
HAL Id: hal-01664593
https://hal.archives-ouvertes.fr/hal-01664593

Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Labelled Graph Strategic Rewriting for Social Networks
Maribel Fernandez, Hélène Kirchner, Bruno Pinaud, Jason Vallet

To cite this version:
Maribel Fernandez, Hélène Kirchner, Bruno Pinaud, Jason Vallet. Labelled Graph Strategic Rewriting
for Social Networks. Journal of Logical and Algebraic Methods in Programming, Elsevier, 2018, 96
(C), pp.12–40. �10.1016/j.jlamp.2017.12.005�. �hal-01664593�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/145160596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01664593
https://hal.archives-ouvertes.fr

Labelled Graph Strategic Rewriting
for Social Networks

Maribel Fernández1, Hélène Kirchner2, Bruno Pinaud3, and Jason Vallet3

1 King’s College London, UK maribel.fernandez@kcl.ac.uk
2 Inria, France helene.kirchner@inria.fr

3 University of Bordeaux, CNRS UMR5800 LaBRI, France
firstname.lastname@u-bordeaux.fr

Abstract. We propose an algebraic and logical approach to the study of
social networks, where network components and processes are directly de-
fined by labelled port graph strategic rewriting. Data structures attached
to graph elements (nodes, ports and edges) model local and global knowl-
edge in the network, rewrite rules express elementary and local transfor-
mations, and strategies control the global evolution of the network. We
show how this approach can be used to generate random networks, sim-
ulate existing propagation and dissemination mechanisms, and design
new, improved algorithms.

Paper accepted for publication in the Journal of Logical and Algebraic Meth-
ods in Programming (JLAMP). This is the author’s version of the paper.

1 Introduction

Social networks, representing users and their relationships, have been intensively
studied in the last years [11, 37, 43]. Their analysis raises several questions, in par-
ticular regarding their construction and evolution. Network propagation mecha-
nisms, replicating real-world social network phenomena such as communications
between users (e.g., announcing events), and the related concept of dissemina-
tion mechanism, whose goal is to transmit specific information across the nodes
of a network, have applications in various domains, ranging from sociology [27] to
epidemiology [16, 8] or even viral marketing and product placement [14]. Dissem-
ination algorithms have also applications outside the social network domain, for
example in computer networks routing protocols [45] or to model cache poisoning
attacks in DNS servers [44]. To gain a better understanding of these phenom-
ena, we need to model and analyse such systems, dealing with features that are
complex (since they involve quantities of highly heterogeneous data), dynamic
(due to interactions, time, external or internal evolutions), and distributed.

To address these challenges we use: Labelled Graphs to represent networks
of data or objects, Rules to deal with local transformations, and Strategies to
control the application of rules (including probabilistic application) and to focus
on points of interest. The dynamic evolution of data is generally modelled by

simple transformations, possibly applied in parallel and triggered by events or
time. However, such transformations may be controlled by some laws that in-
duce a global behaviour. Modelling may reveal conflicts, which can be detected
by computing overlaps of rules and solved, for instance, by using precedence.
Thus, the ability to define strategies is also essential, including mechanisms to
deal with backtracking and history through notions of derivations or traces. Pre-
liminary results obtained by applying this approach to the study of propagation
phenomena and network generation are described in [46, 22], respectively.

In this paper, we expand the study of network generation and propagation
algorithms, and we also consider examples of dissemination algorithms. We start
by presenting a framework, based on port graph rewriting, to define social net-
work models and specify their dynamic behaviour. Port graph rewriting systems
have been used to model systems in other domains (e.g., biochemistry, inter-
action nets, games; see [46, 1, 19, 20]). Here, we adapt to the specific domain of
social network modelling the general port graph rewriting notions given in [21],
mainly by using oriented edges. This framework is then used to specify an al-
gorithm to generate networks that have the characteristics of real-world social
networks, and to study the processes of propagation (triggered by users wanting
to pass information to their neighbours) and dissemination (performed by an
algorithm according to predefined rules). In the latter, we consider two prop-
agation algorithms –the Independent Cascade model IC [30] and the Linear
Threshold model LT [26]–, which have both already been specified using strate-
gic rewriting in [46], and the Riposte dissemination model RP [24] which, up to
our knowledge, has not been specified using graph rewriting transformations yet.
Finally, to show the resilience of our approach, we develop a new dissemination
algorithm, which we call RP-LT, based on RP but incorporating characteristics
of LT as well. This model is proposed as an example to illustrate how the port
graph strategic rewriting framework can help in the specification of new models
by simply enriching the graph data structure with new attributes and adapting
the strategy.

All algorithms have been implemented in Porgy, an interactive port graph
rewriting tool [39]. Thanks to the formal semantics of Porgy’s language, we are
able to provide proofs of expected properties for the algorithms implemented.

Related Work Several definitions of graph rewriting are available, using differ-
ent kinds of graphs and rewrite rules (see, for instance, [5, 33, 6, 15, 40, 28, 2, 3]).
To model social networks, we use directed port graphs with attributes and the
general notion of port graph rewriting presented in [21]. An alternative solution
using undirected edges with port labels encoding direction (“In” and “Out”) was
previously developed [46], however, having oriented edges as a primitive concept
makes it easier to represent social relationships that are naturally asymmetric.

Although many data sets, extracted from various real-world social networks,
are publicly available,4 in order to test new ideas, demonstrate the generality
of a new technique, or design and experiment with stochastic algorithms on a

4 For instance from http://snap.stanford.edu or http://konect.uni-koblenz.de/

sufficiently large sample of network topologies, it is sometimes convenient to
use randomly generated networks as they can be fine-tuned to produce graphs
with specific properties (number of nodes, edge density, edge distribution, . . .).
Many generative models of random networks are available (e.g., [18, 49, 4, 47, 7]
to cite only a few). Some, like the Erdös–Rényi (ER) model [18], do not guar-
antee any specific property regarding their final topology, whereas others can
show small-world characteristics [49], distinctive (scale-free) edge distributions
[4] or both at the same time [47]. In this paper, we show how to generate such
models using labelled port graphs, rules and strategies. Moreover, we take ad-
vantage of the visual and statistical features available in Porgy to tune the
algorithms: our experimental results guide and validate the parameter choices
made in the generation algorithms, ensuring the generated networks satisfy the
required properties. Afterwards, we implement two propagation and two dissem-
ination algorithms. While three of them are based on existing models described
in previous work [30, 26, 24], the fourth model is original, specifically built to in-
corporate the influence mechanisms proposed in [26] into the privacy-preserving
dissemination model described in [24].

The paper is organised as follows. Sect. 2 introduces the modelling concepts:
labelled port graphs, rewriting, derivation tree, strategy and strategic graph pro-
grams. We develop social network generation algorithms in Sect. 3, propagation
algorithms in Sect. 4 and dissemination algorithms in Sect. 5. Sect. 6 briefly de-
scribes a framework for designing and experimenting with social network models.
Finally, we conclude in Sect. 7.

2 Labelled Graph Rewriting for Social Networks

A social network [10] is usually described as a graph where nodes represent
users and edges represent their relationships. Some real-world social relations
involve mutual recognition (e.g., friendship), whereas others present an asym-
metric model of acknowledgement (e.g., Twitter, where one of the users is a
follower while the other is a followee). It is thus natural to represent such re-
lations using directed graphs. In this paper, we model social networks using
labelled directed port graphs, as defined below.

2.1 Directed Port Graphs for Social Networks

Roughly speaking, a port graph is a graph where edges are attached to nodes at
specific points, called ports. Nodes, ports and edges are labelled using records.

A record r is a set of pairs {a1 := v1, . . . , an := vn}, where ai, called attribute,
is a constant in a set A or a variable in a set XA, and vi is the value of ai, denoted
by r · ai; the elements ai are pairwise distinct.

The function Atts applies to records and returns all the attributes:

Atts(r) = {a1, . . . , an} if r = {a1 := v1, . . . , an := vn}.

Each record r = {a1 := v1, . . . , an := vn} contains one pair where ai =
Name. The attribute Name defines the type of the record in the following
sense: for all r1, r2, Atts(r1) = Atts(r2) if r1.Name = r2.Name.

Values in records can be concrete (numbers, Booleans, etc.), or can be terms
built on a signature Σ = (S,Op) of an abstract data type and a set XS of
variables of sorts S. We denote by T (Σ,XS) the set of terms over Σ and XS .

Records with abstract values (i.e., expressions vi ∈ T (Σ,XS) that may con-
tain variables), allow us to define generic patterns in rewrite rules: abstract
values in left-hand sides of rewrite rules are matched against concrete data in
the graphs to be rewritten. We use variables not only in values but also to denote
generic attributes and generic records in port graph rewrite rules.

Port graphs are now defined as an algebra (sets and functions defined on
these sets) in the following way:

Definition 1 (Attributed port graph). An attributed port graph G = (V, P,E,D)F
is given by a tuple (V, P,E,D) where:

– V ⊆ N is a finite set of nodes; n, n1, . . . range over nodes;
– P ⊆P is a finite set of ports; p, p1, . . . range over ports;
– E ⊆ E is a finite set of edges between ports; e, e1, . . . range over edges; two

ports may be connected by more than one edge;
– D is a set of records;

and a set F of functions Connect, Attach and L such that:

– for each edge e ∈ E, Connect(e) is the pair (p1, p2) of ports connected by e;
– for each port p ∈ P , Attach(p) is the node n to which the port belongs;
– L : V ∪ P ∪ E 7→ D is a labelling function that returns a record for each

element in V ∪ P ∪ E.

Moreover, we assume that for each node n ∈ V , L(n) contains an attribute
Interface whose value is the list of names of its ports, that is, L(n) · Interface =
[L(pi) ·Name | Attach(pi) = n] such as the following constraint is satisfied:

L(n1) ·Name = L(n2) ·Name⇒ L(n1) · Interface = L(n2) · Interface.

By definition of record, nodes/ports/edges with same name (i.e., the same
value for the attribute Name) have the same attributes, but could have different
values. This type constraint is stronger for nodes: Def 1 forces nodes with the
same name to have the same port names (i.e., the same interface) although other
attribute values may be different.

We present in Fig. 1 an example of attributed port graph. In this example,
nodes have attributes State, Marked, and Tau (used in the algorithms given in
the next sections), as well as an attribute Colour, for visual purposes.

If an edge e ∈ E goes from n to n′, we say that n′ is adjacent to n (not
conversely) or that n′ is a neighbour of n. The set of nodes adjacent to a subgraph
F in G consists of all the nodes in G outside F and adjacent to any node in F .
Ngb(n) is used to denote the set of neighbours of the node n.

State = unaware
Tau = −1

State = unaware
Tau = −1

State = unaware
Tau = −1

State = informed

State = informed
Tau = −0.5

State = active
Tau = 1

State = active
Tau = 1

State = unaware
Tau = −1

State = informed
Tau = 0.2

@
@@

Marked = 0

�
��

Marked = 1

Fig. 1. Example of port graph for a toy social network

In the social network models used in this paper, nodes representing users
have only one port gathering directed connections and edges are directed. This
simplifies in particular drawings and visualisation of big networks. While this is
sufficient in many cases, when dealing with real social networks, multiple ports
are useful, either to connect users according to the nature of their relation (e.g.,
friend, parent, co-worker, . . .) or to model situations where a user is connected
to friends via different social networks. In such cases, the advantage of using port
graphs rather than plain graphs is to allow us to express in a more structured
and explicit way the properties of the connections, since ports represent the con-
necting points between edges and nodes. The full power of port graphs is indeed
necessary in multi-layer networks [32] where edges are assigned to different layers
and where nodes are shared. In that case, different ports are related to different
layers, which can improve modularity of design, readability and matching effi-
ciency through various heuristics. This is however another topic left for future
work.

2.2 Located Rewriting

A port graph rewrite rule is itself a port graph consisting of two subgraphs L and
R together with an arrow node that links them. Each rule is characterised by
its arrow node, which has a unique name (the rule’s label), a condition restrict-
ing the rule’s application at matching time, and ports to control the rewiring
operations at replacement time.

We use here a simple version of port graph rewrite rule suitable for the
context of social networks. The full definition implemented in Porgy is given
in [21].

Definition 2 (Simple port graph rewrite rule). A port graph rewrite rule,
denoted L⇒ R, is a port graph consisting of:

– two port graphs L and R, called left-hand side and right-hand side, respec-
tively, such that all variables in R occur in L;

– an arrow node ⇒ with a set of edges that each connects a port of the arrow
node to a port in L and a port in R. The arrow node has an attribute Name
with value lab which is unique; an attribute Where := C where C is a
Boolean expression such that all variables in C occur in L; and a number of
ports corresponding to each connection from a port in L and a port R.

The Where attribute in the arrow node has a value of the form

saturated(p1) ∧ ... ∧ saturated(pn) ∧B

where p1, . . . , pn are the ports in L not linked by an edge to the arrow node,
saturated is a special predicate whose role is explained below, and B is an optional
user-defined Boolean expression involving elements of L (edges, nodes, ports and
their attributes).

The introduction of the Where attribute is inspired from the GP program-
ming system [41] and by a more general definition given in Elan [9]. Its value is
a Boolean expression in which B is used in our examples to specify the absence
of certain edges. For instance, a condition where not Edge(n,n’) requires that
no edge exists between n and n′; this condition is checked at matching time.
The condition involving the saturated predicate is automatically generated in
Porgy for every port in L not connected to the arrow node and also checked
during matching.

The edges connecting the arrow node with L and R and the saturated predi-
cate are used to control the rewiring that occurs during a rewriting step, ensuring
no dangling edges [17] arise during rewriting [21]. Figure 2 (top right-hand side
corner) shows an example of a simple port graph rewrite rule, which is used in
the generation algorithm given in the next section (we give details below).

Let us now briefly recall the notion of port graph morphism, fully defined
in [21]: if G and H are two port graphs, a port graph morphism f : G 7→ H
maps nodes, ports and edges of G to those of H such that the attachment of
ports to nodes and edge connections are preserved, as well as their data values.
In other words, G and f(G) have the same structure, and each corresponding
pair of nodes, ports and edges in G and H have the same set of attributes and
associated values, except at positions where there are variables.

Variables are useful to specify rules where some attributes of the left-hand
side are not relevant for the application of the transformation. Intuitively, the
morphism identifies a subgraph of H that is equal to G except at positions where
G has variables (at those positions, H could have any instance).

Definition 3 (Match). Let L ⇒ R be a simple port graph rewrite rule and
G a port graph without variables (i.e., a ground port graph). A match g(L) of
the left-hand side (also called a redex) is found in G if there is a total port
graph morphism g, injective on graph items (ports, nodes, edges), called match-
ing morphism, from L to G such that if the arrow node has an attribute Where

Fig. 2. A screenshot of Porgy in action.

with value C, then g(C) is true in g(L). The atom saturated(g(p)) is true if there
are no edges between g(p) and ports outside g(L) in G.

Several injective matching morphisms g from L to G may exist, leading to
different rewriting steps.

Definition 4 (Rewriting step). A rewriting step on G using a simple port
graph rule L ⇒ R and a matching morphism g : L 7→ G, written G →g

L⇒R G′,
transforms G into a new graph G′ obtained from G by performing the following
operations in three phases:

– In the build phase, after a redex g(L) is found in G, a copy Rc = g(R) (i.e.,
an instantiated copy of the port graph R) is added to G.

– The rewiring phase then redirects edges from G to Rc as follows:

For each port p in the arrow node: if pL ∈ L is connected to p, for each
port piR ∈ R connected to p, find all the ports pkG in G that are connected to
g(pL) and are not in g(L), and redirect each edge connecting pkG and g(pL)
to connect pkG and piRc

= g(piR).

– The deletion phase simply deletes g(L). This creates the final graph G′.

In [21], we show that attributed port graphs are attributed graph struc-
tures [35]; in a simple port graph rewrite rule, the arrow node defines a partial
morphism between the left and right-hand side of the rule; a rewriting step is the
pushout defined by the arrow node morphism and the matching morphism; sim-
ple port graph rewrite rules define a rewriting relation that corresponds exactly
to the single pushout semantics and can be translated to the double pushout
framework.

To facilitate the specification of graph transformations by defining explicitly
the focus of the transformation and the forbidden subgraph if any, we use the
concept of located graph from [21].

Definition 5 (Located graph). A located graph GQP consists of a port graph
G and two distinguished subgraphs P and Q of G, called respectively the position
subgraph, or simply position, and the banned subgraph.

In a located graph GQP , P is the subgraph of G under study (the focus of
the transformations), and Q is a protected subgraph, where transformations are

forbidden. Below, where the located graph GQP is clear from the context, we refer
to P as the current position.

When applying a port graph rewrite rule, not only the underlying graph G
but also the position and banned subgraphs may change. A located rewrite rule,
defined below, specifies two disjoint subgraphs M and M ′ of the right-hand side
R that are respectively used to update the position and banned subgraphs. If
M (resp. M ′) is not specified, R (resp. the empty graph ∅) is used as default.
Below, we use the operators ∪,∩, \ to denote union, intersection and complement
of port graphs. These operators are defined on port graphs from the usual set
operations on sets of nodes, ports and edges, except for \ where edges attached
to ports are dropped when the ports are not in the difference to avoid dandling
edges.

Definition 6 (Located rewrite rule). A located rewrite rule is given by a
(simple) port graph rewrite rule L⇒ R, with two disjoint subgraphs M and M ′

of R and optionally, a subgraph W of L. It is denoted LW ⇒ RM
′

M .

We write GQP →
g

LW⇒RM′
M

G′
Q′

P ′ and say that the located graph GQP rewrites

to G′
Q′

P ′ using LW ⇒ RM
′

M at position P avoiding Q, if G →L⇒R G′ with a
morphism g such that g(L) ∩ P = g(W) or simply g(L) ∩ P 6= ∅ if W is not
provided, and g(L)∩Q = ∅. The new position subgraph P ′ and banned subgraph
Q′ are defined as P ′ = (P \ g(L)) ∪ g(M), and Q′ = (Q ∪ g(M ′); if M (resp.
M ′) are not provided then we assume M = R (resp. M ′ = ∅).

Sections 3, 4 and 5 provide several examples of located graphs and rewriting.
For instance, in influence propagation, carefully managed position and banned
subgraphs are used to avoid several consecutive activations of the same neigh-
bours. Another usage is to select a specific community in the social network
where the propagation should take place.

In general, for a given located rule LW ⇒ RM
′

M and located graph GQP ,
several rewriting steps at P avoiding Q may be possible. Thus, the application
of the rule at P avoiding Q may produce several located graphs. A derivation,
or computation, is a sequence of rewriting steps. If all derivations are finite, the
system is said to be terminating. A derivation tree from G is made of all possible
computations (including possibly infinite ones). Strategies are used to specify
the rewriting steps of interest, by selecting branches in the derivation tree. See
Fig. 2 (bottom right-hand side corner) for an example of a derivation tree. Black
arrows are for rewrite steps and green ones for strategy steps.

2.3 Strategic graph programs

A strategic graph program consists of a located graph, a set of located rewrite
rules, and a strategy expression that combines applications of located rules and
focusing constructs. A full description of the language describing strategy ex-
pressions (abstract syntax, semantics) can be found in [21]. The user manual de-
scribing how to write a working strategy (concrete syntax) can be found in [23].
Below, we remind constructs used in this paper and their abstract syntax. The
only slight difference is the use of oriented graphs.

A strategy expression S combines applications of located rewrite rules T and
position updates using focusing expressions F .

The primary construct is a located rewrite rule (or transformation for short),

T , which can only be applied to a located graph GQP if at least a part of the redex
is in P , and does not involve Q. A probabilistic choice of the rule to apply is
possible with ppick(T1, . . . , Tn, Π) which picks one of the transformations for
application, according to the probability distribution Π. one(T) computes only
one of the possible applications of the transformation T on the current located
graph at the current position and ignores the others; more precisely, it makes
an equiprobable choice between all possible applications. Respectively, all(T)
denotes all possible applications of the transformation T , thus creating a new
located graph for each application. In the derivation tree, this creates as many
children as there are possible applications.

In this paper, F (position at which a rule can be applied or not) is defined
using the following elements:

– crtGraph, crtPos and crtBan: applied to a located graph GQP , return respec-
tively the whole graph G, the position subgraph P and the banned subgraph
Q.

– property(F,Elem,Expr) returns a subgraph G′ of G (defined by F) that
satisfies the decidable property Expr. Depending on the value of Elem, the
property is evaluated on nodes, ports, or edges. If Expr is not specified, all
designed graph elements are selected.

– ngb(F,Elem,Expr) returns a subset of the neighbours (i.e., adjacent nodes)
of (the graph defined by) F that satisfy the decidable property Expr. De-
pending on the value of Elem, the property is evaluated on nodes, ports, or
edges. To emphasise edge direction we also introduce ngbOut(F,Elem,Expr)
and its counterpart ngbIn(F,Elem,Expr).

Similar constructs as one(T) and all(T) exist for focusing expressions,
which are used to define positions for rewriting in a graph, or to define positions
where rewriting is not allowed: one(F) returns one node in the subgraph defined
by F and all(F) returns the full F .

Let D be one(F) or all(F), then setPos(D) (resp. setBan(D)) sets the
position subgraph P (resp. Q) to be the graph resulting from the expression D.

The following constructs are used to build strategies:

– S;S′ represents sequential application of S followed by S′.

– if(S)then(S′)else(S′′) checks if the application of S on (a copy of) GQP
succeeded, in which case S′ is applied to (the original) GQP , otherwise S′′ is

applied to the original GQP . The else(S′′) part is optional.
– repeat(S)[max n] simply iterates the application of S until it fails; if max n

is specified, then the number of repetitions cannot exceed n.
– (S)orelse(S′) applies S if possible, otherwise applies S′. It fails if both S

and S′ fail.
– try(S) always succeeds even if S fails.
– ppick(S1, . . . , Sk, Π) picks one of the strategies for application, according to

the given probability distribution Π.

Probabilistic features of the strategy language, through the use of the ppick()
construct, are used in Sect 3 for social network generation. The propagation
models described in Sect. 4 show how record expressions are used to compute
attribute values and how these are updated through application of rules.

3 Social network generation

In this section we address the problem of generating graphs with a small-world
property as defined in [49]. Such graphs are characterised by a small diame-
ter –the average distance between any pair of nodes is short– and strong local
clustering –for any pair of connected nodes, both tend to be connected to the
same neighbouring nodes, thus creating densely linked groups of nodes called
communities, whose interest has been stressed in [42] for instance. Popularised
by Milgram in [36], small-world graphs are a perfect case study for information
propagation in social networks due to their small diameter allowing a quick and
efficient spreading of information.

Our goal is to design an algorithm to generate small-world graphs of a given
size, that is, for which the number of nodes |N | and directed edges |E| are given
a priori. Moreover, the graphs generated should satisfy the following conditions:
they must have only one connected component, thus |E| ≥ |N | − 1; they should
be simple, that is, any ordered pair of nodes (n, n′) can only be linked once, thus
the maximum number of edges is |E|max = |N | × (|N | − 1); finally, the number
of communities should be randomly decided during the generation process.

A few previous works have explored the idea of using rules to generate net-
works. In [29], the authors define and study probabilistic inductive classes of
graphs generated by rules which model spread of knowledge, dynamics of ac-
quaintanceship and emergence of communities. Below we present a new algo-
rithm for social network generation that follows a similar approach, however,
we have adjusted its generative rules to cope with directed edges and ensure
the creation of a graph with a single connected component. This is achieved by
performing the generation through local additive transformations, each only cre-
ating new elements connected to the sole component, thus increasingly making
the graph larger and more intricate.

Starting from one node, the generation is divided into three phases imitating
the process followed by real-world social networks. Whenever new users first

join the social network, their number of connections is very limited, mostly to
the other users who have introduced them to the social network (Sect. 3.1).
During the second phase, these new users can reach the people they already
know personally, thus creating new connections within the network (Sect. 3.2).
Finally, the users get to know the people with whom they are sharing friends in
the network, potentially leading to the creation of new connections (Sect. 3.3).

3.1 Generation of a directed acyclic port graph

The first step towards the construction of a directed port graph uses the two
rules shown in Figures 3(a) and 3(b). Both rules apply to a single node and
generate two linked nodes (thus each application increases by one the number of
nodes and also the number of edges). The difference between these two rules lies
in the edge orientation as Rule 3(a) creates an outgoing edge on the initiating
node, while Rule 3(b) creates an incoming edge.

(a) Rule GenerationNode1. (b) Rule GenerationNode2.

Fig. 3. Rules used for generating and re-attaching nodes to pre-existing node with
a directed edge going from the pre-existing node to the newly added node in (a) or
oriented in the opposite direction in (b).

Strategy 1: Node generation: Creating a directed acyclic graph of size N

1 //equiprobabilistic application of the two rules used for generating nodes
2 repeat(
3 ppick(one(GenerationNode1),
4 one(GenerationNode2),
5 {0.5, 0.5})
6)(|N | − 1) // Generation of N nodes

The whole node generation is achieved during this first phase and managed
using Strategy 1. It repeatedly applies the generative rules |N |− 1 times so that
the graph reaches the appropriate number of nodes. As mentioned earlier, each
rule application also generates a new edge, which means that once executed,

Strategy 1 produces a graph with exactly |N | nodes and |N | − 1 edges. The
orientation of each edge varies depending of the rule applied (either 3(a) or 3(b)),
moreover, their application using the ppick() construct ensures an equiprobable
choice between the two rules.

3.2 Creating complementary connections

During this phase, we either create seemingly random connections between the
network users or reciprocate already existing single-sided connections.

We use two rules to link existing nodes, thus creating a new additional edge
with each application. The first rule (Fig. 4(a)) simply considers two nodes and
adds an edge between them to emulate the creation of a (one-sided) connec-
tion between two users. The second rule (Fig. 4(b)) reciprocates an existing
connection between a pair of users: for two nodes n, n′ ∈ N connected with an
oriented edge (n′, n), a new oriented edge (n, n′) is created; it is used to represent
the mutual appreciation of users in the social network. Note that, because each
node is randomly chosen among the possible matches, we do not need to create
alternative versions of these rules with reversed oriented edges.

(a) Rule GenerationEdge. (b) Rule GenerationMirror.

Fig. 4. Rules generating additional connections: (a) between two previously unrelated
nodes, (b) by reciprocating a pre-existing connection.

In both rules, the existence of edges between the nodes on which the rule
applies should be taken into account: the rules should not create an edge if
a similar one already exists (since we aim at creating a simple graph rather
than a multi-graph). This can be achieved by adding a condition “where not

Edge(n,n’)” (see Definition 2), or by using position constructs to restrict the
elements to be considered during matching. We use the latter solution here.

In Strategy 2, we first filter the elements to consider during the matching. We
randomly select one node among the nodes whose outgoing arity (OutArity) is
lower than the maximal possible value (i.e., |N |−1), and we ban all its outgoing
neighbours as they cannot be considered as potential matching elements. Then,
Rule 4(a) or Rule 4(b) are equiprobably applied to add a new edge from the
selected node. By banning neighbours, we ensure that future applications of the

rule will not use those nodes, that is, the rule will only apply on pairs of nodes
not already connected. This ensures that the graph is kept simple (i.e., only one
edge per direction between two nodes).

Strategy 2: Edge generation: addition of |E′| edges if possible.

1 repeat(
2 //select one node with an appropriate number of neighbours
3 setPos(one(property(crtGraph, node,OutArity < |N | − 1)));
4 //for this node, forbid rule applications on its outgoing neighbours
5 setBan(all(ngbOut(crtPos, node, true)));
6 //equiprobable application of the edge generation rules
7 ppick((one(GenerationEdge))orelse(one(GenerationMirror)),
8 (one(GenerationMirror))orelse(one(GenerationEdge)),
9 {0.5, 0.5})

10)(|E′|)

In this phase, we create |E′| edges, where |E′| < (|E| − |N |+ 1) to keep the
number of edges below |E|. The use of the orelse construct allows testing all
possible rule application combinations, thus, if one of the rules can be applied, it
is found. If no rule can be applied, the maximum number of edges in the graph
has been reached, i.e., the graph is complete. If the value of |E′| is not too high,
we are left with (|E| − |E′| − |N |+ 1) remaining edges to create in the next step
for enforcing communities within G.

3.3 Construction of communities

To create a realistic social network, we now add communities. For this, we need
to ensure that the links between users follow certain patterns. Based on ideas
advanced in several previous works (e.g., [12, 29, 34, 38]), we focus on triad con-
figurations (i.e., groups formed by three users linked together). Our community
generation algorithm uses three rewrite rules, introduced in Figure 5.

The first triad rule (Fig. 5(a)) considers how a first user (A) influences a sec-
ond user (B) who influences in turn a third user (C)5. The second rule (Fig. 5(b))
shows two users (B and C) being influenced by a third user (A)6. The last rule
(Fig. 5(c)) depicts one user (B) being influenced by two other users (A and C)7.

5 This situation can produce some sort of transitivity as “the idol of my idol is my
idol”, meaning that A is much likely to influence C. We use here the term “idol”
instead of the more classical “friend” because we only consider single-sided relations.

6 When in this position, the users B and C might start exchanging (similar connec-
tions, common interests. . .), thus creating a link between the two of them.

7 This case can happen when A and C are well-versed about a common subject of
interest which is of importance toB. A link is thus created between the two influential
users.

(a) Rule CommunityLegacy.

(b) Rule CommunityDown. (c) Rule CommunityUp.

Fig. 5. Generation of additional connections based on triads. Two distinctive edge
types are used: standard arrow edges for representing existing connections and cross-
shaped headed edges for indicating edges which should not exist during the matching
phase.

The three rules use a where not Edge(n,n’) condition to forbid the exis-
tence of an edge between two matching nodes.

Strategy 3 is used to drive the three rules. Like the previous strategy, this
one aims at equiprobably testing all possible rule combinations.

3.4 Resulting network generation

For the sake of simplicity, the strategies presented above make equiprobable
choices between rules. The probabilities may of course be modified to take into
account specific conditions present in the modelled system. Whatever the chosen
probabilities are, the following result holds.

Proposition 1. Given three positive integer parameters |N |, |E|, |E′|, such that
|N |−1 ≤ |E| ≤ |N |×(|N |−1) and |E′| ≤ |E|−|N |+1, let the strategy S|N |,|E|,|E′|
be the sequential composition of the strategies Node generation, Edge generation
and Community generation described above, and G0 be a port graph composed of
one node with one port. The strategic graph program [S,G0] terminates with a
simple and weakly-connected directed port graph G with |N | nodes and |E| edges.

Proof. The termination property is a consequence of the fact that the three
composed strategies have only one command which could generate an infinite
derivation (the repeat loop) but in the three cases, there is a limit on the number
of iterations (i.e., it is a bounded repeat).

Strategy 3: Community generation: creating edges to strengthen commu-
nities

1 repeat(

2 ppick(

3 (one(CommunityDown))orelse(
4 ppick(
5 (one(CommunityUp))orelse(one(CommunityLegacy)),
6 (one(CommunityLegacy))orelse(one(CommunityUp)),
7 {0.5, 0.5})),
8 (one(CommunityUp))orelse(
9 ppick(

10 (one(CommunityLegacy))orelse(one(CommunityDown)),
11 (one(CommunityDown))orelse(one(CommunityLegacy)),
12 {0.5, 0.5})),
13 (one(CommunityLegacy))orelse(
14 ppick(
15 (one(CommunityDown))orelse(one(CommunityUp)),
16 (one(CommunityUp))orelse(one(CommunityDown)),
17 {0.5, 0.5})),
18 {1/3, 1/3, 1/3})
19)(|E| − |E′| − |N |+ 1)

Since the program terminates, we can use induction on the number of rewrit-
ing steps to prove that the generated port graphs are directed, simple (at most
one edge in each direction between any two nodes) and weakly connected (con-
nected when direction of edges is ignored). This is trivially true for G0 and each
rewrite step preserves these three properties, thanks to the positioning strategy
that controls the out degree in Edge generation (Strategy 2) and the forbidden
edges in the rules for Community generation (Figure 5). As the strategic program
never fails, since a repeat strategy cannot fail, this means that a finite number
of rules has been applied and the three properties hold by induction.

It remains to prove that the number of nodes and edges is as stated. Observe
that by construction, the strategy Node generation creates a new node and a new
edge at each step of the repeat loop, exactly |N |−1, and is the only strategy that
creates new nodes. Hence, after applying the Node generation strategy, the graph
created has exactly |N | nodes and |N |−1 edges. The strategies Edge generation
and Community generation create a new edge at each step of the repeat loop,
so respectively |E′| and |E| − |E′| − |N | + 1. As a result, when the strategy S
terminates, the number of edges created is equal to

(
|N | − 1

)
+
(
|E′|

)
+
(
|E| −

|E′| − |N |+ 1
)

= |E|.

The method presented above can easily be extended to create graphs with
more than one component. One has to use a number of starting nodes equal to
the number of desired connected components and ensure that no edge is created
between nodes from different components. The generative rules and strategies

can then be applied on each component iteratively or in parallel (parallel appli-
cation of rules is possible but beyond the scope of this paper).

3.5 Implementation and Experimental Validation

We use the Porgy system [39] to experiment with our generative model. The
latest version of the rewriting platform8 is available either as source code or
binaries for MacOS and Windows machines.

Figures 6 and 7 are two examples of social networks generated using a se-
quential composition of the previous strategies. Although both graphs have the
same number of nodes and edges (|N | = 100 and |E| = 500), they have been
generated with different |E′|, respectively |E′| = 50 for Fig. 6 and |E′| = 0 for
Fig. 7. This changes the number of purely random edges created in the resulting
graph and explains why the first graph seems to visually present less structure
than the other one. Conversely, a graph with only randomly assigned edges could
be generated with |E′| = |E| − |N |+ 1.

To ensure that our constructions present characteristics of real-world social
networks, we have performed several generations using different parameters and

8 Porgy website: http://porgy.labri.fr

Fig. 6. A generated social network. |N | = 100 nodes, |E| = 500 edges and |E′| = 50.
With these parameters, the average characteristic path length is L ' 2.563 and the
average clustering coefficient is C ' 0.426.

Fig. 7. A generated social network. |N | = 100 nodes, |E| = 500 edges and |E′| = 0.
With these parameters, the average characteristic path length is L ' 3.372 and the
average clustering coefficient is C ' 0.596.

measured the characteristic path length (the average number of edges in the
shortest path between any two nodes in the graph) and the clustering coefficient
(how many neighbours of a node n are also connected with each other) as defined
in [49]. In a typical random graph, e.g., a graph generated using the Erdös–Rényi
model [18] or using our method with the parameters |N | = 100 nodes, |E| = 500
edges and |E′| = |E| − |N | + 1 = 401, the average characteristic path length
is very short (L ' 2.274), allowing information to go quickly from one node
to another, but the clustering coefficient is low (C ' 0.101), implying the lack
of well-developed communities. However, with the parameters used in Figure 6
(respectively, Figure 7), we retain a short characteristic path length L ' 2.563
(resp. L ' 3.372) while increasing the clustering coefficient C ' 0.426 (resp.
C ' 0.596), thus matching the characteristics of small-world graphs: a small
diameter and strong local clustering [49].

The graphs generated using our method can be subsequently used as any
randomly generated network. For instance, we have used such graphs in [46] to
study the evolution of different information propagation models.

4 Propagation in social networks

In social networks, propagation occurs when users perform a specific action (such
as relaying information, announcing an event, spreading gossip, sharing a video
clip), thus becoming active. Their neighbours are then informed of their state
change, and are offered the possibility to become active themselves if they per-
form the same action. The process then reiterates as newly active neighbours
share the information with their own neighbours, propagating the activation
from peer to peer throughout the whole network.

To replicate this phenomena, some propagation models opt for entirely proba-
bilistic activations (e.g., [30, 13, 50]), where the presence of only one active neigh-
bour is often enough to allow the propagation to occur, while others (e.g., [26,
31, 48]) use threshold values, building up during the propagation. Such values
represent the influence of one user on his neighbours or the tolerance towards
performing a given action (the more requests a user gets, the more inclined he
becomes to either activate or utterly resist). In general, several propagations may
happen in one network at the same time, but most propagation models focus
only on one action (e.g., relaying a specific information) as the other propaga-
tions are likely to be about entirely different subjects, thus creating little if any
interference.

In [46], two basic propagation models were specified using strategic rewriting:
the independent cascade model IC [30] and the linear threshold model LT [26].
In this section, we recall the definition of these two models.

In order to make it easier to compare them, we first extract common features
that are used in our specifications:

– We assume that, at any given time, each node is in a precise state, which de-
termines its involvement in the current spreading of information. States are
represented by one of the following values: unaware for those who have not
(yet) heard of the action, informed to describe those who have been informed
of the action/influenced by their neighbours, or active to qualify those who
have been successfully influenced and decided to propagate the action them-
selves. We encode this information on each node using an attribute State,
which can take one of these three values as a string of characters: unaware,
informed, or active. For visualisation purposes, an attribute Colour is as-
sociated to State to colour the nodes in red, blue, or green, respectively.

– The rules we use to express the models describe how the nodes’ states evolve.
An unaware node becomes informed when at least one of its active neigh-
bours tries to influence it, and an informed node becomes active when its
influence level is sufficiently high. These two distinct steps correspond to the
two basic State transformations we need to represent using the rewrite rules.
We name the first step the influence trial, during which an active node n
tries to influence an inactive neighbour n′ (where n′ is either unaware or
just informed). The following step is the activation of n′, where the node
becomes active once it has been successfully influenced.

– For each model, we use an attribute called Tau to store the influence level
of the informed nodes. Computed/updated during the Influence trial step,
this attribute is by default initialised to −1 and can take a numerical value
in [−1, 1].

With each model, we introduce visual representations of the rules applied
to perform the rewriting operations. We mention in their left-hand sides the
attributes that are used in the matching process, and in their right-hand sides the
attributes whose values are modified during the rewriting step. The specifications
are detailed hereafter.

4.1 The independent cascade model (IC)

We first describe a basic form of the IC model as introduced in [30]. This model
has several variants (e.g. [25, 48]) allowing, for instance, to simulate the propa-
gation of diverging opinions in a social network [13].

Quoting from [30], the model is described as follows: “We again start with an
initial set of active nodes A0, and the process unfolds in discrete steps according
to the following randomised rule. When node v first becomes active in step
t, it is given a single chance to activate each currently inactive neighbour w;
it succeeds with a probability pv,w (a parameter of the system) independently
of the history thus far. (If w has multiple newly activated neighbours, their
attempts are sequenced in an arbitrary order.) If v succeeds, then w will become
active in step t+ 1; but whether or not v succeeds, it cannot make any further
attempts to activate w in subsequent rounds. Again, the process runs until no
more activations are possible.”

Studying this description, we identify the subsequent properties which must
be satisfied at each step t where an active node v is selected:

IC.1 v is given a single chance to activate each inactive neighbour w
IC.2 v succeeds in activating w with a probability pv,w
IC.3 attempts of v to activate its inactive neighbours are performed in arbitrary

order
IC.4 if v succeeds in activating w at step t, w must be considered as an active

node in step t+ 1
IC.5 the process ends if no more activations are possible.

We now present an implementation of the IC model using our formalism,
and show that it complies with the properties stated above. First, we introduce
the notations and main ideas: let us assume that for each pair of adjacent nodes
(n, n′), the influence probability from n on n′ is given; it is denoted pn,n′ where
0 ≤ pn,n′ ≤ 1. Note that pn,n′ is history independent (its value is fixed regardless
of the operations performed beforehand), and non symmetric, i.e., pn,n′ does not
have to be equal to pn′,n.

Let N0 ⊂ N be the subset of nodes initially active, Nk be the set of ac-
tive nodes at step k, and ξk be the set of ordered pairs (n, n′) subjected to a
propagation from n (active) towards n′ (inactive).

The set Nk of nodes is computed from Nk−1 by adding nodes as follows.

– We consider an active node n ∈ Nk−1 and an inactive node n′ (6∈ Nk−1)
adjacent to n but whom n has not tried to influence yet: n′ ∈ Ngb(n)\Nk−1,
and (n, n′) 6∈ ξk−1. A given node n is only offered one chance to influence
each of its neighbours, and it succeeds with a probability pn,n′ ; thus we add
the pair (n, n′) to ξk to avoid repeating the same propagation.

– If the adjacent node n′ is successfully activated, it is added to the set of
active nodes Nk.

This process continues until no more activations can be performed, that is when
ξk contains all the possible pairs (n, n′) where n belongs to the current set of
active nodes and n′ is an inactive neighbour. The order used to choose the nodes
n and their neighbours during the propagation is arbitrary.

Attributes To take into account the specificities of IC, we need a few addi-
tional attributes. First, two attributes are needed for each edge going from n
to n′: Influence, ranging on [0, 1], which gives the influence probability from n
on n′ (i.e., pn,n′), and Marked, taking for value 0 or 1, which is used to indi-
cate whether the given pair (n, n′) has already been considered, thus avoiding
multiple influence tentatives; Marked is equal to 1 if (n, n′) ∈ ξ, and 0 otherwise.

The attribute Tau, ranging on [−1, 1], is used to measure how influenced a
given node is. Initially, the few preset active nodes have their attribute Tau = 1,
while unaware ones see their attribute Tau set to −1. During the propagation,
the value of the attribute Tau is updated by a first rewrite rule, called IC in-
fluence trial, in order to reflect the influence probability pn,n′ , stored in the
Influence attribute:

Tau = Influence− random(0, 1) (1)

where random(0, 1) is a random number in [0, 1[. We design the Equation 1 such
that when a node is successfully influenced and ready to become active, the
value of its attribute Tau is greater or equal to 0 (Tau ≥ 0). This is because
n′ has a probability pn,n′ of becoming active (where pn,n′ is given as the value
of the attribute Influence). A random number random(0, 1) is thus chosen in
an equi-probabilistic way and compared to the value of Influence. As a result,
Influence is greater than or equal to random(0, 1) in pn,n′% of cases, so Tau =
Influence− random(0, 1) is greater or equal to 0 in pn,n′% of cases.

Rewrite rules The rewrite rules used to represent the IC model are given
in Figure 8. The first one, Rule IC influence trial (Fig. 8(a)), shows a pair of
connected nodes in the left-hand side and their corresponding replacements in
the right-hand side. The active node n (in green) is connected to the node n′,
initially unaware (in red), or already informed (in blue) by another neighbour,
through an unmarked edge (its attribute Marked is equal to 0). In the right-hand
side, n remains unchanged while n′ becomes or stays blue to visually indicate
that it has been influenced by n and informed of the propagation. The updated
influence level Tau of n′ in the right-hand side is set according to Equation 1.

Furthermore, the directed edge linking the two port nodes is marked, by setting
to 1 the attribute Marked.

Rule IC activate in Figure 8(b) is then applied on a single node n. If n has
been sufficiently influenced, i.e., if its attribute Tau is greater than 0, then its
state is changed, going from informed (blue) to active (green).

State = active

Marked = 0

State 6= active

State = active

Marked = 1

State = informed
Tau = Eq. 1

(a) IC influence trial : influence
from an active neighbour on an in-
active node (either unaware or just
informed).

State = informed
Tau ≥ 0

State = active

(b) IC activate: an informed node
becomes active when sufficiently
influenced.

Fig. 8. Rules used to express the Independent Cascade model (IC): active nodes are
depicted in green, informed nodes in blue and unaware nodes in red. A bi-colour
red/blue node can be matched to either of the two corresponding states (unaware or
informed).

Strategy Application of the rules describing IC is controlled by Strategy 4.

Strategy 4: Strategy progressive IC propagation

1 setPos(all(property(crtGraph, node, State == active)));
2 repeat(
3 one(IC influence trial);
4 try(one(IC activate))
5)

The first instruction exclusively selects all the nodes whose State is active

and adds them to the position P (see Definition 5). The first instruction in
the body of the repeat command (line 3) then performs a located rewriting
operation9 (see Definition 6). An active node is used as a mandatory element

9 We recall that a rule can only be applied if the matching subgraph contains at least
one node belonging to the position P , and no element belonging to the banned set
Q.

from P when calling the IC influence trial rule to rewrite a pair of active/inactive
neighbours. To comply with the original model, the attempts of activation are
performed in an arbitrary order (Lemma 1) and can only occur once between
each possible pair of active/inactive nodes (Lemma 2).10

Lemma 1 (IC.3). Attempts of an active node n to activate its inactive neigh-
bours n′ are performed in arbitrary order.

Proof. Because the IC influence trial rule is applied using the construct one(),
for each rule application, the elements corresponding to the left-hand side are
chosen arbitrarily among the matching possibilities.

Lemma 2 (IC.1). Each active node n is given a single chance to activate its
inactive neighbour n′.

Proof. The pair (n, n′) can only be chosen by the IC influence trial rule if the
directed edge going from n to n′ is unmarked (Marked is equal to 0). As the
rule application results in the marking of the directed edge between n and n′

(Marked = 1), it also limits to one the number of influence attempts for each
pair of active-inactive neighbours since no other rule resets the marked edge.

The application of the rule IC influence trial results in the active node
remaining unchanged while the inactive node becomes informed. Additionally,
all the nodes in the right-hand side of the rule follow the default behaviour
described in Definition 6 and are consequently added to the current position
subgraph P .

The strategy proceeds and the IC activate rule (Fig. 8(b)) is then immedi-
ately applied (line 4) to try to activate an influenced node in P . According to the
semantics of the try command, if there exists one informed node in P where
Tau ≥ 0 then the IC activate rule is applied and the node becomes active,
otherwise, if no proper candidate is identified as match, the rule cannot apply
and no new node becomes active, but the strategy does not fail. As discussed
earlier, the activation condition reliably respect the initial model (Lemma 3) and
the newly active nodes are immediately considered in the next loop iteration
(Lemma 4).

Lemma 3 (IC.2). Each active node n succeeds in activating its inactive neigh-
bour n′ with a probability pn,n′ .

Proof. Rule IC activate can only be applied on n′ once the node has been suc-
cessfully influenced in rule IC influence trial. This occurs when the value of the
attribute Tau is greater than 0, a result effectively happening with a probability
pn,n′ : see the computation of Tau defined above (Equation 1 in section 4.1).

Lemma 4 (IC.4). If the active node n succeeds in activating its neighbour n′

at step k, n′ must be considered as an active node at step k + 1.

10 Note that inactive nodes may still be influenced several times but only when selected
by different active neighbours.

Proof. All nodes in the right-hand side of the rules are put in P by default,
including the newly influenced or active nodes. Considering the repeat loop, as
the IC influence trial rule is applied directly after the IC activate rule with no
modification of the position set occurring in-between, if the influenced node n′

becomes active through rule IC activate, then the now active node is added
to P . Thus, it is an eligible candidate for the active node in rule IC influence
trial during the next iteration of the loop.

With the repeat loop closing after the IC activate rule, the whole process is
then repeated until the propagation phenomenon comes to an end (Lemma 5).
As all the eligible edges are marked and all the possible influences and acti-
vations have been performed, the rule applications can no longer find suitable
candidates, the repeat loop stops and the strategy terminates as further detailed
in Proposition 2.

Lemma 5 (IC.5). The process ends if there exists no pair of adjacent nodes
n, n′ such that n is active, n′ is inactive and n has not tried to activate n′.

Proof. The semantics of the repeat loop guarantees that if a command inside the
body fails, the loop is terminated. The command one(IC influence trial) fails
when no unmarked pair of nodes (active, inactive) exists in the current graph.
Then the repeat loop stops and the program terminates.

Proposition 2 (IC termination). If the network is finite, the strategic rewrite
program given by the rules in Figure 8 and Strategy 4 terminates.

Proof. If the initial set of active nodes is empty, the strategic program immedi-
ately terminates without changing the graph. Otherwise the repeat loop starts
with a non-empty position subgraph P containing all the active nodes (line 1 in
Strategy 4), P represents the set N0. Termination is a consequence of the iter-
ative construction of sets Nk and ξk: at each completed iteration of the repeat
loop, the set ξk of marked pairs of nodes (active, inactive) strictly increases,
thanks to IC influence trial whereas the set of active nodes Nk increases or
remains constant, thanks to IC activate.

Since no edge is added to the graph in the process, if the initial network is
finite then rule IC influence trial eventually fails (the set of unmarked edges is
strictly decreasing in size at each iteration since |ξk| < |ξk+1|) causing the repeat
loop to end. Thus the program terminates.

In the following proposition, we summarise and prove the properties of our
strategic rewrite program.

Proposition 3 (IC properties). The propagation process defined by the rules
in Figure 8 and Strategy 4 proceeds by iteration such that:

1. each active node n is given a single chance to activate its inactive neighbours
n′ and these attempts are performed in arbitrary order;

2. each active node n succeeds in activating its inactive neighbour n′ with a
probability pn,n′ ;

3. if the active node n succeeds in activating its neighbour n′ at step k, n′ is
considered as an active node at step k + 1;

4. the process ends if and only if there exists no pair of adjacent nodes n, n′

such that n is active, n′ is inactive and n has not tried to activate n′.

Proof. Let us prove each point in turn. Point 1 is proved by Lemmas 2 and 1,
Point 2 by Lemma 3, Point 3 by Lemma 3. The ‘if’ part of Point 4 is proved
in Lemma 5. Conversely, we can show that if the process has ended then all
pairs of nodes (active, inactive) in the network have been considered: assume by
contradiction that one such pair remains, there would then be an unmarked pair
on which one(IC influence trial) succeeds, contradicting the assumption that
the process has ended.

4.2 The linear threshold model (LT)

In the second propagation model, the LT model, the node activation process
takes into account the neighbours’ combined influence and threshold values to
determine whether an informed node can become active or not. While [30] also
explores the threshold model and cites publications describing such models, the
definition considered in this section is based on a generalised version described
in [26].11

Quoting the general model description from [26]: “At a given timestamp, each
node is either active (an adopter of the innovation, or a customer which already
purchased the product) or inactive, and each node’s tendency to become active
increases monotonically as more of its neighbours become active. Time unfolds
deterministically in discrete steps. As time unfolds, more and more of neighbours
of an inactive node u may become active, eventually making u become active,
and u’s activation may in turn trigger further activations by nodes to which
u is connected. In the General Threshold Model each node u has a monotone
activation function fu : 2N(u) → [0, 1], from the set of neighbours N of u, to
real numbers in [0, 1], and a threshold θu, chosen independently and uniformly
at random from the interval [0, 1]. A node u becomes active at time t + 1 if
fu(S) ≥ θu, where S is the set of neighbours of u that are active at time t.”

As previously we can identify and rephrase the following properties. At each
step t where a node u is selected:

LT.1 The node u has a monotone activation function fu(S) computing its active
neighbours’ joint influence value.

LT.2 An inactive node u becomes active at step t + 1 if its neighbours’ joint
influence (fu(S)) exceeds its threshold value (θu).

LT.3 When u becomes active, its influence must be considered on its inactive
neighbours.

LT.4 The process ends if no more activations are possible. 12

11 While the authors propose several alternative versions of their generalised LT model,
we only consider one of the depicted instances, namely, the first one.

12 Note that this characteristic is not explicitly mentioned in [26].

The LT model is more difficult to understand than the IC model as the
description proposed above is less precise than the one we excerpted from the IC
model. Nevertheless, it is possible to follow a similar approach to implement this
description in our formalism and notations. Here again, two different operations
are used to perform the propagation: for each inactive node n′, we compute the
joint influence of its active neighbours, then, if the influence n′ is subjected to
exceeds a threshold value, the node becomes active.

Let pn,n′ be the influence probability of n on n′ (0 ≤ pn,n′ ≤ 1) and θn′ the
threshold value of n′, i.e., the resistance of n′ to its neighbours’ influence, chosen
independently from n′ and randomly in [0, 1[. Let also Sn′(k) denote the set of
nodes currently active at step k and adjacent to n′, and pn′

(
Sn′(k)

)
the joint

influence on n′ of its active neighbours at step k. In our specification, the function
pn′
(
Sn′(k)

)
corresponds to the monotone activation function fu : 2N(u) → [0, 1]

described in [26]. The LT propagation thus operates as follows: let N0 ⊂ N be
the subset of nodes initially active, Nk be the set of active nodes at step k, and
ξk be the set of ordered pairs (n, n′) subjected to a propagation from n (active)
towards n′ (inactive). The set Nk of nodes is computed from Nk−1, by adding
nodes as follows. Let us consider an active node n ∈ Nk−1 and an inactive node
n′ (6∈ Nk−1) adjacent to n but whom n has not tried to influence yet:

– The inactive node n′ 6∈ Nk−1 has its active neighbours’ joint influence value
computed using the formula: pn′

(
Sn′(k)

)
= 1 −

∏
n∈Sn′ (k)(1 − pn,n′) where

Sn′(k) = Ngb(n′) ∩Nk−1 (the active neighbours of n′).
– The inactive node n′ becomes active at step k when its neighbours’ joint

influence exceeds the threshold value, i.e., pn′
(
Sn′(k)

)
≥ θn′ , leading n′ to

be added to Nk.

To simplify the following mathematical formulas and considering we only deal
with transformation occurring at the most recent step k at all time, we use the
notation Sn′ instead of Sn′(k). This process continues until, for all the joint
influences up-to-date, no more activation can be performed.

As for IC, the LT propagation takes place in two phases: influence com-
putation followed by activation. Before presenting the corresponding rules, we
need to specify more precisely the properties of the intended propagation model
from [26], as the authors present several propagation models with multiple def-
initions of the influence and joint influence probability of n over n′ (i.e., pn,n′

and pn′(Sn′)). In this paper, we are implementing the static propagation model
where pn,n′ is expressed as a constant value. Because the activation of a specific
node n′ is dependent of the influence probabilities coming from each of its active
neighbours, we need to update their joint influence pn′(Sn′) whenever one of the
previously inactive neighbours of n′ activates. This operation is performed using
the formula pn′

(
Sn′ ∪ {n}

)
, introduced in the original paper.

pn′
(
Sn′ ∪ {n}

)
= pn′(Sn′) +

(
1− pn′(Sn′)

)
× pn,n′ (2)

This equation adds the influence of n among the other active nodes adjacent to
n′ (where n 6∈ Sn′).

Attributes In order to take into account these specificities, two new attributes
are needed in addition to the ones introduced earlier in IC (State, Colour, Influ-
ence, Marked and Tau). Each node is now also provided with a threshold value,
stored in the attribute Theta, whose value is in [0, 1]. The joint influence prob-
ability, measuring the influence level an inactive node is subjected to, is stored
using the attribute JointInf. Initially, the active nodes have their attributes
JointInf = 1, while unaware ones have JointInf = 0. During the influence step,
the value of the attribute JointInf on the node being informed is updated as
specified by Equation 2, which is translated to the following formula when using
the appropriate attributes:

JointInf = JointInf old + (1− JointInf old)× Influence (3)

We can then compare this updated joint influence value for a node n′ with its
threshold value, stored in Theta and assign the result to the attribute Tau:

Tau = JointInf− Theta (4)

If, for an informed node n′, Tau ≥ 0, then the joint influence of its neighbours
(JointInf) exceeds its threshold value (Theta), thus leading n′ to endorse the
propagation subject and to activate to spread this very information to all of its
neighbours.

State = active

Marked = 0

State 6= active

State = active

Marked = 1

State = informed
JointInf = Eq. 3
Tau = Eq. 4

(a) LT influence trial : Joint influ-
ence computation from an active

neighbour on an inactive node (ei-
ther unaware or just informed).

State = informed
Tau ≥ 0

State = active

(b) LT activate: an informed node
becomes active when sufficiently
influenced.

Fig. 9. Rules used to express the Linear Threshold model LT. Colours have the same
meaning as previously: active nodes are green, informed nodes are blue and unaware

nodes are red. A bi-colour red/blue node can be in either of the two states unaware

or informed.

Rewrite rules The rules for the LT model are quite similar to those introduced
in the IC model. The first rule, LT influence trial (Figure 9(a)), is applied on

a connected pair of active-inactive nodes (respectively green and red/blue).
During its application, the rule transforms an inactive node n′ into an informed

node as its active neighbour n tries to influence it. Two computations are
performed in order to update the attributes of the inactive node n′. The first
one updates the joint influence of n′ by adding the influence of the active node
n to the total influence using Equation 3. This operation respects the property of
the LT model as shown in Lemma 6. Once JointInf is revised, Tau is calculated
by comparing n′ joint influence (JointInf) and its threshold value (Theta).

Lemma 6 (LT.1). An inactive node n has a monotone activation function com-
puting its active neighbours’ joint influence value.

Proof. The value of JointInf is changed by the rule LT influence trial using the
new Influence value to consider to update the previous joint influence probability
measure; this is given by Equation 3, according to which JointInf ≥ JointInf old,
as JointInf old and Influence are both defined in [0, 1]. Consequently, the acti-
vation function is monotone.

The second rule, named LT activate (Figure 9(b)), is identical to the IC
activate rule shown in Figure 8(b). A successfully influenced node, identified
by the positive value of its Tau attribute, has simply its State attribute value
changed from informed (blue) to active (green).

Strategy We use the rewriting Strategy 5 to manage the rules application
similarly to the IC model. Overall, the two strategies (used for IC and LT)
follow the same design and only vary by applying different rules.

Strategy 5: Strategy LT propagation

1 setPos(all(property(crtGraph, node, State == active)));
2 repeat(
3 one(LT influence trial);
4 try(one(LT activate))
5)

As in the previous model, we start by defining a position P which gathers
all the active nodes (line 1), then a repeat command (line 2) to compute the
propagation as many times as possible. One of the active nodes is considered
and we apply the LT influence trial rule (line 3) on it and one of its inactive
neighbours. At the end of the rewriting operation, these two nodes follow the
default behaviour of the right-hand side elements and are added to P .

We then try to apply the LT activate rule (line 4) on an informed node
whose Tau attribute value exceeds or equals 0. If there exists no node which
has been successfully influenced (whose Tau attribute value is lower than 0), the
LT activate rule is not applied. Otherwise, the activation follows the conditions
expressed in the model description as shown in the next Lemma.

Lemma 7 (LT.2). An inactive node n becomes active if its neighbours’ joint
influence exceeds its threshold value.

Proof. The attribute Tau is used to stock the comparison result between the at-
tributes JointInf and Theta as described in Equation 4. As the rule LT activate
is only applied when JointInf is greater or equal to Theta, the inactive node can
only become active if this condition is verified.

The newly active node is then added to the subgraph P and can be considered
to start influencing its own neighbours in the next iteration of the repeat loop.

Lemma 8 (LT.3). When n becomes active, its influence must be considered by
its inactive neighbours

Proof. Once a node n is active, it can be considered as a candidate in the rule
LT influence trial with one of its inactive neighbour n′ which has been selected
to be influenced. During the application, the edge between the two nodes is
marked to avoid successive influence trials from n to n′, and, since no other rule
puts the mark back to 0 once it has been set to 1, the rule can only be applied
once on this pair. As the rule LT influence trial is the only one which can stop
the strategy, it is applied as many times as possible, thus considering all the
possible pairs of active-inactive nodes and successfully guaranteeing that each
active node influences all its inactive neighbours once.

Although the original model does not specify when the propagation comes
to an end, we consider that once the active nodes have tried to influence all
their existing inactive neighbours, no more changes can occur in the network and
the propagation can no longer continue. This is expressed in the next Lemma,
while the corresponding termination of the graph rewrite program is defined in
Proposition 4.

Lemma 9 (LT.4). The process ends if there exists no pair of adjacent nodes
n, n′ such that n is active, n′ is inactive and sufficiently influenced.

Proof. Same proof as Lemma 5 just by changing the rules’ names.

Proposition 4 (LT termination). If the network is finite, the strategic rewrite
program given by the rules in Figure 9 and Strategy 5 terminates.

Proof. Same proof as Proposition 2 just by changing the rules’ names.

The following proposition summarises the properties of our strategic rewrite
program.

Proposition 5 (LT properties). The propagation process proceeds by iteration
in discrete steps. For any pair of adjacent nodes n, n′ such that at some step k
during the propagation n is active and n′ is inactive:

1. An inactive node n has a monotone activation function (pn′
(
Sn′(k)

)
) com-

puting its active neighbours’ joint influence value.

2. An inactive node n becomes active if its neighbours’ joint influence exceeds
its threshold value.

3. When n becomes active, its influence must be considered on its inactive neigh-
bours.

4. The process ends if and only if there exists no pair of adjacent nodes n, n′

such that n is active, n′ is inactive and n has not tried to activate n′.

Proof. Let us prove each point in turn. Point 1 is proved by Lemma 6, Point 2
by Lemma 7, Point 3 by Lemma 8. The ‘if’ part of Point 4 is proved in Lemma 9.
Conversely, we can show that if the process has ended, then all pairs of nodes
(active, inactive) in the network have been considered; assume by contradiction
that one such pair remains, there would then be an unmarked pair on which
one(LT influence trial) could be applied, thus contradicting the assumption
that the process has ended.

5 Dissemination in Networks

We now turn our attention to dissemination algorithms, which spread informa-
tion within a network (not necessarily a social network) in an automatic way.
Unlike propagation models, dissemination models do not aim at replicating social
behaviours but instead spread the information automatically.

In this section we consider a dissemination model, called Riposte (RP), de-
scribed in [24].

In this model, it is considered that an information deemed interesting by
a sufficiently large fraction of the population is more likely to appeal widely
to other individuals, whereas an information that only a few people consider
interesting will not engage others beyond the set of users initially exposed to it.
Moreover, when observing the information dissemination process (more precisely,
the users’ re-posts), one cannot determine with sufficient confidence the opinion
of any single user concerning the information that is disseminated.

In this section, we first implement the RP diffusion algorithm as a strategic
graph program. Then, we show how to easily develop a new dissemination model
incorporating features of LT and RP.

5.1 Riposte (RP): a privacy preserving dissemination model

RP differs from the two models seen previously as it is not a propagation model.
However, as a diffusion model, it still follows the characteristic principle of ran-
domly driven activations encountered in IC, while introducing some key varia-
tions. First of all, its activation and spreading mechanisms are not directly linked:
both active or inactive users can be considered as starting point to transmit
information, and active users are not automatically assumed to spread informa-
tion to their neighbours. These features confer to RP the property of plausible
deniability, which is essential to preserve the users’ privacy. Indeed, indepen-
dently of the user’s opinions and consent concerning the information, RP will

sometimes disseminate information to the user’s neighbours. The user’s opinion
influences the probability of sharing in order to favour topics deemed interesting
by most people, but with this model, witnesses observing the exchanges within
the network can now no longer precisely pinpoint which users have supported
the diffusion and have intended to share the information with their neighbours.
Finally, conversely to LT, RP does not take into account the influence from one
user upon another, but considers instead the personal interest a given user has
in the information.

Quoting the model description given in [24]: “Let G denote the (directed)
graph modeling the social network, and n be the total number of users, and
suppose that some (small) initial set of users learn an information item t. For
each user u that learns t, Riposte decides to either repost t, to all u’s outgoing
neighbours in G, or to not repost t, to anyone. The decision is randomised and
depends on the user’s (private) opinion on the information, and the number of
the user’s neighbours that have not received the information yet. Precisely, if u
likes t, then t is reposted with probability λ/su , and if u does not like t, then
t is reposted with a (smaller) probability δ/su, where 0 < δ < 1 < λ are global
parameters of the dissemination mechanism, and su is an upper bound on the
number of u’s outgoing neighbours that have not received t yet. [...] The process
either finishes after a finite number of steps, when no individuals are left [to be
informed], or continues forever.”

Rephrasing this description, we can isolate the following characteristics:

RP.1 For each user u that learns an information item, the Riposte algorithm
either reposts it to all u’s outgoing neighbours, or it does not repost it to
any of them.

RP.2 If u likes the information item, it is reposted to all of u’s neighbours with
a probability λ/su; if u does not like it, the information is reposted with a
(smaller) probability δ/su.

RP.3 The process either terminates after a finite number of steps, when no
more diffusion is possible, or continues forever.

To implement this description in our formalism and notations, new param-
eters are needed to reflect these characteristics. First, let pn be the probability
given for a specific information to be re-posted by the node n. The value of
pn can be seen as a measure of how interesting the information is to n. Then,
in order to prevent revealing the opinion of individual users, some randomness
concerning the information diffusion is incorporated. Let δ and λ be the dissem-
ination model global parameters where 0 < δ < 1 < λ. We define Sn as the set
of nodes currently unaware of the information and adjacent to n. After being
informed by one of its neighbours, two different behaviours are possible. If n
wishes to diffuse the information (that is, n becomes active), then either all its
neighbours are informed of it with a probability λ/Sn. Alternatively, if n does
not wish to spread the information (thus, n remains “simply” informed), then
the information can still be passed to all its neighbours, but this time with a
weaker probability δ/Sn.

Let Dk ⊆ N the set of nodes aware of the information being diffused at step
k, with D0 being the set of nodes used as a source for the dissemination process.
We define over Dk the set Mk ⊆ Dk which contains the nodes having been
considered by the algorithm to try to spread the information to their neighbours
up to step k; as no node is initially considered, M0 starts empty. For each new
step k, the set Dk and Mk are computed incrementally from Dk−1 and Mk−1 as
follows:

– a node n ∈ Dk−1 \Mk−1, who has been informed but have not yet been
considered by the diffusion algorithm, is selected and is proposed to endorse
the information according to its interest with a probability pn. Having been
selected, n is added to the set Mk (Mk = Mk−1 ∪ {n}).

– If n finds the information worthy, it becomes active, then all of its neighbours
are informed about the item being diffused with a probability λ/Sn and are
added to Dk. Otherwise, n remains inactive, but all its neighbours are can
still be informed with a probability δ/Sn and are consequently also added
to Dk.

– This process continues until all the informed nodes have been considered by
the algorithm to try to diffuse the information to their neighbours, that is,
when Dk = Mk.

As one can see, the diffusion probability depends on both the user’s opin-
ion concerning the information (pn) and the number of neighbours unaware of
it (Sn). In the original definition [24], the value Sn is an upper bound on the
number of n’s outgoing neighbours that have no knowledge yet of the informa-
tion. However, a variant of the algorithm for systems where users are unable to
know whether their neighbours have already heard of the information or not was
also proposed. For such instance of application, which is our case, the probabil-
ity is computed using the total number of n’s outgoing neighbours instead of
considering the upper bound of unaware neighbours.

Attributes We naturally make use of the generic State and Colour node at-
tributes already described in the previous models, as well as Marked on directed
edges. But here we also need to flag nodes that have already attempted to
spread the information (regardless of their activation status). This information
is reflected by a new node attribute called MarkedN, which is used to indicate
which elements belong to the set Mk.

In addition to these, we introduce a few other new attributes to model the
specificities of RP. First, the attribute Interest records each node’s interest for
an information, namely the probability pn for an information to be re-posted by
n. Then the attribute Tau is used to store the result of the activation decision,
computed as

Tau = Interest− random(0, 1) (5)

where random(0, 1) is a number uniformly and randomly chosen in [0, 1[. An
informed node becomes active when Tau ≥ 0. Initially, Tau is set to −1 on all
the nodes before the diffusion begins and, as in the previous models, Tau is still

the key attribute to enable node activation. This time however, Tau is computed
using the Interest attribute instead of the Influence attribute as in IC and LT.

To perform the dissemination according to the given parameters λ and δ of
the RP model, an additional attribute Share is used to store the likeliness of n
to share (i.e., spread) the information. Its value is computed as follows:

Share =
isActive(λ− δ) + δ

OutArity
(6)

where isActive is an integer set to 1 when the attribute State = active (and set
to 0 otherwise), and OutArity is the cardinality of the set of outgoing neighbours.
Some explanations are in order:

1. let OutArity be the number of outgoing edges from n;
2. if n has no neighbour to transmit the information to, then Share does not

need to be computed; we address this issue by having OutArity returning
−1 in such case instead of 0 to avoid errors;

3. we formulate Share as a single expression using λ or δ depending on the
value of isActive (otherwise, two different rules should be used with only a
small variation in the computation of Share).

Finally, another attribute named Sigma is used to store the result of the
sharing decision, in a way similar to Tau, and is computed as

Sigma = Share − random(0, 1) (7)

where random(0, 1) is a random number chosen in [0, 1[. Initially, Sigma is set
to −1 on all the nodes The information diffusion from n to all its neighbours
is performed when the attribute Sigma of n is greater than or equal to 0. This
attribute allows us to separate the activation process from the sharing process.

Although all these attributes are needed to emulate the dissemination pro-
cess, it is important to note that, in real-world applications of the RP algorithm,
the only visible information to an external observer is whether a node has heard
of the information or not, i.e., if the node belongs to Dk or not. This translates to
the State attribute marking a node as unaware or aware, without any distinction
(such as Colour) between informed and active nodes.

Rewrite rules Following the formal definition of the RP model, we can define
the following steps in the dissemination mechanism given by the rules presented
in Figure 10. The first rule, RP initialisation (Fig. 10(a)), is an opening step
used to prepare the freshly informed nodes who did not yet try to spread the
information (i.e., unmarked nodes). A node is offered the possibility to be in-
terested in the information, with Tau computed accordingly (see Equation 5),
and sees its Marked attribute set to 1. This means that the node is soon to be
considered for activation and as a candidate for diffusing the information. We
then keep the same informed node and tentatively apply the rule RP activate
(Fig. 10(b)) on it. Depending of the previously obtained Tau value for n, and

State = informed
MarkedN = 0

State = informed
Tau = Eq. 5
MarkedN = 1

(a) RP initialisation: this rule is used
to initialise an informed node aware of
the information being spread.

State = informed
Tau ≥ 0

State = active
isActive = 1

(b) RP activate: an informed node be-
comes active if its Tau attribute is
greater or equal to 0.

State 6= unaware State 6= unaware

Share = Eq. 6

Sigma = Eq. 7
(c) RP share trial : whether a node is
active or informed, the RP model can
decide to use it to spread the informa-
tion to others.

State 6= unaware
Sigma ≥ 0

Marked = 0

State = unaware

State 6= unaware

Marked = 1

State = informed

(d) RP inform: a node aware of the in-
formation (active or informed), and
selected to share its knowledge, informs
an unaware neighbour.

Fig. 10. Rules used to express the Riposte model RP. Colours keep their meaning
from the previous propagation models: active nodes are green, informed nodes are
blue and unaware nodes are red. A bi-colour blue/green node can be either informed
or active.

more precisely if Tau ≥ 0, its activation can take place, thus putting n in an
active state and setting isActive to 1.

The RP share trial rule, shown in Figure 10(c), computes the Share and
Sigma attributes of the previously considered, and either informed or active,
node n. The Share computation, performed following Equation 6, uses isActive
to change the probability result depending on n’s current State. Sigma then
reuses the Share value (see Equation 7) to randomly decide whether n must
share the information with its neighbours. The transmission of information to
the neighbours is performed by the last rule RP inform, depicted in Figure 10(d).
An active or simply informed node n who has been selected to transmit the
information (whose attribute Sigma ≥ 0) informs an unaware neighbour n′. As
a result, the unaware node becomes informed, leading it to be considered as a
new potential information spreading source in the next dissemination step. The

newly informed node has its MarkedN attribute untouched, thus still equal to
its default value (0), and ready to be subjected to the RP initialisation rule.

Strategy The strategy used in this model is given below in Strategy 6. Much like
the previous models, we use a repeat loop (line 1) in the RP strategy to control
the rewriting steps. Recall that initially, all nodes have their attribute MarkedN
set to 0. We initiate the strategy by choosing the node which is the focus of
rewriting in the initial step. We select one which has never been considered to
spread the information, that is, its MarkedN attribute is still equal to its default
value (line 2).

Strategy 6: Riposte dissemination model RP

1 repeat(
2 setPos(one(property(crtGraph, node, State == informed && MarkedN ==

0)));
3 one(RP initialisation);
4 try(one(RP activate));
5 one(RP share trial);
6 repeat(one(RP inform))
7)

The first rule, RP initialisation (Fig. 10(a)), is then applied. In case not a
single candidate satisfying the aforementioned conditions has been found, i.e.,
there is no informed node or all have already been considered before (with
MarkedN = 1), then the rule application fails and the dissemination comes to
an end (line 3). However, if a matching node n exists in position P , the rule is
applied on it and its Tau attribute is computed according to Equation 5. The
rewritten node is then inserted in P and ready for the next rule application.

The candidate node in P may endorse the subject being diffused and activate
thanks to the RP activate rule (line 4). As shown in Figure 10(b), in addition to
State as matching attribute, Tau is the real filtering condition to decide whether
the selected informed node can become active. This operation is optional as, in
RP, the activation and information spreading are distinct mechanisms. Thanks
to the try construct, this rule application cannot cause the strategy to fail. We
use the isActive attribute to store the result of the activation trial and add the
rewritten node to P .

We then apply RP share trial (Fig. 10(c)) on the node n (line 5) which can
either be active or just informed if it did not satisfy the matching conditions
of RP activate. The transformation computes new values for n’s Share (Eq. 6)
and Sigma (Eq. 7) attributes while keeping the rewritten node n in P . These
values indicate to the RP model whether to use n as a starting point to spread
the information to its neighbours.

This leads us to the nested repeat loop applying RP inform (Fig. 10(d)) to
all of n’s neighbours (line 6). If the (indifferently informed or active) node has
been selected to inform its unaware neighbours (n′), then its Sigma attribute
is greater or equal to 0. The rule application sets the State attribute of n′ to
informed and, through its Marked attribute, marks the edge connecting the two
nodes to avoid multiple applications of the rule on the same pair of nodes. While
all elements of the right-hand side are added to the subgraph P by default, n is
the only node whose attribute Sigma is greater or equal to 0; it is thus reselected
for each application of RP inform in the loop. All the newly informed nodes are
now eligible to be subjected to a dissemination step themselves as their MarkedN
attributes are still equal to their default value (MarkedN = 0).

The specific application order of these rules allows us to verify the properties
extracted from the original model.

Lemma 10 (RP.1). For each node n that learns an information item, the Ri-
poste algorithm either reposts it to all n’s outgoing neighbours, or does not repost
it to any of them.

Proof. As n is informed, it is subjected to rule RP share trial in which a value
for the attribute Sigma is computed. If Sigma’s value for n is greater or equal
to 0, then rule RP inform is applied as many times as possible, changing the
State of all of n’s neighbours to informed, thus reposting the information to
them. Otherwise, when Sigma’s value is lower than 0, nothing happens, thus the
information is not reposted to anyone.

Lemma 11 (RP.2). If n likes the information item, it is reposted to all of
n’s neighbours with a probability λ/Sn; if n does not like it, the information is
reposted with a (smaller) probability δ/Sn.

Proof. A node n reposts an information when Sigma ≥ 0 (see rule RP inform,
Fig. 10(d)). However, Sigma’s value has a probability Share of being greater or
equal to 0, with Share’s value itself ultimately depending of the attribute IsActive
(see Equations 6 and 7), where IsActive indicates if n likes the information. When
n likes the information item, IsActive is equal to 1 and Share is equal to λ

OutArity .
Conversely, if n does not like the information, then IsActive is equal to 0 and
Share is equal to δ

OutArity . As expressed before, OutArity (the number of edges

outgoing from n) is used to approximate Sn (the upper bound on the number of
n’s outgoing neighbours that have yet no knowledge of the information).

As in the previous models, we finally take a closer look at the termination of
the process. While Lemma 12 mentions the possibility of infinite computation,
if the network is finite, the computation does not go on forever as shown in
Proposition 6.

Lemma 12 (RP.3). The process either terminates after a finite number of
steps, when no more diffusion is possible, or continues forever.

Proof. Each iteration of the main repeat loop in Strategy 6 corresponds to a dis-
semination step k. If there is no informed node which is not marked (MarkedN =
0) in Dk\Mk, the set P is empty and the process stops. Otherwise, RP initialisa-
tion marks the node. The strategy repeat(one(RP inform)) fails if the chosen
node has no unaware neighbour (then RP inform fails). No more diffusion is
possible then and Dk = Mk. But during the dissemination step, new informed
nodes may be added by RP inform which have to be taken into account in the
next iteration of the main loop. So the process can go forever.

Proposition 6 (RP termination). If the network is finite, the strategic rewrite
program given by the rules in Figure 10 and Strategy 6 terminates.

Proof. This follows from Lemma 12 and the fact that the sets Mk are always
strictly growing but bounded by the size of the network.

The following proposition summarises the properties of our strategic rewrite
program.

Proposition 7 (RP properties). The dissemination process proceeds by iter-
ation in discrete steps.

1. For each node n that learns an information item, the Riposte algorithm either
reposts it to all n’s outgoing neighbours, or does not repost it to any of them.

2. If n likes the information item, it is reposted to all of n’s neighbours with
a probability λ/Sn; if n does not like it, the information is reposted with a
(smaller) probability δ/Sn.

3. The process either terminates after a finite number of steps, when no more
diffusion is possible, or continues forever.

Proof. Each point follows respectively from Lemma 10, Lemma 11 and Lemma 12.

5.2 Adapting the Riposte model with linear thresholds

The strategic programs implementing RP and IC have some common features,
but they differ in two aspects: first, the influence of neighbours is replaced by
personal interest, second, the correlation between user activation and spread of
information is mitigated through a sharing probability. Unlike LT, the dissem-
ination algorithm RP completely ignores the influence of the neighbours, but
allows users to influence the dissemination by either endorsing or rejecting the
information, without exposing their true opinion to others.

While an individual may like a particular subject, he may also be influenced
by friends on a topic he is not be familiar with. Therefore, we propose to develop
a dissemination model merging elements from both RP and LT. This model,
named Riposte with Linear Thresholds (RP-LT), hides the users’ reaction (en-
dorsement or reject) towards the information being diffused, while taking into
account the influence from each user on its neighbours.

We now introduce the main elements of the new model, keeping the notations
consistent with LT and RP. An inactive node n′ is influenced by each of its

active neighbours n according to the probability pn,n′ and we note pn′
(
Sn′(k)

)
the joint influence endured by n′ at step k from all its active neighbours Sn′(k).
The threshold value of n′, or its resistance to activation, is defined as θn′ . Finally,
λ and δ are global parameters (0 < δ < 1 < λ), and Sn′ is the set of unaware
nodes adjacent to n′. The cardinal of this set is denoted |Sn′ |.

As in the LT model, a given node might need to be influenced multiple times
before it becomes active. Let γ be the maximum number of times a node can be
told an information before being asked to formulate his opinion. Thus, a node
can be influenced at most γ times, but may decide to activate before.

Definition 7 (Dissemination process in RP-LT). Let pn,n′ , pn
(
Sn(k)

)
, θn,

λ, δ, γ and Sn′ be defined as above. Starting with a set of informed nodes, the
model RP-LT disseminates information across the network such that:

RP-LT.1 For each user n that learns an information item, the RP-LT algo-
rithm either reposts it to all n’s outgoing neighbours, or does not repost it to
any of them.

RP-LT.2 If n likes the information item, it is reposted to all of n’s neighbours
with a probability λ/Sn; if n does not like it, the information is reposted with
a (smaller) probability δ/Sn.

RP-LT.3 An inactive node is influenced at most γ times, and is thus given γ
chances to endorse the information.

RP-LT.4 An inactive node n has a monotone activation function (pn
(
Sn(k)

)
)

computing its active neighbours’ joint influence value.
RP-LT.5 An inactive node n becomes active if its neighbours’ joint influence

exceeds its threshold value, i.e., pn
(
Sn(k)

)
≥ θn.

RP-LT.6 The process terminates when no more diffusion is possible.

Quite naturally, these properties are similar to the ones encountered in RP
and LT. Only RP-LT.3 is specific to this dissemination model. While the model
description has similarities with RP’s (see Definition 5.1), the use of the influence
(pn,n′), joint influence (pn(Sn)) and theta (θn) attributes distinguish the two
models: where RP focuses on the users’ interest to promote the information
being disseminated, RP-LT looks at the influence users have on one another
and their response to it.

Attributes For the sake of completeness, we recall the different attributes al-
ready used in RP and LT. Obviously, we keep the general attributes: State and
Colour to distinguish the nodes’ states, Marked to mark the visited pairs of
nodes, as well as MarkedN for the nodes previously considered for diffusion to
their neighbours, and Tau to store the activation decision. We complete them
with the attributes Influence to store pn,n′ ; Theta for the threshold θn; JointInf
for pn(Sn); Share to store the node’s sharing probability according to its State;
isActive to mark whether the node is active or not (used to compute Share);
OutArity to request the number of outgoing neighbours; and Sigma (with ini-
tial value −1) to store the result of the sharing decision. The equations used to

compute attributes JointInf, Tau, Share, and Sigma are given as previously in
Equations 3, 4, 6, 7.

In addition, we introduce a new attribute Count to track the number of times
a node has been informed of the information being diffused. All nodes have their
Count attribute initialised to 0 and each node is given the same information at
most γ times (from different neighbours).

Rewrite rules The rewrite rules, given in Figure 11, are quite similar to the RP
rules. The first rule RP-LT initialisation (Fig. 11(a)) updates the Tau attribute
(according to Eq. 4) of an informed node. When rewritten, the node stays
informed and its MarkedN attribute is set to 1.

State = informed
MarkedN = 0

State = informed
Tau = Eq. 4
MarkedN = 1

(a) RP-LT initialisation: the rule ini-
tialises an informed node, computes
its Tau attribute and marks it using
MarkedN.

State = informed
Tau ≥ 0

State = active
isActive = 1
Count = γ

(b) RP-LT activate: an informed node
becomes active when its Tau attribute
is positive.

State 6= unaware
Count = γ

State 6= unaware
Share = Eq. 6
Sigma = Eq. 7

(c) RP-LT share trial : whether the
node is informed or active, if it has
been informed γ times or made its de-
cision, its sharing probability must be
computed.

State 6= unaware
Sigma ≥ 0

Marked = 0

State 6= active
Count < γ

State 6= unaware

Marked = 1

State = informed
JointInf = Eq. 3
MarkedN = 0

Count = Count+ 1
(d) RP-LT inform: an inactive user is
informed by an informed or active

neighbour. The rule computes the
neighbour’s JointInf value, resets its
marker and increments its influence
counter.

Fig. 11. Rules used to express the Riposte with Linear Threshold model RP-LT.

The second rule RP-LT activate (Fig. 11(b)) is in charge of the potential
activations. When the Tau attribute indicates that the node n has been suc-
cessfully influenced (when Tau ≥ 0), then its State becomes active and the
attribute isActive is accordingly updated to match n’s current state. In case of
activation, we also set the Count attribute to γ to indicate the node will no
longer be responsive to influence.

Every node aware of the information being diffused, who either decided to
activate, or who has been influenced γ times, is entitled to compute its Share
(6) and Sigma (7) attribute values. This is achieved by using the RP-LT share
trial rule (Fig. 11(c)), which applies only to nodes where Count equals γ.

The last rule is RP-LT inform (Fig. 11(d)). The active or informed node
n, successfully selected to spread the information (Sigma ≥ 0), shares it with
its unaware or informed neighbours n′. To avoid multiple matching with the
same pair of connected nodes, the edge between n and n′ is marked. The joint
influence probability of n′ is updated using Equation 3 and the node is unmarked
to indicate a change has happened (MarkedN = 0). The dissemination step is
only targeting inactive nodes which have been influenced less than γ times since,
after having been informed of the diffusion subject, n′ should be able to form
an opinion about it. When n′ is rewritten, its influence counter is incremented
to keep track of the operation (Count = Count + 1).

Strategy The rewriting operations are applied according to Strategy 7. Just
like the strategies used for IC and LT, the ones defining the RP and RP-LT
are very similar. For each rule application considered hereafter, we reinsert the
newly rewritten elements in position P .

Strategy 7: Riposte with Linear thresholds dissemination model RP-LT

1 repeat(
2 setPos(one(property(crtGraph, node, State == informed && MarkedN ==

0)));
3 one(RP-LT initialisation);
4 try(one(RP-LT activate));
5 try(one(RP-LT share trial); repeat(one(RP-LT inform)))
6)

As for the previous models, we use a repeat loop (line 1) to perform as many
dissemination steps as possible. We select an informed node which has not yet
been subjected to an initialisation or which has since undergone changes (line 2).

By applying RP-LT initialisation (Fig. 11(a)), we mark the selected informed

node (MarkedN = 1), compare the JointInf and Theta attributes and store the
result in Tau (Eq. 4). This value is used when the strategy tries to apply the
second rule RP-LT activate (Fig. 11(b)) to activate the node (line 3). Only suc-
cessfully applied if Tau is positive or null, the rule transforms the informed node

into an active one, respectively modifying isActive and Count values to reflect
the node current State and indicate that its decision concerning the diffusion
subject has been confirmed.

The RP-LT share trial rule successfully applies only when the Count at-
tribute of the node at the selected position P is set to γ. In such case, the Share
and Sigma attributes are computed using respectively Equations 6 and 7.

Depending on its Sigma’s value, the node n in the selected position P shares
the information with its inactive neighbours n′ which have been influenced less
than γ times and have not yet been contacted by n. The RP-LT inform rule
(Fig. 11(d)) then marks the connection between n and n′ and updates the
informed node n′ attributes: JointInf is recomputed taking into account the
new Influence of n on n′ (Eq. 3), the influence counter Count is incremented to
track the new influence, and the marker MarkedN is reset to its default value,
indicating that some changes have been applied to the attributes of n′.

The RP-LT share trial and RP-LT inform rules are repeated as long as there
are nodes which have either been influenced γ times or for which the joint influ-
ence is sufficient to persuade them to endorse the subject being disseminated.

Let us prove the expected properties of our strategic rewrite program for
RP-LT.

Lemma 13 (RP-LT.1). For each user n that learns an information item, the
RP-LT algorithm either reposts it to all n’s outgoing neighbours, or does not
repost it to any of them.

Proof. Similar to Lemma 10, if n is supposed to diffuse the information, Sigma’s
value is greater or equal to 0, in which case rule RP-LT inform is applied as
many times as possible on n and its neighbours with each neighbour being only
considered once thanks to the attribute Marked. Only neighbours which are
active or have their attribute Count greater than γ are not concerned but these
nodes are already informed of the diffusion subject.

Lemma 14 (RP-LT.2). If n likes the information item, it is reposted to all of
n’s neighbours with a probability λ/Sn; if n does not like it, the information is
reposted with a (smaller) probability δ/Sn.

Proof. The proof is the same as for Lemma 11.

Lemma 15 (RP-LT.3). An inactive node is influenced at most γ times, and
is thus given γ chances to endorse the information.

Proof. Each time a node is influenced, its attribute Count is incremented and its
attribute MarkedN is reset. After being influenced γ times, rule RP-LT inform
no longer authorises the node to be influenced, thus a node influenced γ times
can still be considered one last time for diffusion, but once it is marked in RP-
LT initialisation, it will either activate, disseminate the information, or remain
unchanged.

Lemma 16 (RP-LT.4). An inactive node n has a monotone activation func-
tion (pn

(
Sn(k)

)
) computing its active neighbours’ joint influence value.

Proof. The proof is the same as for Lemma 6.

Lemma 17 (RP-LT.5). An inactive node n becomes active if its neighbours’
joint influence exceeds its threshold value, i.e., pn

(
Sn(k)

)
≥ θn.

Proof. The proof is the same as Lemma 7.

Lemma 18 (RP-LT.6). The process terminates when no more diffusion is pos-
sible.

Proof. Only the failed application of rule RP-LT initialisation can force Strat-
egy 7 to come to an end. The condition can only occur when no informed nodes
remain or when all the informed nodes are marked (MarkedN = 1).

Proposition 8 (RP-LT termination). If the network is finite, the strategic
rewrite program given by rules in Figure 11 and Strategy 7 terminates.

Proof. We prove the termination of the graph rewrite program in the case of a
finite graph, by showing that each iteration of the repeat loop strictly decreases
an interpretation of the graph with respect to a well founded ordering (thus, there
is no infinite descending chain). We now define the interpretation associated with
the graph at step k.

Let INMk denote the set of informed and non marked nodes (MarkedN = 0)
at step k. LetMk denote the multi-set of values (Gamma−Count) of all nodes
in the graph at step k. Note that the values of (Gamma−Count) can never be
negative, so Mk is a multiset of natural numbers.

The graph at step k is interpreted as a pair: (Mk, INMk). We compare the
interpretation at step k and step k + 1 using a lexicographic order, where the
first component of the pairs are compared using the multiset extension of the
usual ordering ≥ on natural numbers, and the second components are compared
using the usual superset ordering ⊇.

In each iteration of the repeat loop, either Count increases for a non-empty
set of nodes (hence the multiset of values Gamma−Count is strictly decreasing)
or the values of Count do not change but a node in INMk becomes active
(therefore INMk ⊃ INMk+1, and the second component of the interpretation
is strictly decreasing). Thus, each iteration of the loop strictly decreases our
interpretation, and we conclude that the process terminates.

Proposition 9 (RP-LT properties). The dissemination algorithm defined by
the rules in Figure 11 and Strategy 7 implements the RP-LT model as specified
in Definition 7.

Proof. By Lemmas 13-18.

6 Discussion and Future Work: towards a graph rewriting
based framework to study social networks

At this point, we may argue that we have the ingredients for a social network
modelling framework based on graph rewriting:

– in Sect. 3, we have explained how to generate social network models tailored
to various sizes, number of links and communities. The capability of gener-
ating arbitrary models is important to validate new methods or algorithms
and check their behaviour.

– in Sections 4 and 5, we have formalised with labelled port graphs, rules
and strategies, three known models of propagation and dissemination with
different properties. We identified common basic features (attributes, rules,
strategies) and simultaneously better understood what is different between
these three approaches. We thus have grasped the existing properties of
these models and identified the attributes and rules inducing them. This
formalisation then helped us rearrange them to design a new dissemination
model RP-LT, by combining the features of the LT and RP models.

– The formalism used, based on labelled port graphs, rewrite rules and strate-
gies, provides the logical background necessary to understand and analyse
the programs and their executions. For instance we have proved the termi-
nation of the different strategic rewrite programs for each propagation and
dissemination model.

– Visualisation features provided by Porgy are indeed an important com-
ponent of the framework. The prototyping aspect of rules and strategies is
amplified by visualisation of results, especially for large graphs. For instance,
the result of generating a social network according to different parameters
is illustrated on examples in Sect. 3. Then, the behaviour of a new dissem-
ination model like RP-LT can be checked and visualised on a generated
network with a selected topology.

– The environment can for instance be used to compare two propagation mod-
els in the same line as done in [46]. Visualisation provides a first intuition
for comparing two models applied to the same starting network, but indeed
comparison needs to use measurement methods appropriate to propagation
phenomena in social networks. This is left for future work.

Overall, and although Porgy has been used to perform rewrite operations on
a variety of models, its first incursion in the territory of social networks has not
been without challenges. Social networks come in very different sizes and shapes:
from the smallest ones (e.g., 34 individuals in [52]) to very large ones (e.g. 64M
nodes and 1G edges in one of the datasets studied in [51]); and the popularity
of online social networks has produced expectations of large networks as soon as
social networks are mentioned (e.g., Facebook which has recently reached two
billion users13). It is obvious that our method is not suitable for generating or
handling graphs on such a large scale, notably due to the overhead induced by the
rewriting mechanisms. At the moment, creating graphs with several hundreds
of elements can be achieved in a few minutes; for instance, both graphs given
as examples at the end of Sect. 3 have been generated in less than two minutes
on a standard workstation at the time of writing. Multiple benchmarks have
already been performed on our rewriting platform to identify bottlenecks and

13 https://web.archive.org/web/20170905081244/https://newsroom.fb.com/

news/2017/06/two-billion-people-coming-together-on-facebook/

critical operations, however, the results are quite ordinary and tedious for now.
It is important to note that Porgy was not originally designed to address such
requirements, and therefore improvements are needed to start tackling graphs
with several thousands or tens of thousands of elements in a fair amount of
time. Consequently, a complete break down of Porgy’s performances is left for
future work, once the necessary modifications have been completed to enhance
the platform performances.

7 Conclusion

Our first experiments and results on generation and propagation in social net-
works illustrate how labelled port graph strategic rewriting provides a suitable
common formalism in which different mathematical models can be expressed
and compared.

For the social network community, the rewrite rule approach is not quite
surprising because some works such as [29] already use rules to generate so-
cial networks, although without claiming it. Expressing different models in the
same formalism facilitates the comparison of algorithms and models. With the
development of social networks analysis, there are many opportunities where
simulations can indeed be of assistance during decision taking, for instance to
prevent bad situations, to test counter-measures, or to look for an optimal diffu-
sion strategy. Although we did not develop this aspect here, when modelling the
evolution of a network, the derivation tree (also a port graph) provides support
for history tracking, state comparison, state recovery and backtracking.

Overall, several issues still need to be addressed. Although graph rewriting
has been largely studied, social network applications have only recently been de-
veloped, and require a drastic change of scale. Dealing for instance with millions
of nodes and edges requires a great attention to size and complexity. As a conse-
quence, there is room for improvement in data storage and retrieval (relevant for
graph data bases), subgraph matching algorithms (either exact or approximate)
for finding one or all solutions, parallel graph rewriting avoiding dangling edges,
and probabilistic or stochastic issues for matching and rewriting, for instance,
in the context of imprecise data or privacy constraints.

Also related to size, but even more to complexity of data, there is a need for
data structuring and management, that may be carried on by abstraction pat-
tern, focusing on points of interests, hierarchies and views (for instance, through
multi-layer graphs). All these notions need a precise and logical definition that
may be influenced by well-known programming language concepts.

Like programs, data need certification and validation tools and processes, not
only at a single step but all along their evolution. The knowledge developed in
the logic and rewriting community should be valuable in this context.

This study has also revealed the importance of visualisation and raises some
challenges in this area. Visualisation is important, more widely, for data analy-
sis, program engineering, program debugging, testing or verifying. However, the

representation of dynamic or evolving data, such as social networks or rich graph
structures, is yet an actual research topic for the visualisation community.

Acknowledgements We thank Guy Melançon (University of Bordeaux) and
all the other members of the Porgy project.

References

1. O. Andrei, M. Fernández, H. Kirchner, G. Melançon, O. Namet, and B. Pinaud.
PORGY: Strategy-Driven Interactive Transformation of Graphs. In R. Echahed,
editor, 6th Int. Workshop on Computing with Terms and Graphs, volume 48, pages
54–68, 2011.

2. O. Andrei and H. Kirchner. A Rewriting Calculus for Multigraphs with Ports.
In Proc. of RULE’07, volume 219 of Electronic Notes in Theoretical Computer
Science, pages 67–82, 2008.

3. O. Andrei and H. Kirchner. A Higher-Order Graph Calculus for Autonomic Com-
puting. In Graph Theory, Computational Intelligence and Thought. Golumbic
Festschrift, volume 5420 of LNCS, pages 15–26. Springer, 2009.

4. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

5. H. Barendregt, M. van Eekelen, J. Glauert, J. R. Kennaway, M. Plasmeijer, and
M. Sleep. Term graph rewriting. In Proc. of PARLE, Parallel Architectures and
Languages Europe, number 259-II in LNCS, pages 141–158. Springer-Verlag, 1987.

6. K. Barthelmann. How to construct a hyperedge replacement system for a context-
free set of hypergraphs. Technical report, Universität Mainz, Institut für Infor-
matik, 1996.

7. V. Batagelj and U. Brandes. Efficient generation of large random networks. Phys.
Rev. E, 71:036113, Mar 2005.

8. E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, and A. Rinaldo. On
spatially explicit models of cholera epidemics. Journal of The Royal Society Inter-
face, 7(43):321–333, 2010.

9. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An
overview of ELAN. Electronic Notes in Theoretical Computer Science, 15:55–70,
1998.

10. U. Brandes and D. Wagner. Analysis and visualization of social networks. In
M. Jünger and P. Mutzel, editors, Graph Drawing Software, Mathematics and
Visualization, pages 321–340. Springer Berlin Heidelberg, 2004.

11. P. Carrington, J. Scott, and S. Wasserman. Models and Methods in Social Network
Analysis. Structural Analysis in the Social Sciences. Cambridge University Press,
2005.

12. D. Cartwright and F. Harary. Structural balance: a generalization of Heider’s
theory. Psychological Review, 63:277–293, 1956.

13. W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincón, X. Sun, Y. Wang,
W. Wei, and Y. Yuan. Influence maximization in social networks when negative
opinions may emerge and propagate. In Proc. of the 11th SIAM Int. Conf. on Data
Mining, SDM 2011, pages 379–390, 2011.

14. W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In Proc. of the 16th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, KDD ’10, pages 1029–1038.
ACM, 2010.

15. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Al-
gebraic approaches to graph transformation - part i: Basic concepts and double
pushout approach. In Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations, pages 163–246. World Scientific, 1997.

16. P. Dodds and D. Watts. A generalized model of social and biological contagion.
Journal of Theoretical Biology, 232(4):587 – 604, 2005.

17. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation - part II: Single pushout approach
and comparison with double pushout approach. In Handbook of Graph Grammars
and Computing by Graph Transformations, Volume 1: Foundations, Chapter 4,
pages 247–312. World Scientific, 1997.

18. P. Erdős and A. Rényi. On the evolution of random graphs. In Publication of the
Mathematical Institute, volume 5, pages 17–61. Hungarian Academy of Sciences,
1960.

19. M. Fernández, H. Kirchner, and O. Namet. A strategy language for graph rewriting.
In G. Vidal, editor, Logic-Based Program Synthesis and Transformation, volume
7225 of LNCS, pages 173–188. Springer Berlin Heidelberg, 2012.

20. M. Fernández, H. Kirchner, and B. Pinaud. Strategic port graph rewriting: An
interactive modelling and analysis framework. In D. Bosnacki, S. Edelkamp,
A. Lluch-Lafuente, and A. Wijs, editors, Proc. 3rd Workshop on GRAPH Inspec-
tion and Traversal Engineering, GRAPHITE 2014, volume 159 of EPTCS, pages
15–29, 2014.

21. M. Fernández, H. Kirchner, and B. Pinaud. Strategic Port Graph Rewriting: an
Interactive Modelling Framework. Research report, Inria ; LaBRI - Laboratoire
Bordelais de Recherche en Informatique ; King’s College London, 2017.

22. M. Fernández, H. Kirchner, B. Pinaud, and J. Vallet. Labelled Graph Rewriting
Meets Social Networks. In D. Lucanu, editor, Rewriting Logic and Its Applications,
WRLA 2016, volume 9942 of LNCS, pages 1–25, Eindhoven, Netherlands, Apr.
2016. Springer International Publishing Switzerland.

23. M. Fernández, H. Kirchner, B. Pinaud, and J. Vallet. Porgy Strategy Language:
User Manual. Research report, Université de Bordeaux, LaBRI ; Inria Bordeaux
Sud-Ouest ; King’s College London, July 2017.

24. G. Giakkoupis, R. Guerraoui, A. Jégou, A.-M. Kermarrec, and N. Mittal. Privacy-
Conscious Information Diffusion in Social Networks. In Y. Moses and M. Roy, edi-
tors, DISC 2015, volume LNCS 9363 of 29th Int. Symp. on Distributed Computing,
Tokyo, Japan, Oct. 2015. Toshimitsu Masuzawa and Koichi Wada, Springer-Verlag
Berlin Heidelberg.

25. M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffu-
sion and influence. In Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, KDD ’10, pages 1019–1028. ACM, 2010.

26. A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in
social networks. In Web Search and Data Mining, Proc. of the 3rd ACM Int. Conf.
on, WSDM ’10, pages 241–250. ACM, 2010.

27. M. Granovetter. Threshold models of collective behavior. American Journal of
Sociology, 83(6):1420, 1978.

28. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

29. N. Kejžar, Z. Nikoloski, and V. Batagelj. Probabilistic inductive classes of graphs.
The Journal of Mathematical Sociology, 32(2):85–109, 2008.

30. D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through
a social network. In Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, KDD ’03, pages 137–146. ACM, 2003.

31. D. Kempe, J. Kleinberg, and É. Tardos. Influential nodes in a diffusion model for
social networks. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung, editors, Automata, Languages and Programming, volume 3580 of LNCS,
pages 1127–1138. Springer Berlin Heidelberg, 2005.

32. M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter.
Multilayer networks. Journal of Complex Networks, 2(3):203–271, 2014.

33. Y. Lafont. Interaction nets. In Proc. of the 17th ACM Symp. on Principles of
Programming Languages (POPL’90), pages 95–108. ACM Press, 1990.

34. J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media.
In Proc. of the SIGCHI Conf. on Human Factors in Computing Systems, CHI ’10,
pages 1361–1370. ACM, 2010.

35. M. Löwe, M. Korff, and A. Wagner. An algebraic framework for the transformation
of attributed graphs. In M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van
Eekelen, editors, Term Graph Rewriting, pages 185–199. John Wiley and Sons
Ltd., Chichester, UK, 1993.

36. S. Milgram. The small world problem. Psychology Today, 2:60–67, 1967.
37. M. Newman, A.-L. Barabási, and D. J. Watts. The structure and dynamics of

networks. Princeton Studies in Complexity. Princeton University Press, 2006.
38. B. Nick, C. Lee, P. Cunningham, and U. Brandes. Simmelian backbones: Am-

plifying hidden homophily in facebook networks. In Advances in Social Networks
Analysis and Mining (ASONAM), 2013 IEEE/ACM Int. Conf. on, pages 525–532,
Aug 2013.

39. B. Pinaud, G. Melançon, and J. Dubois. PORGY: A Visual Graph Rewriting
Environment for Complex Systems. Computer Graphics Forum, 31(3):1265–1274,
2012.

40. D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 2: Applications, Languages, and Tools, pages 3–61. World
Scientific, 1998.

41. D. Plump. The Graph Programming Language GP. In S. Bozapalidis and G. Ra-
honis, editors, CAI, volume 5725 of LNCS, pages 99–122. Springer, 2009.

42. A. Sallaberry, F. Zaidi, and G. Melançon. Model for Generating Artificial Social
Networks having Community Structures with Small World and Scale Free Proper-
ties. Social Network Analysis and Mining, 3(597-609), Jan. 2013.

43. J. Scott and P. J. Carrington. The SAGE Handbook of Social Network Analysis.
SAGE, 2011.

44. S. Son and V. Shmatikov. The Hitchhiker’s Guide to DNS Cache Poisoning, pages
466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

45. A. S. Tanenbaum and D. J. Wetherall. Computer Network. Pearson, 2010.
46. J. Vallet, H. Kirchner, B. Pinaud, and G. Melançon. A visual analytics approach

to compare propagation models in social networks. In A. Rensink and E. Zambon,
editors, Proc. Graphs as Models, GaM 2015, volume 181 of EPTCS, pages 65–79,
2015.

47. L. Wang, F. Du, H. P. Dai, and Y. X. Sun. Random pseudofractal scale-free
networks with small-world effect. The European Physical Journal B - Condensed
Matter and Complex Systems, 53(3):361–366, 2006.

48. D. J. Watts. A simple model of global cascades on random networks. Proc. of the
National Academy of Sciences, 99(9):5766–5771, 2002.

49. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998.

50. L. Wonyeol, K. Jinha, and Y. Hwanjo. CT-IC: Continuously activated and time-
restricted independent cascade model for viral marketing. In Data Mining (ICDM),
2012 IEEE 12th Int. Conf. on, pages 960–965, 2012.

51. J. Yang and J. Leskovec. Defining and evaluating network communities based on
ground-truth. CoRR, abs/1205.6233, 2012.

52. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33:452–473, 1977.

