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While overall hydrophobicity is generally recognized as the

main characteristic of transmembrane (TM) a-helices, the

only membrane system for which there are detailed quanti-

tative data on how different amino acids contribute to the

overall efficiency of membrane insertion is the endoplasmic

reticulum (ER) of eukaryotic cells. Here, we provide com-

parable data for TIM23-mediated membrane protein inser-

tion into the inner mitochondrial membrane of yeast cells.

We find that hydrophobicity and the location of polar and

aromatic residues are strong determinants of membrane

insertion. These results parallel what has been found pre-

viously for the ER. However, we see striking differences

between the effects elicited by charged residues flanking the

TM segments when comparing the mitochondrial inner

membrane and the ER, pointing to an unanticipated differ-

ence between the two insertion systems.
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Introduction

The overwhelming majority of mitochondrial proteins are

encoded on nuclear chromosomes, synthesized in the cyto-

plasm, and post-translationally imported into mitochondria

through translocon complexes in the outer and inner mem-

brane (Bolender et al, 2008). In the case of inner membrane

proteins, two different translocons (TIM23, TIM22) can med-

iate membrane insertion of proteins arriving from the inter-

membrane space (IMS) side of the inner membrane, while the

Oxa1p translocon inserts membrane proteins coming from

the matrix side (Neupert and Herrmann, 2007; Becker et al,

2009).

The role of the TIM23 complex is analogous to that of the

Sec61 translocon, which mediates translocation and insertion

of proteins in the endoplasmic reticulum (ER) membrane

(Rapoport, 2007; Skach, 2009). For both translocons, trans-

membrane (TM) segments are thought to be integrated into

the lipid bilayer by lateral exit from the translocon pore

(Becker et al, 2009; Skach, 2009). Despite the apparent

functional similarities, the TIM23 and the Sec61 translocons

are not evolutionarily related (Herrmann, 2003; Dolezal et al,

2006). Thus, it is unknown to what extent the two translo-

cons use similar principles of recognizing TM segments in

membrane proteins.

Here, we present an analysis of the sequence character-

istics governing the insertion of membrane proteins by the

TIM23 complex. To measure the efficiency of TM-segment

insertion into the inner membrane, we have taken advantage

of the peculiar maturation pathway of Mgm1p, a nuclearly

encoded, dynamin-like GTPase important for mitochondrial

fusion, morphology, and genome integrity in Saccharomyces

cerevisiae (Sesaki et al, 2003; Wong et al, 2003; Sesaki and

Jensen, 2004). Mgm1p is sorted into the inner membrane by

the TIM23 complex through a unique process called alter-

native topogenesis (Herlan et al, 2004) (Figure 1A). Mgm1p

has a classical N-terminal mitochondria-targeting prese-

quence followed by two hydrophobic segments and a

C-terminal globular domain. After cleavage of the prese-

quence by the matrix processing peptidase, the first hydro-

phobic segment is inserted into the inner membrane in about

half of the molecules. This gives rise to the long isoform of

the protein (l-Mgm1p). In the remaining Mgm1p molecules,

the first hydrophobic segment slips through the TIM23 chan-

nel into the matrix whereupon the second hydrophobic

segment is cleaved by a rhomboid-like protease, Pcp1p, in

the inner membrane (Herlan et al, 2003, 2004; Schäfer et al,

2010), releasing a truncated C-terminal part of Mgm1p

(s-Mgm1p) to the IMS. Both isoforms are required for

function (Meeusen et al, 2006).

Results

We reasoned that Mgm1p carrying an engineered hydropho-

bic segment (H-segment) in place of the first TM segment

should give rise to the two isoforms in varying amounts,
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depending on whether the H-segment is integrated into the

inner membrane or not. We therefore replaced the first

hydrophobic segment of Mgm1p by a set of 19-residue

H-segments of varying hydrophobicity (Figure 1B), for which

we have already measured membrane insertion in the mam-

malian and yeast ER (Hessa et al, 2007, 2009). For immuno-

detection, a triple-haemagglutinin (HA) tag was fused to the

C-terminus of Mgm1p in all constructs. C-terminal epitope

tagging of Mgm1p with either HA or c-myc does not compro-

mise protein function (Meeusen et al, 2006; Zick et al, 2009)

(and our unpublished data), showing that the C-terminal HA

tag disrupts neither targeting nor topogenesis. Each Mgm1p

construct was expressed in yeast from a low-copy CEN

plasmid, and the relative amounts of the two isoforms were

quantified from western blots and used to calculate an

apparent free energy of membrane insertion, DGapp ¼
�RT lnðfl=fsÞ (where R is the gas constant and T is the

absolute temperature, T¼ 298 K, and fl and fs denote the

fractions of l-Mgm1p and s-Mgm1p molecules, respectively).

A hydrophobicity scale for mitochondrial inner

membrane proteins

We first measured DGapp for a series of 19-residue Leu/Ala-

based H-segments, with the composition GGPG-nL/(19-n)

A-GPGG (all constructs are listed in Supplementary Table S1).

The secondary-structure breaking GGPGyGPGG flanks were

included to ‘insulate’ the H-segments from the surrounding

protein sequence (Hessa et al, 2005). As anticipated,

H-segments with a higher number of Leu residues produced

a higher fraction of the membrane-anchored l-Mgm1p iso-

form relative to s-Mgm1p (Figure 2A). The measured DGapp is

linear with the number of Leu residues (n), with

DGapp¼ 0 kcal/mol (50% membrane insertion) reached

for, nE5–6 (Figure 2B). This ‘threshold hydrophobicity’ is

increased by roughly one Ala-Leu replacement compared

with the yeast ER (Hessa et al, 2009) and by two such

replacements compared with the mammalian ER (Hessa

et al, 2005). These differences may at least in part depend

on charged residues outside the GGPGyGPGG flanks (see

below).

As a control for proper mitochondrial import, we com-

pared the size of the l-Mgm1p isoforms from whole-cell

lysates prepared from yeast transformants carrying either

HA-tagged Mgm1p or the HA-tagged Mgm1p(6L/13A)

construct with the corresponding in vitro-translated full-

length products (including the presequence) (Figure 2C).
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Figure 1 The Mgm1p model protein. (A) Alternative topogenesis of
Mgm1p in the mitochondrial inner membrane (Herlan et al, 2004).
Mgm1p is imported through the TIM23 translocon. The prese-
quence (black) is cleaved by the matrix processing peptidase
(MPP). The first hydrophobic segment (red) integrates into the
membrane in about half of the molecules (left, l-Mgm1p). In the
remaining molecules, the first hydrophobic segment translocates
into the matrix, leaving the second hydrophobic segment (blue)
spanning the membrane (right). The second segment is cleaved by
the inner membrane protease Pcp1p, giving rise to s-Mgm1p.
(B) The first hydrophobic segment of Mgm1p (residues 87–113,
italics) was replaced by 37-residue long segments including an
H-segment, its immediate flanking residues (GGPGyGPGG), and
five additional flanking residues from H-segment constructs
previously analysed in the ER (underlined).
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Figure 2 Membrane insertion efficiency of Leu/Ala-based H-seg-
ments. (A) Whole-cell lysates from yeast transformants expressing
HA-tagged Mgm1p constructs with H-segments containing varying
number of Leu residues were analysed by SDS–PAGE and western
blotting. l-Mgm1p is the membrane-anchored long isoform and
s-Mgm1p is the soluble short isoform. Three examples of H-seg-
ments are shown below the gel; all H-segment sequences are listed
in Supplementary Table S1. (B) Membrane insertion efficiency
expressed as DGapp plotted against the number of Leu residues in
the H-segment. Averages from at least three independent experi-
ments and standard errors are shown. (C) Western blot of in vitro-
translated HA-tagged Mgm1p precursor (lane 1) and Mgm1p(6L/
13A) precursor (lane 4), and of whole-cell lysate samples from yeast
transformants expressing HA-tagged Mgm1p (lane 2) and
Mgm1p(6L/13A) (lane 3). p-Mgm1p, l-Mgm1p, and s-Mgm1p de-
note, respectively, the precursor form, the long mature isoform, and
the short mature isoform of HA-tagged Mgm1p.

Mitochondrial membrane protein assembly
SC Botelho et al

The EMBO Journal VOL 30 | NO 6 | 2011 &2011 European Molecular Biology Organization1004



A clear difference in molecular weight was observed between

the in vitro-translated presequence-containing Mgm1p and

the Mgm1p isoforms isolated from whole-cell lysates, indicat-

ing that the presequence has been cleaved from the Mgm1p

constructs and therefore that they are correctly imported into

the mitochondria.

To determine the contribution of each of the 20 naturally

occurring amino acid to DGapp, we prepared a second set of

H-segments (Supplementary Table S1). Each test amino acid

was placed in the middle of the H-segment, so that it would

be embedded in the hydrophobic core of the lipid bilayer

when integrated into the membrane. As the maximal sensi-

tivity of the assay is obtained when DGappE0 kcal/mol (50%

membrane insertion), the Ala/Leu composition of the H-

segments was adjusted such that, for each test amino acid,

the efficiency of insertion was not too far from 50%.

Assuming a simple additive model for the contributions of

Leu and Ala residues to DGapp for the 19-residue H-segments

shown in Figure 2B, we have DGapp ¼ n � DGLeu
app þ ð19� nÞ �

DGAla
app ¼ �0:29 nþ 1.64 kcal/mol, which yields DGLeu

app

¼�0.20 kcal/mol and DGAla
app ¼ 0.09 kcal/mol. Possible con-

tributions to DGapp from the Gly-Pro flanking sequences

should be small (Hessa et al, 2005), and are ignored here.

For the remaining 18 natural amino acids (X), DGapp
X was

calculated from measured DGapp values as DGX
app ¼ DGapp �

ðn � DGLeu
app þ ð18� nÞ � DGAla

appÞ, see Supplementary Table S1.

Figure 3A shows the mitochondrial DGapp
X scale. As ex-

pected, the hydrophobic amino acids are at the lower end of

the scale, whereas the charged amino acids are found at the

higher end. Comparison to the scale obtained for membrane

insertion into the mammalian ER shows a good correlation

(R2¼ 0.81) (Figure 3B), but the mitochondrial scale spans a

somewhat broader range compared with the ER scale (�0.2

to þ 3.0 kcal/mol versus �0.5 to þ 1.8 kcal/mol) and the

zero point is different, as noted above.

Position-dependent effects

Meier et al (2005) have reported that the presence of Pro

residues in TM segments renders TIM23-mediated membrane

insertion less efficient. To better understand the role of Pro in

TM helix insertion, we analysed a set of H-segments carrying

a single or a symmetrically disposed pair of Pro residues in

different positions. As seen in Figure 4A and B, Pro residues

strongly reduce membrane insertion when located in the

middle section of the H-segment and to a lesser but signifi-

cant extent when near the ends. This suggests that formation

of an a-helical structure of the H-segment is an important

determinant for TIM23-mediated recognition and insertion of

the H-segment into the inner membrane.

We next assessed the positional dependence of the effects

on membrane insertion elicited by pairs of aromatic residues

(Phe, Trp, Tyr; Figure 4C) and by single-charged residues

(Lys, Asp; Figure 4D). Membrane insertion increased when

Trp and Tyr were placed near the ends of the H-segment,

while the effect of Phe was largely independent of position.

The positively charged Lys residue was found not to affect

insertion compared with the parent 6L/13A H-segment when

placed in the first or last four positions. These results are

consistent with our previous findings for the mammalian ER

(Hessa et al, 2007). In contrast, the negatively charged Asp

residue was only tolerated when placed in the four C-terminal

positions, whereas in the mammalian ER Asp is tolerated at

both the N- and C-terminal ends of the H-segment.

Effects of charged and polar flanking residues

Finally, we investigated the role of charged and polar flanking

sequences on H-segment insertion. On average, three posi-

tively charged Arg or Lys flanking residues (RRPRy,

yRPRR, KKPKy, yKPKK) reduce DGapp by 1.0–1.3 kcal/

mol from both the matrix and IMS sides compared with the

GGPGy and yGPGG flanks (Figure 5). This corresponds to

approximately four Ala-Leu replacements in the hydropho-

bic part of the H-segment.

In contrast, a negatively charged DDPDy flanking se-

quence on the matrix side increases DGapp by 1.1 kcal/mol,

while a yDPDD sequence on the IMS side has little effect

compared with the yGPGG flanking sequence, in agreement

with the results for a single-Asp residue in Figure 4D. The

same qualitative effects are seen with XXPXy,yXPXX flank-

ing sequences where X¼Glu, Gln, Asn, and His (see con-

structs #107–114, Supplementary Table S1); that is, it is

not the charge per se but the high polarity of the side chain

that matters in these cases. Interestingly, His does not behave

as a positively charged residue in this context, which is

consistent with the high pH of the mitochondrial matrix

(around 8.0 in HeLa cells and rat cardiomyocytes (Llopis

et al, 1998)), a value that is well above the pKa for the

imidazole side chain.

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L I M A V F C T G S W N K P H Y D Q E R

Amino acid

ΔG
X

ap
p 

(k
ca

l/m
ol

)

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

A

B

ΔG
X

ap
p 

(k
ca

l/m
ol

)

ΔGX
app (kcal/mol)

R 2=0.81

L
I

V,F

M

A

C

T
G

S

W

Y

N

K

P H Q
E

R
D

Mitochondria

E
R

Figure 3 ‘Biological’ DGapp
X scales. (A) The mitochondrial

DGapp
X scale derived from Leu/Ala-based H-segments with the

indicated amino acid placed in the middle of the H-segment (see
Supplementary Table S1). Averages from at least three independent
experiments and standard errors are shown. (B) Comparison
between the DGapp

X scales obtained for the mitochondrial inner
membrane and for the mammalian ER membrane (Hessa et al,
2007).
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Positively charged residues thus promote membrane inser-

tion from both sides of the membrane. This is in contrast to

the mammalian ER, where positively charged residues only

promote insertion if they are present on the cytoplasmic side

of the H-segment (Hessa et al, 2007). Negatively charged and

highly polar residues reduce membrane insertion only when

placed at the matrix side of the H-segment in the mitochon-

drial system, and only when placed at the lumenal side of the

H-segment in the mammalian ER (Hessa et al, 2007).

A second test protein: CoxVa

Given the importance of flanking residues located outside the

hydrophobic segment itself and the relatively high threshold

hydrophobicity for membrane insertion seen with the Mgm1p

constructs, we also determined the threshold hydrophobicity

using a second inner membrane protein, CoxVa. CoxVa has a

single TM segment that is integrated into the inner membrane

via the TIM23 translocon (Glaser et al, 1990; Miller and

Cumsky, 1993). We replaced the CoxVa TM segment by

GGPG-nL/(19-n)A-GPGG H-segments of varying hydrophobi-

city and determined the efficiency of membrane insertion by

an established protease-accessibility assay (Glaser et al,

1990) (Figure 6A). As seen in Figure 6B, 50% membrane

insertion is observed for nE2–3, compared with nE5–6 for

Mgm1p, corresponding to a difference of B1 kcal/mol in the

threshold hydrophobicity between the CoxVa and Mgm1p

constructs. Although minor differences between in vivo and

in vitro import assays may explain part of this difference (as

has been seen for insertion into the ER (Hessa et al, 2005)),

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14 16 18

Mitochondria

ER

GGPGAAAAALLLPPLLLAAAAAAGPGG

ΔG
ap

p 
(k

ca
l/m

ol
)

ΔG
ap

p 
(k

ca
l/m

ol
)

ΔG
ap

p 
(k

ca
l/m

ol
)

ΔG
ap

p 
(k

ca
l/m

ol
)

Pro–Pro distance

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5
Mitochondria

ER

GGPGPAAALALALALALALAAAAGPGG

Position

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18

W(Mito)
W(ER)
F(Mito)
F(ER)
Y(Mito)
Y(ER)

GGPGAAAAAAWALLAWAAAAAAAGPGG
GGPGAAAAAAFAALAAFAAAAAAGPGG
GGPGAAAAAAAYLLLYAAAAAAAGPGG

X–X distance
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14 16 18 20

K(Mito)

K(ER)

D(Mito)

D(ER)

GGPGAKAALALALALALALAAAAGPGG
GGPGDLAALALALAAALALAALAGPGG

Position

A B

C D

0 2 4 6 8 10 12 14 16 18 20
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it is likely that sequence context outside the GGPGyGPGG

flanks also impact the threshold hydrophobicity.

Positively and negatively charged flanking residues have

similar effects on membrane insertion in the context of CoxVa

as seen for Mgm1p, that is, positively charged flanks tend to

increase insertion while negatively charged flanking residues

on the matrix side of the hydrophobic segment strongly

reduce insertion (Figure 6C).

Impairment of import-motor function increases

membrane insertion

Herlan et al (2004) have shown that mutational impairment

of the mitochondrial import-motor components Tim44p and

Pam18p/Tim14p reduces the formation of s-Mgm1p, imply-

ing that membrane integration of Mgm1p is increased in the

absence of motor activity. We therefore tested the effect of the

import motor on the balance between s-Mgm1p and l-Mgm1p

in constructs with different H-segments. In case of wild-type

Mgm1p, we observed a strong reduction of the amount of

s-Mgm1p in the temperature-sensitive mutant pam16-3 of the

motor subunit Pam16p (Frazier et al, 2004) grown at 301C,

the highest temperature at which cells can still grow

(Figure 7A). The relative levels of s-Mgm1p were reduced

in pam16-3 cells also for Mgm1p carrying H-segments

of varying hydrophobicity, but to a smaller degree than for

wild-type Mgm1p (Figure 7B). Similarly, for constructs with

H-segments carrying charged or polar flanking residues, we

saw a reduction in relative s-Mgm1p levels (Figure 7B); the

effects of the pam16-3 mutation were especially large when

the charged or polar residues are at the matrix-facing,

N-terminal end of the H-segment. It thus appears that a

fully functional import motor increases the threshold for

H-segment membrane insertion in the context of Mgm1p,

possibly by pulling on the nascent chain.

Discussion

In summary, membrane integration of H-segments into the

mitochondrial inner membrane depends on overall hydro-

phobicity and aromatic residues in a similar way as we have

found previously for the same set of H-segments in the yeast

and mammalian ER membranes (Hessa et al, 2007, 2009).

Since these characteristics correlate with physicochemical

properties of lipid bilayers, the data suggest that protein–

lipid interactions contribute in an important way to TM helix

integration both in the mitochondrial inner membrane and in

the ER membrane.

While the presence of Arg or Lys residues near both the

N- and C-terminal ends of the H-segment promotes insertion,

the presence of negatively charged or highly polar residues at

the matrix-facing, N-terminal end of the H-segment causes a

severe defect in membrane integration. This effect is surpris-

ingly strong: in the Mgm1p context, a markedly hydrophobic

H-segment such as 11L/8A that is fully integrated into the

inner membrane with neutral GGPGyGPGG flanks only
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protein. (A) CoxVa has an N-terminal mitochondrial-targeting pep-
tide that is cleaved upon import by the matrix-localized mitochon-
drial processing peptidase (MPP). A segment consisting of residues
96–122 (containing the single-transmembrane helix in CoxVa) was
replaced by GGPGyGPGG-flanked H-segments. If the H-segment is
not inserted into the inner membrane but translocated to the matrix,
it is protected from proteinase K (PK) treatment, whereas if it is
inserted, the C-terminal end will be exposed to the IMS and there-
fore accessible to PK. (B) CoxVa constructs with the indicated
H-segments were synthesized in a cell-free translation system in
the presence of [35S] methionine and imported into yeast mitochon-
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analysed by SDS–PAGE. A control import reaction was also per-
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H-segments with GGPGyDPDD, GGPGyKPKK, DDPDyGPGG,
and KKPKyGPGG flanks. Averages from at least three independent
experiments and standard errors are shown.
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integrates to about 20% with negatively charged DDPDy

flanking residues on the matrix side (Supplementary Table

S1, entries #9 and #106; see also the CoxVa constructs #118

and #127). A summary comparison of TM helix recognition

and integration in the ER and mitochondrial systems is given

in Table I.

What could be the basis for the different effects of posi-

tively and negatively charged flanking residues on membrane

integration? An obvious possibility is that the electrical

potential across the inner membrane, which is negative on

the matrix side, could explain the strong reduction in mem-

brane insertion caused by negatively charged residues at the

matrix-facing end of a TM segment and the increased inser-

tion efficiency caused by positively charged flanking residues.

The reduction in membrane insertion seen when highly polar

but uncharged residues replace Gly in the matrix-facing

flanking sequences cannot be explained by the membrane

potential, however; an interesting possibility is that it

may reflect a transbilayer asymmetry in the translocon

channel itself.

The positive-inside rule, which states that positively

charged residues are more abundant in loops that connect

TM segments on the cytoplasmic side (or, in the case of

mitochondria, the matrix side), applies to membrane proteins

in almost all membranes (Wallin and von Heijne, 1998).

However, it has been noted that nuclear-encoded mitochon-

drial membrane proteins do not always follow the positive-

inside rule (Gavel and von Heijne, 1992). Indeed, a statistical

analysis of TM segments in mitochondrial membrane pro-

teins that are imported either by the ‘conservative sorting’

pathway (i.e. they are first translocated into the matrix and

then inserted into the inner membrane from the matrix side

(Hartl et al, 1987)) or by the ‘stop-transfer’ pathway (i.e. they

insert laterally from the TIM23 translocon into the inner

membrane (van Loon et al, 1986)) shows that, in the latter

group, positively charged Lys and Arg residues are abundant

on both sides of the TM segments, whereas negatively

charged residues seem to be under-represented on the matrix

side (Figure 8). This is perfectly consistent with the effects on

membrane integration of the Mgm1p and CoxVa constructs

uncovered above.

Materials and methods

MGM1 plasmids
The sequence of MGM1 gene was obtained from Comprehensive
Yeast Genome Database (CYGD, Munich information center for
protein sequences). This coding region has 21 extra amino acids
(MSNSTSLRAIPRVANYNTLVR) at the N-terminus compared with
the gene sequence given in UniProt (P32266). The MGM1 gene was
initially amplified by PCR using genomic DNA isolated from yeast
strain W303-1a (MAT a, ade2, can1, his3, leu2, trp1, ura3) and two
primers 50GTGGTTTGTTACGCATGCAAGCTTGATATCGAAATGAGT
AATTCTACTTC30 and 50TGGTCTAGAGGTGTAACCACTTGAGTTCTT
AGGTAAATTTTTGGAGACGC30, and subcloned into pJK90 (Kim
et al, 2003) as described (Kim et al, 2006). Then, using two primers
50CTGGACACCCCTTTTCTG30 and 50CAATGGCGTACCCCATAC30,
and pJK90-MGM1 as a template, MGM1HA gene was amplified by
PCR. This PCR product was subcloned into pHP84HA (Kim et al,
2000) by homologous recombination (Oldenburg et al, 1997), and
this plasmid was named pHP84MGM1HA.

To facilitate subcloning by homologous recombination, a SmaI
site was generated by an overlap PCR (Spee et al, 1993) in the first
hydrophobic segment of MGM1 (291GTGGGTGGCCCCGGGAT
GGCT309) in pHP84MGM1HA, and this plasmid was named
pJK110. The 19 amino acid long hydrophobic segments (H-
segments) were amplified by PCR using various pGEM1-based
constructs (Hessa et al, 2007) as templates and two primers,
50ATCTAGTTTGTCCTTAGTAAAAGAGCTAGCTTCTTCTTGTTGCCCT
GGTACC30 and 50GTTATCACCAGGAGATCGATATCACATTTTCCTA
AACTTAAACTTTCCGAGACTAGTG30 (underlined sequences are
the sequences complementing upstream and downstream se-
quences of SmaI restriction enzyme site in pJK110 for homologous
recombination, and the rest are the sequences complementing
Escherichia coli Lep-H-segment sequence). For cloning of constructs
#96–97 (KPKK-1L/18A-GPGG and GGPG-1L/18A-KPKK; Supple-
mentary Table S1), available pGEM-based constructs (Lundin
et al, 2008) were used as PCR templates with the two primers,
50ATCTAGTTTGTCCTTAGTAAAAGAGCTAGCTTCTTCGCGCCGAAG
ACTAGT30 and 50GTTATCACCAGGAGATCGATATCACATTTTCCTA
AATGACGGGATCGGTAC30; for these, the five-residue flanks from
the Lep vector are APKTSyVPIPS (c.f. Figure 1B). All plasmids
carrying an H-segment were constructed by homologous recombi-
nation (Oldenburg et al, 1997) using a PCR amplified E. coli Lep-H-
segment and a SmaI-digested pJK110 with Dmgm1a or a strains
(MATa or a his3D 1; leu2D0; ura3D0; mgm1HkanMX4) (Wester-
mann and Neupert, 2000). Plasmids were isolated from yeast
transformants, the correct sequences were confirmed by DNA
sequencing. Correct constructs were then re-transformed into
W303-1a (MAT a, ade2, can1, his3, leu2, trp1, ura3), selected
on –Leu plates, and these yeast transformants were subjected to
further analysis.

For in vitro expression of the full-length p-Mgm1p and p-Mgm1p-
6L/13A with a presequence (residues 1–902 plus triple-HA tag), the
DNA fragments were amplified by PCR using a pHP84MGM1HA or
pHP84MGM1(6L/13A)HA as a template and the 30 end primer
50TTAGAGAGCGTAATCTGGAAC30 and 50 end primer 50ATGA

A

Mgm1p 5L/14A D-8L/11A-G

W
T
pa
m
16
-3

W
T
pa
m
16
-3

W
T
pa
m
16
-3

l-Mgm1p -

s-Mgm1p -

–4.0

–3.0

–2.0

–1.0

0.0

1.0

2.0

3.0

WT

1L

3L 4L 5L

6L

3D-5L-3G

3G-5L-3D

3D-8L-3G

3K-4L-3G

3G-3L-3K

3Q-3L-3G

3G-3L-3Q

3N-5L-3G

3G-
5L-3N

WT
pam16-3

ΔG
ap

p 
(k

ca
l/m

ol
)

B

Figure 7 The mitochondrial import motor affects membrane inser-
tion. (A) Wild-type Mgm1p and two Mgm1p constructs carrying
H-segments GGPG-5L/14A-GPGG and DDPD-8L/11A-GPGG were
expressed in the temperature-sensitive pam16-3 mutant strain and
in the isogenic PAM16 wild-type strain. Yeast transformants were
grown at 301C, and whole-cell lysates were subjected to TCA
precipitation followed by SDS–PAGE and western blotting using
an anti-HA antibody. The long and short Mgm1p isoforms are
indicated. The 5L/14A and D-8L/11A-G lanes are from simultaneous
experiments and were assembled from non-neighbouring lanes on
the gel. (B) DGapp values for Mgm1p constructs carrying the
indicated H-segments. White circles are for the pam16-3 strain
and black circles for the corresponding isogenic wild-type strain.
Averages from at least three independent experiments and standard
errors are shown.
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GTAATTCTACTTC30. The PCR products were subcloned into a TOPO
blunt end vector (Invitrogen) according to the manufacturer’s
protocol. Correct insertion into the vector was confirmed by
restriction enzyme digestion analysis.

In vitro translation
p-Mgm1HAp and p-Mgm1p-6L/13AHAp were expressed in vitro
following the manufacturer’s protocol for the T7 reticulolysate

coupled transcription and translation system (Promega). Whole-cell
lysate samples from yeast transformants expressing HA-tagged
Mgm1p and Mgm1p(6L/13A) (see below) were subjected to TCA
precipitation and analysed by SDS–PAGE and western blotting
against an anti-HA antibody.

Western blot analysis
Yeast transformants carrying various MGM1HA H-segments were
grown overnight in 5 ml of –Leu medium at 301C and harvested by
centrifugation at 3000 g. Whole-cell lysate preparation, SDS–PAGE,
and western blotting using an antibody against the HA tag were
done as described (Kim et al, 2006). Western blots were developed
on a Fuji LAS-3000 system and the bands were quantitated using
the Image Gauge V 3.45 software.

The temperature-sensitive mutant strain pam16-3 and the
PAM16 isogenic wild-type strain (Frazier et al, 2004) were kind
gifts from Dr Nikolaus Pfanner, Freiburg. MGM1HA carrying various
H-segments were transformed into the pam16-3 and the isogenic
wild-type strains. Yeast transformants were grown at 301C as
described above. Whole-cell lysates were subjected to TCA
precipitation before loading on to the SDS gels. Western blotting
and quantitation were done as described above.

Table I Comparison of H-segment recognition by the Sec61 versus the TIM23 translocons

Sec61 translocon in the ER TIM23 complex in the mitochondrial inner
membrane

Threshold hydrophobicity of the H-segment n¼ 3 (Dog pancreas RM), n¼ 5 (yeast ER) in
GGPG-nL/(19-n)A-GPGG H-segment

n¼ 3 (CoxVa), n¼ 6 (Mgm1p) in GGPG-nL/
(19-n)A-GPGG H-segment

Effect of Pro residues in the H-segment Ala-Pro replacements in the N-terminal
three positions and the most C-terminal posi-
tion decrease membrane insertion less than
Ala-Pro replacements in the middle of the
H-segment

Qualitatively similar to the ER

Effect of aromatic residues in the H-segment Ala-Trp, Tyr replacements increase mem-
brane insertion when near the N- or the
C-terminus of the H-segment, but decrease
insertion when in the middle of the H-seg-
ment

Same as in the ER

Effect of positively charged residues in the
H-segment

Ala-Lys, Arg most unfavourable for mem-
brane insertion when placed in the middle
part of the H-segment

Same as in the ER

Effect of negatively charged residues in the
H-segment

Ala-Asp, Glu most unfavourable for mem-
brane insertion when placed in the middle
part of the H-segment

Ala-Asp, Glu most unfavourable for mem-
brane insertion when placed in the middle
and N-terminal (matrix-facing) part of the H-
segment

Effect of negatively charged flanking residues DDPDy and EEPEy flanks decrease mem-
brane insertion compared with GGPGy
flank when placed next to the lumenal end
of the H-segment

DDPDy and EEPEy flanks decrease mem-
brane insertion compared with GGPGy
flank when placed next to the matrix end of
the H-segment

Effect of positively charged flanking residues yKPKK and yRPRR flanks increase mem-
brane insertion compared with yGPGG
flank when placed next to the cytoplasmic
end of the H-segment

KKPKyKPKK and RRPRyRPRR flanks in-
crease membrane insertion compared with
GGPGyGPGG flanks when placed next to
both the IMS and matrix ends of the H-
segment
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Figure 8 Mean frequencies of positively (KþR, top panel) and
negatively (DþE, bottom panel) charged residues in the 10 residues
flanking the transmembrane segments on the matrix side (grey
bars), in the transmembrane segment (white bars), and in the 10
residues flanking the transmembrane segment on the intermem-
brane space (IMS) side (black bars) in a collection of transmem-
brane segments in mitochondrial proteins imported via a
‘conservative’ sorting mechanism in which the protein is first
fully imported into the matrix and then inserted into the inner
membrane from the matrix side (eight proteins, see Materials
and methods), or via a ‘stop-transfer’ mechanism in which the
transmembrane segment is arrested in the TIM23 translocon and
inserted laterally into the inner membrane (21 proteins). Standard
errors are shown.
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CoxVa plasmids
The COXVa-coding sequence was amplified by PCR using the
primers coxVa(EcoRI)F (50CCGAATTCTGCACCAAACACAAGATCA
ACTAAGAACGC30 and coxVa(BamHI)R (50CCGGATCCCCTATTGATT
TCCTTTCAAAATTTCTGGCC30). The PCR fragment was treated
with EcoRI and BamHI and inserted between EcoRI/BamHI-digested
pGEM4z vector (Promega). COXVa H-segment constructs were
made by overlap PCR using the primer pair SP6 50ATTTAGGTGA
CACTATAG30 and: CoxVa(P2)R 50TAAGCGCAGACCAGTCGGCCA
TTCGCCTTCTTGCTTATCTCCAGGACCACCAATAAAACTGGAATC30;
CoxVa(Mgm1p)R 50AGCCATCCCGCCACCCACATATATGGGTAACC
TAATAATTTTAGATATAATAATAAAACTGGAATC30; CoxVa(8L/11A)R
50CAGTAGGAGAAGCAATAACAGTGCGGCGGCAGCAGCTGCTCCAGG
ACCACCAATAAAACTGGAATC30; CoxVa(5L/14A)R 50AAGAGCTGC
AAGTGCTGCTAAAGCTAATGCTGCAGCTGCTCCAGGACCACCAATA
AAACTGGAATC30 and the primer pair T7 50TAATACGACTCACTATA
GGG30 and: CoxVa(P2) 50TGGCCGACTGGTCTGCGCTTAAGTCGA
ATTGGCGGCATCGGACCTGGTGGGACCATGAATAAGGAG30; CoxVa
(Mgm1p) 50TATGTGGGTGGCGGGATGGCTGCTGCAGGGAGTTATAT
AGCTTATAAGATGACCATGAATAAGGAG30; CoxVa(8L/11A) 50CTGT
TATTGCTTCTCCTACTGTTAGCTGCCGCTGCTGCAGGACCTGGTGGG
ACCATGAATAAGGAG30; CoxVa(5L/14A) 50TTAGCAGCACTTGCAGC
TCTTGCACTAGCTGCAGCAGCTGGACCTGGTGGGACCATGAATAAGG
AG30. The resulting fragments were cloned into the pGEM4z vector
(Promega) by EcoRI/BamHI digestion. The constructs CoxVa(1L/
18A), CoxVa(2L/17A), CoxVa(3L/16A), and CoxVa(4L/15A) were
obtained by site-directed mutagenesis using construct CoxVa(5L/
14A) as template. The constructs CoxVa(KKPK-3L/16A-GPGG),
CoxVa(GGPG-3L/16A-KPKK), CoxVa(DDPD-3L/16A-GPGG), and
CoxVa(GGPG-3L/16A-DPDD) were obtained by site-directed muta-
genesis using construct CoxVa(3L/16A) as template. Constructs
CoxVa(DDPD-5L/14A-GPGG), CoxVa(DDPD-8L/11A-GPGG), and
CoxVa(KKPK-1L/18A-GPGG) were obtained by site-directed muta-
genesis using constructs CoxVa(5L/14A), CoxVa(8L/11A) and
CoxVa(1L/18A) as template.

Analysis of CoxVa H-segment constructs
The radiolabelled precursor proteins were synthesized in a cell-free
translation system with rabbit reticulocyte lysate (Promega) in the
presence of [35S] methionine. Isolated mitochondria from the yeast
wild-type strain W3031-1a were incubated with radiolabelled
precursor proteins in import buffer (250 mM sucrose, 10 mM
MOPS-KOH, pH 7.2, 80 mM KCl, 5 mM MgCl2, 2.5 mm potassium
phosphate, 2 mM ATP, 2 mM methionine, 2 mM NADH, and 1%
(w/v) bovine serum albumin) at 251C. The import reaction was
stopped by addition of 10mg/ml valinomycin. Mitoplasts were
prepared by diluting mitochondria 10-fold in EM buffer (10 mM
MOPS-KOH, pH 7.2, 1 mM EDTA). Protease treatment was performed
by incubating the mitochondria (or mitoplasts) with 100mg/ml
proteinase K for 20 min on ice, which was inactivated by subsequent
addition of 1 mM PMSF. Mitochondria (or mitoplasts) were reisolated
by centrifugation, and proteins were analysed by SDS–PAGE and
radioimaging with a Typhoon Variable Mode Imager 9200 (GE
Healthcare) or Pharos FX Plus Molecular Imager (Bio-Rad).

Calculation of DGapp

Membrane integration of each H-segment was quantified from
western blots by measuring relative amounts of l-Mgm1p and

s-Mgm1p isoforms. The relative amounts of the two isoforms were
used to calculate an apparent equilibrium constant between the
membrane integrated and non-integrated forms: Kapp¼ fl/fs, where
fl is the fraction of membrane integrated and fs is the fraction of
membrane non-integrated isoforms. Finally, the membrane inser-
tion efficiency was expressed as an apparent free energy difference,
DGapp¼�RT lnKapp. The ‘biological’ DGapp

X scale for the 20
individual amino acids (X) was derived from a simple additive
model, DGX

app ¼ DGapp � ðn � DGLeu
app þ ð18� nÞ � DGAla

appÞ, where DGapp

is the measured insertion free energy of the construct in question
(see Supplementary Table S1). At least three independent experi-
ments were carried out for each H-segment to measure DGapp.

Statistical analysis of TM segments in mitochondrial inner
membrane proteins
Two sets of (mostly single spanning) TIM23-dependent mitochon-
drial inner membrane proteins were analysed, one containing eight
proteins known to be first imported into the matrix and then
inserted by the ‘conservative sorting’ pathway into the inner
membrane from the matrix side, and the other containing 21
proteins that are inserted laterally by the ‘stop-transfer’ pathway
from the TIM23 translocon into the inner membrane; see
Supplementary Table S2 for sequence identifiers and references.

To analyse the charge distribution in the regions flanking the TM
segments, the 10 N- and C-terminal residues flanking each TM
segment (as predicted by SCAMPI (Bernsel et al, 2008)) were
extracted. The mean frequencies of positively charged (RþK) and
negatively charged residues (DþE) were calculated for the N- and
C-terminal segments, along with the standard error of the mean.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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