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ABSTRACT: Robust methods for continuous brain state
decoding are of great interest for applications in the field
of Brain-Computer Interfaces (BCI). When capturing brain
activity by an electroencephalogram (EEG), the Source
Power Comodulation (SPoC) algorithm enables to com-
pute spatial filters for the decoding of a continuous vari-
able. However, as high-dimensional EEG data generally
suffer from low signal-to-noise ratio, the method reveals
instabilities for small data sets and is prone to overfitting.
We introduce a framework for applying Tikhonov regular-
ization to SPoC by restricting the solution space of filters.
Our findings show that additional trace normalization of
covariance matrices is a necessary prerequisite to tune
the sensitivity of the resulting algorithm. In an offline
analysis on data of N = 18 subjects, the introduced trace
normalized and Tikhonov regularized SPoC variant (NTR-
SPoC) outperforms standard SPoC for the majority of indi-
viduals. With this proof-of-concept study, a generalizable
regularization framework for SPoC has been established
which allows for implementing different regularization
strategies in the future.

INTRODUCTION

Designing electroencephalography (EEG)-based Brain-
Computer Interfaces (BCIs) require translating EEG sig-
nals into messages or commands for an application, e.g. by
converting EEG activity recorded during imagined hand
movements into cursor movements [1]. In most current
BCIs for communication and control, this is typically
achieved using machine learning and classification al-
gorithms [2]. During online use, EEG signals are then
assigned to a discrete set of classes (e.g. left or right hand
imagined movements).
A widely used component for effective classification of
EEG signals is spatial filtering [3]. Addressing volume
conduction effects, spatial filter methods estimate sources,
whose signals are more different between classes than
signals obtained at the sensor level. The most popular
spatial filter algorithm to classify oscillatory EEG activity
is the Common Spatial Pattern (CSP) algorithm [3], [4].
It aims at finding filters such that the spatially filtered
signals have a variance (and thus a band power in narrow-
band filtered signals) that is maximally different between
classes. While the CSP algorithm proved very efficient

and has become a gold standard in BCI, it is sensitive to
noise, non-stationarity and limited data. To address these
limitations, various regularized variants of CSP have been
proposed making this algorithm effectively more robust
[5], [6], [7]. Typically, these approaches inject prior knowl-
edge into the CSP objective function, e.g. in the form
of regularization terms. The regularization approaches try
to guide the optimization process towards good solutions,
despite noise and non-stationarities.

However, not all BCIs are based on classification methods.
Several brain signal decoding problems require regression
techniques to estimate continuous rather than discrete
mental states. For instance, BCIs can be used to estimate
continuous workload levels [8] or reaction time from
oscillatory activity [9]. As for classification techniques, re-
gression models can also significantly benefit from the use
of spatial filters. Thus, Dähne et al. proposed the Source
Power Comodulation (SPoC) algorithm, which can be
seen as an extension of CSP to regression problems [10].
Indeed, SPoC aims at finding spatial filters such that the
power of the filtered EEG signals maximally covaries with
a continuous target variable.

Due to similar mathematical formulations, CSP and SPoC
share a number of pros and cons. Both algorithms can
deliver informative oscillatory signal features but are prone
to noise, non-stationarity and limited data. However, while
robust variants of CSP have been proposed based on
regularization approaches [5], there are no such robust
variants for SPoC. Hence, this leaves SPoC with sub-
optimal performances when used on noisy data such as
those encountered outside laboratories for practical BCI
use. In this paper, we aim at addressing this limitation. In
particular, we present a novel method to apply Tikhonov
regularization to the existing SPoC algorithm. We show
how this regularization approach combined with appropri-
ate normalization can indeed outperform the basic SPoC
approach. We also illustrate the impact of various regular-
ization parameters on the resulting oscillatory components.

The reminder of this paper first presents in detail the
original SPoC algorithm and the regularized variant we
propose. Then it presents an evaluation of these two
methods on real EEG data sets for motor performance
prediction, before discussing the results.



MATERIALS AND METHODS

1) Source Power Comodulation (SPoC): Supervised
spatial filtering algorithms are widely used in EEG-BCI
applications. Those filters represent a linear transformation
to project the multi-variate EEG data to a lower dimen-
sional subspace. This work focuses on the Source Power
Comodulation algorithm (SPoC; [10]) which optimizes a
spatial filter by solving a linear regression problem.
In the following, x(t) ∈ RNc describes the time course
of the multivariate bandpass-filtered EEG data acquired
from Nc sensors. In accordance with the generative model
of the EEG [11], a spatial filter w ∈ RNc describes the
linear projection of the sensor space data x(t) to a one-
dimensional source component ŝ(t) = w>x(t).
Translating x(t) into segments of Ne single epochs
x(e) ∈ RNc×Ns with Ns sample points per epoch, then
SPoC learns a spatial filter w such that the bandpower
Φ(e) = Var[ŝ(e)] of ŝ has maximal covariance with a
given epoch-wise univariate target variable z(e). Formally,
this translates to maximizing the objective function

J1(w) = Cov[Φ(e), z(e)] = w>Σzw (1)

by defining a z-weighted averaged covariance matrix
Σz := 〈Σ(e) z(e)〉 based on the trial-wise spatial covari-
ance Σ(e) = (Ns−1)−1x(e)>x(e). 〈.〉 defines the average
across Ne epochs. Furthermore, a norm constraint on w is
applied by setting J2(w) = Var[ŝ(e)] = w>Σavgw

!
= 1,

where Σavg = 〈Σ(e)〉 describes the averaged covariance
matrix. Overall, this translates to the Rayleigh quotient of
the original SPoCλ formulation [10]:

J(w) =
J1
J2

=
w>Σzw

w>Σavgw
(2)

Technically, maximizing J(w) can be solved as a general-
ized eigenvalue problem and returns a set {w(j)}j=1,..,Nc

of Nc spatial filters with j indexing the rank which is
determined in descending order of the eigenvalues and
thereby according to the covariance.
Spatial filters allow for a visual interpretation by
estimating the corresponding activity pattern a = Σavgw
as highlighted by Haufe et al. [12].

2) Tikhonov Regularization: The SPoC objective func-
tion directly builds upon sample covariance matrices Σz
and Σavg as stated by Eq. 2. Their estimation is very
sensitive to noisy data, with small training data sets and
a high dimensionality aggravating the problem. Finally,
poorly estimated covariance matrices will not describe the
intended neural processes well and thus mislead the spatial
filter optimization. To overcome this, regularization by
adding a penalty term P (w) to the objective function’s de-
nominator is a common mitigation strategy [13], [14]. The
penalty is expressed by a prior that restricts the possible
solution space. In this paper, we assign a quadratic penalty
term P (w) = w>1w = ‖w‖2 with 1 ∈ RNc×Nc stating
the identity matrix. As this penalty scales with the spatial
filter norm, solutions with small weights are preferred.
Overall, the penalty term is added to the denominator

with a regularization parameter α leading to the following
maximization problem:

JP (w) =
w>Σzw

w>[(1− α)Σavg + α1]w
(3)

This formulation is known as Tikhonov regularization
(TR, [15]) and has similarly been established for the CSP
algorithm [5]. Directly solving Eq. 3 refers to SPoC with
Tikhonov regularization (TR-SPoC) in this paper. In case
of an extreme regularization expressed by α = 1, the
Rayleigh quotient in Eq. 3 collapses to the one of the
Principal Component Analysis (PCA, [16]).
The Rayleigh quotient in Eq. 2 and 3 relates two
sample covariance matrices. In order to control for their
relative scaling, a normalization by the trace might be a
suitable strategy [4], [17], e.g. Σ′(e) = Σ(e)/tr(Σ(e)).
Trace normalization will be applied to Σ(e) and Σavg
entering Eq. 3, but not upon Σz as the z-weighting
shall be maintained. This version of the algorithm will
be stated as normalized Tikhonov regularization of
SPoC (NTR-SPoC). Applying the same scheme of trace
normalization to the standard SPoC algorithm (Eq. 2),
will be referred to as trace-normalized SPoC (TN-SPoC).

3) Data Set for Offline Evaluation: To evaluate the
introduced regularization algorithms, data of 18 subjects
performing a visuomotor hand force task was used.
The paradigm allowed to derive a trial-wise motor
performance metric [18], [9]. Each subject completed one
session with 400 trials. Within each trial, a ”get-ready”
interval preceded a ”motor execution” phase which was
initiated by a clear go-cue. EEG signals were used to
predict the trial-wise reaction time (RT) of the motor
task based on the time interval [-800, -50] ms prior to
the go-cue. EEG activity was acquired by multichannel
EEG amplifiers (BrainAmp DC, Brain Products) with
a sampling rate of 1 kHz from 63 passive Ag/AgCl
electrodes (EasyCap) placed according to the extended
10-20 system. After preprocessing and outlier rejection
following the methods described in [9], we restricted
our analysis to oscillatory features within the alpha-band
frequency range of [8, 13] Hz. The bandpass was realized
applying a zero-phase butterworth filter of 6th order.
The number of data points Ne remaining after outlier
removal varied across the 18 subjects, ranging from 142
to 352 trials. In summary, the following evaluation is
based upon RT as a trial-wise continuous target variable
ztrue, which we aim to predict utilizing the individual
oscillatory bandpower features of the pre-go EEG activity.

4) Evaluation Scheme: In an offline analysis, we eval-
uated the proposed algorithms NTR-SPoC and TR-SPoC
w.r.t. the regularization parameter α by varying its value
in the range {0; [10−8, 100]}. Overall, 40 discrete, loga-
rithmically spaced evaluation points were chosen. At each
α-value the following K = 10-fold chronological cross-
validation (CV) scheme was applied:
First, the spatial filter set {w(j)}j=1,..,Nc

was gained on
training data xtr and the first Nf = 4 highest ranked com-



ponents selected. Second, a linear regression model with
coefficients {βj}j=0,..,Nf

was trained upon the bandpower
features Φj,tr = Var[w

(j)
tr xtr]. Finally, those coefficients

were used to predict the trial-wise target variable zest(e)
using the bandpower features Φj,te(e) = Var[w

(j)
tr xte](e)

of unseen test data xte:

zest(e) = β0 +

Nf∑
j=1

βjΦj,te(e) (4)

In order to compare the estimated zest with the true motor
performance ztrue, different metrics can be calculated [9].
For simplification, we focused on a single evaluation
metric only. Per data set, the evaluation was carried
out by transferring the continuous labels ztrue into
a two-class scenario according to the 50th percentile
of ztrue. This enabled the utilization of the receiver
operating characteristics (ROC) curve which is calculated
upon the estimated target variable zest given the true
two-class labels [19]. As ROC performance can be
reduced to a scalar value by calculating the area under
the ROC curve (AUC), we will name this metric z-AUC
as it characterizes the separability of the estimated target
variable zest.

5) Selection of Regularization Parameter: To estimate
the future performance of the proposed algorithms, we
compared two alternative selection strategies in order to
determine a suitable regularization parameter αopt for each
subject.
First, a leave-one-subject-out (LOSO) cross-validation was
applied by determining the regularization parameter αopt
based on the grand average z-AUC across Nsub − 1
subjects, calculated for the 40 evaluation points of α.
Second, αopt was selected by a subject-wise nested
K = 10-fold chronological CV. The inner CV served
for estimating the individually optimal regularization
parameter αopt among 10 logarithmically scaled values
ranging from α ∈ [10−6, 10−2]. In comparison with the
LOSO scheme, we chose fewer α values for computational
reasons. The value maximizing the z-AUC metric was
selected and applied to the outer CV in order to train
the respective spatial filtering algorithm and the linear
regression model.

RESULTS

Sensitivity to Regularization Parameter: The sensitivity
of the introduced approaches TR-SPoC and NTR-SPoC
in terms of the regularization parameter α is displayed
in Fig. 1. For each α, the z-AUC is reported as a grand
average (GA) across all 18 subjects (solid lines). For an
individual subject, the impact of the regularization may
depend upon the initial performances obtained with basic
SPoC. Hence, we decided to separately report the perfor-
mance for five good subjects (dashed lines). They were
selected as the subjects with the best SPoC performance
values z-AUC(SPoC) > 0.55. However, as the absolute
best subject with z-AUC(SPoC) = 0.77 represents a very

Figure 1. Sensitivity analysis wrt. the regularization
strength for TR-SPoC and NTR-SPoC. (A) Averaged
z-AUC performance is reported as grand average (GA)
across all 18 subjects (solid line) and for five good subjects
(dashed line). (B) Standard deviations of the correspond-
ing averages are depicted. For comparison, the displayed
performance at α = 0 corresponds to the non-regularized
SPoC versions.

strong (positive) outlier compared to the full set of 18
subjects, it was not included into this group. (compare
with Fig. 2)
For TR-SPoC, an increased regularization strength param-
eter does not affect performance within a wide range of
10−8 < α < 10−3. While even stronger regularization
with values of 10−1 < α < 100 sightly improves the
grand average performance, it comes at the cost of a higher
standard deviation (see Fig. 1(B)).
The situation looks different for NTR-SPoC as three major
effects can be observed when increasing regularization
strength controlled by α. Within the range 10−8 < α <
10−6, the performance remains on a stable level. Enlarg-
ing the regularization strength to 10−6 < α < 10−2,
the performance increases (two local maxima) with best
average performance obtained at α = 1.4 · 10−5. Extreme
regularization expressed by α > 10−2 results in a dras-
tic drop of performance. The standard deviation of the
reported performance means constantly remain on a high
level, indicating that the sensitivity wrt. the regularization
parameter α varies strongly across subjects.
In Fig. 1, the effect of trace normalization upon per-
formance can be evaluated for α = 0, which describes
the absence of any regularization. Thus, the performance
reported for TR-SPoC at α = 0 corresponds to that of
standard SPoC, while α = 0 for NTR-SPoC directly
maps to TN-SPoC. On the grand average evaluation, the
performance of TN-SPoC is increased by 5 %, compared
to SPoC while the corresponding standard deviations of
both methods are on comparable levels.
As these intermediate results show, that NTR-SPoC
effectively outperforms the non trace-normalized
alternative TR-SPoC, we will restrict the evaluations in
the next paragraphs to NTR-SPoC.



Figure 2. Performance comparison of NTR-SPoC with
standard SPoC, using both LOSO and individual nested
cross-validation. Each blue marker corresponds to one of
the 18 subjects. For both of the selection strategies, the
first number reports the percentage of subjects for which
NTR-SPoC outperforms SPoC. Percentage values given in
brackets are restricted to those data points located outside
the red shaded area. It encloses all subjects which do
not reach a threshold criterion on z-AUC for meaningful
predictions.

Individual Selection of Regularization Strength: In
Fig. 2, the subject-wise performance comparison of NTR-
SPoC to standard SPoC is reported for the two regulariza-
tion parameter selection strategies LOSO and subject-wise
nested cross-validation.

In Fig. 2, the circle-shaped markers report the individual
performances obtained with LOSO. Building upon
the sensitivity analysis, for 15 out of 18 subjects the
regularization parameter is selected as αopt = 7.9 · 10−6,
for the remaining three subjects it was chosen as
αopt = 2.4 · 10−5. Those values are in good accordance
with the global maximum of the grand average
performance reported in Fig. 1. The diamond-shaped
markers correspond to the validation by individual nested
cross-validation. To compare the two selection strategies,
we make use of two different group statistics. First, the
overall ratio of subjects for which NTR-SPoC outperforms
SPoC is provided (72 % for LOSO and 83 % for nested
CV). In addition, the values in brackets consider only
those individual performances which manage to cross
a threshold of minimum meaningful performance at
z-AUCth = 0.59 (red shaded area). Details on how
this threshold is determined have been reported in [9].
A two-sided Wilcoxon rank sum test on the full data
set yields for both selection strategies that NTR-SPoC
achieves statistically significant higher performances
than SPoC. (The corresponding p-values obtained were
pLOSO = 2.2 · 10−2 and pNested = 1.4 · 10−3.)

Figure 3. Effect of regularization parameter upon the
performance and the spatial patterns for an exemplary
subject VP9. (A) Performance of NTR-SPoC for choosing
α ∈ [10−8, 100]. (B) Corresponding activity patterns along
first four ranked components at the marked evaluation
points (a)-(i).

Effect of Regularization Upon Oscillatory Components:
For an exemplary subject, the effect of the regularization
strength in NTR-SPoC upon the underlying first four
ranked oscillatory components is depicted in Fig. 3. In
(A) the z-AUC is reported for the different α values, in
(B) the first four ranked patterns of the marked evaluation
point (a)-(i) are shown. As the sign of a pattern a is
arbitrary, they have been corrected to be consistent across
the displayed patterns and scaled by their norm.

Consistent with the results presented in Fig. 1, three differ-
ent α ranges can be identified for the selected subject. The
ranges can be characterized according to two aspects, the
performance (A) and the underlying spatial patterns (B).

For very small regularization values, represented by
evaluation points (a) and (b), the performance as well as
the spatial patterns are stable despite of increased α. In
other words, NTR-SPoC is not sensitive for such small
values of α. The gray shaded area in Fig. 3(A) encloses
the evaluation points (c)–(f). This range is sensitive
to changes of α which is revealed by performance
improvements as well as rank switches among the spatial
patterns (e.g. rank #4 from (d) tracked by a solid red line
to (f)) or even novel patterns that appear among the top
four ranks (e.g. rank #3 at position (d)). In Fig. 3(B),
novel patterns are marked by a red circumference.
Regularization beyond α > 10−2 ((g)–(i)) leads to a
slight drop in performance. This is accompanied by
an increased number of components among the first
ranks, which display higher spatial frequencies in their
activation patterns. The latter observation was made for
most subjects and usually affected patterns of ranks 2–4.



DISCUSSION

In this paper, we introduced the concept of Tikhonov
regularization for the SPoC algorithm. Its performance was
evaluated by applying a regression model upon the Nf = 4
top-ranked components. Nonetheless, this number was not
optimized and thus leaves room for improvement.
As reported on the grand average of 18 subjects, the
pure Tikhonov regularization of SPoC (TR-SPoC) is not
detrimental for a low to medium amount of regulariza-
tion. Under strong regularization the approach becomes
only slightly favorable in terms of performance. However,
most strongly regularized TR-SPoC components seemed
to show less plausible patterns in the subjective opinion
of the authors (data not shown here). Based on even a
full regularization parameter sweep, an operating range
has neither been observed for a linear nor a logarithmic
spacing of α-values along different orders of magnitude
as the Rayleigh coefficient of TR-SPoC stated in Eq. 3 is
mostly insensitive to the added penalty term.
We tackled this issue by incorporating the trace normal-
ization to the Tikhonov regularization of SPoC (NTR-
SPoC). As a result, the NTR-SPoC becomes sensitive
to the penalty term over a range of small regularization
parameters (see Fig.1 and 3). In addition, we have shown
that similar regularization parameters mostly lead to com-
parable performance increases. As originally proposed by
Ramoser et al. [4], the trace normalization of the covari-
ance matrices involved in Eq. 3 balances the influence of
the nominator and the denominator. We have shown that
NTR-SPoC can improve the performance of individuals,
but have also observed that optimal operating ranges varied
across subjects. As a positive side effect, the approach
brings up new meaningful components. This observation
is in accordance with Tikhonov regularization of the CSP
algorithm [13]. However, NTR-SPoC comes at a prize, as
for some individuals we observed a performance decrease.
In these cases, trace normalization may unfortunately re-
move meaningful information. Though we did not identify
a predictor yet, that could indicate, if trace normalization
is useful in a new subject or not. Thus, we propose to
evaluate both approaches in parallel. In the future, we
aim to run the algorithms also on simulation data as this
enables e.g. to control for the underlying SNR of the data.
As this proof-of-concept motivated the inclusion of the
trace norm, applying this to other variants of regularization
will help to characterize the effect behind it.

CONCLUSION

In summary, we have presented an approach to regularize
the existing SPoC algorithm using a Tikhonov regular-
ization which favors spatial filter solutions with small
norms. Our findings show that by simply adding a penalty
term to the original SPoC objective function, the filter
solutions are insensitive to the regularization term and
performance does not improve. We applied an additional
trace normalization as a remedy and observed, that it
enhances the algorithm’s sensitivity for the regularization.
This enabled us to define a subject-specific operating range

of the regularization and thus improve the achievable per-
formance for most subjects. This proof-of-concept study
opens up future research upon different regularization
strategies and allows for an in-depth characterization of
data sets.
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