
HAL Id: hal-01661749
https://hal.inria.fr/hal-01661749

Submitted on 12 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Decoding
Thomas Debris-Alazard, Jean-Pierre Tillich

To cite this version:
Thomas Debris-Alazard, Jean-Pierre Tillich. Statistical Decoding. ISIT 2017 - IEEE In-
ternational Symposium on Information Theory, Jun 2017, Aachen, Germany. pp.1789–1802,
�10.1109/ISIT.2017.8006839�. �hal-01661749�

https://hal.inria.fr/hal-01661749
https://hal.archives-ouvertes.fr

Statistical Decoding

Thomas Debris-Alazard, Jean-Pierre Tillich
Inria, SECRET Project, 2 Rue Simone Iff 75012 Paris Cedex, France

Email: {thomas.debris,jean-pierre.tillich}@inria.fr

Abstract—The security of code-based cryptography relies pri-
marily on the hardness of generic decoding with linear codes.
The best generic decoding algorithms are all improvements of an
old algorithm due to Prange: they are known under the name of
information set decoding techniques (ISD). A while ago a generic
decoding algorithm which does not belong to this family was
proposed: statistical decoding. It is a randomized algorithm that
requires the computation of a large set of parity-check equations
of moderate weight. We solve here several open problems related
to this decoding algorithm. We give in particular the asymptotic
complexity of this algorithm, give a rather efficient way of
computing the parity-check equations needed for it inspired by
ISD techniques and give a lower bound on its complexity showing
that when it comes to decoding on the Gilbert-Varshamov bound
it can never be better than Prange’s algorithm.

I. INTRODUCTION

Code-based cryptography relies crucially on the hardness of

decoding generic linear codes. This problem has been studied

for a long time and despite many efforts on this issue [1],

[2], [4], [8], [9], [11], [12] the best algorithms for solving this

problem [2], [9] are exponential in the number of errors that

have to be corrected: correcting t errors in a binary linear code

of length n has with the aforementioned algorithms a cost of

2ct(1+o(1)) where c is a constant depending of the code rate R
and the algorithm. All the efforts that have been spent on this

problem have only managed to decrease slightly this exponent

c. Let us emphasize that this exponent is the key for estimating

the security level of any code-based cryptosystem.

All the aforementioned algorithms can be viewed as a

refinement of the original Prange algorithm [11] and are

actually all referred to as ISD algorithms. There is however an

algorithm that does not rely at all on Prange’s idea and does

not belong to the ISD family: statistical decoding proposed

first by Al Jabri in [7] and improved a little bit by Overbeck

in [10]. Later on, [5] proposed an iterative version of this

algorithm. It is essentially a two-stage algorithm, the first

step consisting in computing an exponentially large number of

parity-check equations of the smallest possible weight w, and

then from these parity-check equations the error is recovered

by some kind of majority voting based on these parity-check

equations.

However, even if the study made by R. Overbeck in [10]

lead to the conclusion that this algorithm did not allow better

attacks on the cryptosystems he considered, he did not propose

an asymptotic formula of its complexity that would have

allowed to conduct a systematic study of the performances of

this algorithm. Such an asymptotic formula has been proposed

in [5] through a simplified analysis of statistical decoding, but

as we will see this analysis does not capture accurately the

complexity of statistical decoding. Moreover both papers did

not assess in general the complexity of the first step of the

algorithm which consists in computing a large set of parity-

check equations of moderate weight.

The primary purpose of this paper is to clarify this matter

by giving three results. First, we give a rigorous asymptotic

study of the exponent c of statistical decoding by relying

on asymptotic formulas for Krawtchouk polynomials [6]. The

number of equations which are needed for this method turns

out to be remarkably simple for a large set of parameters

(see Theorem 1). For instance when we consider the hardest

instances of the decoding problem which correspond to the

case where the number of errors is equal to the Gilbert-

Varshamov bound, then essentially our results indicate that

we have to take all possible parity-checks of a given weight

(when the code is assumed to be random) to perform statistical

decoding. This asymptotic study also allows to conclude that

the modeling of iterative statistical decoding made in [5] is too

optimistic. Second, inspired by ISD techniques, we propose

a rather efficient method for computing a huge set of parity-

check equations of rather low weight. Finally, we give a lower

bound on the complexity of this algorithm that shows that

it can not improve upon Prange’s algorithm for the hardest

instances of decoding.

This lower bound follows by observing that the number Pw

of the parity-check equations of weight w that are needed

for the second step of the algorithm is clearly a lower-bound

on the complexity of statistical decoding. What we actually

prove in the last part of the paper is that irrelevant of the way

we obtain these parity-check equations in the first step, the

lower bound on the complexity of statistical decoding coming

from the infinitum of these Pw’s is always larger than the

complexity of the Prange algorithm for the hardest instances

of decoding.

This paper is given without proofs, they are given in the

full version that is on arxiv [3].

II. NOTATION

As our study will be asymptotic, we neglect polynomial

factors and use the following notation:

Notation 1. Let f, g : N → R, we write f = Õ(g) iff there

exists a polynomial P such that f = O(Pg).

Moreover, we will often use the classical result
(
n
w

)
=

Õ
(
2nH(

w
n)

)
where H denotes the binary entropy.

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 1798

III. STATISTICAL DECODING

In the whole paper we consider the computational decoding

problem which we define as follows:

Problem 1. Given a binary linear code of length n of rate R,
a word y ∈ F

n
2 at distance t from the code, find a codeword

x such that dH(x, y) = t where dH denotes the Hamming
distance.

Generally we will specify the code by an arbitrary generator

matrix G and we will denote by CSD(G, t, y) a specific

instance of this problem. We will be interested as is standard

in cryptography in the case where G ∈ F
Rn×n
2 is supposed to

be random.

The idea behind statistical decoding may be described as

follows. We first compute a very large set S of parity-check

equations of some weight w and compute all scalar products

〈y, h〉 (scalar product is modulo 2) for h ∈ S. It turns out

that if we consider only the parity-checks involving a given

code position i the scalar products have a probability of being

equal to 1 which depends on whether there is an error in this

position or not. Therefore counting the number of times when

〈y, h〉 = 1 allows to recover the error in this position.

Let us analyze now this algorithm more precisely. To make

this analysis tractable we will need to make a few simplifying

assumptions. The first one we make is the same as the one

made by R. Overbeck in [10], namely that

Assumption 1. The distribution of the 〈y, h〉’s when h is

drawn uniformly at random from the dual codewords of weight

w is approximated by the distribution of 〈y, h〉 when h is

drawn uniformly at random among the words of weight w.

A much simpler model is given in [5] and is based on

modeling the distribution of the 〈y, h〉’s as the distribution

of 〈y, h〉 where the coordinates of h are i.i.d. and distributed

as a Bernoulli variable of parameter w/n. This presents

the advantage of making the analysis of statistical decoding

much simpler and allows to analyze more refined versions

of statistical decoding. However as we will show, this is an

oversimplification and leads to an over-optimistic estimation of

the complexity of statistical decoding. The following notation

will be useful.

Notation 2.
· Sw

�
={x ∈ F

n
2 : wH(x) = w} where wH is the Hamming

weight;

· Sw,i
�
={x ∈ Sw : xi = 1};

· Hw
�
=C⊥ ∩ Sw;

· Hw,i
�
=C⊥ ∩ Sw,i;

· B(p) denotes the Bernoulli distribution of parameter p ;

· h ∼ Sw,i means we pick h uniformly at random in Sw,i.

We start the analysis of statistical decoding by computing

the following probabilities which approximate the true proba-

bilities we are interested in (which correspond to choosing

h uniformly at random in Hw,i and not in Sw,i) under

Assumption 1:

q+w = Ph∼Sw,i
(〈e, h〉 = 1) when ei = 1

q−w = Ph∼Sw,i
(〈e, h〉 = 1) when ei = 0.

These probabilities are readily seen to be equal to

q+w =

w−1∑
j even

(
t−1
j

)(
n−t

w−1−j

)
(
n−1
w−1

) , q−w =

w−1∑
j odd

(
t
j

)(
n−t−1
w−1−j

)
(
n−1
w−1

)
We define the biases ε0 and ε1 of statistical decoding by

q−w =
1

2
+ ε0 ; q+w =

1

2
+ ε1

It will turn out, and this is essential, that ε0 �= ε1. We can use

these biases “as a distinguisher”. Statistical decoding is noth-

ing but a statistical hypothesis testing algorithm distinguishing

between two hypotheses :

H0 : ei = 0 ; H1 : e1 = 1

based on computing the random variable V m
i for m uniform

and independent draws of vectors in Hw,i:

V m
i =

m∑
k=1

s〈y, hk〉 ∈ Z where s
�
=sgn(ε0 − ε1).

We have 〈y, hk〉 ∼ B(1/2+ εj) according to Hj . In order

to apply the following proposition, we make the following

assumption:

Assumption 2. 〈y, hk〉 are independent variables.

With these assumptions we can prove that

Proposition 1. Under Hj , we have:

P

(
|V m

i − s ·m(1/2 + εj)| ≥ m
|ε1 − ε0|

2

)
≤ 2·2−m· (ε1−ε0)2

2 ln(2)

To take our decision we proceed as follows: if V m
i <

s · m
2 (1 + ε1 + ε0), we choose H1 and H0 if not. For the

cases of interest to us (namely w and t linear in n) the bias

ε1 − ε0 is an exponentially small function of the code-length

n and it is obviously enough to choose m to be of order

O
(

logn
(ε1−ε0)2

)
to be able to make good decisions on all n

positions simultaneously.

On the optimality of the statistical test. All the arguments

used for distinguishing both hypotheses are very crude and

this raises the question whether a better test exists. It turns

out that in the regime of interest to us, namely t and w linear

in n, the term Õ
(

1
(ε1−ε0)2

)
is of the right order. Indeed our

statistical test amounts actually to the Neymann-Pearson test

(with a threshold in this case which is not necessarily in the

middle, i.e. equal to s ·m1+ε0+ε1
2). In the case of interest to

us, the bias between both distributions ε1−ε0 is exponentially

small in n and Chernoff’s bound captures accurately the large

deviations of the random variable V m
i . Finer knowledge about

the hypotheses H0 and H1 does not make a difference. For

instance even using the a priori probability P(ei = 1) = t
n

2017 IEEE International Symposium on Information Theory (ISIT)

1799

will not change the number of the tests that are needed: it will

still be Õ
(

1
(ε1−ε0)2

)
when t and w are linear in n.

Statistical decoding is a randomized algorithm which uses

the previous distinguisher. As we just noted, this distinguisher

needs Õ
(

1
(ε1−ε0)2

)
parity-check equations of weight w to

work. This number obviously depends on w,R and t and we

use the notation:

Notation 3. Pw
�
= 1

(ε1−ε0)2
.

Now we have two frameworks to present statistical de-

coding. We can consider the computation of Õ(Pw) parity-

check equations as a pre-computation or to consider it

as a part of the algorithm. To consider the case of pre-

computation, simply remove Line 4 of Algorithm 1 and

consider the Si’s as an additional input to the algorithm.

ParityCheckComputationw will denote an algorithm

which for an input G, i outputs Õ(Pw) vectors of Hw,i.

Algorithm 1 DecoStat : Statistical Decoding

1: Input : G ∈ F
Rn×n
2 , y = xG+ e ∈ F

n
2 , w ∈ N

2: Output : e /*Error Vector*/

3: for i = 1 · · ·n do
4: Si ← ParityCheckComputationw(G, i)
5: Vi ← 0
6: for all h ∈ Si do
7: Vi ← Vi + s · 〈y, h〉
8: if Vi < s · Pw

1+ε1+ε0
2 then

9: ei ← 1
10: else
11: ei ← 0

12: return e

Clearly statistical decoding complexity is given by

• When the Si’s are already stored and computed: Õ (Pw);

• When the Si’s have to be computed: Õ
(
Pw + |PCCw|

)
where |PCCw| stands for the complexity of the call

ParityCheckComputationw.

The following quantities will be helpful in quantifying this

complexity.

Notation 4.
· ω �= w

n ; τ
�
= t

n ;

· π(ω, τ)�= limn→+∞
1
n log2 Pw;

· πcomplete(ω, τ)
�
= limn→+∞

1
n max

(
log2 Pw, log2 |PCCw|

)
.

One of our main result of this article is that we can evaluate

very precisely π(ω, τ) by expressing the biases in terms of

Krawtchouk polynomials and then use asymptotic formulas

for Krawtchouk polynomials [6] and some auxiliary results to

derive the following theorem.

Theorem 1 (Asymptotic complexity of statistical decoding).
π(ω, τ) is equal to
· 2ω log2(r)− 2τ log2(1− r)− 2(1− τ) log2(1+ r)+ 2H(ω)
if τ ∈ (

0, 1
2 −√

ω − ω2
)

where r is the smallest root of (1−

ω)X2 − (1− 2τ)X + ω = 0.
· H(ω) +H(τ)− 1 if τ ∈ (

1
2 −√

ω − ω2, 1
2

)
.

This statement allows to perform a systematic study of

statistical decoding. Let us start by considering the hardest

case for decoding which corresponds to the Gilbert-Varshamov

bound (it is the largest distance where we can still expect

to recover with good probability the right error) τDGV =
H−1(1 − R). For ω ≤ 1

2 − √
τDGV − τ2DGV it is readily

verified that we are in the second case of Theorem 1. Therefore

π(ω, τDGV) = H(ω) + 1 − R − 1 = H(ω) − R. Notice that

this corresponds precisely to limn→∞ 1
n log2 ā

⊥
w where ā⊥w is

the expected number of parity-check equations of weight w
in the code we want to decode. In other words, if we want to

decode up to the Gilbert Varshamov distance we have to take

all possible codewords of weight w (and even this is actually

not enough due to the polynomial factors in the number of

such parity-checks).

This theorem also shows that the simplified model for

parity-check equations considered in [5] where the parity-

check equations are binary words obtained by drawing their

coordinates independently at random from a Bernoulli dis-

tribution of parameter w/n is significantly different from

the constant weight model of weight w. In this case, we

have π(ω, τ) = −2τ log2 (1− 2ω). The two exponents are

compared on Figure 1 as a function of the rate R with

τ = H−1(1 − R) and ω = R/2. As we see, there is a

huge difference. The problem with the model chosen in [5]

is that it is a very favorable model for statistical decoding.

To the best of our knowledge there are no efficient algorithms

for producing such parity-checks when ω ≤ R/2. Note that

even such an algorithm were to exist, selecting appropriately

only one weight would not change the exponential complexity

of the algorithm (for more details see the full version of the

paper). In other words, in order to study statistical decoding

we may restrict ourselves, as we do here, to considering only

one weight and not a whole range of weights.

Figure 1: Comparisons of the complexities

As we are now able to give a formula for π(ω, τ) we

come back to the algorithm ParityCheckComputationw

2017 IEEE International Symposium on Information Theory (ISIT)

1800

in order to estimate πcomplete(ω, τ). There is an easy way of

producing parity-check equations of moderate weight by Gaus-

sian elimination. This is given in Algorithm 2 that provides a

method for finding parity-check equations of weight w = Rn
2

of an [n,Rn] random code. Gaussian elimination (GElim) of

an Rn × n matrix G0 consists in finding U (Rn × Rn and

non-singular) such that: UG0 = [IRn|G′]. Lj(G) denotes the

j−th row of G in Algorithm 2.

Algorithm 2 ParityCheckComputationRn/2

1: Input : G ∈ F
Rn×n
2 , i ∈ N

2: Output : Si /*PRn/2 parity-check equations*/

3: Si ← []
4: while |Si| < PRn/2 do
5: P ← random n× n permutation matrix

6: [IRn|G′] ← GElim(GP) and if it fails return to line

5

7: H ← [G′T |In(1−R)] /*Parity-Check check matrix of

the code*/

8: for j = 1 to n(1−R) do
9: if Lj(H)i = 1 and wH(Lj(H)) = Rn/2 then

10: Si ← Si ∪ {Lj(H)PT }
11: return S

Algorithm 2 is a randomized algorithm. Randomness comes

from the choice of the permutation P . Vectors returned by this

algorithm have a weight of Rn/2 and it is clear that

ParityCheckComputationRn/2 returns PRn/2 parity-

check equations of weight Rn/2 in time Õ
(
PRn/2

)
. Now we

set τ = H−1(1 − R). This relative weight, corresponds to

the Gilbert-Varshamov bound. It is usually used to measure

the efficiency of decoding algorithms because it corresponds

to the hardest instance of the decoding problem as explained

before. It is then clear that with this algorithm we have

πcomplete(Rn/2, τ) = π(Rn/2, τ). (1)

We call this the “naive statistical decoding complexity”. Ex-

ponents (as a function of R) of Prange’s ISD and statistical

decoding are given in Figure 2. As we see the difference is

huge. This version of statistical decoding can not be considered

as an improvement over information set decoding algorithms.

IV. IMPROVEMENTS AND LIMITATIONS OF STATISTICAL

DECODING

A. Lower bound on the complexity

By definition, statistical decoding needs Õ (Pw) parity-

check equations of weight w to work. Its complexity is

therefore always greater than Õ (Pw). Recall that the expected

number of parity-check equations of weight w in an [n,Rn]

random binary linear code is
(nw)
2Rn . Obviously if w is too small

there are not enough equations for statistical decoding to work,

we namely need that

Pw ≤
(
n
w

)
2Rn

.

Figure 2: Asymptotic exponents of Prange ISD and naive

statistical Decoding for τ = H−1(1−R) et ω = R/2

Figure 3: Asymptotic exponents of Prange ISD, naive statis-

tical decoding and optimal/optimistic statistical decoding for

τ = H−1(1−R)

The minimum ω0(R, τ) such that this holds is clearly given

by

H (ω0(R, τ))−R = π(ω0(R, τ), τ)

So ω0(R, τ) gives the minimal relative weight such that

asymptotically the number of parity-check equations needed

for decoding is exactly the number of parity-check equations

of weight w0(R, τ) in the code, where w0(R, τ)
�
=ω0(R, τ)n.

In other words the asymptotic exponent of statistical decoding

is always lower-bounded by π(ω0(R, τ), τ).

Thanks to Figure 3 which compares Prange’s ISD, statistical

decoding with parity-check equations of relative weight R/2
and ω0(R, τ) with τ = H−1(1 − R), we clearly see on

the one hand that there is some room of improving upon

naive statistical decoding based on parity-check equations of

weight Rn/2, but on the other hand that even with the best

improvement upon statistical decoding we might hope for, we

will still be above the most naive information set decoding

algorithm, namely Prange’s algorithm.

2017 IEEE International Symposium on Information Theory (ISIT)

1801

B. An improvement close to the complexity lower bound

The goal of this subsection is to present an improvement

to the computation of parity-check equations and to give its

asymptotic complexity. R. Overbeck in [10, Sec. 4] showed

how to compute parity-check equations thanks to Stern’s

algorithm. We are going to use this algorithm too. However,

whereas Overbeck used many iterations of this algorithm to

produce a few parity-check equations of small weight, we

observe that this algorithm produces in a natural way during its

execution a large number of parity-check equations of relative

weight smaller than R/2. We will analyze this process here

and show how to choose parameters in order to get parity-

check equations in amortized time Õ(1). The algorithm we

are interested in is given by:

Algorithm 3 DumerFusion

1: Input : G ∈ F
Rn×n
2 , l, r.

2: Output : S /*subset of Hw*/

3: S ← [] /*Empty list*/

4: T ← [] /*Hash table*/

5: P ← random n× n permutation matrix

6: Find U ∈ F
Rn×Rn
2 non-singular such that UGP =[

IRn−l G1

0 G2

]

7: Partition G2 as [G
(1)
2 |G(2)

2] where G
(i)
2 ∈ F

l×(n(1−R)+l
2)

2

8: for all e1 ∈ F
(n(1−R)+l)/2
2 of weight r/2 do

9: x ← G
(1)
2 eT1

10: T[x] ← T[x] ∪ {e1}
11: for all e2 ∈ F

(n(1−R)+l)/2
2 of weight r/2 do

12: x ← G
(2)
2 eT2

13: for all e1 ∈ T[x] do
14: e ← (e1, e2)
15: S ← S ∪ {(eGT

1 , e)P
T }

In order to study this algorithm asymptotically, we introduce

the relative parameters: ρ = r
n and λ = l

n . We have many

strategies with the choice of ρ and λ. In the following theorem

we give three constraints on these parameters which we find

relevant.

Theorem 2. With λ and ρ satisfying the constraints (i)
ω0(R, τ) ≤ ρ + R−λ

2 , (ii) ρ = (1 − R + λ)H−1
(

2λ
1−R+λ

)
,

(iii) λ ≤ π(ρ+ R−λ
2 , τ) we have:

πcomplete(ρ+ (R− λ)/2, τ) = π(ρ+ (R− λ)/2, τ)

In order to get the optimal statistical decoding complexity

we minimize π(ρ+ (R− λ)/2, τ) (with π(ρ+ (R− λ)/2, τ)
given by Theorem 1) under constraints (i), (ii) and (iii). The

exponent of statistical decoding with this strategy is given in

Figure 4. As we see, DumerFusion with our strategy allows

statistical decoding to be optimal for rates close to 0. We

can further improve DumerFusion with ideas of [8] and

[2], however the analysis would be much more involved and

would not allow to break the barrier of the lower bound on

Figure 4: Asymptotic exponents of naive statistical decod-

ing and with the use of optimal DumerFusion and opti-

mal/optimistic statistical decoding for τ = H−1(1−R)

the complexity of statistical decoding given in the previous

subsection. Nevertheless these improvements lead to a larger

range of rates where we reach the complexity of optimal

statistical decoding. Another way of improving statistical

decoding consists in considering iterative decoding techniques.

However this does not change the exponent in the complexity

of the algorithm (for more details see [3]).

REFERENCES

[1] A. Barg. Complexity issues in coding theory. Electronic Colloquium on
Computational Complexity, Oct. 1997.

[2] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary
linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In Advances in Cryptology - EUROCRYPT 2012, Lecture
Notes in Comput. Sci. Springer, 2012.

[3] T. Debris-Alzard and J.-P. Tillich. Statistical decoding. preprint,
arXiv:1701.07416, Jan. 2017.

[4] I. Dumer. On minimum distance decoding of linear codes. In Proc.
5th Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52,
Moscow, 1991.

[5] M. P. C. Fossorier, K. Kobara, and H. Imai. Modeling bit flipping
decoding based on nonorthogonal check sums with application to
iterative decoding attack of McEliece cryptosystem. IEEE Trans. Inform.
Theory, 53(1):402–411, 2007.

[6] M. E. Ismail and P. Simeonov. Strong asymptotics for Krawtchouk
polynomials. Journal of Computational and Applied Mathematics, pages
121–144, 1998.

[7] A. A. Jabri. A statistical decoding algorithm for general linear block
codes. In B. Honary, editor, Cryptography and coding. Proceedings of
the 8th IMA International Conference, volume 2260 of Lecture Notes in
Comput. Sci., pages 1–8, Cirencester, UK, Dec. 2001. Springer.

[8] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in
O(20.054n). In D. H. Lee and X. Wang, editors, Advances in Cryptology
- ASIACRYPT 2011, volume 7073 of Lecture Notes in Comput. Sci.,
pages 107–124. Springer, 2011.

[9] A. May and I. Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, volume 9056 of Lecture
Notes in Comput. Sci., pages 203–228. Springer, 2015.

[10] R. Overbeck. Statistical decoding revisited. In R. S.-N. Lynn Batten,
editor, Information security and privacy : 11th Australasian conference,
ACISP 2006, volume 4058 of Lecture Notes in Comput. Sci., pages 283–
294. Springer, 2006.

[11] E. Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[12] J. Stern. A method for finding codewords of small weight. In G. D.
Cohen and J. Wolfmann, editors, Coding Theory and Applications,
volume 388 of Lecture Notes in Comput. Sci., pages 106–113. Springer,
1988.

2017 IEEE International Symposium on Information Theory (ISIT)

1802

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

