete setting, we don’t have the functions r mult, r div, and r sqrt,
but functions hmult, hdiv and hsqrt. The type on which these functions
operate is bigZ, a type that is designed to make large computations possible
inside the Coq system, but that is otherwise not suited to perform intensive
proofs. To establish the connection with our proofs of rounded operations, we
build a bridge that relies on the better supported type Z.

The standard library of reals already provides function INR and IZR to
inject natural numbers and integers, respectively, into the type of real numbers.
These functions are useful to us, but they must be improved to include the
scaling process.

We also define functions hR : Z -> R and Rh : R -> Z mapping an inte-
ger (respectively a real number) to its representation (respectively to the inte-
ger that represents its rounding by default). All these functions are defined in
the context of a Coq section where we assume the existence of a scaling factor
named magnifier (an integer), and that this scaling factor is larger than 1000,
which corresponds to assuming that we perform computations with at least 3
digits of precision.

Coming from the type of integers, we can now redefine the functions hmult,
hdiv, and hsqrt as in section 4.1, but with the type Z for inputs and outputs.

Definition hR (v : Z) : R := (IZR v /IZR magnifier)%R.

Definition RbZ (v : R) : Z := floor v.

Definition Rh (v : R) : Z := RbZ( v * IZR magnifier).

The abstract functions r mult, r div and r sqrt are then defined by rounding
and injecting the result back into the type of real numbers.

Definition r_mult (x y : R) : R := hR (Rh (x * y)).

The main rounding property can be proved once for all three rounded opera-
tions, since it is solely a property of the hR and Rh function.

Lemma hR_Rh (v : R) : v - /IZR magnifier < hR (Rh v) <= v.
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The link to the concrete computing functions is established by the following
kind of lemma, the form of which is close to a morphism lemma.

Lemma hmult_spec :

forall x y : Z, (0 <= x -> 0 <= y ->

hR (hmult x y) = r_mult (hR x) (hR y))%Z.

The hypotheses r mult spec, r div spec, and r sqrt spec, which are nec-
essary for the abstract reasoning in section 5.1, are then easily obtained by
composing a lemma of the form hmult spec with the lemma hR Rh.

The complement of the lemma hR Rh is another lemma which expresses
that Rh is a left inverse to hR. This lemma is instrumental when showing the
correspondence between concrete and abstract algorithms.

We now have two views of the algorithm: the algorithm hpi as described
in section 4.1 and the algorithm rpi where the functions hmult, hdiv, hsqrt
have been replaced by r mult, r div, r sqrt respectively. We wish to show
that these algorithms actually describe the same computation. A new diffi-
culty arises because we need to show that all operations receive and produce
non-negative numbers, because these conditions are required by lemmas like
hmult spec. This is not as simple as it seems because the result of hmult 0

0 is only guaranteed to be larger than - e by the initial specification. The
implementation actually satisfies a stronger property.

In the end the correspondence lemma has the following form.

Lemma hpi_rpi_rec n p y z prod:

(1 <= p)%nat ->

4 * (3/2) * INR (p + n) * /IZR magnifier < /100 ->

Rabs (hR y - y_ p (/sqrt 2)) < 2 * /IZR magnifier ->

Rabs (hR z - z_ p (/sqrt 2)) < 4 * /IZR magnifier ->

Rabs (hR prod - pr p) < 4 * (3/2) * INR p * /IZR magnifier ->

hR (hpi_rec n y z prod) =

rpi_rec r_div r_sqrt r_mult n (hR y) (hR z) (hR prod).

The interesting part of this lemma is the equality stated on the last two lines.
The previous lines only state information about the size of the inputs, to help
make sure that the intermediate computations never feed a negative number
to the operations. This constraint of non-negative operands makes the proof of
correspondence tedious, but quite regular. This proof ends up being 120 lines
long.3

A similar proof is constructed for the main encapsulating function, so that
we obtain a lemma of the following shape.

Lemma hpi_rpi (n : nat) :

6 * INR n * /IZR magnifier < / 100 ->

hR (hpi n) = rpi r_div r_sqrt r_mult n.

3 In retrospect, it might have been useful to add hypotheses that returned values by all
functions were positive, as long as the inputs were.
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Lemma integer_pi :

forall n, (1 <= n)%nat ->

600 * INR (n + 1) < IZR magnifier < Rpower 531 (2 ^ n)/ 14 ->

Rabs (hR (hpi (n + 1)) - PI)

< (21 * INR (n + 1) + 3) /IZR magnifier.

In the end, we obtain a description of the algorithm based on integers, which
can be applied to any number of iterations and any suitable scaling factor.
This algorithm can already be used to compute approximations of π inside
Coq, but it will not return answers in reasonable time for precisions that go
beyond a thousand digits (less than a second for a 7 iterations at 100 digits,
12 seconds for 9 iterations at 500 digits, a minute for 10 iterations at 1000
digits).

Concerning the magnitude of the accumulated error, for one million digits
the number of iterations is 20, and the error is guaranteed to be smaller than
423.

Changing the scaling factor. Although we are culturally attracted by the frac-
tional representation of π in decimal form, it is more efficient to perform most
of the costly computations using a scaling factor that is a power of 2. For any
two scaling factors m1 and m2, let us assume that v1 and v2 are linked by the
equation

v2 =

⌊

v1 ×m2

m1

⌋

.

If v1 is the representation of a constant a for the scaling factor m1, then v2 is
a reasonably good approximation of a for the scaling factor m2. This suggests
that we could perform all operations with a scaling factor m1 that is a power
of 2 and then post-process the result to obtain a representation for the scaling
factor m2. Of course, one more multiplication and one more division need
to be performed and a little precision is lost in the process, but the gain in
computation time is worth it.

The validity of this change in scaling factor is expressed by the following
lemma.

Lemma change_magnifier : forall m1 m2 x, (0 < m2)%Z ->

(m2 < m1)%Z ->

hR m1 x - /IZR m2 < hR m2 (x * m2/m1) <= hR m1 x.

This lemma expresses that the added error for this operation is only one time
the inverse of the new scaling factor.

In our case, we use this lemma with m1 = 23321942 and m2 = 1010
6+4 for

instance.

Guaranteeing a fixed number of digits. When we want to compute a number
N of digits, we don’t know in advance whether the digits at position N + 1,
N + 2, . . . describe a small number or a large number. If this number is too
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small or too large we are unable to guarantee the value of the digit at position
N .

Let’s illustrate this problem on a small example. Let’s assume we want to
compute the integral part of a and we have an approximated value b which is
guaranteed to be within 1/4 of a. Moreover, when computing b with a precision
of 2 digits, we know that our computation process may introduce errors of two
units in the last place. This means that we actually compute a value c whose
distance to b is guaranteed to be smaller than 0.02. At the time we discover
the result of computing c three cases may occur.

1. if the fractional part of c is smaller than 0.27, the integral part of a may
be smaller than the integral part of c. For instance, we may have c = 3.26,
b = 3.245, and a = 2.995

2. if the fractional part of c is larger than or equal to 0.73, the integral part
of a may be larger than the integral part of c. For instance, we may have
c = 2.74, b = 2.755, and a = 3.005.

3. if the fractional part of c is larger than or equal to 0.27 or smaller than
0.73, then we now that a, b, and c all share the same integral part.

When considering distant decimals, the same problem is transposed through
multiplication by a large power of 10.

After putting together the error coming from the difference πn − π, the
accumulated rounding errors, and the error coming from the change of scaling
factor, this means we need to verify that the last four digits are either larger
than 0427 or smaller than 9573. This verification is made in the following
definitions, which return a boolean value and a large integer. The meaning of
the two values is expressed by the attached lemma.

Definition million_digit_pi : bool * Z :=

let magnifier := (2 ^ 3321942)%Z in

let n := hpi magnifier 20 in

let n’ := (n * 10 ^ (10 ^ 6 + 4) / 2 ^ 3321942)%Z in

let (q, r) := Z.div_eucl n’ (10 ^ 4) in

((427 <? r)%Z && (r <? 9573)%Z, q).

Lemma pi_osix :

fst million_digit_pi = true ->

hR (10 ^ (10 ^ 6)) (snd million_digit_pi) < PI <

hR (10 ^ (10 ^ 6)) (snd million_digit_pi) +

Rpower 10 (-(Rpower 10 6)).

Proving the big number computations. The lemma million digit pi only
states the correctness of computations for computations in the type Z, but
this computation is unpractical to perform. The last step is to obtain the
same proof for computations on the type bigZ. The library BigZ provides
both this type and a coercion function noted [ · ] so that when x is a big
integer of type bigZ, [x] is the corresponding integer of type Z.
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In what follows, the functions rounding big.hmult, et cetera operate on
numbers of type BigZ, while the functions hmult operate on plain integers.
We have the following morphism lemmas:

Lemma hmult_morph p x y:

[rounding_big.hmult p x y] = hmult [p] [x] [y].

Proof.

unfold hmult, rounding_big.hmult.

rewrite BigZ.spec_div, BigZ.spec_mul; reflexivity.

Qed.

Lemma hdiv_morph p x y:

[rounding_big.hdiv p x y] = hdiv [p] [x] [y].

Proof.

unfold hdiv, rounding_big.hdiv.

rewrite BigZ.spec_div, BigZ.spec_mul; reflexivity.

Qed.

Using these lemmas, it is fairly routine to prove the correspondence between
the algorithms instantiated on both types.

Lemma hpi_rec_morph :

forall s p n v1 v2 v3,

[s] = hsqrt [p] (h2 [p]) ->

[rounding_big.hpi_rec p n s v1 v2 v3] =

hpi_rec [p] n [s] [v1] [v2] [v3].

Lemma hpi_morph : forall p n,

[rounding_big.hpi p n]%bigZ = hpi [p]%bigZ n.

In the end, we have a theorem that expresses the correctness of the computa-
tions made with big numbers, with the following statement.

Lemma big_pi_osix :

fst rounding_big.million_digit_pi = true ->

(IZR [snd rounding_big.million_digit_pi] *

Rpower 10 (-(Rpower 10 6)) <

PI

<

IZR [snd rounding_big.million_digit_pi]

* Rpower 10 (-(Rpower 10 6))

+ Rpower 10 (-(Rpower 10 6)))%R.

This statement expresses that the computation returns a boolean value and a
large integer. When this boolean value is true, then the large integer is the
largest integer n so that

n

10106
< π.
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The computation of this value takes approximately 2 hours on a powerful
machine. We also implemented similar functions to compute approximations
of π using the Brent-Salamin algorithm, and experiments showed the compu-
tation is twice as fast.

6 Related work

Computing approximations of π is a task that is necessary for many projects
of formally verified mathematics, but precision beyond tens of digits are prac-
tically never required. To our knowledge, this work is the only one addressing
explicitly the challenge of computing decimals at position beyond one thou-
sand. Most developments rely on Machin-like formulas to give a computation-
ally relevant definition of π. The paper [6] already provides an overview of
methods used to compute π in a variety of provers. In Hol-Light [26], an ap-
proximation to the precision of 2−32 is obtained by approximating π

6 using the
intermediate value theorem and a Taylor expansion of the sine function, and
the library also provides a description of a variety of Machin-like formulas.
In Isabelle/HOL [35], one of the Machin-like formulas is provided directly in
the basic theory of transcendental functions. Computation of arbitrary math-
ematical formulas, in the spirit of what is done with the interval tactic, is
described in work by Hölzl [29].

The HOL Light library contains a formalization of the BBP formula [27].
Our contribution is to link the formalization of the formula with the actual
algorithm that computes the digit.

In the Coq system, real numbers can also be approached constructively as
in the C-CoRN library [17]. This was used as the basis for a library provid-
ing fairly efficient computation of mathematical functions within the theorem
prover [36,32]. Using an advanced Machin-like formula they are capable to
compute numbers like

√
π at a precision of 500 digits in about 6 seconds (to

be compared with less than a second in our case, but our development is not
as versatile as theirs).

The formalized proof of the Kepler conjecture, under the supervision of T.
Hales [25] also required computing many inequalities between mathematical
formulas involving transcendental functions, a task covered more specifically
by Solovyev and Hales [39], but none of these computations involved precisions
in the ranges that we have been studying here.

7 Conclusion

What we guarantee with our lemmas is that the integer we produce satisfies
a property with respect to π and a large power of the base, which is 16 in
the case of the the BBP algorithm, and may be any integer in the case of
the algebraic-geometric mean algorithms. We do not guarantee that the string
produced by the Coq system when printing this large number is correct, but
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experimental evidence shows that that part of the Coq system (printing large
numbers) is correct. That computations can proceed to the end is a nice sur-
prise, because it would be understandable that some parts of the theorem
prover have limitations that preclude heavy computing (as is the case when
performing computations with natural numbers, which are notoriously naive
in their implementation and their space and time complexity). It would be an
interesting project to construct a formally verified integer to string converter,
but this project is probably not as challenging as what has been presented in
this article.

The organisation of proofs follows principles that were advocated by Cohen,
Dénès, Mörtberg, and Siles [18,16], where the algorithm is first studied in a
mathematical setting using mathematical objects (in this case real numbers)
before being embodied in a more efficient implementation using different data-
types. The concrete implementation is then viewed as a refinement of the first
algorithm. This approach makes sure that we take advantage of the most
comfortable mathematical libraries when performing the most difficult proofs.
The refinement approach was used twice: first to establish the correspondence
between computations on real numbers and the computations on integers,
and second to establish the correspondence between integers and big integers.
The first stage does not fit exactly the framework advocated by Cohen and
co-authors, because the computations are only approximated and we need to
quantify the quality of the approximation. On the other hand, the second stage
corresponds quite precisely to what they advocate, and it was a source of great
simplification in our formal proof, because the Coq libraries provided too few
theorems and tactics to work on the big integers.

This experiment also raises the question of what do we perceive as a for-
mally verified program? The implementations described in this paper do run
and produce output, however they need the whole context of the interactive
theorem prover. We experimented with using the extraction facility of the Coq
system to produce stand-alone programs that can be compiled with OCaml and
run independently. This works, but the resulting program is one order magni-
tude slower than what runs in the interactive theorem prover. The reason is
that the BigZ library exploits an ability to compute directly with machine in-
tegers (numbers modulo 231) [3], while the extracted program still views these
numbers as records with 31 fields, with no shortcuts to exploit bit-level algo-
rithmics. This raises several questions of trusted base: firstly, the Coq system
with the ability to exploit machine integers directly for number computations
has a wider trusted base (because the code linking integer computation with
machine integer computation needs to be trusted). This first question is han-
dled in another published article by Armand, Grégoire, Spiwack and Théry
[3]. Secondly we also have to trust the implementation of the native compute

facility, which generates an OCaml program, calls the OCaml compiler, and
then runs and exploits the results of the compiled program. This question is
handled in another article by Boespflug, Dénès and Grégoire [10]. Thirdly, we
could also extract the algorithms as modules to be interfaced with arbitrary
libraries for large number computations. We would thus obtain implementa-
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tions that would be partially verified and whose guarantees would depend on
the correct implementation of the large number operations. This is probably
the most sensible approach to using formally verified algorithms in the real
world.

In the direction of formally verified programs, the next stage will be to
study how the algorithms studied in this article can be implemented using im-
perative programming languages, avoiding stack operations and implementing
clever memory operations, such as re-using explicitly the space of data that
has become useless, instead of relying on a general purpose garbage-collector.
Obviously, we would need to interface with a library for large number compu-
tations in such a setting. Such libraries already exist, but none of them have
been formally verified. We believe that the community of formal verification
will produce such a formally verified library for large number computations,
probably exploiting the advances provided by the CompCert formally verified
compiler [33] (which provides the precise language for the implementation),
and the Why3 tool [20] to organize proofs of programs with imperative fea-
tures, based on various forms of Hoare logic.

In their current implementation, our algorithms run at speeds that are
several orders of magnitude lower than the same algorithms implemented by
clever programmers in heavy duty libraries like mpfr [21]. For now, the al-
gorithms for elementary operations are based on Karatsuba-like divide-and-
conquer approaches, with binary tree implementations of large numbers, but it
could be interesting to implement fast-Fourier-transform based multiplication
as suggested by Schönhage and Strassen [38] and observe whether this brings
a significative improvement in the computation of billions of decimals.

In spite of the fun with mathematical curiosities around the π number,
the real lesson of this paper is more about the current progress in interac-
tive theorem provers. How much mathematics can be described formally now?
How much detail can we give about computations? How reproducible is this
experiment?

For the question on how much mathematics, it is quite satisfying that real
analysis becomes feasible, with concepts such as improper integrals, power
series, interchange between limits, with automatic tools to check that mathe-
matical expressions stay within bounds, but also with rigidities coming from
the limits of the automatic tool. One of the rigidity that we experienced is the
lack of a proper integration of square roots in the automatic tool that deals
with equalities in a field. This tool, named field, deals very well with equal-
ities between expressions that contain mostly products, divisions, additions

and subtractions, but it won’t simplify expressions such as
√

1√
2
+ 1√

2
−
√√

2.

From a human user’s perspective, this rigidity is often hard to accept, because
once the properties of the square root function are understood, we integrate
them directly in our mental calculation process.

For the question on how much detail we can give about computations, these
experiments show that we can go quite far in the direction of reasoning about
computation errors. This is not a novelty, and many other experiments by other
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authors have been studying how to reason about floating point computations
[12]. This experiment is slightly different in that it relies more on fixed point
computations.

For the question on how reproducible is this experiment, we believe that
one should distinguish between the task of running the formalized proof and
the task of developing it. For the first task, re-running the formal proof, we
provide a link to the sources of our developments [8], which can be run with
Coq version 8.5 and 8.6 and precise versions of the libraries Coquelicot and
Interval. For the task of developing the formal proof, this becomes a question at
the edge of our scientific expertise, but still a question that is worth asking. In
the long run, formally verified mathematics should become practical to a wider
audience thanks to the availability of comprehensive and well-documented
libraries such as Coquelicot [11] or mathematical components [22]. However,
there are some aspects of the work that make reproducibility by less expert
users difficult. For instance, it is often difficult to understand the true limits of
automatic tools and this form of rigidity may cause users to lose a lot of time,
for instance by mistaking a failure to prove a statement with the fact that the
statement could be wrong. Another example is illustrated with the use of filters
in the Coquelicot library, which requires much more advanced mathematical
expertise than what would be expected for an intermediate level library about
real analysis.
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