
HAL Id: hal-01664207
https://hal.archives-ouvertes.fr/hal-01664207

Submitted on 23 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Data Layouts for a Three-Dimensional
Electrostatic Particle-in-Cell Code

Yann Barsamian, Sever Adrian Hirstoaga, Eric Violard

To cite this version:
Yann Barsamian, Sever Adrian Hirstoaga, Eric Violard. Efficient Data Layouts for a Three-
Dimensional Electrostatic Particle-in-Cell Code. Journal of computational science, Elsevier, 2018,
27, pp.345–356. �10.1016/j.jocs.2018.06.004�. �hal-01664207�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/145161045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01664207
https://hal.archives-ouvertes.fr

Efficient Data Layouts for a Three-Dimensional
Electrostatic Particle-in-Cell Code

Yann Barsamiana,b,∗, Sever A. Hirstoagab,c, Éric Violarda,b

aUniversité de Strasbourg, CNRS, ICube UMR 7357, F-67412 Illkirch, France
bInria Nancy - Grand Est, F-54600 Villers-lès-Nancy, France

cUniversité de Strasbourg, CNRS, IRMA UMR 7501, F-67084 Strasbourg, France

Abstract

The Particle-in-Cell (PIC) method is a widely used tool in plasma physics.

To accurately solve realistic problems, the method requires to use trillions of

particles and therefore, there is a strong demand for high performance code

on modern architectures. The present work describes performance results of

Pic-Vert, a hybrid OpenMP/MPI and vectorized three-dimensional electro-

static PIC code.

The code simulates 3d3v Vlasov-Poisson systems on Cartesian grids with

periodic boundary conditions. Overall, it processes 590 million particles/second

on a 24-core Intel Skylake architecture, without hyper-threading (25 million

particles per second per core).

The paper presents extensions in 3d of our preliminary 2d results [1], with

highlights on the difficulties and solutions proposed for these extensions. Specif-

ically, our main contributions consist in proposing a new space-filling curve in

3d (called L6D) to improve the cache reuse and an adapted loop transformation

(strip-mining) to achieve efficient vectorization. The analysis of these optimiza-

tion strategies is performed in two-stages, first on a 24-core socket and second on

a super-computer, from 1 to 3,072 cores, demonstrating significant performance

gains and very satisfactory weak scaling results of the code.

∗Corresponding author
Email addresses: ybarsamian@unistra.fr (Yann Barsamian),

sever.hirstoaga@inria.fr (Sever A. Hirstoaga), violard@unistra.fr (Éric Violard)

May 23, 2018

Keywords: data structures, space-filling curves, SIMD architecture, hybrid

parallelism, strong and weak scaling, three-dimensional Particle-in-Cell

simulation, plasma physics

1. Introduction

Implementing a Particle-in-Cell (PIC) method is an important step of many

applications in the field of computational science. Although particle methods

are usually characterized by low accuracy, they are able, when using a very

large number of particles, to adequately reproduce complicated phenomena,

for instance in plasma physics [2, 3]. However, in such a situation, a naive

implementation can quickly exhibit memory bottlenecks since the overall cost

is dominated by data motion and not by computation [4].

Therefore, a lot of research efforts were recently devoted towards more

adapted PIC implementations that utilize efficiently modern super-computing

resources [4, 5, 6, 7, 8, 9]. Despite these significant advances, targeting realistic

applications in plasma physics is still challenging, due to the complex multi-scale

six-dimensional problems to be solved in the phase space. In this direction, our

objective is to develop a massively parallel and highly scalable PIC code, in

view of physically meaningful realistic simulations.

First steps were achieved in [10, 1] where we built a hybrid parallel and vec-

torized PIC code for a Vlasov-Poisson model in a two-dimensional (2d) physical

space. Several data structures for particles and for grid quantities were analyzed

in order to enhance data locality and to reduce the execution time with respect

to a classic code. More precisely, we showed in [1] that a structure of arrays

and a L4D space-filling curve lead to an efficient ordering of the particles and

of the electric field and the charge density, respectively. In addition, the perfor-

mance of parallelization of the loops through distributed and shared memory

paradigms was assessed in tandem with the memory channels.

In the present contribution we extend to three-dimensions (3d) for the phys-

ical space the PIC code in [1] for simulating electrostatic plasma. Even though

2

reduced 2d models are used in the literature to gain insights about the main

behavior of the plasma, full 3d simulations clearly improve the realism of the

physical description. Moreover, in some situations, reducing the dimensionality

is not even possible and thus a 3d simulation is unavoidable. However, with the

aim of keeping a satisfactory accuracy of the computed solutions in this case, we

need to consider the significant increase in the amount of data to be processed.

A first obvious difficulty of the extension from 2d to 3d simulations is the

need for more storage for the grid quantities [2, 3]. If, in a 2d simulation, keep-

ing the whole grid quantities in the cache memory is still possible, this target

is much more difficult or even impossible to achieve for a fine grid in the 3d

case. Secondly, a 3d simulation requires more data traffic and computations.

Specifically, passing from 4 grid points to 8 points for the interpolation and

accumulation steps (when using a linear approach) becomes more difficult to

handle, both for the data flow and for the vectorization. In addition, the dif-

ficulty increases significantly if higher order approximations within these steps

are in use. The same challenges need to be addressed when vectorization is used

for the updating positions step.

The paper is organized as follows: in Section 2 we present the basic kinetic

model for the plasma, we detail the steps of the PIC implementation, introduce

the related work and explain our contributions. In Section 3 we detail the code

optimizations and we present the performance results on 24 cores with OpenMP

only. In Section 4 we show the scalability of the code on up to 3,072 cores of

the supercomputer Marconi. Section 5 summarizes the work and presents some

future directions.

2. PIC overview for the 3d Vlasov-Poisson model

2.1. Description of the problem

A PIC method simulates a plasma by integrating self-consistently the tra-

jectories of charged particles with fields that are generated by the particles

themselves [2, 3]. In the case where there is no other external field and the

3

Parameters

N : number of particles.

ncx× ncy × ncz: number of grid cells.

∆t: time step.

f0: initial distribution function.

q and m: particle charge and mass.

Variables

particles[N]: set of particles, with

position xp and velocity vp.

ρ[ncx][ncy][ncz]: charge density.

E[ncx][ncy][ncz]: electric field.

Algorithm

1 Randomly initialize N particles following f0

2 Compute initial ρ and E

3 Foreach time step Leap-frog

4 If (condition), then

5 Sort the particles

6 Set all cells of ρ to 0

7 Foreach particle

8 Interpolate E to xp Stored in Ep

9 Update vp vp += q
m

∆tEp

10 Update xp xp +=∆tvp

11 Accumulate charge from xp on ρ

12 Compute E from ρ Poisson solver

Figure 1: High-level description of the Particle-in-Cell (PIC) method.

self-consistent magnetic field is neglected, this relies on solving the following

Vlasov-Poisson system:

∂tf + v · ∇xf +
q

m
E · ∇vf = 0 Vlasov

f(x,v, 0) = f0

−∆φ =
ρ

ε0
Poisson

where

ρ(x, t) = q

∫
f(x,v, t)dv and E(x, t) = −∇φ(x, t).

In the system above, f = f(x,v, t) stands for the distribution of one species of

particles (with charge q and mass m) in a six-dimensional phase space (three

dimensions for positions and three dimensions for velocities), ρ stands for the

charge density, and E for the self-consistent electric field. A PIC method consists

in discretizing (sampling) the distribution function by a collection of macro-

particles that move in the phase space following the characteristics of the Vlasov

equation. Then, a PIC simulation follows four steps: accumulate on the spatial

grid the particle charge, solve the Poisson equation to obtain the grid electric

4

field, interpolate this field to the particles, and finally push in time the particle

positions and velocities.

In our PIC code, the particle positions and velocities are initialized ran-

domly using the WELL generator [11]. The particles all have the same fixed

weight. They are advanced in time with a leap-frog time stepping [2, Sec-

tion 2.4] (second-order in time). The electric field is computed by solving the

Poisson equation on a uniform Cartesian grid, by a Fourier method. Then, for

the particle and force weighting we use the Cloud-in-Cell model [12] (first-order

in space), meaning that eight neighboring grid points are used in the interpo-

lation/accumulation steps for a particle in that cell. The PIC pseudo-code is

detailed in Fig. 1.

Next we describe the two basic types of data on which the sequential imple-

mentation of the code is based.

2.2. Particle Data Structure

A particle is given by its position and velocity. While the velocity is classi-

cally represented by three real numbers, the position is identified in the present

work with a single cell index icell and three normalized offsets within this

cell. The advantages of this representation are exposed in [4, Section III-

E]. In addition to the parameters explained in Fig. 1, we denote the physi-

cal space by [xmin;xmax)× [ymin; ymax)× [zmin; zmax), and the grid spacing by

∆x = (xmax−xmin)/ncx, ∆y = (ymax−ymin)/ncy and ∆z = (zmax−zmin)/ncz.

Thus, a particle positioned at (xphysical, yphysical, zphysical) is mapped on the grid

at the position (x, y, z) ∈ [0;ncx)× [0;ncy)× [0;ncz), where

x =
xphysical − xmin

∆x
, y =

yphysical − ymin
∆y

and z =
zphysical − zmin

∆z
.

Then, we consider the integers

ix = floor(x), iy = floor(y) and iz = floor(z), (1)

and the normalized offsets (which are real numbers in [0; 1))

dx = x− ix, dy = y − iy and dz = z − iz. (2)

5

The cell index icell is a number in {0, 1, . . . , ncx · ncy · ncz − 1}, taken as the

image of some one-to-one mapping depending on (ix, iy, iz). For example, the

row-major mapping

(ix, iy, iz) 7→ icell = (ix · ncy + iy) · ncz + iz

icell 7→

ix =

⌊
icell

ncz·ncy

⌋
iy = mod

(⌊
icell
ncz

⌋
, ncy

)
iz = mod(icell, ncz)

(3)

is commonly used in C. However, several bijection mappings will be analyzed in

the following sections with the aim of improving the cache reuse.

Finally, a particle is stored in memory with 1 int (icell), 3 floats (dx, dy and

dz) and 3 doubles (vx, vy and vz). In our code, these 7 attributes are stored in

a Structure of Arrays (SoA), to enable efficient vectorization. In this framework,

the update particle position step (line 10 in Fig. 1) can be accomplished in the

following four sub-steps:

Update positions

1 Compute (ix, iy, iz) from icell.

2 Update (x, y, z) using formula (2) and line 10 in Fig. 1.

3 Compute the new values of (ix, dx, iy, dy, iz, dz) using

formulas (1) and (2).

4 Compute icell from (ix, iy, iz).

The reason behind this approach stems from the fact that on modern architec-

tures, it might be faster to make rapid computations than to store numbers. In

this case, we clearly need fast algorithms for computing the bijection functions

in sub-steps 1 and 4 above. For example, the bijection mapping in (3) can be

computed very fast in both directions, which is not the case for all the mappings

analyzed in this paper. In Section 3.2 we show for some bijection mappings that

computing them is faster than storing the integers (ix, iy, iz) in addition to icell.

2.3. E and ρ Data Structure

The standard 3d representation of the electric field E and of the charge

density ρ stores their values at the grid points:

6

double Ex[ncx][ncy][ncz], Ey[ncx][ncy][ncz], Ez[ncx][ncy][ncz];

double rho[ncx][ncy][ncz];

In this case, the interpolation of the 3d arrays Ex, Ey and Ez requires access

to memory locations that are not contiguous. A solution to partially overcome

this problem consists in storing components of the field in only one array [5,

Section IV, Case 3]:

double Exyz[ncx][ncy][ncz][3];

Unfortunately, this data structure still leads to non-contiguous accesses. This

problem is solved by using a redundant one-dimensional array of coefficients

[13, 10]:

double E_1d[ncx*ncy*ncz][24];

double rho_1d[ncx*ncy*ncz][8];

The redundant array E 1d stores for each cell the values of each of the three

field arrays at the grid points on the eight corners of the cell, contiguously in

memory. The array rho 1d similarly stores for each cell the values of the charge

density on the corners of that cell. They take eight times more memory than

the standard layout, but it has been shown that, for the charge density, it is

more efficient because it opens the possibility to vectorize the accumulation

step (line 11 in Fig. 1) [6, Section 4.1.2.]. We show in the sequel how to gain

performance through cache hit improvements, both for E and ρ.

2.4. Related Work

In order to scan E and ρ as locally as possible, the particles are sorted by cell

index periodically in time (the step in lines 4–5 in Fig. 1) [5, Section VI]. The

cost of this step is made linear in N by using the counting sort [14, Section 8.2],

since the number of cells is much smaller than the number of particles.

Space-filling curves can be used to enhance cache performances. Precise re-

sults were shown on applications with regular memory accesses such as linear

7

algebra [15], or with irregular accesses such as the n-body problem [16]. Nev-

ertheless, none of these results can directly apply to a PIC code, which has

irregular accesses over the arrays E and ρ and not the particle array itself, as

in the n-body problem. In the previous contribution [1] we showed how space-

filling curves can enhance the performance of a 2d PIC code. The present study

is an extension to 3d of this work.

The space-filling curves are also of interest in particle codes at the inter-

process level, to achieve load balancing when using domain decomposition [7]

or to minimize communication between processes [17].

A rather popular technique on modern PIC codes is to organize the par-

ticles by so-called super-cells, e.g. PIConGPU [18], UPIC [8], ORB5 [9], PI-

CADOR [19], PICSAR [6]. The L6D space-filling curve we propose can be seen

as a technique leading to a similar organization of the particles: particles are

kept together in memory also in a block-like fashion, cf. Fig. 6; nevertheless we

do not apply a reordering at each time step, and when we reorder, we perform

this operation by cell and not by super-cell.

2.5. Contributions

The main contributions of this paper are focused on the efficiency of a 3d

PIC code on a multicore architecture. We also present results in the 2d setting

that underline the difficulties when passing from 2d to 3d. Since it is well-known

that PIC codes are memory-bound, in this article we propose two directions to

reach memory efficiency:

? Our previous work in 2d [1] showed that space-filling curves can optimize

the cache performance. We design a new space-filling curve, the L6D, and

we demonstrate that we achieved this aim in 3d by comparison with classic

curves. In addition, we illustrate its efficiency by showing snapshots of real

simulations in a two-dimensional setting.

? We use a loop optimization, namely the strip-mining, in order to be able

to vectorize the code and reduce memory transfers in 2d and 3d. By

8

studying the memory bandwidth of our code from 1 to 24 cores, we provide

an argument for the necessity of the strip-mining strategy. Moreover, we

report the different outcomes of this loop optimization when going from

2d to 3d and thus, how to adapt this approach to the 3d case in order to

achieve performance.

3. Single Socket Optimizations

In this section we describe different strategies to gain performance in 3d

simulations on a single socket of 24 cores. The present study stems from [1,

Section IV] where we performed a similar analysis on a single core. Our new

approach is motivated by the differences between the optimization strategies

on single core and on shared-memory multiple cores, due to the different ra-

tios between computational performance and memory bandwidth of the two

configurations.

Note that in many cases, 3d simulations benefit from the same optimiza-

tions as 2d simulations [1]. However, we discuss in the sequel an additional

optimization that behaves differently in 2d and in 3d.

All the simulations in this paper were conducted on the Marconi supercom-

puter, on which we were granted the use of 64 nodes with 2 sockets each. Each

socket is an Intel Xeon Platinum 8160 @ 2.1 GHz (Skylake), with 96 GB of

RAM, 6 memory channels, and 24 cores. Our C code was compiled using Intel

C Compiler 17.0.4, using the FFTW3 library [20] for the Poisson solver. The

update-positions and accumulate loops are vectorized thanks to OpenMP 4.0

#pragma omp simd.

The results shown in this section were all obtained with the test case pre-

sented in Table 1. In addition, we also simulated nonlinear Landau damping

and two-stream instability test cases. Theoretical results which allow to verify

the code are available in [2, 3]. Thus, we checked the numerical conservation of

the total energy and the numerical evolution in time of the electric field.

9

Table 1: Test case for OpenMP optimizations.

Physical test case Linear Landau damping [2, 5.15], initial distribution(
1 + 0.01 cos

(
x
2

)
cos
(
y
2

)
cos
(
z
2

))
1

(2π)3/2
exp

(
− |v|

2

2

)
Spatial grid [0; 4π)3 decomposed in 643 cells, periodic boundaries

Number of particles 1 billion

Number of iterations 100 (sorting every 10 iterations)

Time step 0.05

Particle crossing: av-

eraged, per iteration

49.4% of the particles move 1 cell away,

0.00150% of the particles move 2 cells away

Architecture 24 cores on Intel Skylake

3.1. Loop fission [21, Section 9.3]

The first optimization we implemented is the loop fission. More precisely,

the loop “Foreach particle” in Fig. 1 is broken into three parts: one loop to

interpolate E and to update velocities, one to update positions, and one loop to

accumulate the charge. There are two main reasons to use three loops instead of

one: (a) we can efficiently vectorize the update-positions as a stand-alone loop

and (b) a separate processing of the arrays of E and ρ in different loops leads

to a better overall memory management.

This transformation leads to the pseudo-code shown in Fig. 2, and speeds

up the code by 8.9%. Starting from now, we call “update-velocities loop” the

loop which contains both the interpolation and the velocity update.

3.2. Data Structure and Data Layout for E and ρ

3.2.1. Introduction

The aim of this section is two-fold: (i) first, we compare the relative perfor-

mance of the standard 3d data structure for the electric field E to the redundant

one and (ii) second, we assess the impact of different ordering strategies on both

the electric field E and the charge density ρ. In the sequel, we suppose that

ρ is always stored using the redundant data structure that has been shown to

10

1 Foreach particle in particles, Update-velocities loop

2 Interpolate E to particle

3 Update the velocity

4 Foreach particle in particles, Update-positions loop

5 Update the position

6 Foreach particle in particles, Accumulate loop

7 Accumulate particle charge to ρ

Figure 2: Particle-in-Cell pseudo-code with loop fission.

be effective when using SIMD architectures since it enables vectorization of the

accumulate loop [6, Section 4.1.2.].

In PIC codes memory accesses are a well-known major bottleneck. Each

time that the code accesses a cell of E or ρ, a contiguous portion of the array

is loaded into the cache: ideally, all the computations using these data cells

should be performed while the information is still there, avoiding to reload

them later from the main memory. In this respect, the contribution we describe

in this section shows that using different memory layouts for the redundant data

structure decreases the number of cache misses.

It should be noted that a periodic sorting of the particles needs to be ap-

plied to improve data locality, since particles are moving at each iteration. In

this manner, two particles contiguous in memory are in the same grid cell and

thus, they access the same E (resp. ρ) cell during the interpolation (resp. ac-

cumulation). Nevertheless, sorting at every iteration would be computationally

expensive and therefore we have to find a memory layout of the cells such that

the cache benefits from the sorting last as long as possible. More precisely, with

the previous notations, we aim at constructing a mapping (ix, iy, iz) 7→ icell such

that, when a particle moves from a cell to another, the probability that its new

cell-index icell is close to the old one should be high.

We remark that the mapping of the row-major ordering in equation (3) has

advantageous data locality when a particle moves along the z-axis: if iz increases

11

by one, the new cell-index also increases by one (except for particles on the top

face of the grid), becoming exactly the index accessed by the following particles

in the particle array. However, when a particle moves along the other axes,

this favorable behavior is lost: if iy (resp. ix) increases by one, the cell-index

changes by ncz (resp. ncy · ncz) which implies cache misses for the values of E

and ρ.

Four different strategies for ordering the cells have been tested. They are

listed below from the least to the most computational-intensive, in terms of the

computation of the mapping (ix, iy, iz) 7→ icell:

(i) Scan-order (or row-major order): the canonical C memory layout.

(ii) L6D-order, cf. Fig. 6, which is an extension of the L4D-order, cf. [15,

Section 2.1.] and Fig. 5. In this work, we present new algorithms to

efficiently convert from and to these orderings (both in 2d and in 3d).

(iii) Morton-order (N-order) or Lebesgue-order (Z-order), cf. [22] and Fig. 3.

Algorithms to convert from and to this ordering can be found in [23].

(iv) Hilbert-order, cf. [24] and Fig. 4. Algorithms to convert from and to this

ordering can be found in [25].

ix

iy

Figure 3: Morton layout of a 16 x 16 matrix.

ix

iy

Figure 4: Hilbert layout of a 16 x 16 matrix.

12

1 for (i = 0; i < NB_PARTICLE; i++) {

2 x = i_x_from(i_cell[i]) + dx[i] + vx[i] * delta_t / delta_x;

3 y = i_y_from(i_cell[i]) + dy[i] + vy[i] * delta_t / delta_y;

4 z = i_y_from(i_cell[i]) + dz[i] + vz[i] * delta_t / delta_z;

5 i_x = (int)x - (x < 0.); // floor(x)

6 i_y = (int)y - (y < 0.); // floor(y)

7 i_z = (int)z - (z < 0.); // floor(z)

8 dx[i] = (float)(x - i_x);

9 dy[i] = (float)(y - i_y);

10 dz[i] = (float)(z - i_z);

11 i_cell[i] = i_cell_from((i_x + ncx) % ncx,

12 (i_y + ncy) % ncy,

13 (i_z + ncz) % ncz);

14 }

Listing 1: Sample C code for the update-positions loop. We have to add the grid sizes before

applying the % operator because indices might become negative.

3.2.2. Bijection Algorithms

The aim of this section is to detail the formulas and their implementation

needed for the application of space-filling curves in a PIC code. When using the

cell index plus offset representation for the particles, the update-positions loop

can be written as in Listing 1.

Explanations of the correctness of this loop, together with a way of removing

the * delta_t / delta_{x,y,z} computations (lines 2–4) can be found in [1].

Below, we only focus on the i_{x,y,z}_from and i_cell_from functions.

In 2d, the mentioned functions are given in Listing 2 and are defined by

(ix; iy) 7→ icell = ncx · SIZE · biy/SIZEc+ SIZE · ix + mod(iy,SIZE)

icell 7→

 ix = bmod(icell, ncx · SIZE)/SIZEc

iy = mod(icell,SIZE) + SIZE · bicell/(ncx · SIZE)c .

(4)

They can be set as macros or inline functions. In our code, the constant pa-

rameters are part of the macro arguments; they are here omitted to present a

shorter code, as it will not affect performance. First, the tile size is given, as

global parameter (line 1). Then, depending on the size of the grid, we have a

constant which should be set at the beginning of the simulation (line 3): the

13

ix

iy

Figure 5: L4D layout of a 16 x 16 matrix,

TILE SIZE=4.

x y

z

Figure 6: L6D layout of a 16 x 16 x 16 matrix,

TILE SIZE=4.

1 #define TILE_SIZE 8 // Depends on architecture.

2

3 int num_cells_per_column = ncx * TILE_SIZE;

4

5 #define i_cell_from(i_x, i_y) (TILE_SIZE * (i_x) + \

6 ((i_y) % TILE_SIZE) + num_cells_per_column * ((i_y) / TILE_SIZE))

7 #define i_x_from(i_cell) \

8 (((i_cell) % num_cells_per_column) / TILE_SIZE)

9 #define i_y_from(i_cell) (((i_cell) % TILE_SIZE) + \

10 TILE_SIZE * ((i_cell) / num_cells_per_column))

Listing 2: Efficient C code for L4D bijection functions.

number of cells per column gives the number of cells that are in a full column

of width TILE_SIZE, 64 in Fig. 5.

The algorithm can be explained as follows: first, we have to know in which

column the index is. This is computed as i_y / TILE_SIZE. The starting index

of this column is thus num_cells_per_column * (i_y / TILE_SIZE). Then, in

this column of size ncx * TILE_SIZE, we recognize the row-major curve, which

means we have to add i_col * TILE_SIZE + j_col. On the x-axis, the index

is just i_x, and on the y-axis, the index is mod(i_y, TILE_SIZE).

In 3d, the mentioned functions are given in equation (5) and Listing 3;

14

again, they can be set as macros or inline functions. In our code, the constant

parameters are part of the macro arguments; they are here omitted. First, the

tile size is given, as global parameter (line 1). Then, depending on the size of the

grid, we have constants which should be set at the beginning of the simulation

(line 3). The number of cells per tower gives the number of cells that are in a

full tower of area TILE_SIZE * TILE_SIZE, 256 in Fig. 6. The number of cells

per wall gives the number of cells that are in a full row of towers. In Fig. 6,

there are 4 towers per wall (there are 4 towers of size TILE_SIZE = 4 in a row

of ncx = 16 cells).

The explanation of the algorithm is similar to the 2d case. We have to know

in which wall parallel to the (Oxz) plane the index is, then inside this wall in

which tower it is, then this is a column-major ordering inside this tower.

(ix; iy; iz) 7→ icell = ncz · SIZE2 ·
(
bix/SIZEc+ biy/SIZEc · dncx/SIZEe

)
+ iz · SIZE2 + mod(iy,SIZE) · SIZE + mod(ix,SIZE)

icell 7→

ix = mod(icell,SIZE) + SIZE

·
⌊
mod(icell, ncz · SIZE2 · dncx/SIZEe)/(ncz · SIZE2)

⌋
iy = SIZE ·

⌊
icell/

(
ncz · SIZE2 · dncx/SIZEe

)⌋
+
⌊
mod(icell,SIZE2)/SIZE

⌋
iz =

⌊
mod(icell, ncz · SIZE2)/(SIZE2)

⌋

(5)

3.2.3. Results

We present in Tables 2 and 3 the performance gains when using the space-

filling curves described in the previous section. Our preceding contribution [1]

only showed results on one core. On modern architectures, there are usually

more cores than memory channels: it is thus not straightforward to extrapolate

the one core results on the full multicore architecture; we therefore show here

results on the full processor. Moreover, additional arrays to store the indices ix

and iy were used in [1]. We show now that additional gains can be obtained with

efficient computations of the bijection functions. In the tables, “arrays” means

that we use additional arrays to store the indices, otherwise we recompute them.

15

1 #define TILE_SIZE 8 // Depends on architecture.

2 #define SQR_TILE_SIZE (TILE_SIZE * TILE_SIZE)

3

4 int num_cells_per_tower = ncz * SQR_TILE_SIZE;

5 int num_cells_per_wall = num_cells_per_tower * \

6 ((ncx + TILE_SIZE - 1) / TILE_SIZE); // ceiling(ncx/TILE_SIZE)

7

8 #define i_cell_from(i_x, i_y, i_z) \

9 (((i_x) / TILE_SIZE) * num_cells_per_tower + \

10 ((i_y) / TILE_SIZE) * num_cells_per_wall + (i_z) * SQR_TILE_SIZE + \

11 ((i_y) % TILE_SIZE) * TILE_SIZE + ((i_x) % TILE_SIZE))

12 #define i_x_from(i_cell) (((i_cell) % TILE_SIZE) + \

13 (((i_cell) % num_cells_per_wall) / num_cells_per_tower) * TILE_SIZE)

14 #define i_y_from(i_cell) (((i_cell) / num_cells_per_wall) * TILE_SIZE + \

15 ((i_cell) % SQR_TILE_SIZE) / TILE_SIZE)

16 #define i_z_from(i_cell) (((i_cell) % num_cells_per_tower) / \

17 SQR_TILE_SIZE)

Listing 3: Efficient C code for L6D bijection functions.

Table 2: 2d Space-filling Curves Timings

Up. v Up. x Acc. Sort Total

2d standard 59.0 39.8 41.9 28.6 171.1

Row-major 63.6 39.7 42.8 28.6 176.8

L4D arrays 57.6 48.2 33.5 41.1 182.7

Morton arrays 60.2 48.0 29.4 40.7 180.7

Hilbert arrays 64.9 49.6 30.7 40.5 193.1

L4D 57.5 40.0 32.0 28.6 160.5

Morton 59.3 39.8 29.8 28.4 159.7

Hilbert 59.0 323.7 33.6 28.6 452.3

Time spent in the different loops (in seconds). Test case: Landau damping 2d

on a [0; 4π)2 grid decomposed in 5122 cells, 1 billion particles, 100 iterations

(sorting every 20 iterations), ∆t = 0.1, 24 Skylake cores.

We focus on three meaningful comparisons in Tables 2 and 3. The first one

is on the data structure: is it beneficial to use the redundant one for the E

16

Table 3: 3d Space-filling Curves Timings

Up. v Up. x Acc. Sort Total

3d standard 126.7 55.3 31.5 21.5 235.8

Row-major 92.6 55.3 31.5 21.4 201.7

L6D arrays 92.8 79.0 30.4 29.5 232.6

Morton arrays 96.5 79.0 30.3 27.5 234.2

Hilbert arrays 95.3 80.4 31.1 26.9 234.8

L6D 85.5 55.5 29.9 20.9 192.9

Morton 89.4 56.7 33.5 19.8 200.3

Hilbert 87.3 244.4 29.2 20.3 382.2

Time spent in the different loops (in seconds). Test case in Table 1.

arrays? The only point where the code changes is in the update-velocities loop.

We see in the tables that in 2d, it is detrimental to use it if we stick to the

row-major curve, but it is already beneficial with the canonical curve in 3d. We

recall that we use here many particles per grid cell, and that when using only

a few particles per cell, the redundant data structure is not a good choice, see

Section 3.4 for a detailed comparison.

The second comparison concerns the data layout. Is it possible to obtain

notable gains by changing the ordering of the grid cells? There are two places

in the code where the changes might become significant: in the interpolation

and in the accumulation. This time, we can answer positively. Yes, by taking

another order than the canonical one, we can save time (thank to a reduction

in the cache misses [1, Table 2]). In 2d, the L4D and Morton curves seem to

give similar and optimal timings, while in 3d, the L6D curve allows additional

gains and seems to be the best one.

The last comparison is on the particle data structure needed for the non-

canonical orderings. We can either store the indices in additional arrays (here,

arrays of short int), or re-compute them at each time step. When storing

them, it requires more memory for the particles, therefore we need more time

17

in the update-positions loop and in the sorting step.

Last but not least, we see a surprising timing of the update-positions loop

when using the Hilbert ordering without additional arrays. It is due to the fact

that the computation (ix, iy, iz) from icell is expensive and not vectorized. This is

thus the only curve for which using additional arrays is profitable. Nevertheless,

even with additional arrays, this curve does not improve performances compared

to the standard layout, and consequently has to be discarded.

3.2.4. Additional Remarks

We have to choose carefully TILE_SIZE depending of the cache sizes. In our

tests, TILE_SIZE = 8 led to the best timings. It can be replaced with other

values, as long as they are not too large for the cache.

It should be noted that choosing a value of TILE_SIZE that does not divide

the grid sizes is possible: then, there will be a few allocated cells that correspond

to physical positions outside the boundaries and that will never be accessed.

As a side note, we can remark that if grid sizes are powers of two and if the ar-

chitecture represents integers with two’s complement, we can save some compu-

tations on each modulo operation (lines 11–13 in Listing 1). For example for the

modulo in the x-axis, we can use the variable int ncx_minus_one = ncx - 1

and then compute mod(i_x, ncx) as i_x & ncx_minus_one. This is more ef-

ficient than (i_x + ncx) % ncx on one core. However, when using the full

24-cores architecture, this small optimization brings no significant gains. The

same goes for all the modulo computations in the L4D and L6D bijection func-

tions, whenever we compute modulo a power of two.

We also note that it is possible to use space-filling curves without using the

redundant data structure for E. We do not show here the corresponding results,

but the conclusion is that when using a high number of particles per cell (as

is our case) the redundant data structure turns out to be the best approach.

This is clearly not true when using a low (e.g. less than a hundred) number of

particles per cell.

In the previous paper [1], we showed that in 2d we could save up to 43%

18

cache misses on E and ρ. This was confirmed by measurements. We here give

an intuition of why this works, in the particular case of our Landau damping

test case, which is roughly isotropic. We show in Figs. 7, 8, 9 and 10 snapshots

of the same 2d simulation, one using the row-major curve and the other using

the L4D curve. For each ordering, two snapshots are taken: a first snapshot just

after a sorting, and another one 3 iterations later. For each ordering, a coloring

is applied on the particles to indicate which particles are close in memory. We

will here focus on the black particles in the center of the row-major ordering

just after the sorting, and on the deep purple particles in the center of the L4D

ordering just after the sorting. Just after the sorting, the black particles occupy

only the center cells. Three iterations later, they are spread on 7 as many cells

(some move up to 3 cells up, some move up to 3 cells down - the ones that move

horizontally do not incur the use of new cells). Just after the sorting, the deep

purple particles occupy only the center cells. Three iterations later, they are

spread on 3 as many cells (they are spread on a 14 x 14 square instead of a 8 x 8

square). This explains why, when fetching the E values and when updating the

ρ values, the L4D curve will lead to less cache misses than the row-major one.

Figure 7: Row-major ordering, just after a

sorting.

Figure 8: Row-major ordering, 3 iterations af-

ter a sorting.

In 3d, the explanations are similar, but harder to show on a figure.

3.3. Strip-mining [21, Section 9.8]

Even though the loop fission gives satisfactory results, the resulting code still

needs to scan some particle arrays three times, thus putting a lot of pressure

on the memory bus. A natural loop transformation that comes after is thus

the strip-mining. Instead of having three loops each scanning all the particles,

we split the particle arrays in sub-arrays of size k (where k has to be chosen,

19

Figure 9: L4D ordering, just after a sorting. Figure 10: L4D ordering, 3 iterations after a

sorting.

depending on the architecture), and have the three loops operate only on k

particles. Thus, for each particle, instead of having to fetch its properties in the

main memory for each loop, it is now possible to fetch its properties in the cache

for the two last loops. This transformation leads to the pseudo-code shown in

Fig. 11, and speeds up the code by 22% in 2d.

We can note that if we choose k = 1, we are back to the base code, which

was not optimal. If we choose k = N , we are back to the previous code with

loop fission. In our 2d experiments, choosing a strip-size k between 64 and 256

gives similar optimal results.

Unfortunately, in 3d this strip-mining does not improve performances. This

is explained by the fact that the cache is filled with too many E values, thus the

expected gain in performance coming from the cache reuse of the particle arrays

is out of reach. Thus, in 3d, to be able to efficiently reuse the particle data,

the strip-mining has to be done only on the two last loops. This transformation

leads to the pseudo-code shown in Fig. 12, and speeds up the code by 12%.

In our 3d experiments, choosing a strip-size k between 32 and 128 gives

similar optimal results.

This strip-mining technique was more or less already used in VPIC [4], which

20

1 Foreach subset of k particles in particles,

2 Foreach particle in this subset,

3 Interpolate E to particle

4 Update the velocity

5 Foreach particle in this subset,

6 Update the position

7 Foreach particle in this subset,

8 Accumulate particle charge to ρ

Figure 11: Particle-in-Cell pseudo-code with strip-mining.

1 Foreach particle in particles,

2 Interpolate E to particle

3 Update the velocity

4 Foreach subset of k particles in particles,

5 Foreach particle in this subset,

6 Update the position

7 Foreach particle in this subset,

8 Accumulate particle charge to ρ

Figure 12: Particle-in-Cell pseudo-code with strip-mining on the two last loops only.

advanced 4 particles at a time for vectorization (k = 4 with our notations). How-

ever, in VPIC, an additional assumption was made – none of those 4 particles

should cross cell boundaries – and scalar code was generated for the particles

that crossed cell boundaries. In our code, the update-positions loop is vectorized

without exceptions.

3.4. Overall gains and comparisons

The optimizations presented in this section are summarized in Table 4. In

this table, the baseline is a version of the code with the standard 3d data

structure for E, the redundant one for ρ, and a loop hoisting [26, Section 2.3.5.3]

already applied that, in particular, remove the * delta_t / delta_{x,y,z}

21

computations (lines 2–4 in Listing 1) [1]. The gains (in %) are computed with

respect to the previous line of the table and the accumulated gains are computed

with respect to the baseline.

? Loop fission: better memory management for E and ρ, allows to vectorize

the update-positions loop.

? Redundant arrays for E together with appropriate use of space-filling

curves: less cache misses in the interpolation and in the accumulation.

We note that the redundant arrays are only useful when using at least a

hundred particles per grid cell, see Table 5.

? Strip-mining: allows to reuse particle data between loops.

Table 4: Gains of Different Optimizations

Time (s) Gains Accum. gains

Baseline 258.7 0.0% 0.0%

+ Loop Fission 235.8 8.9% 8.9%

+ Space-filling curves (L6D) 192.9 18.2% 25.4%

+ Strip-mining 169.5 12.1% 34.5%

Total execution time, gains and accumulated gains. Test case in Table 1.

Overall, these optimizations result in 590 million particles processed per sec-

ond, on 24 cores on Intel Skylake architecture, without hyper-threading (25 mil-

lion particles per second per core), or 1.48 ns per particle per time step (35.47 ns

per particle per time step per core).

Those performances are compared in Table 5 to another recent PIC code [9],

solving the same equations with the same precision (both codes use double pre-

cision and first order interpolations). We ran simulation with the parameters

chosen in this other paper, which differ from our previous ones. Simulations

presented in that paper were conducted on the Piz Daint supercomputer con-

sisting of 8 Sandy-Bridge cores @2.6 GHz with a theoretical memory bandwidth

22

Table 5: Comparison with Another Code
XXXXXXXXXXXXXXX

Code

Nb. of particles
106 16 · 106

Jocksch et al. work [9]

(8 cores, 6.4 GB/s/core)
153.92 115.76

This paper (24 cores,

5.3 GB/s/core)
854.33 93.07

Time spent per particle per iteration per core, in nanoseconds. Test case [9]:

512 x 256 x 1 grid. Initial particle distribution uniform in space and velocity

with |vmax| = 1.

of 51.2 GB/s (or 6.4 GB/s/core), and we recall that we used the Marconi super-

computer consisting of 24 Skylake cores @2.1 GHz with a theoretical memory

bandwidth of 127.99 GB/s (or 5.3 GB/s/core). PIC codes being memory bound,

comparing performances per core on those two architectures makes sense.

In those cases, there are only 7.6 particles per cell (when using 1 million

particles), and 122 particles per cell (when using 16 million particles). The

redundant data structure for E is a good choice only if there are a lot of particles

per cell (in this paper, we use 3, 815 particles per cell for our test case in Table 1).

Of course, when there are roughly as many particles as grid points, multiplying

by 8 the data for E almost doubles the memory transfers. With such a low

number of particles, using a redundant data structure for E is detrimental, and

we would have to make another study for such a configuration. But with 122

particles per cell, the data layouts and code transformations presented in this

paper become useful. At the scale of 1 billion particles, we recall that our code

needs only 35.47 ns per particle per iteration per core.

23

4. Thread-level and process-level parallelism

4.1. Process-level parallelism

The state-of-the-art approach for parallelizing PIC simulations on distributed

memory machines is to decompose the physical domain into smaller sub-domains

and to assign the particles inside a sub-domain to a processor (among the wide

literature, see e.g. [4, 7]). In grid-based simulations, this method was estab-

lished to give good scaling, as long as the work due to the communications

through the sub-domain boundaries remains small compared to the computa-

tions inside the sub-domains. However, the main drawback of this technique is

the difficulty of maintaining the load balance.

In this work, we handle the process-level parallelism with particle decom-

position instead of domain decomposition: during the whole simulation, every

process holds a fixed amount of particles but it keeps track of the whole grid

quantities. Thus, at every iteration, every process accumulates the charge den-

sity associated with its particles and an MPI ALLREDUCE gives the total charge

density. The Poisson equation is then solved by every process over the whole

grid.

The main advantage of this method is its simplicity: the only communication

is via MPI ALLREDUCE for the reduction of the charge array and no particle

has to move from one process to another during the simulation. Thus, all the

computations are automatically work-balanced.

The bottleneck of this approach usually cited in the literature is that the

scalability is highly limited by the global reduction step. Of course, when using

a large number of processes, the communication becomes too costly. But in

practice, if we use the full memory on each MPI process to put particles, this

is not the main drawback. The main bottleneck of this approach is that in

realistic simulations (using a grid bigger than our 64 x 64 x 64 grid), there are

so many cells that the computations on one process will be inefficient, due to

the high number of cache misses involved. This behavior is quite common for

example in matrix computations, where you can see super-scaling behaviors on

24

large matrices, due to the large reduction of cache misses when computing only

on sub-blocks. This is the reason why the technique we propose in this paper

should be seen as only a small brick inside a more complex scheme: one should

probably use domain decomposition on top of the efficient OpenMP algorithm

we provided.

4.2. Strong scaling results on 24 threads with OpenMP

We next show a strong scaling up to 24 cores of two versions of our code.

Fig. 14 shows a strong scaling of the code with loop fission (pseudo-code given in

Fig. 2) and Fig. 15 show a strong scaling of our code with strip-mining (pseudo-

code in Fig. 12).

Fig. 13 shows both codes on a single graph, for comparison. On 1 thread,

the loop fission code is 6.7% faster, but on 24 threads the strip-mining code is

12% faster.

These figures illustrate the importance of having an efficient code on one

core, but also the importance of precise performance analysis to enhance mul-

ticore efficiency. On the comparison graph, we see that up to 8 threads, the

code with 3 loops performs better, then the code with strip-mining performs

better. To understand why, we can look at the two other figures, where we

show the memory bandwidth of our code, compared to that of the triad test

in the Stream benchmark [27]. On one hand, these histograms underline that

the update-velocities, accumulation and sorting steps are far to reach the peak

memory bandwidth and thus, they have a good scaling up to 24 threads. On

the other hand, the update-positions step reaches the same memory bandwidth

as the Stream benchmark (the theoretical peak on 24 threads is 127.99 GB/s).

Accordingly, this step cannot be further accelerated when using 24 threads. The

strip-mining idea thus becomes natural when looking at those figures: when the

update-positions loop cannot be further sped up by more threads, due to mem-

ory bandwidth limits, merging it with another loop becomes a good idea. To

merge two loops, we can either “undo” part of our loop fission, by applying

loop fusion [21, Section 9.2]; or we can use strip-mining. To preserve the high

25

efficiency of this vectorized loop, it is better to use strip-mining rather than loop

fusion, which would break the vectorization opportunity.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500
Lo

o
p
 fi

ss
io

n

S
tr

ip
-m

in
e
d

Lo
o
p
 fi

ss
io

n

S
tr

ip
-m

in
e
d

Lo
o
p
 fi

ss
io

n

S
tr

ip
-m

in
e
d

Lo
o
p
 fi

ss
io

n

S
tr

ip
-m

in
e
d

Lo
o
p
 fi

ss
io

n

S
tr

ip
-m

in
e
d

Lo
o
p
 fi

ss
io

n

S
tr

ip
-m

in
e
d

To
ta

l
e
xe

cu
ti

o
n
 t

im
e
 (

s)

Marconi (Intel Skylake) - 1 billion particles - 64 x 64 x 64
Total execution time (s) with respect to the number of threads

Sort
Update v

Update x + Accumulate

24 threads16 threads8 threads4 threads2 threads1 thread

Test case in Table 1.

Figure 13: Loop fission (3 loops) VS Strip-mining (2 loops).

4.3. Weak scaling on 3,072 cores with MPI

Our parallel results come from simulations executed on the supercomputer

Marconi. Each node has 2 sockets of 24 cores each, hence we used one MPI

process per socket and 24 threads per process.

Fig. 16 shows a weak scaling from 1 core to 3,072 cores (64 nodes). These

simulations run with 1 billion particles per socket in order to use the full memory.

We can see that up to 3,072 cores, the overhead due to MPI ALLREDUCE stays

acceptable, thanks to the hybrid parallelism OpenMP + MPI.

5. Conclusion and Outlook

In order to simulate kinetic plasmas, we developed a three-dimensional

Particle-in-Cell code and studied its performance. We thus explored several

26

 0

 20

 40

 60

 80

 100

1 thread 2 threads 4 threads 8 threads 16 threads 24 threads

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
 /

 s
)

Stream
Update v
Update x

Accumulate
Sort

x1,9

x3,7

x6,5

x7,6 x7,6

x2

x3,9

x8,1

x15

x20

x2

x3,9

x6,8

x8,2 x8,2

x2
x4

x7,9

x15

x22

x2
x3.8

x7.2

x13

x16

Test case in Table 1.

Figure 14: Memory Bandwidth of the loop-fission code (3 loops).

 0

 20

 40

 60

 80

 100

1 thread 2 threads 4 threads 8 threads 16 threads 24 threads

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
 /

 s
)

Stream
Update v

Update x + Accumulate
Sort

x1,9

x3,7

x6,5

x7,6 x7,6

x2

x3,9

x8,1

x15

x20

x2

x4

x8

x16

x21

x2
x3.8

x7.2

x13

x17

Test case in Table 1.

Figure 15: Memory Bandwidth of the strip-mined code (2 loops).

27

 0

 50

 100

 150

 200

 1 2 4 8 16 32 64 128

 24 48 96 192 384 768 1536 3072
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Number of sockets

Number of cores

Total execution time
Communication time

0.04% 0.16% 0.21% 0.70% 1.26% 3.29% 4.54% 6.62%

Test case: 64 x 64 x 64 grid, 1 billion particles per socket, 100 iterations simulation (sorting

every 10 iterations). Architecture: Skylake. Communication time is also shown as

percentage of the execution time.

Figure 16: Weak scaling on Marconi.

space-filling curves for the data layout of E and ρ, and different loop transfor-

mations for the particle loops, with the aim of improving the cache reuse and

achieving efficient vectorization. More precisely, we introduced a novel space-

filling curve in 3d, called L6D, which have been demonstrated to be the best

strategy in the case of the Landau damping simulations. We compared our re-

sults to those of [9] and obtained significant gains when using at least a hundred

particles per grid cell. We showed that strip-mining can be used in addition to

the vectorization technique from [6] to further improve the code efficiency. We

also implemented a hybrid MPI/OpenMP parallelism and we addressed memory

bandwidth issues for justifying the scaling results with OpenMP.

In the future, it would be interesting to port our PIC code to Many In-

tegrated Core (MIC) architectures to reinforce the multi-threading. Another

challenging question would be to apply these optimization techniques to elec-

tromagnetic codes, in which the data structure analysis should be extended

28

when solving the Maxwell equations. The efficient PIC code we developed in

this paper thus opens up the possibility to run realistic simulations in plasma

physics in a three-dimensional physical space.

Acknowledgment

This work has been carried out within the framework of the EUROfusion

Consortium and has received funding from the Euratom Research and Training

Program 2014-2018 under Grant Agreement No. 633053. Simulations were

run on the EUROfusion Marconi supercomputer, in the context of the Selavlas

project led by K. Kormann. The views and opinions expressed herein do not

necessarily reflect those of the European Commission.

References

[1] Y. Barsamian, S. A. Hirstoaga, E. Violard, Efficient data structures for

a hybrid parallel and vectorized particle-in-cell code, in: 2017 IEEE Intl.

Parallel and Distributed Processing Symp. Workshops (IPDPSW), 2017,

pp. 1168–1177. doi:10.1109/IPDPSW.2017.74.

[2] C. K. Birdsall, A. B. Langdon, Plasma Physics via Computer Simulation,

McGraw-Hill, New York, 1985.

[3] R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles,

Institute of Physics, Philadelphia, 1988. doi:10.1201/9781439822050.

[4] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, T. J. T. Kwan, Ultrahigh

performance three-dimensional electromagnetic relativistic kinetic plasma

simulation, Physics of Plasmas 15 (5) (2008) 055703. doi:10.1063/1.

2840133.

[5] V. K. Decyk, S. R. Karmesin, A. de Boer, P. C. Liewer, Optimization

of particle-in-cell codes on reduced instruction set computer processors,

Computers in Physics 10 (3) (1996) 290–298. doi:10.1063/1.168571.

29

http://dx.doi.org/10.1109/IPDPSW.2017.74
http://dx.doi.org/10.1201/9781439822050
http://dx.doi.org/10.1063/1.2840133
http://dx.doi.org/10.1063/1.2840133
http://dx.doi.org/10.1063/1.168571

[6] H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, J.-L. Vay, An efficient and

portable SIMD algorithm for charge/current deposition in particle-in-cell

codes, Comput. Phys. Commun. 210 (2016) 145–154. doi:10.1016/j.cpc.

2016.08.023.

[7] K. Germaschewski, W. Fox, S. Abbott, N. Ahmadi, K. Maynard, L. Wang,

H. Ruhl, A. Bhattacharjee, The plasma simulation code: A modern

particle-in-cell code with patch-based load-balancing, J. Comput. Phys.

318 (2016) 305–326. doi:10.1016/j.jcp.2016.05.013.

[8] V. K. Decyk, T. V. Singh, Particle-in-cell algorithms for emerging computer

architectures, Comput. Phys. Commun. 185 (3) (2014) 708–719. doi:10.

1016/j.cpc.2013.10.013.

[9] A. Jocksch, F. Hariri, T.-M. Tran, S. Brunner, C. Gheller, L. Villard, A

bucket sort algorithm for the particle-in-cell method on manycore architec-

tures, in: Parallel Processing and Applied Mathematics: 11th Intl. Conf.

(PPAM), 2016, pp. 43–52. doi:10.1007/978-3-319-32149-3_5.

[10] E. Chacon-Golcher, S. A. Hirstoaga, M. Lutz, Optimization of particle-

in-cell simulations for Vlasov-Poisson system with strong magnetic field,

ESAIM: Proceedings and Surveys 53 (2016) 177–190. doi:10.1051/proc/

201653011.

[11] F. Panneton, P. L’Ecuyer, M. Matsumoto, Improved long-period generators

based on linear recurrences modulo 2, ACM Transactions on Mathemat-

ical Software (TOMS) 32 (1) (2006) 1–16, (Source Code: http://www.

iro.umontreal.ca/~panneton/WELLRNG.html). doi:10.1145/1132973.

1132974.

[12] C. K. Birdsall, D. Fuss, Clouds-in-clouds, clouds-in-cells physics for many-

body plasma simulation, J. Comput. Phys. 3 (1969) 494–511. doi:10.

1006/jcph.1997.5723.

30

http://dx.doi.org/10.1016/j.cpc.2016.08.023
http://dx.doi.org/10.1016/j.cpc.2016.08.023
http://dx.doi.org/10.1016/j.jcp.2016.05.013
http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://dx.doi.org/10.1016/j.cpc.2013.10.013
http://dx.doi.org/10.1007/978-3-319-32149-3_5
http://dx.doi.org/10.1051/proc/201653011
http://dx.doi.org/10.1051/proc/201653011
http://www.iro.umontreal.ca/~panneton/WELLRNG.html
http://www.iro.umontreal.ca/~panneton/WELLRNG.html
http://dx.doi.org/10.1145/1132973.1132974
http://dx.doi.org/10.1145/1132973.1132974
http://dx.doi.org/10.1006/jcph.1997.5723
http://dx.doi.org/10.1006/jcph.1997.5723

[13] K. J. Bowers, Speed optimal implementation of a fully relativistic par-

ticle push with charge conserving current accumulation on modern pro-

cessors, in: Proceedings of the 18th Int. Conf. Numerical Simulation of

Plasmas (ICNSP), 2003, pp. 383–386, http://web.mit.edu/ned/ICNSP/

ICNSP_BookofAbstracts.pdf.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to

Algorithms, The MIT Press, 2009.

[15] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, M. Thottethodi,

Nonlinear array layouts for hierarchical memory systems, in: Proceedings

of the 13th Intl. Conf. on Supercomputing (ICS), 1999, pp. 444–453. doi:

10.1145/305138.305231.

[16] J. Mellor-Crummey, D. Whalley, K. Kennedy, Improving memory hier-

archy performance for irregular applications using data and computation

reorderings, Intl. Journal of Parallel Programming 29 (3) (2001) 217–247.

doi:10.1023/A:1011119519789.

[17] D. DeFord, A. Kalyanaraman, Empirical analysis of space–filling curves for

scientific computing applications, in: 42nd Intl. Conf. on Parallel Process-

ing (ICPP), 2013, pp. 170–179. doi:10.1109/ICPP.2013.26.

[18] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juck-

eland, T. Kluge, W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm,

J. Schuchart, R. Widera, Radiative signatures of the relativistic Kelvin-

Helmholtz instability, in: Proceedings of the Intl. Conf. on High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2013, pp. 5:1–

5:12. doi:10.1145/2503210.2504564.

[19] I. Surmin, S. Bastrakov, Z. Matveev, E. Efimenko, A. Gonoskov,

I. Meyerov, Co-design of a particle-in-cell plasma simulation code for In-

tel xeon phi: A first look at knights landing, in: Proceedings of the

31

http://web.mit.edu/ned/ICNSP/ICNSP_BookofAbstracts.pdf
http://web.mit.edu/ned/ICNSP/ICNSP_BookofAbstracts.pdf
http://dx.doi.org/10.1145/305138.305231
http://dx.doi.org/10.1145/305138.305231
http://dx.doi.org/10.1023/A:1011119519789
http://dx.doi.org/10.1109/ICPP.2013.26
http://dx.doi.org/10.1145/2503210.2504564

16th Intl. Conf. on Algorithms and Architectures for Parallel Process-

ing Collocated Workshops (ICA3PP, SCDT), 2016, pp. 319–329. doi:

10.1007/978-3-319-49956-7_25.

[20] M. Frigo, S. G. Johnson, The design and implementation of FFTW3,

Proceedings of the IEEE 93 (2) (2005) 216–231, http://www.fftw.org.

doi:10.1109/JPROC.2004.840301.

[21] M. J. Wolfe, High Performance Compilers for Parallel Computing, Addison-

Wesley Longman Publishing Co., Inc., 1995.

[22] G. M. Morton, A computer oriented geodetic data base and

a new technique in file sequencing, Tech. rep., IBM Ltd.

https://domino.research.ibm.com/library/cyberdig.nsf/0/

0dabf9473b9c86d48525779800566a39?OpenDocument (1966).

[23] R. Raman, D. S. Wise, Converting to and from dilated integers, IEEE

Transactions on Computers 57 (4) (2008) 567–573. doi:10.1109/TC.2007.

70814.

[24] D. Hilbert, Über die stetige abbildung einer linie auf ein flächenstück, Math-

ematische Annalen 38 (1891) 459–460.

[25] J. Skilling, Programming the Hilbert curve, Vol. 707, 2004, pp. 381–387.

doi:10.1063/1.1751381.

[26] C. Severance, K. Dowd, High Performance Computing, OpenStax CNX,

2010, http://cnx.org/content/col11136/1.5/.

[27] J. D. McCalpin, Memory bandwidth and machine balance in current high

performance computers, IEEE Computer Society Technical Committee on

Computer Architecture Newsletter (TCCA) (1995) 19–25.

32

http://dx.doi.org/10.1007/978-3-319-49956-7_25
http://dx.doi.org/10.1007/978-3-319-49956-7_25
http://www.fftw.org
http://dx.doi.org/10.1109/JPROC.2004.840301
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
http://dx.doi.org/10.1109/TC.2007.70814
http://dx.doi.org/10.1109/TC.2007.70814
http://dx.doi.org/10.1063/1.1751381
http://cnx.org/content/col11136/1.5/

