
HAL Id: hal-01663811
https://hal.archives-ouvertes.fr/hal-01663811

Submitted on 19 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

C-SPARQL Extension for Sampling RDF Graphs
Streams

Amadou Fall Dia, Zakia Kazi-Aoul, Aliou Boly, Yousra Chabchoub

To cite this version:
Amadou Fall Dia, Zakia Kazi-Aoul, Aliou Boly, Yousra Chabchoub. C-SPARQL Extension for Sam-
pling RDF Graphs Streams. Advances in Knowledge Discovery and Management Volume 7, 2017.
�hal-01663811�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/145161624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01663811
https://hal.archives-ouvertes.fr

C-SPARQL extension for sampling RDF graphs
streams

Amadou Fall Dia, Zakia Kazi-Aoul, Aliou Boly and Yousra Chabchoub

Abstract Our daily use of Internet and related technologies generates continuously
large amount of heteregenous data flows. Several RDF Stream Processing (RSP)
systems have been proposed. Existing RSP systems benefit from the advantages of
semantic web technologies and traditional data flow management systems.
C-SPARQL, CQELS, SPARQLstream, EP-SPARQL, and Sparkwave extend the se-
mantic query language SPARQL and are examples of those systems. Considering
that the storage and processing of all these streams become expensive, we propose a
solution to reduce the load while keeping data semantics, and optimizing treatments.
In this paper, we propose to extend C-SPARQL for continuously generating samples
on RDF graphs. We add three sampling operators (UNIFORM, RESERVOIR and
CHAIN) to the C-SPARQL query syntax. These operators have been implemented
into Esper, the C-SPARQL’s data flow management module. The experiments show
the performance of our extension in terms of execution time and preserving data
semantics.

1 Introduction

Today we produce more data than resources to process them. Our daily use of
social networks (Facebook, Twitter, Linkedin, etc.), contents of social multime-

Amadou Fall Dia
ISEP, Paris 75006, France, e-mail: amadou.dia@isep.fr

Zakia Kazi-Aoul
ISEP, Paris 75006, France, e-mail: zakia.kazi@isep.fr

Aliou Boly
Cheikh Anta Diop University, BP 5005 Dakar-Fann, Senegal, e-mail: aliou.boly@ucad.edu.sn

Yousra Chabchoub
ISEP, Paris 75006, France e-mail: yousra.chabchoub@isep.fr

1

2 Dia and al.

dia platforms (YouTube, Flickr, iTunes, etc.), sensor networks (observation, re-
mote reading, etc.), internet of things (geolocation, triggering real-time alarms,
etc.), etc. produces continuous data streams. Several research groups are inter-
ested in semantic web technologies application to real time stream processing.
Like DSMSs (Data Stream Management Systems), several extensions to SPARQL
have been proposed for processing RDF streams. The six (6) major propositions
languages and/or sytems are Streaming SPARQL [Bolles et al., 2008], Continu-
ous SPARQL (C-SPARQL) [Barbieri et al., 2010], CQELS [Le-Phuoc et al., 2011],
SPARQLstream [Calbimonte et al., 2010], EP-SPARQL [Anicic et al., 2011a] and
Sparkwave [Komazec et al., 2012]. They all extend SPARQL but adopt different ap-
proaches to deal with continuous RDF streams.

As the volume and the unpredictable speed of incoming data increase, process-
ing the entire contents of a stream is difficult. Systems need therefore techniques for
(i) dynamic resources allocation [Vijayakumar et al., 2010] and [Cao et al., 2012]
or (ii) reduction of the input data load. Regarding this last point, when input stream
rate is high (exceeds capabilities of RSP engines), systems will be overloaded. For
instance, a high query execution time compared to the input stream rate will cause
overload and thus loss of important data and latency in processing. To keep pace of
data arrival, the system would shed some of the load according to a given method.
None of existing SPARQL extensions implement continuous data summaries or
sampling mechanisms.

In this paper, we propose to extend C-SPARQL engine by adding sampling op-
erators. These operators will allow us to reduce, on the fly, input RDF data, while
preserving semantic links. We consider first a new data input format. Indeed,
C-SPARQL takes as input a sequence of pairs, where each pair is made of an RDF
triple and its timestamp. This form of representation does not guarantee the semantic
links between data within the sample. In the context of RDF data streaming, events
are frequently captured by a set of triples but not by only one triple. Thus, instead
of RDF triple format (<subject, predicate, object>, timestamp), we adopt a graph
oriented approach where each graph represents an event formed by a set of temporal
RDF triples. We then extend the C-SPARQL query syntax and the continuous exe-
cution module of its architecture (Esper) by adding new sampling operators.

This paper is organized as follows. Section 2 introduces RDF graphs streams
concept by deducting the triples format. We provide a brief state of the art on ex-
isting RDF Stream Processing (RSP) systems in section 3. Section 4 gives the three
sampling algorithms used for the implementation of our sampling operators while
we present in section 5 the extended C-SPARQL syntax and architecture. Section 6
presents our performance evaluation and results. Finally, we conclude and give our
future works in section 7.

C-SPARQL extension for sampling RDF graphs streams 3

2 RDF graphs streams

In this section, we present the notion of RDF graph streams adopted for sampling
process in C-SPARQL.

2.1 RDF streams: triple based

RDF (Resource Description Framework) is the formal W3C recommendation for
semantic data representation. The base element of the RDF model is the triple:
<s,p,o> ∈ (I ∪B)× I× (I ∪B∪L) where I is a set of IRIs (Internationalized Re-
source Identifiers), B is a set of blank nodes and L is a set of literals. s,p, and o
represent information and are respectively called the subject, the predicate and the
object of the RDF triple. However, RDF model lacks of temporal dimension which
is compulsory in the context of streaming. Thus, applying semantic web technolo-
gies on streaming data has given rise to the notion of RDF streams.

Golab and Özsu [2003] define a data stream as follow: “a data stream is a real-
time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) se-
quence of items. It is impossible to control the order in which items arrive, nor is it
feasible to locally store a stream in its entirety”. Then RDF Streams are introduced
as natural extension of RDF model in streaming context. An RDF stream S can be
defined as a temporal ordered sequence of pairs, where each pair consists of an RDF
triple and its timestamp: S = 〈< tr,τi >〉, where tr is a triple observed or arrived at
time τi. Integers τi are monotonically non-decreasing and not strictly increasing (∀i,
τi ≤ τi+1).

〈< sub jecti, predicatei,ob jecti >,τi〉
〈< sub jecti+1, predicatei+1,ob jecti+1 >,τi+1〉

...

Given that streams are intrinsically infinite, data are usually read through win-
dows upon streams using the CQL [Arasu et al., 2004b] window concept. Queries
over RDF streams deal with triples in time-based window (all the triples which occur
during a given time interval) or element-based window (a given number of triples).

Most of the existing SPARQL extensions for streaming RDF streams take as
input a succession of RDF triples. This representation model allows widely contin-
uous process of streams but consumes only triples, ignoring the graph structure of
RDF data. In this case, each event is distributed into a set of triples. Considering
stream of successive triples, we can not capture boundaries on a set of triples within
different events. Therefore, this succession of triples which belongs to a same event
needs to be grouped into a single graph and annotated with the same timestamp.

4 Dia and al.

2.2 RDF streams: graph based

As preliminaries of our work, we consider an RDF graph stream format by extend-
ing the definition of RDF stream format for this purpose. Events within streams are
naturally captured by a set of triples with the same timestamp or not. Hence, a graph
represents those triples with the same source and unique timestamp.

An RDF graph may be constructed from one or a set of RDF triples or statements.
More formally, given a set of triples str, we define G〈str〉 as a directed labelled graph
where each vertex consists of triple’s subject (s) or object (o) and each edge consists
of triple’s predicate (p). The notion of connectivity in RDF graph definition is im-
portant for all triples which compute an event. In fact, triples within an event share
between each other a unique or multipath. A connectivity in RDF graph G〈str〉 is a
sequence of edges (predicates) p1, ..., pn such as ∀1≤ i < n, pi share a vertex (sub-
ject or object) with pi+1.

With the definition above, RDF graph stream can be simply defined as a sequence
of pair (G(str)i,τi), where G〈str〉i is an RDF graph represented as an event and τi is
the time when this event occurs.

(G〈str〉i,τi)
(G〈str〉i+1,τi+1)

...

Two graphs may share a same timestamp value, which means that their events oc-
curs at the same time. Highlight that two triples with the same timestamp are not
necessary within the same event. Fig. 1 shows an example of a flow of RDF graphs
from sensors deployed in a water distribution network. The data collected concern
the pressure, the flow rate, the chlorine content, the temperature, etc.

In particular, sampling RDF streams when events are decomposed into a list of
individual RDF triples may break semantic links between them in the sample. In that
case, samples may end up with meaningless data and queries over them only observe

Fig. 1: Example of graph streams from water distribution network

C-SPARQL extension for sampling RDF graphs streams 5

a partial RDF graph and obviously return false or incomplete results. Therefore, we
adopt a graph-oriented approach that ensures the preservation of data semantic (i.e.
meaning links between subjects and objects) after a sampling operation.

3 RDF stream processing systems

All proposed SPARQL extensions for stream processing share at the basis the same
issues in terms of heterogeneity (multiple data sources), and lack of explicit data
semantic allowing complex queries and reasoning over data. Several systems ex-
ist such as Streaming SPARQL, C-SPARQL, CQELS, SPARQLstream, EP-SPARQL
and Sparkwave. In this section, we give a brief state of the art of those SPARQL
extensions.

Streaming SPARQL [Bolles et al., 2008] extends SPARQL grammar with the
capability to explicitly state data streams and define physical or logical windows
over them. Authors modify the semantics of SPARQL by first adding the STREAM
keyword to allow as input a data stream identified by an IRI. Then, they consider
two window types. The time based window is defined with the RANGE (a defini-
tion of the window size), SLIDE (a delay after which window is moved) and FIXED
(in case which RANGE value equals SLIDE value). The element based window is
defined with ELEMS (a number of given elements) keyword. Authors focus only
on an extension to cope with window queries over data streams without taking into
account performance issues. Since they extend SPARQL 1.0 version, they therefore
do not support group by clauses and aggregation which are usually necessary in
streaming context. There is no proposed Streaming SPARQL system. The following
Streaming SPARQL query returns every minute, pressure values captured in the last
10 minutes.

SELECT ?WaterPressure
FROM STREAM <http://waterdist.org/sens> WINDOW RANGE 10 MINUTE

SLIDE
WHERE {?sensorID ex:hasPressure ?WaterPressure . }

Continuous SPARQL or shortly C-SPARQL [Barbieri et al., 2010] proposes
a continuous query syntax and a framework which reuses independently existing
and tested technologies such as data stream management systems like STREAM
[Arasu et al., 2004a] or ESPER1 and triple stores Jena2 or Sesame3. Authors also
propose their own operators for windowing (inspired from CQL, the query language
used in relational stream systems) and aggregation functions. C-SPARQL also al-
lows periodical query evaluation, temporal function and multiple streams. Authors

1 http://www.espertech.com/esper/
2 https://jena.apache.org/
3 http://rdf4j.org/sesame/

6 Dia and al.

first extends SPARQL 1.0 but switched to support SPARQL 1.1 in their latest ver-
sion to benefit from new functions like aggregation ones. The following C-SPARQL
query example returns every 10 minutes, the average pressure values captured in the
last hour.

REGISTER QUERY AverageWaterPressure AS
SELECT ?sensorID (AVG(?WaterPressure) as ?AvgWaterPressure)
FROM STREAM <http://waterdist.org/sens> [RANGE 1h STEP 10m]
WHERE {?sensorID ex:hasPressure ?WaterPressure . }
GROUP BY ?sensorID

Like C-SPARQL, CQELS [Le-Phuoc et al., 2011] language adds its own win-
dow operators analogous to CQL and allows possibilities to combine static and
streaming data processing. Unlike C-SPARQL, CQELS applies an eager execution
strategy which means that query evaluation is triggered by the arrival of new triples.
The system does not delegate stream evaluation to an external component (DSMS)
but defines its own native processing model, which is implemented internally in the
query engine. Author’s strategies allow full control over the execution plan conse-
quently, enabling query optimisations. The following CQELS query retrieves every
5 minutes, the minimal value of pressure captured in the latest hour.

SELECT ?sensorID (MIN(?WaterPressure) as ?MinWaterPressure)
FROM STREAM <http://waterdist.org/sens> [RANGE 1h SLIDE 5m]
WHERE {?sensorID ex:hasPressure ?WaterPressure . }
GROUP BY ?sensorID

SPARQLstream’s authors [Calbimonte et al., 2010] were at base inspired by C-
SPARQL systems. Similarly to it, SPARQLstream delegates the processing to exter-
nal engines. SPARQLstream also proposes its own stream and window operators and
aims more at enabling ontology-based access for semantic stream processing. The
proposed system (Morph-Stream) is based on the concept of virtual RDF streams
where each of them is identified by an IRI. SPARQLstream only considers time-based
window. SPARQLstream is the only proposed extension which supports all Relation-
to-Stream operators (Rstream, Istream and Dstream) inspired from CQL. The following
SPARQLstream query shows sensors list having observed, in the last hour, a temper-
ature value above 60◦C.

SELECT ?sensorID
FROM NAMED STREAM <http://waterdist.org/sens> [NOW-1 HOURS]
WHERE {?sensorID ex:hasTemperature ?temperature .

FILTER (?temperature > 60)}

EP-SPARQL [Anicic et al., 2011a] delegates the processing to an event process-
ing engine. Unlike the previous extensions which focus on windows and stream
registering, EP-SPARQL proposes an unified language for event processing. The
language follows the concept of Complex Event Processing (CEP) systems. For
expressing complex event of input data, EP-SPARQL mainly includes logical and

C-SPARQL extension for sampling RDF graphs streams 7

temporal operators expressed in terms of sequence and simultaneity. SEQ operator
specifies that two graphs patterns are joined if one occurs after the other. EQUALS
operator placed between two patterns, indicates that they are joined if they occur at
the same time. OPTIONALSEQ and EQUALSOPTIONAL represent respectively
optional version of SEQ and EQUALS operators. EP-SPARQL simulates window
operators by using filter operators to isolate portions of the input data streams. While
other systems use a single point in time approach to represent each pattern in the
stream, EP-SPARQL adopts an interval approach which represents the lower and
upper bound of the occurring interval. The system ETALIS [Anicic et al., 2011b] is
a complex event processing framework based on Prolog language. The following
EP-SPARQL query gives all pressure sensors whose measured values have dropped
by more than half and then have dropped by over a quarter in a period of 24 hours.

SELECT ?sensorID
WHERE { ?sensorID ex:hasPressure ?waterPressure1}

SEQ {?sensorID ex:hasPressure ?waterPressure2 }
SEQ {?company ex:hasPressure ?waterPressure3 }

FILTER (?waterPressure2 < ?waterPressure1/2 && ?waterPressure3 <
?waterPressure1/4 && getDURATION() < ”P24H”8sd:duration)

Sparkwave [Komazec et al., 2012] is a complex system which adopts graph
pattern detection on RDF data streams and supports temporal nature of RDF
streams. Sparkwave implements windowing mechanism based on Rete algorithm
[Rete, 1982] (with ε-network Pre-processing). Sparkwave supports time-based win-
dows but does not support temporal operators, arithmetic operators and logical op-
erators (disjunctions and negations). In fact, as mentioned above, Sparkwave only
supports graph pattern detection which constitutes a limit of the system.

Table 1: Comparison of SPARQL extensions for RDF stream processing

System DIFa TiWb TrWc U, J, O, Fd TFe A f S/Sg CQh

Streaming
SPARQL

RSi X X X × × × X (Pl)

C-SPARQL RS &S j X X X X X × X (Pl)
CQELS RS &S j X X X × X × X (Tm)
SPARQLstream (V)RSk X × X × X × X (Pl)
EP-SPARQL RS&S j × × X X X X X (Pl)
Sparkwave RS&S j X × X × × × X (Tm)
aData Input Format bTime Window cTriple Window
dUNION,JOIN,OPTIONAL,FILTER eTemporal Function f Aggregate
gSequence/Simultaneity hContinuous Query iRDF streams
jRDF stream & Statics kVirtual RDF Stream lPeriodic
mTrigger

8 Dia and al.

Table 1 briefly compares features and functionalities of SPARQL extensions for
stream processing. In general, they all have similar approaches for supporting tem-
poral and window process over streams. They also all extend SPARQL but have
small or important differences depending on the field of application.

Streaming SPARQL seems to be the most limited system in terms of opera-
tors. It lacks of group by and aggregation operators and does not support SPARQL
1.1. Moreover, the proposed system is still theoretical. C-SPARQL, CQELS and
SPARQLstream come with a SPARQL language extension and a query process-
ing engine. They are also based on SPARQL 1.1 and all support sliding windows.
Among these three engines, only SPARQLstream lacks of window based elements.
EP-SPARQL is different from the other proposed extensions as they adopt se-
quence (SEQ and OPTIONALSEQ) and simultaneity (EQUALS and EQUALSOP-
TIONAL) operators following Complex Event Processing (CEP) paradigm. Like
EP-SPARQL, Sparkwave focused on event processing. However, Sparkwave has no
SEQ or EQUALS operators but is only based on Rete algorithm for pattern match-
ing. Unlike the other systems, which only deal with algebraic optimisation, CQELS
and Sparkwave use native approach and then can bring adaptive optimisations. In
C-SPARQL and SPARQLstream, the data is stored in relational tables and relational
streams before any further processing. In our opinion, among all, C-SPARQL is
the only system that provides at the same time Union, Join, Optional and Filter op-
erators, logical and physical window, aggregation, continuous processing, multiple
streams sources, combining static and RDF stream evaluation, temporal function,
and is built on a modular architecture.

4 Sampling algorithms

RDF stream processing systems require rapid, continuous and intelligent data pro-
cessing. Given the volume and speed of data generation, it is necessary to extract
data samples from input streams. Several sampling techniques exist such as random
sampling, reservoir sampling, deterministic sampling and chain sampling.

4.1 Uniform random sampling without replacement

The simple random sampling [Cochran, 2007] may be with or without replacement.
It selects without replacement and with the same probability p a random sample of
size n from a set of indexes within a window W . The index of an element in W can
be selected only once.

This method is very basic and has the advantage of being simple and easy to
implement. However, this technique gives to all elements the same chance of being

C-SPARQL extension for sampling RDF graphs streams 9

included in the sample. This can be seen as a disadvantage because in a streaming
context we are often interested in recent data. In the sample constitution, we should
give a more chance for relatively recent data.

4.2 Reservoir sampling

The main idea of any type of reservoir sampling algorithm [Vitter, 1985] is main-
taining a random sample with a fixed size n into a “reservoir”. After each windowing
process over streams, a random sample of size n can be extracted. Initially, we put
the first n received items into the “reservoir” R. Then, each new item in the window
has the probability n

i to replace the item of index i in the reservoir R. This method
clearly favors old items (limi→∞

n
i = 0). Therefore, oldest items are more likely to

be included in the sample.

4.3 Chain sampling

[Babcock et al., 2002] described that the chain sampling technique consists in build-
ing a sample of size n over a sliding windows of size ω > n. For sliding windows,
chain sampling algorithm randomly generates replacements among expired items,
and stores the replacement. As shown in chain sampling algorithm, in the first win-
dow, we add i indexes in the sample with the probability p = min(ω,i)

ω
. The successor

index ri of index i is randomly chosen from the interval [i+ 1, i+ω] and replaces
it in the sample after its expiration (i out of the window). The successor of r is ran-
domly selected in the same manner in the interval [r+1,r+ω]. This process is thus
repeated independently. This method is particularly suitable for sliding windows

Algorithm Chain sampling algorithm
1: function CHAINSAMP(ω , p)
2: Repl ← ∅
3: S← put indexes (i) from the first window (with size ω) with probability Min(ω,i)

ω

4: for each index i in S do
5: Select a random successor ri with probability p between i+1 and j+ω

6: Repl ← ri
7: end for
8: while each new index is added do
9: i← i+1 //move window index by on step

10: Replace each expired index j in S by its successor r j in R without redondancy
11: Choose a random successor for r j between r j +1 and r j +ω without redondancy
12: end while
13: end function
14: Return S

10 Dia and al.

but has a significant memory usage due to the non-redundant selection criterion for
successors.

5 Our C-SPARQL extension

C-SPARQL system [Barbieri et al., 2010] provides a modular architecture for pro-
cessing C-SPARQL queries over RDF streams. This architecture is composed of two
parts: a data stream management system like STREAM or Esper and a SPARQL en-
gine module like Jena or Sesame.

This architecture uses STREAM or Esper as RDF streams manager module and
Jena or Sesame as SPARQL engine module.

Fig. 2: C-SPARQL architecture Fig. 3: C-SPARQL extended architecture

Fig. 2 presents the C-SPARQL architecture. The Query Translator module con-
figures, initializes and dispatches continuous and static parts of a C-SPARQL query.
This dispatching task processes a correct C-SPARQL query and creates two (2) in-
stances:

1. ContinuousEngine consists of a DSMS (Esper in the last version) that processes
on the fly RDF triples and applies the concept of window over them through a
CQL query. This module outputs a set of quadruplets (sub ject, predicate, ob ject,
timestamp) intended to the SPARQL engine SparqlEngine.

2. SparqlEngine is the “semantic” component in this all architecture. Its main task
is running SPARQL deduced from the C-SPARQL one, each time the Continu-
ousEngine produces quadruples.

The main contribution of our work is the extension of the C- SPARQL syntax and
architecture level for continuous sampling of RDF graphs. To reduce the load of data
streams to process and store only a sample for potential analysis or reasoning, our
implementation includes three (3) main steps:

C-SPARQL extension for sampling RDF graphs streams 11

1. Considering input graphs data streams instead of an ordered sequence of RDF
triples for semantic preservation

2. Adding three (3) sampling operators within C-SPARQL query syntax
3. Implementing continuous sampling methods within Esper.

5.1 Sampling operators

As shown below, we extend the C-SPARQL query syntax by adding new operators
in FROM STREAM (stream sources) and FROM (static sources) clauses.

1. ∗PREFIX pre f ixName : < IRI >
2. SELECT ′?variables′

3. ∗FROM STREAM < StreamIRI > [Window] [SAMPLING Token]
4. ∗FROM < StaticIRI > [SAMPLING Token]
5. WHERE { ′Mapping variables′ ; |.
6. ∗FILT ER (′condition′)}
7. GROUP BY ′?variables′|expression
8. HAVING ′aggregation condition′

9. ORDER BY ′?variables′

SAMPLING→UNIFORM | RESERVOIR |CHAIN
Token→ [Window] %P|Size

[Window]→ ′chain window size′

%P→ ′sampling percentage′

Size→ ′reservoir size′

The extended syntax contains new operators for sampling methods continuously
applied over input RDF graph streams and statics (RDF repositories). The following
query randomly samples input graphs and provides every minute, all sensors whose
sensed pressure value exceeds 27 (unit of measure) in the last 10 minutes.

REGISTER QUERY exceedsPressures AS
SELECT ?sensorID ?WaterPressure
FROM STREAM <http://waterdist.org/sens> [RANGE 10m STEP 1m]

[UNIFORM %60]
FROM <http://waterdistrib.org/staticdata.rdf>
WHERE {?sensorID ex:hasPressure ?WaterPressure .

FILTER (?WaterPressure > 27)
}

5.2 Architecture extension

Our approach is based on the implementation of sampling methods within Esper.
Fig. 3 shows our proposed extension of C-SPARQL architecture where its tradi-
tional modules remain independent plugins. We extend the three (3) modules Query
Translator, ContinuousEngine and SparqlEngine.

12 Dia and al.

1. In QueryTranslator, we parse the received request by first checking sampling
operators contained in FROM and FROM ST REAM lines. If the request does
not include a sampling operator, input RDF streams are processed continuously
without any sampling phase. If not, after validation we create two (2) instances
both ContinuousSampQuery and SparqlSampQuery that will be processed re-
spectively by ContinuousEngine and SparqlEngine.

2. ContinuousEngine module receives a continuous query with associated sam-
pling operators. Each sampling method is continuously applied on a window of
input graph streams (WindowSampling). We then process the CQL part of C-
SPARQL query on graphs within our buffered sample according to Esper syntax.
Results are transmitted to the third module SPARQLEngine.

3. SPARQLEngine module also receives graphs from sampled static RDF reposi-
tory (SampStaticRDF). It runs, in last step, the SPARQL query over continuous
and static graphs already sampled.

6 Evaluation

This section evaluates the quality and relevance of our extension. To do this, we
focus on performance achieved in terms of execution time and preserving data se-
mantics. As a case study, we consider a set of data from sensors deployed in a large
water distribution network. Data observed can be pressure, flow, chlorine or tem-
perature. The management of water distribution network needs capabilities for real
time processing and reasoning over streams in order to rapidly detect anomalies like
water leaks. We consider the treatment of 80000 graphs, where each graph contains
10 triples. This set of data is sent in form of graphs and triples streams respectively
at rates of 500 graphs/second and 5000 triples/second. Experiments in this section
are performed on a computer with a processor at 2.66GHz, Core 2 Duo and 4 GB of
RAM.

For performance evaluation of query execution time, we consider the simple
query given below. The aim of the query is to return the average pressure values
captured by each sensor. The query is performed over 1000 sampled graphs with
respectively UNIFORM, RESERVOIR and CHAIN operators.

REGISTER QUERY AvgWaterPressure AS
PREFIX ex: <http://waterdist.org/>
SELECT ?sensorID (AVG(?pressureValue) AS ?AvgPressure)
FROM STREAM <http://waterdist.org/stream> [RANGE TRIPLES 1000]

[SAMPLING [window] percent|size]
WHERE {?sensorID ex:hasPressure ?pressureValue . }
GROUP BY ?sensorID

For sampling operators (UNIFORM) and (RESERVOIR) we observe in Fig. 4 and
5, the evolution of the query processing time by respectively varying the sampling
percentage (percent) and the reservoir size (size). Finally, with CHAIN operator we

C-SPARQL extension for sampling RDF graphs streams 13

evaluate in Fig. 6, the query execution time under two conditions: varying sampling
percentage and Chain window size (Window).

Fig. 4: Uniform. Fig. 5: Reservoir. Fig. 6: Chain.

With uniform random sampling without replacement (Fig. 4), the execution time
increases depending on the sampling percentage. We also note a similar trend with
reservoir sampling (Fig. 5) depending on reservoir size kept fixed in memory. The
evolution of the execution time with chain sampling (Fig. 6) depends on the window
size and the ratio. Whatever the sampling percentage, query execution time follows
a growing trend. This can be explained by the selection of a random successor items
without redundancy. Thus, observations confirm performances gained in reducing
on the fly the load from input streams.

For the evaluation of the semantic links preservation between data in sample, we
consider the following query:

REGISTER QUERY sourceSensorID AS
PREFIX ex: <http://waterdist.org/>
SELECT ?sensorID ?pressureValue
FROM STREAM <http://waterdist.org/stream> [RANGE TRIPLES 10]

[SAMPlING [window] percent|size]
WHERE { ?sensorID ex:hasPressure ?pressureMnemonic .

OPTIONAL{ ?pressureMnemonic ex:value ?pressureValue .} }
ORDER BY ?sensorID

We first execute this query continuously, in base scenario (without any sampling
operation), and then with triple-oriented sampling and finally with graph-oriented
sampling. The request selects for the last 10 graphs or triples observed in sample,
the sensor ID and its corresponding pressure value. In the graph, the sensor identifier
is connected to its captured pressure value through an another node. We compute
for each sampling method (triple-based and graph-based), the number of correct and
complete results (e.g sensor ID and corresponding pressure value). We subsequently
calculate the loss rate in both cases (triple-oriented and graph-oriented) using the
following formula:

Loss rate (%)= NbrNS - NbrWS
NbrNS ∗100, where

14 Dia and al.

NbrNS = Number of correct and complete results in base scenario
NbrWS = Number of correct and complete results with sampling.

Table 2 shows the loss rates calculated by varying sampling parameters of uni-
form and reservoir methods. The number of correct and complete results in base
scenario is NbrNS=10625. With graph-oriented sampling, we observe a lower than

Table 2: Loss rate between triple-oriented and graph-oriented sampling

Operator Triple oriented sampling Graph oriented sampling
Correct and

complete results Loss rate (%) Correct and
complete results Loss rate (%)

UNIFORM
P = 20% 19 99.82 2108 80.16
P = 40% 73 99.31 3614 65.98
P = 80% 181 98.2 7137 32.82

RESERVOIR
Size = 2 24 99.77 2117 80.07
Size = 4 144 98.64 4210 60.37
Size = 8 522 95.08 7240 31.85

loss rate with triple-oriented. Indeed, this can be explained by random sampling in
the case of the triple-oriented where the triple containing a sensor identifier and the
one containing its corresponding pressure value might not be both in the sample.
In comparison, graph-oriented sampling maintains semantic links ensuring that sen-
sors are always associated with their corresponding pressure values in the sample.

7 Conclusion and future works

Massive data stream management is a permanent industrial concern and a scientific
challenge. The application of semantic web technologies for data stream remains
troubled by the current volumes and rapid generation of streams. In this paper, we
took advantages of existing sampling techniques and proposed an extension of the
C-SPARQL system for real-time sampling of RDF graph streams. The oriented-
graph approach allowed us to preserve semantic links within samples and thereby
improved its representativeness. We implemented three sampling operators with dif-
ferent performances observed in terms of execution time.

We are interested in our future work into sampling on the fly over RDF streams
using methods based on biased algorithm by associating different weights to the
semantic stream items. We will also take into account specificities and background
(context-based) to produce suitable samples, in a distributed environment.

C-SPARQL extension for sampling RDF graphs streams 15

Acknowledgment

This work was performed under the FUI Waves project. This project aims to design
and develop a distributed processing platform of massive data streams. The case
study concerns the real-time monitoring of a drinking water distribution network.

References

[Anicic et al., 2011a] Anicic, D., Fodor, P., Rudolph, S., and Stojanovic, N. (2011a). Ep-sparql: a
unified language for event processing and stream reasoning. In Proceedings of the 20th interna-
tional conference on World wide web, pages 635–644. ACM.

[Anicic et al., 2011b] Anicic, D., Fodor, P., Rudolph, S., Stuhmer, R., Stojanovic, N., and Studer,
R. (2011b). Etalis: Rule-based reasoning in event processing. Reasoning in Event-Based Dis-
tributed Systems, 347:99.

[Arasu et al., 2004a] Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani,
R., Srivastava, U., and Widom, J. (2004a). Stream: The stanford data stream management system.
Book chapter.

[Arasu et al., 2004b] Arasu, A., Babu, S., and Widom, J. (2004b). Cql: A language for continuous
queries over streams and relations. In Database Programming Languages, pages 1–19. Springer.

[Babcock et al., 2002] Babcock, B., Datar, M., and Motwani, R. (2002). Sampling from a moving
window over streaming data. In Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 633–634. Society for Industrial and Applied Mathematics.

[Barbieri et al., 2010] Barbieri, D. F., Braga, D., Ceri, S., and Grossniklaus, M. (2010). An exe-
cution environment for c-sparql queries. In Proceedings of the 13th International Conference on
Extending Database Technology, pages 441–452. ACM.

[Bolles et al., 2008] Bolles, A., Grawunder, M., and Jacobi, J. (2008). Streaming sparql-extending
sparql to process data streams. The Semantic Web: Research and Applications, pages 448–462.

[Calbimonte et al., 2010] Calbimonte, J.-P., Corcho, O., and Gray, A. J. (2010). Enabling
ontology-based access to streaming data sources. In The Semantic Web–ISWC 2010, pages 96–
111. Springer.

[Cao et al., 2012] Cao, J., Zhang, W., and Tan, W. (2012). Dynamic control of data streaming
and processing in a virtualized environment. IEEE Transactions on Automation Science and
Engineering, 9(2):365–376.

[Cochran, 2007] Cochran, W. G. (2007). Sampling techniques. John Wiley & Sons.
[Komazec et al., 2012] Komazec, S., Cerri, D., and Fensel, D. (2012). Sparkwave: continuous

schema-enhanced pattern matching over rdf data streams. In Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-Based Systems, pages 58–68.

[Le-Phuoc et al., 2011] Le-Phuoc, D., Dao-Tran, M., Parreira, J. X., and Hauswirth, M. (2011). A
native and adaptive approach for unified processing of linked streams and linked data. In The
Semantic Web–ISWC 2011, pages 370–388. Springer.

[Rete, 1982] Rete, C. (1982). A fast algorithm for the many pattern/many object pattern matching
problem. Artificial Intelligence, 19:17–37.

[Vijayakumar et al., 2010] Vijayakumar, S., Zhu, Q., and Agrawal, G. (2010). Dynamic resource
provisioning for data streaming applications in a cloud environment. In Cloud Computing Tech-
nology and Science (CloudCom), 2010 IEEE Second International Conference on, pages 441–
448. IEEE.

[Vitter, 1985] Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), 11(1):37–57.

