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ABSTRACT
Dynamic algorithms are used to compute a property of some data
while the data undergoes changes over time. Many dynamic algo-
rithms have been proposed but nearly all are sequential. In this
paper, we present our ongoing work on designing a parallel algo-
rithm for the dynamic trees problem, which requires computing
a property of a forest as the forest undergoes changes. Our algo-
rithm allows insertion and/or deletion of both vertices and edges
anywhere in the input and performs updates in parallel. We obtain
our algorithm by applying a dynamization technique called self-
adjusting computation to the classic algorithm of Miller and Reif
for tree contraction.

1 INTRODUCTION
In many applications, algorithms operate on data that changes dy-
namically over time. For example, an algorithm may compute the
heaviest subtree in an edge-weighted tree and may be required to
update the result as the tree undergoes changes, e.g., as vertices or
edges are inserted and/or deleted. Dynamic algorithms have been
studied extensively; several papers review prior work [16, 17, 33].
Nearly all of the prior work on dynamic algorithms considers se-
quential dynamic algorithms. There is relatively little work on paral-
lel dynamic algorithms, which would take advantage of parallelism
when performing updates.

As an example dynamic problem, consider the classic problem of
dynamic trees. This problem requires computing various properties
of a forest of trees as edges and vertices are inserted and deleted [37].
Algorithms and data structures for dynamic trees have been studied
extensively since the early ’80s, including Link-Cut Trees [37, 38],
Euler-Tour Trees [24, 41], Topology Trees [20], RC-Trees [3, 4],
and, more recently, Top Trees [10, 40, 42]. These algorithms are
work efficient: they allow the insertion/deletion of a single edge in
logarithmic time (some in expectation, some amortized). Some of
these algorithms have also been implemented [4, 42] and have been
shown to perform well in practice. The algorithms and implementa-
tions, however, are all sequential. In prior work, Reif and Tate [35]
give a parallel algorithm for dynamic trees but their algorithm is
not fully dynamic: it allows changes only at the leaves of a tree and
does not support deletions, leaving it to future work.
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We are interested in designing a parallel algorithm for the dy-
namic trees problem. There are at least two challenges here.
• Dynamic algorithms are traditionally designed to handle small

changes to the input. Small changes, however, do not generate
sufficient parallelism. Larger batches of changes can generate
parallelism but this requires generalizing the algorithms.

• Dynamic algorithms and parallel algorithms on their own are
usually quite complex to design, analyze, and implement. Since
parallel dynamic algorithms combine the features of both, their
implementation can become a significant hurdle.
We believe that it is possible to overcome these challenges by us-

ing a technique called dynamization. The basic idea is to “dynamize”
a static (non-dynamic) algorithm by recording carefully chosen
intermediate results computed by the static algorithm and re-using
these results when the data changes as a result of dynamic updates.
In sequential algoritms, dynamization has been used for a variety
of problems, e.g., by Bentley and Saxe [11], Overmars [31], Mul-
muley [30], and many others. We believe that parallel algorithms
are particularly amenable to dynamization, because they minimize
dependencies between subcomputations. In this paper, we outline
a parallel algorithm for dynamic trees by dynamizing Miller and
Reif’s tree contraction algorithm [28, 29] by using self-adjusting
computation [1, 2, 27], which, for the purposes of this paper, can be
viewed a dynamization technique. The resulting dynamic parallel
algorithm allows insertion and deletion of any number of vertices
or edges anywhere in the input forest (as long as no cycles are
created) and supports parallel updates.

2 THE ALGORITHM
Our approach is based on the technique of self-adjusting computa-
tion for dynamizing static algorithms. The idea behind this tech-
nique is to use a construction algorithm to build a computation graph,
which captures important data and control dependencies in the ex-
ecution of the static algorithm. When the input data is changed, a
change-propagation algorithm is used to update the computation
by identifying the pieces of the computation affected by the change
and re-building them. Change-propagation can be viewed as se-
lectively re-executing the static algorithm while re-using results
unaffected by the changes made.

Construction algorithm. The construction algorithm performs
randomized tree contraction on an input forest F and produces a
computation graph CF . At a high level, it follows Miller and Reif’s
algorithm [28] by proceeding in rounds of contraction. Each round
takes a forest as input and produces a smaller forest for the next
round by applying the rake and compress operations. The rake
operation deletes all leaves; the compress operation deletes certain
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vertices that have one child. Using tree contraction to compute a
property of a tree requires specifying application-specific data and
how such data is handled during rake and compress [4, 28, 29]. Be-
cause this can be done orthogonally, we don’t consider application-
specific data in this paper.

The construction algorithm produces the computation graph CF
by storing a snapshot of the contraction of F at each round. Each
snapshot consists of the configurations of vertices in the forest at
that round. We define the configuration of a vertex v at round i in
forest F , written κiF (v), as the set

κiF (v) =
{
(u, ℓiF (u))

��u is a neighbor of v at round i in F
}

where ℓiF (u) is a boolean indicating whether or not u is a leaf at
round i in forest F . The configuration of a vertex captures all of
the information necessary to specify the treatment of that vertex
by Miller and Reif’s algorithm. This information allows us to per-
form change-propagation efficiently by identifying the parts of the
computation that are affected by an input change.
Change-propagation algorithm. Consider some input forest F .
Executing the construction algorithm on F yields a computation
graph CF . Suppose we now wish to modify the input forest F by ap-
plying a setM of deletions and insertions of edges and vertices. Let
G be the forest given by applying the changesM to F . Instead of re-
doing the computation onG (which would require linear work), we
provide a change-propagation algorithm that uses the computation
graph CF to perform the update more efficiently and quickly.

Given a change setM, our change-propagation algorithm edits
CF and returns the updated computation graph CG . An important
property of change-propagation is that the updated computation
graph CG is identical to one that would be obtained by running the
construction algorithm on forestG. Change-propagation can thus
be iterated as many times as desired.

Change-propagation mimics the execution of the construction
algorithm, but does so efficiently by only editing the parts of CF
which are affected by the input changeM. As in the construction al-
gorithm, change-propagation proceeds in rounds but distinguishes
between two classes of vertices at each round:
• Unaffected vertices are those that would be contracted in G in

the same manner as in the contraction of forest F . A vertex v is
unaffected at round i iff κiF (v) = κ

i
G (v).

• Affected vertices are those that would be contracted differently
inG than in F . A vertexv is affected at round i iffκiF (v) , κ

i
G (v).

Each round of change-propagation takes a set of affected vertices as
input and produces a new set of affected vertices for the next round.
It updates the computation graph by deleting all edges which touch
an affected vertex before re-running contraction (in parallel) for
the affected vertices only. To produce the set of affected vertices
for the next round, change-propagation only needs to keep track
of what changes it makes to the computation graph.
Analysis. In the full version of the paper, we plan to establish
the following two results. For a forest of size n and a batch ofm
insertions and/or deletions,
• change-propagation performs O(m log n+m

m ) work in expecta-
tion, and

• change-propagation exposes plenty of parallelism, i.e., its span
(parallel time) is poly-logarithmic in n andm.

Size Runtime
Self

Speedup
Work

Improvement Speedup

m T
C(m)

1 T
C(m)

39

TC (m)

1

TC (m)

39

T ∗
1

TC (m)

1

T ∗
1

TC (m)

39

102 0.004 0.004 1 260 260
103 0.04 0.04 1 26 26
104 0.28 0.14 2 3.71 7.43

3 · 104 1.03 0.19 5.42 1.01 5.47

Figure 1: Execution times (in seconds) and speedups of
change-propagation form edges inserted into a forest of size
n = 106, where T ∗

1 = 1.04.

Notice that the work bound gives us O(logn) work for a single
change, and it gracefully approaches O(n) work asm approaches n.

Implementation. We completed a relatively unoptimized imple-
mentation of our algorithm by using a fork-join parallelism library
in C++ [5] which is similar to Cilk [21]. We also implemented Miller
and Reif’s tree contraction algorithm for comparison.

We generated a random forest of size n = 106 where at least 60%
of the vertices lie on a chain (i.e., have exactly 2 neighbors). On this
forest, using one processor, Miller and Reif’s algorithm took 1.04
seconds, while our construction algorithm took 2.25 seconds. Since
our construction algorithm constructs a computation graph by
recording the configuration of vertices, the 2-factor overhead over
Miller and Reif’s algorithm seems reasonable. With the same input,
our construction algorithm runs in 0.28 seconds on 39 processors,
leading to a self-speedup of 8.04.

Figure 1 shows the results for our change-propagation algorithm
for insertingm randomly chosen edges (102 ≤ m ≤ 3 · 104). We
write T ∗

1 for the time of Miller and Reif’s algorithm on 1 processor,
and TC(m)

p for the time of change-propagation insertingm edges
on p processors. The work improvement column measures the de-
crease in work achieved by our algorithm. For smallm, the work
improvement is significant. Asm increases, the work improvement
decreases, converging to the work of the static algorithm at ~3%
of the input size. The speedup captures the cumulative effect of
both work improvement and benefits of parallelism. On a small
number of changes (m = 100), there is little parallelism but our
change-propagation still achieves significant speedup over the static
algorithm due to work improvement. Asm increases, work improve-
ment decreases but the amount of parallelism increases, leading to
reasonable speedups even with moderately large changes.

3 RELATEDWORK

Tree contraction and dynamic trees. Tree contraction, origi-
nally introduced by Miller and Reif, [28, 29] has become a crucial
technique for computing properties of trees in parallel. It has been
studied extensively since its introduction and been used in many
applications, e.g., expression evaluation, finding least-common an-
cestors, common subexpression evaluation, and computing various
properties of graphs (e.g., [18, 19, 25, 26, 28, 29, 34, 36]). Prior work
has established a connection between the tree contraction and dy-
namic trees problem of Sleator and Tarjan [37] by showing that



tree contraction can be dynamized to solve the dynamic trees prob-
lem [3, 4]. That work considers sequential updates only. In this
paper, we outline how this connection can be generalized to take
advantage of parallelism.

Parallel dynamic algorithms. Historically, parallel and dynamic
algorithms have been studied mostly separately, with a few excep-
tions. Pawagi and Kaser propose a parallel (fully) dynamic algorithm
that allows insertion and deletion of arbitrary number of vertices
and edges as a batch [32]. Acar et al present a parallel dynamic algo-
rithm for well-spaced points sets that allow insertion and deletion
of arbitrary number of points simultaneously as a batch [6].

Self-Adjusting Computation. Our approach is based on the tech-
nique of self-adjusting computation for dynamizing static algo-
rithms [1, 2, 23, 27]. Prior work applied self-adjusting computa-
tion to problems in several areas including in dynamic data struc-
tures [3, 4], computational geometry [7, 8], large data sets [13, 15],
and machine learning algorithms [9, 39]. All of this prior work
assumes a sequential model of computation. There has been some
progress in generalizing self-adjusting computation to support par-
allelism [6, 12–14, 22].
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