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ITERATIVE HARD CLUSTERING OF FEATURES

VINCENT ROULET, FAJWEL FOGEL, ALEXANDRE D’ASPREMONT, AND FRANCIS BACH

ABSTRACT. We seek to group features in supervised learning problems by constraining the prediction vector
coefficients to take only a small number of values. This problem includes non-convex constraints and is solved
using projected gradient descent. We prove exact recovery results using restricted eigenvalue conditions. We
then extend these results to combine sparsity and grouping constraints, and develop an efficient projection
algorithm on the set of grouped and sparse vectors. Numerical experiments illustrate the performance of our
algorithms on both synthetic and real data sets.

INTRODUCTION

In a prediction problem, getting compressed or structured predictors can both improve prediction perfor-
mance and help interpretation. Numerous methods have been developed to select a few key features (see
e.g. [Tang et al., 2014]). In particular an extensive literature has been developed to tackle this problem by
enforcing sparsity on the prediction vector (see e.g. [Bach et al., 2012]). Here we focus instead on the prob-
lem of grouping features. In text classification for example, this amounts to group words that have the same
meaning for the task (see e.g. [Gupta et al., 2009] and references therein). In biology, this can be used to
retrieve groups of genes that have the same impact on a disease (see e.g. [Balding, 2006, Segal et al., 2003]).
More generally this approach can be seen as a supervised quantization of the feature space (see e.g. [Nova
and Estévez, 2014] and references therein).

The idea of grouping features to reduce dimensionality of the problem is of course not new. Hastie
et al. [2001] used for example supervised learning methods to select group of predictive variables formed
by hierarchical clustering. Several models also developed mutual information-based algorithms to remove
redundant features, e.g. [Peng et al., 2005, Song et al., 2013, Yu and Liu, 2003]. More recently, regularizers
were developed to enforce grouped vectors [Bondell and Reich, 2008, Petry et al., 2011, She et al., 2010].
In particular, Bach [2011] analyzed geometrical properties induced by convex relaxations of submodular
functions that lead to group structures. This geometrical perspective was also investigated by Bühlmann
et al. [2013], who studied recovery performance of group norms induced by hierarchical clustering methods
based on canonical correlations. Finally Shen and Huang [2010] developed an homotopy method to extract
homogeneous subgroups of predictors.

In this paper, we study a simple approach to the problem: while sparsity enforces a small number of
non-zero coefficient of the prediction vector, we enforce a small number of different coefficient values, i.e.
we quantize this vector. This naturally induces groups of features that share the same weight in the pre-
diction. We formulate this problem for regression and analyze the geometry induced by the constraints in
Section 1. In Section 2 we present a simple projected gradient scheme similar to the Iterative Hard Thresh-
olding (IHT) [Blumensath and Davies, 2009] algorithm used in compressed sensing. While constraints are
non-convex, projection on the feasible set reduces to a k-means problem that can be solved exactly with
dynamic programming [Bellman, 1973, Wang and Song, 2011]. We analyze the recovery performance of
this projected gradient scheme. Although the quantized structure is similar to sparsity, we show that quan-
tizing the prediction vector, while helping interpretation, does not allow to significantly reduce the number
of observations required to retrieve the original vector, as in the sparse case.

We then extend the application of the projected gradient scheme to both select and group features in
Section 4 by developing a new dynamic program that gives the exact projection on the set of sparse and
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quantized vectors. Finally, in Section 5, numerical experiments illustrate the performance of our methods
on both synthetic and real datasets involving large corpora of text from movie reviews. We show that the use
of k-means steps makes our approach fast and scalable while comparing favorably with standard benchmarks
and providing meaningful insights on the data structure.

1. PROBLEM FORMULATION

We present here our formulation for regression and extend its application for classification in Appendix A.

1.1. Regression with grouped features. Given n observations y1, . . . , yn ∈ R from data points x1, . . . , xn ∈
Rd, linear regression aims at finding a regression vector w ∈ Rd that fits the data such that

yi ≈ wTxi, for all i = 1, . . . , n.

To assess the quality of a prediction vector w, one defines a loss function ` that measures their accuracy
error `(wTx, y) on a sample (x, y). A common choice of loss, that we investigate here, is the squared loss
`square(w

Tx, y) = 1
2(wTx − y)2. A classical approach to compute a linear regression vector is then to

minimize the empirical loss function

L(w) =
1

n

n∑
i=1

`(wTxi, yi).

In order to prevent the computed prediction parameters from over-fitting the given set of samples, one often
adds a regularizer R(w) of the regression vector to the minimization problem. This notably reduces the
effect of noise or outliers in the data. Candidate regression parameters are then given by the minimization
problem

minimize L(w) + λR(w)

in variable w ∈ Rd, where λ ≥ 0 is a regularization parameter.
Structural information on the task can then be added. For example, one can enforce the regression vec-

tors w to be sparse, i.e. to have few non-zeros coefficients. To this end the support Supp(w) = {i ∈
{1, . . . , d}, wi 6= 0} of the variable is constrained to be small such that sparse regression problem reads

minimize L(w) + λR(w)
subject to Card(Supp(w)) ≤ s,

in variable w ∈ Rd where s is the desired sparsity and for a set S, Card(S) denotes its cardinality.
Here instead we impose to the regression vectorsw to take at mostQ different coefficient values v1, . . . , vQ.

Each coefficient vq is assigned to a group of features gq, and the regression vector w then defines a partition
G = {g1, . . . , gQ} of the features. Formally, a vector w defines the partition

Part(w) = {g ⊂ {1, . . . , d} : (i, j) ∈ g × g, iff wi = wj}.

formed by maximal groups of equal coefficients of w. For example the vector w = (1, 3, 3, 2, 1)T ∈ R5

forms the partition Part(w) = {{1, 5}, {4}, {2, 3}} of {1, . . . 5}. Denoting Card(G) the number of (non-
empty) groups of a partition G, then linear regression enforcing Q groups of features then reads

minimize L(w) + λR(w)
subject to Card(Part(w)) ≤ Q, (1)

in variable w ∈ Rd.
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2. ITERATIVE HARD CLUSTERING

2.1. Algorithm presentation. We propose to tackle directly the non-convex problem (1) by using a pro-
jected gradient scheme, which amounts to iteratively cluster features at each gradient step. We thus transpose
the Iterative Hard Thresholding [Blumensath and Davies, 2009] algorithm studied in sparse compressed
sensing to the problem of grouping features.

The algorithm relies on the fact that projecting a point w on the feasible set amounts to a clustering
problem

minimize
Q∑
q=1

∑
i∈gq

(wi − vq)2, (2)

in the variables v1, . . . , vQ ∈ R that are the Q coordinates of the projected vector and G = {g1, . . . , gQ} a
partition of {1, . . . , d} that can be represented by an assignment matrix Z ∈ {0, 1}d×Q, such that Ziq = 1
if i ∈ gq and Ziq = 0 otherwise. This is in fact a k-means problem in one dimension that can be solved
in polynomial time by dynamic programming [Bellman, 1973, Wang and Song, 2011]. Given a vector w,
whose coordinates we want to cluster in Q groups, we denote by [Z, v] = k-means(w,Q) respectively the
assignment matrix and the vector of coordinates produced by the dynamic program. A projected gradient
scheme for problem (1) is described in Algorithm 1.

Algorithm 1 Iterative Hard Clustering

Inputs: Data (X, y), Q, λ ≥ 0, γt
Initialize w0 ∈ Rd×K (e.g. w0 = 0)
for t = 1,. . . ,T do

wt+1/2 = wt − γt(∇L(wt) + λ∇R(wt))
[Zt+1, vt+1] = k-means(wt+1/2, Q)
wt+1 = Zt+1vt+1

end for
Output: ŵ = wT

In practice we stop the algorithm when changes in objective values of (1) are below some prescribed
threshold ε. We use a backtracking line search on the stepsize γt that guarantees decreasing of the objective.
At each iteration if

w̄t+1 = k-means (wt − γt(∇L(wt) + λ∇R(wt)), Q)

decreases the objective value we keep it and we increase the stepsize by a constant factor γt+1 = αγt with
α > 1. If w̄t+1 increase the objective value we decrease the stepsize by a constant factor γt ← βγt, with
β < 1, compute new w̄t+1 and iterate this operation until w̄t+1 decrease the objective value or the stepsize
reaches the stopping value ε used as as a stopping criterion on the objective values. We observed better
results with this line search than with constant stepsize, in particular when the number of samples is small.

Using this strategy we ususally observed convergence of the projected gradient algorithm in less than 100
iterations which makes it scalable. The complexity of its core operations amounts to a k-means problem,
which can be solved in O(d2Q) operations.

3. ANALYSIS OF ITERATIVE HARD CLUSTERING

We now analyze convergence of the Iterative Hard Clustering scheme to retrieve the true regressor w∗ in
the regression problem. We study the convergence of the projected gradient algorithm applied to a regression
problem enforcingQ groups of features. We use a squared loss and no regularization. Therefore our problem
reads

minimize 1
2n‖Xw − y‖

2
2

subject to Card(Part(w)) ≤ Q (3)
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in w ∈ Rd, where X = (x1, . . . , xn)T ∈ Rn×d is the matrix of data points and y = (y1, . . . , yn)T ∈ Rn is
the vector of observations. For the analysis, we use a constant step size γt = 1 and initialize the algorithm
with w0 = 0. We assume that the observations y are generated by a linear model whose coefficients w∗
satisfy the constraints above, up to additive noise, that is

y = Xw∗ + η

where η ∼ N (0, σ2) and Card(Part(w∗)) ≤ Q. Hence we analyze the performance of the algorithm to
recover w∗ and the partition Part(w∗) of the features and to this end we detail the geometry induced by the
constraints.

3.1. Geometry induced by partitions. Denote P the set of partitions of {1, . . . , d} whose definition is
recalled below.

Definition 3.1. Partitions A collection G of subsets of {1, . . . , d} is a partition of {1, . . . , d} if for any
g, g′ ∈ G×G, g 6= g′ implies g ∩ g′ = ∅ and if

⋃
g∈G g = {1, . . . , d}.

Pair of partitions can then be compared as follows.

Definition 3.2. Sup- and sub-partitions Let G,G′ ∈ P be two partitions. G is a sup-partition of G′ (or G′

is a sub-partition of G), denoted

G � G′,

if for any g′ ∈ G′ there exists g ∈ G such that g′ ⊂ g , or equivalently if any g ∈ G is a union of groups g′

of G′.

Relation� is transitive, reflexive and anti-symmetric, such that it is a partial order on the set of partitions.
Notice that the number of (non-empty) groups of partitions, Card(·), decreases with the partial order �.

Following proposition highlights the geometry induced by a single partition of the features.

Proposition 3.3. Any partition G ∈ P defines a linear subspace

EG = {w ∈ Rd : Part(w) � G} (4)

of vectors w that can be partitioned by G in groups of equal coefficients. For any partitions G,G′ ∈ P , if
G � G′ then EG ⊂ EG′ .

Proof. Given a partition G ∈ P and a vector w ∈ Rd, G is a sub-partition of Part(w), i.e. Part(w) � G, if
and only if the groups of G are subsets of equal coefficients of w. Now, if, for some w1, w2 ∈ Rd, groups
of G are subsets of equal coefficients of both w1 and w2, they will also be subset of equal coefficients of
any linear combination of w1, w2. Therefore EG is a linear subspace. Second statement follows from the
transitivity of �.

Since w ∈ EPart(w), the feasible set for the regression problem (1) enforcing Q groups of features is then
a union of subspaces:

{w : Card(Part(w)) ≤ Q} =
⋃
G∈P : Card(G)≤QEG

=
⋃
G∈P : Card(G)=QEG

Second equality comes from the fact that if a partitionG ∈ P has strictly less thanQ groups, i.e., Card(G) <
Q, some of its groups can always be split to form a new partition G′ such that G � G′ and Card(G′) = Q.
Therefore it is sufficient to consider subspaces generated by partitions into exactly Q groups.

4



3.2. Convergence analysis. Without constraints, a gradient descent applied to (3) would act as a fixed point
algorithm whose contraction factor depends on the singular values of the HessianXTX of the problem. Here
we will show that the projected gradient scheme exhibits the same behavior, except that the contraction factor
will depend on restricted singular values on small subspaces defined by partitions. These subspaces belong
to the following collections

E1 = {EG : G ∈ PQ}
E2 = {EG1 + EG2 : G1, G2 ∈ PQ}
E3 = {EG1 + EG2 + EG3 : G1, G2, G3 ∈ PQ},

(5)

where PQ = {G ∈ P : Card(G) = Q} denotes the set of partitions into exactly Q clusters. For a given
subspace E of Rd, we denote UE any orthonormal basis of E and for a given matrix X ∈ Rn×d we denote
σmin(XUE/

√
n) and σmax(XUE/

√
n) respectively the smallest and largest singular values of XUE/

√
n,

i.e. the smallest and largest restricted singular values of X/
√
n on E.

The next proposition adapts the proof of IHT in our context using that feasible set is a union of subspaces.

Proposition 3.4. Iterative Hard Clustering Algorithm 1 with constant step size γt = 1 and initialization
w0 = 0, applied to (3) outputs iterates wt that converge to the original w∗ as

‖w∗ − wt‖2 ≤ ρt‖w∗‖2 +
1− ρt

1− ρ
ν‖η‖2,

where

ρ = 6 max
E∈E3

max(δE , δ
3
E),

ν = 2/
√
nmax
E∈E2

σmax(XUE/
√
n)

where, for any subspace E of Rd, δE is the smallest non-negative constant that satisfies

1− δE ≤ σmin

(
XUE/

√
n
)
≤ σmax

(
XUE/

√
n
)
≤ 1 + δE .

Proof. To describe the Iterative Hard Clustering algorithm, we define for t ≥ 0,

wt+1/2 = wt − γt∇L(wt) = wt −
1

n
XTX(wt − w∗) +

1

n
XT η

wt+1 = argmin
w∈Rd : Card(Part(w))≤Q

‖w − wt+1/2‖22,

where wt+1 is given exactly by the solution of a k-means problem in one dimension. The analysis of con-
vergence relies on the characterization of the subspaces that contain w∗, wt and wt+1. We define therefore

Et,∗ = EPart(wt) + EPart(w∗)
Et+1,∗ = EPart(wt+1) + EPart(w∗)
Et,t+1,∗ = EPart(wt) + EPart(wt+1) + EPart(w∗),

and the orthogonal projections on these set respectively Pt,∗, Pt+1,∗, Pt,t+1,∗. Bound on the error can then
be computed as follows:

‖w∗ − wt+1‖2 = ‖Pt+1,∗(w∗ − wt+1)‖2
≤ ‖Pt+1,∗(w∗ − wt+1/2)‖2 + ‖Pt+1,∗(wt+1/2 − wt+1)‖2.

(6)

In the second term, as Card(Part(w∗)) ≤ Q and wt+1 = argmin
w : Card(Part(w))≤Q

‖w − wt+1/2‖22, we have

‖wt+1 − wt+1/2‖22 ≤ ‖w∗ − wt+1/2‖22
which is equivalent to

‖Pt+1,∗(wt+1 −wt+1/2)‖22 + ‖(I − Pt+1,∗)wt+1/2‖22 ≤ ‖Pt+1,∗(w∗ −wt+1/2)‖22 + ‖(I − Pt+1,∗)wt+1/2‖22
5



and this last statement implies

‖Pt+1,∗(wt+1 − wt+1/2)‖2 ≤ ‖Pt+1,∗(w∗ − wt+1/2)‖2.
This means that we get from (6)

‖w∗ − wt+1‖2 ≤ 2‖Pt+1,∗(w∗ − wt+1/2)‖2

= 2‖Pt+1,∗(w∗ − wt −
1

n
XTX(w∗ − wt)−

1

n
XT η)‖2

≤ 2‖Pt+1,∗(I −
1

n
XTX)(w∗ − wt)‖2 +

2

n
‖Pt+1,∗(X

T η)‖2

= 2‖Pt+1,∗(I −
1

n
XTX)Pt,∗(w∗ − wt)‖2 +

2

n
‖Pt+1,∗(X

T η)‖2

≤ 2‖Pt+1,∗(I −
1

n
XTX)Pt,∗‖2‖w∗ − wt‖2 +

2

n
‖Pt+1,∗X

T ‖2‖η‖2.

Now, assuming

2‖Pt+1,∗(I −
1

n
XTX)Pt,∗‖2 ≤ ρ (7)

2

n
‖Pt+1,∗X

T ‖2 ≤ ν (8)

and developing the latter inequality over t, using that w0 = 0, we get

‖w∗ − wt‖2 ≤ ρt‖w∗‖2 +
1− ρt

1− ρ
ν‖η‖2.

Bounds ρ and ν can then be given by restricted singular values of X . For ν in (8), we have

‖Pt+1,∗X
T ‖2 = ‖XPt+1,∗‖2

ϑ
≤ max

E∈E2
‖XPE‖2 = max

E∈E2
σmax(XUE).

For ϑ, as noticed in previous section, if for example Card(Part(w∗)) < Q, there always exists G ∈ P
such that Part(w∗) � G, Card(G) = Q and so EPart(w∗) ⊂ EG. Therefore there exists Ft+1,∗ that contain
Et+1,∗ and belong to E2, such that we can restrict our attention to restricted singular values on subspaces in
E2 (defined from partitions in exactly Q groups).

For ρ in (7), we have

‖Pt+1,∗(I −XTX)Pt,∗‖2
ϑ1
≤ ‖Pt,t+1,∗(I −

1

n
XTX)Pt,t+1,∗‖2

ϑ2
≤ max

E∈E3
‖PE(I − 1

n
XTX)PE‖2

= max
E∈E3

‖UE(I − 1

n
UTEX

TXUE)UTE‖2

= max
E∈E3

‖I − 1

n
UTEX

TXUE‖2,

where for a subspaceE, UE denotes any orthonormal basis of it. In ϑ1 we used thatEt,t+1,∗ containEt,∗ and
Et+1,∗. In ϑ2 we use the same argument as for ν to restrict our attention to subspaces defined by partitions
into exactly Q groups. Finally, for a subspace E if δE ≥ 0 satisfies

1− δE ≤ σmin

(
XUE/

√
n
)
≤ σmax

(
XUE/

√
n
)
≤ 1 + δE ,

then [Vershynin, 2010, Lemma 5.38] shows

‖I − 1

n
UTEX

TXUE‖2 ≤ 3 max{δE , δ2
E},

which concludes the proof by taking the maximum of δE over E3.
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If the contraction factor is sufficient, convergence of the projected gradient scheme to the original vector
is ensured up to a constant error of the order of the noise as the classical IHT algorithm does for sparse
signals [Blumensath and Davies, 2009].

3.3. Recovery performance on random instances. We observe now that for isotropic independent sub-
Gaussian data xi the restricted singular values introduced in Proposition 3.4 depend on the number of sub-
spaces that define partitions and their dimension. This proposition reformulates results of Vershynin [2010,
Theorems 5.39, 5.65] in our context.

Proposition 3.5. Let E be a collection of subspaces of Rd of dimension at most D and denote N their
number. If the samples are n isotropic independent sub-gaussian random variables forming a design matrix
X = (x1, . . . , xn)T ∈ Rn×d, then for all E ∈ E

1− δ − ε ≤ σmin

(
XUE√
n

)
≤ σmax

(
XUE√
n

)
≤ 1 + δ + ε,

holds with probability larger than 1 − exp(−cε2n), where δ = C0

√
D
n +

√
log(N)
cn and C0, c depend only

on the sub-gaussian norm of the xi.

Proof. Let E ∈ E , denote UE one of its orthonormal basis and DE = dim(E) ≤ D its dimension. The
rows ofXUE are orthogonal projections of the rows ofX onto E, so they are still independent sub-gaussian
isotropic random vectors. We can therefore apply [Vershynin, 2010, Theorem 5.39] on XUE ∈ Rn×DE .
Hence for any s ≥ 0, with probability at least 1 − 2 exp(−cs2), the smallest and largest singular values of
XUE/

√
n are bounded as

1− C0

√
Q

n
− s√

n
≤ σmin

(
XUE√
n

)
≤ σmax

(
XUE√
n

)
≤ 1 + C0

√
Q

n
+

s√
n
, (9)

where c and C0 depend only on the sub-gaussian norm of the xi. Now, by taking the union bound, (9) holds
for any G ∈ PQ with probability 1− 2N exp(−cs2).

Taking s =

√
log(N)
c + ε

√
n, we get for all G ∈ PQ,

1− δ − ε ≤ σmin

(
XUE√
n

)
≤ σmax

(
XUE√
n

)
≤ 1 + δ + ε,

with probability at least 1− 2 exp(−cε2n), where δ = C0

√
Q
n +

√
log(N)
cn .

To ensure approximate recovery of the projected gradient scheme in Proposition 3.4, one needs to control
restricted singular values of X on subspaces in E3 in order to ensure that the contraction factor ρ is strictly
less than one. Precisely, we need to ensure for that for any E ∈ E3, there exists 0 ≤ δ < 1/6 such that

1− δ ≤ σmin

(
XUE√
n

)
≤ σmax

(
XUE√
n

)
≤ 1 + δ.

Denoting D3 and N3 respectively the largest dimension of the subspaces in E3 and the number of these
subspaces, the last proposition shows that when observations xi are isotropic independent sub-gaussian,
their number n must therefore satisfy

C0

√
D3

n
<

1

6
and

√
log(N3)

cn
<

1

6

which is roughly
n = Ω(D3) and n = Ω(log(N3)) (10)

to ensure contraction. The first condition in (10) means that subspaces must be low-dimensional, in our case
D3 = 3Q, and we naturally want the number of groups to be small. The second condition in (10) means
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that the structure (partitioning here) is restrictive enough, i.e., that the number N3 of possible configurations
is small enough.

To compute N3, denote NQ the number of partitions in exactly Q groups such that N3 =
(NQ

3

)
. The

number of partitions into Q groups is then given by the the Stirling number of second kind NQ =
{
d
Q

}
, that

can be bounded as

Qd−Q ≤
{
d

Q

}
≤ 1

2
(ed/Q)QQd−Q. (11)

Using standard bounds on the binomial coefficients this means

N3 ≥
(
NQ

3

)3

≥ Q3d−3Q

27
.

Therefore although the intrinsic dimension of our variables is of order 3Q, the number of subspaces N3 is
such that we need roughly n ≥ 3d log(Q) observations, i.e., approximately as many samples as features,
so the grouping structure is not specific enough to reduce the number of samples required by a projected
gradient scheme to converge. On the other hand, given this many samples, the algorithm provably converges
to a clustered output, which helps interpretation.

As a comparison, classical sparse recovery problems have the same structure [Rao et al., 2012], as s-
sparse vectors for instance can be described as {w = Zv, Z ∈ {0, 1}d×s, ZT 1 = 1, v ∈ Rs} and so are
part of a “union of subspaces”. However in the case of sparse vectors the number of subspaces grows as ds

which means recovery requires much less samples than features.

4. SPARSE AND GROUPED LINEAR MODELS

Projected gradient schemes are simple but scalable algorithms to tackle constrained structures of linear
models. It has been developed for sparsity through the Iterative Hard Thresholding algorithm [Blumensath
and Davies, 2009], we presented its version to group features in Section 2, we now extend it to both select
s features and group them in Q groups. A regression problem that enforces predictors to have at most s
non-zeros coefficients grouped in at most Q groups reads

minimize L(w) + λR(w)
subject to Card(Supp(w)) ≤ s

Card(Part(w)) ≤ Q+ 1
(12)

in variable w ∈ Rd, where L and R are respectively the loss and the regularizer of the prediction problem
as introduced in Section 1 and λ ≥ 0 is a regularization parameter. Naturally we take Q ≤ s as one cannot
cluster s features in more than s groups.

Adapting the projected gradient for this problem essentially means producing an efficient algorithm for
the projection step. To this end, we develop a new dynamic program to get the projection on s-sparse vectors
whose non-zero coefficients form Q groups. Analysis of the recovery performance of this scheme will then
directly follow from counting arguments similar to those used for clustered vectors.

4.1. Projection on s-sparse Q-grouped vectors.

4.1.1. Formulation of the problem. A feasible pointw ∈ Rd for problem (12) is described by the partition of
its coordinatesG = {g0, . . . , gQG

} in groups of equal coefficients, where g0 is the group of zero coefficients,
and v1, . . . , vQG

the possible values of the non-zero coefficients. QG = Card(G)− 1 ≥ 0 denotes here the
number of (non-empty) groups of a partition G ∈ P .

Let us fix a point u ∈ Rd, its distance to a feasible point w reads

‖u− w‖22 =
∑
i∈g0

u2
i +

QG∑
q=1

∑
i∈gq

(ui − vq)2, (13)
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for given G = {g0, . . . gQG
} ∈ P and v ∈ RQG . For a fixed partition G ∈ P , hence a fixed subspace,

minimization in v gives the barycenters of the groups g1, . . . , gQG
of non-zero coefficients denoted

µq =
1

sq

∑
i∈gq

ui for q = 1, . . . QG,

where sq = Card(gq) is the size of the qth group. Inserting them in (13), the distance to a subspace of
sparse grouped coefficients defined by a partition G ∈ P can be developed as∑

i∈g0

u2
i +

QG∑
q=1

∑
i∈gq

(u2
i + µ2

q − 2vqui) =
d∑
i=1

u2
i −

QG∑
q=1

sqµ
2
q .

Projection on the feasible set of (12), that minimizes the above distance for all possible partitions in Q
groups of s non-zeros coefficients, amounts then to solve

maximize
∑QG

q=1 sqµ
2
q

subject to Card
(⋃QG

q=1 gq

)
≤ s, 0 ≤ QG ≤ Q,

(14)

in the partition G = {g0, . . . , gQG
} ∈ P , where µq = 1

sq

∑
i∈gq ui and QG = Card(G)− 1.

This problem amounts to select a number s′ ≤ s of features and cluster them in a number Q′ ≤ Q
groups whose barycenters have maximal magnitude for the objective in (14). The objective can then be split
into positive and negative barycenters to treat each resulting problem independently and then find the best
balance between both parts.

4.1.2. Dynamic programing. To solve problem (14), observe first that the objective is clearly increasing
with the number of groups, as it allows more degrees of freedom to approximate u. Furthermore if the
number s′ of selected features is fixed, the number of groups cannot exceed it, i.e. Q′ ≤ s′, and it can
therefore be set at min(s′, Q).

A solution of (14) that selects s′ ≤ s features is then composed of a partition of j points into q groups that
define positive barycenters, and a partition of the s′ − j remaining points into min(s′, Q) − q groups that
define negative centers. We therefore tackle (14) by searching for the best parameters s′, j, q that balance
optimally the objective into positive and negative barycenters.

To this end, we define f+(j, q) the optimal value of (14) when picking j points clustered in q groups of
positive barycenters, i.e. the solution of the problem

maximize
∑q

p=1 spµ
2
p

subject to µp = 1
sp

∑
i∈gp ui > 0

Card
(⋃q

p=1 gp

)
= j,

(P+(j, q))

in disjoint groups g1, . . . , gq ⊂ {1, . . . , d}. This problem is not always feasible, as it may not be possible to
find q clusters of positive barycenters with j points. In that case we denote its solution f+(j, q) = −∞. We
define similarly f−(j, q) the optimal value of (14) when picking j points clustered in q groups forming only
negative barycenters. The best balance between the two, which solves (14), is then given by solving:

maximize f+(j, q) + f−(s′ − j,Q′ − q)
subject to 0 ≤ j ≤ s′, 0 ≤ q ≤ Q′,

0 ≤ s′ ≤ s, Q′ = min(s′, Q),
(15)

in variables s′, j and q.
It remains to compute f+ and f− efficiently. We present our approach for f+ that transposes to f−.

Let S+ ⊂ {1, . . . , d} be the optimal subset of indexes taken for (P+(j, q)) and i ∈ S+. If there exists
j ∈ {1, . . . , d} \ S+ such that uj ≥ ui, then swapping j and i would increase the magnitude of the
barycenter of the group that i belongs to and so the objective. Therefore (P+(j, q)) amounts to a partitioning
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problem on the j largest values of u. From now on, assume coefficients of u to be in decreasing order
u1 ≥ . . . ≥ ud. For (P+(j, q)) a feasible problem, denote g1, . . . , gq the optimal partition of {1, . . . , j}
whose corresponding barycenters are in decreasing order. Let i be the index of the largest coefficient of u in
gq, then necessarily g1, . . . , gq−1 is optimal to solve (P+(i−1, q−1)). f+ can then be computed recursively
as

f+(j, q) = max
q≤i≤j

µ(ui,...,uj)>0

f+(i− 1, q − 1) + (j − i+ 1)µ(ui, . . . , uj)
2, (16)

where µ(ui, . . . , uj) = 1
j−i+1

∑j
l=i ul can be computed in constant time using that

µ(xi, . . . , xj) =
ui + (j − i)µ(ui+1, . . . , uj)

j − i+ 1
.

By convention f+(j, q) = −∞ if is not possible to find q clusters of positive barycenters with j points such
that (P+(j, q)) is not feasible. Values of f+ are stored to compute (15). Two auxiliary variables I+ and
v+ store respectively the indexes of the largest value of x in group gq and the barycenter of the group gq.
The same dynamic program can be used to compute f−, I− and v−, defined similarly as I+ and v+, by
reversing the order of the values of x. A grid search on f(j, q, s′) = f+(j, q) + f−(s′ − j,Q′ − q), with
Q′ = min(s′, Q), gives the optimal balance between positive and negative barycenters. A backtrack on I−
and I+ finally gives the best partition and the projection with the associated barycenters given in v− and v+.
f+ is initialized as a grid of s + 1 and Q + 1 columns such that f+(0, q) = 0 for any q, f+(j, 0) = 0

and f+(j, 1) = jµ(u1, . . . , uj)
2 for any j ≥ 1. I+ and v+ are initialized by I+(j, 1) = 1 and µ+(j, 1) =

µ(u1, . . . , uj).
Each dynamic program needs only to build the best partitions for the s smallest or largest partitions so

they cost O(s2Q) elementary operations. The grid search and the backtrack cost respectively O(s2Q) and
O(Q) elementary operations. Overall, the complexity of the projection does not exceed O(s2Q).

4.2. Recovery performance. Analysis of recovery performance of the projected gradient for sparse clus-
tered vectors follows the one provided in Section 2. Our problem is to recover an original vector w∗ such
that Card(Supp(w∗)) ≤ s and Card(Part(w∗)) ≤ Q+ 1 that generates n noisy observations yi from data
points xi as

y = Xw∗ + η

where η ∼ N (0, σ2), whereX = (x1, . . . , xn)T ∈ Rn×d is the matrix of data points and y = (y1, . . . , yn) ∈
Rn is the vector of observations. To this end we attempt to solve a regression problem enforcing Q groups
of s features with a squared loss and no regularization, which reads

minimize 1
2n‖Xw − y‖

2
2

subject to Card(Supp(w)) ≤ s,
Card(Part(w)) ≤ Q+ 1

(17)

As in Section 2, we use a projected gradient scheme with constant step size γt = 1 and initialized at w0 = 0,
the only difference is the projection step that is given here by the dynamic program presented in last section.

First we detail the geometry of the feasible set of (12). A given subset S ⊂ {1, . . . , d} defines a linear
subspace

ES = {w ∈ Rd : Supp(w) ⊂ S}.

By combining a subset S ∈ {1, . . . , d} with a partition G ∈ P we get a linear subspace

ES,G = {w : Supp(w) ⊂ S, Part(w) � G} = ES ∩ EG.
10



Vectors inES,G have at most Card(G)−1 different non-zero coefficients such that dim(ES,G) = Card(G)−
1. The feasible set of (12) is then a union of subspaces, namely,⋃

S∈{1,...,d} : Card(S)≤s
G∈P : Card(G)≤Q+1

ES,G.

Analysis of convergence made in Proposition 3.4 for the clustered case relies only on the fact that the
feasible set is a union of subspaces and that the projection on it can be computed exactly so it applies also
in this case. However the contraction factor will now depend on restricted singular values of the data on a
smaller collection of subspaces. Precisely, define

Ẽ = {ES,G : Card(S) = s, Card(G) = Q+ 1}
Ẽ3 = {E1 + E2 + E3 : E1, E2, E3 ∈ Ẽ}.

The contraction factor depends then on the restricted singular values of the matrixX on subspaces belonging
to Ẽ3. Since dim(ES,G) = Card(G) − 1, subspaces in Ẽ3 have a dimension at most 3Q. Denoting N and
N3 the cardinality of respectively Ẽ and Ẽ3, we have N3 =

(
N
3

)
. Subspaces of Ẽ are defined by selecting

s features among d and partitioning these s features into Q groups so that their number is N =
(
d
s

){
s
Q

}
.

Using classical bounds on the binomial coefficient and (11), we can roughly bound N for s ≥ 3, Q ≥ 3 by

N ≤
(
ed

s

)s 1

2

(
e

Q

)Q
sQQs−Q ≤ dssQQs−Q

and so

N3 ≤
(
eN

3

)3

≤ N3 ≤ (dssQQs−Q)3

Propositions 3.4 and 3.5 adapted in this case thus predict that the number of observations must satisfy

n = Ω(s log d+Q log(s) + (s−Q) log(Q))

for a projected gradient scheme to recover approximately w∗. It produces Q + 1 cluster of features, one
being a cluster of zero features, reducing dimensionality, while needing roughly as many samples as non-
zero features.

5. NUMERICAL EXPERIMENTS

We now test our methods, first on artificial datasets to check their robustness to noisy data and then on
real data extracted from movie reviews.

5.1. Synthetic dataset. We first test the robustness of our algorithms for an increasing number of training
samples or level of noise in the labels. We generate a linear model in dimension d = 100 with a vector
w∗ ∈ Rd that has only Q = 5 different values uniformly distributed around 0. We sample n Gaussian
random points xi with noisy observations yi = wTxi + η, where η ∼ N (0, σ2). We vary the number of
samples n or the level of noise σ and measure ‖w∗ − ŵ‖2, the l2 norm of the difference between the true
vector of weights w∗ and the estimated ones ŵ.

In Table 1 and 2, we compare the proposed algorithms to Least Squares regularized by the squared
norm (LS), Least Squares regularized by the squared norm followed by k-means on the weights (using
associated centroids as predictors) (LSK) and OSCAR (OS) [Bondell and Reich, 2008]. For OSCAR we
used a submodular approach [Bach et al., 2012] to compute the corresponding proximal algorithm, which
makes it scalable. “Oracle” refers to the Least Square solution given the true assignments of features and
can be seen as the best achievable error rate. We study the performance of our model with a squared loss and
regularized by the squared Euclidean norm of the variable. We solve with Iterative Hard Clustering (IHC)
(initialized with the solution of Least Square followed by k-means). When varying the number of samples,
noise on labels is set to σ = 0.5 and when varying level of noise σ number of samples is set to n = 150.

11



Regularization parameters of the models were all cross-validated using a logarithmic grid. Results were
averaged over 50 experiments and figures after the ± sign correspond to one standard deviation.

n = 50 n = 75 n = 100 n = 125 n = 150
Oracle 0.16±0.06 0.14±0.04 0.10±0.04 0.10±0.04 0.09±0.03
LS 61.94±17.63 51.94±16.01 21.41±9.40 1.02±0.18 0.70±0.09
LSK 62.93±18.05 57.78±17.03 10.18±14.96 0.31±0.19 0.19±0.12
IHC 63.31±18.24 52.72±16.51 5.52±14.33 0.14±0.09 0.09±0.04
OS 61.54±17.59 52.87±15.90 11.32±7.03 1.25±0.28 0.71±0.10

TABLE 1. Measure of ‖w∗ − ŵ‖2, the l2 norm of the difference between the true vector of
weights w∗ and the estimated ones ŵ along number of samples n.

σ = 0.05 σ = 0.1 σ = 0.5 σ = 1
Oracle 0.86±0.27 1.72±0.54 8.62±2.70 17.19±5.43
LS 7.04±0.92 14.05±1.82 70.39±9.20 140.41±18.20
LSK 1.44±0.46 2.88±0.91 19.10±12.13 48.09±27.46
IHC 0.87±0.27 1.74±0.52 9.11±4.00 26.23±18.00
OS 14.43±2.45 18.89±3.46 71.00±10.12 140.33±18.83

TABLE 2. Measure of ‖w∗ − ŵ‖2, the l2 norm of the difference between the true vector of
weights w∗ and the estimated ones ŵ along level of noise σ.

We observe that IHC gives significantly better results than other methods and even reach the performance
of the Oracle for n > d and for small σ, while for n ≤ d results are in the same range.

5.2. Predicting ratings from reviews using groups of words. We perform “sentiment” analysis on news-
paper movie reviews. We use the publicly available dataset introduced by Pang and Lee [2005] which
contains movie reviews paired with star ratings. We treat it as a regression problem, taking responses for y
in (0, 1) and word frequencies as covariates. The corpus contains n = 5006 documents and we reduced the
initial vocabulary to d = 5623 words by eliminating stop words, rare words and words with small TF-IDF
on the whole corpus. We evaluate our algorithms for regression with clustered features against standard
regression approaches: Least-Squares (LS), Least-Squares followed by k-means on predictors (LSK), Lasso
and Iterative Hard Thresholding (IHT). We also tested our projected gradient with sparsity constraint, initial-
ized by the solution of LSK (IHCS). Number of clusters, sparsity constraints and regularization parameters
were 5-fold cross-validated using respectively grids going from 5 to 15, d/2 to d/5 and logarithmic grids.
Cross validation and training were made on 80% on the dataset and tested on the remaining 20%. It gave
Q = 15 number of clusters and d/2 sparsity constraint for our algorithms. Results are reported in Table 3,
the ± sign shows one standard deviation when varying the training and test sets on 20 experiments.

All methods perform similarly except plain IHT and Lasso whose hypotheses does not seem appropriate
for the problem. Our approaches have the benefit of reducing dimensionality from 5623 to 15 words and
provide meaningful cluster of words. The clusters with highest absolute weights are also the ones with
smallest number of words, which confirms the intuition that only a few words are highly discriminative. We
illustrate this in Table 4, picking randomly words of the four clusters within which predictor weights have
largest magnitude.

6. CONCLUSION AND FUTURE WORK

We presented new algorithmic schemes to group features with potentially additional sparsity constraints.
To this end, we introduced a combinatorial structure on the prediction vector akin to the one used for sparsity
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LS LSK IHC OS
1.51±0.06 1.53±0.06 1.52±0.06 1.47±0.07

IHCS IHT Lasso
1.53±0.06 2.19±0.12 3.77±0.17

TABLE 3. 100 × mean square errors for predicting movie ratings associated with reviews.

2 most bad, awful,
negative worst, boring, ridiculous,
clusters watchable, suppose, disgusting,
2 most perfect, hilarious, fascinating, great
positive wonderfully, perfectly, good-spirited,
clusters world, unexpected, gem, recommendation,

excellent, rare, marvelous, mature
send, delightful, funniest

TABLE 4. Clustering of words on movie reviews. We show clusters of words within which
associated predictor weights have largest magnitude. First row presents ones associated to a
negative coefficient and therefore bad feelings about movies, second row ones to a positive
coefficient and good feelings about movies.

and identify the corresponding projections to the set of constraints. On one side, our numerical results
validate the performance of these schemes, their cheap projection cost and empirical convergence make
them suitable for large data sets where they provide an efficient reduction of dimension. On the other side,
our theoretical analysis of recovery performance shows the difficulty of the problem of grouping features
compared to standard sparsity. While constraining the number of groups of identical features appears natural
and can be tackled with dynamic programming, it leads to a hard recovery problem that needs a large number
of samples to be solved. This paves the way of defining other combinatorial penalties on partitions of level
sets for which one can obtain better recovery results, provided that projection can be done easily. Notice
finally that such combinatorial structures can lead to regularizers as illustrated in Appendix B. The problem
is then to provide an efficient corresponding proximal operator of the regularizer.
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APPENDIX A. EXTENDED FORMULATION FOR CLASSIFICATION

A.1. Formulation for regression with assignment matrices. A partition G of {1, . . . , d} into Q groups
can be encoded by an assignment matrix Z ∈ {0, 1}d×Q, whose rows index the features and columns index
the groups, such that

Ziq =

{
1 if i ∈ gq
0 otherwise.

Observe that a partition G into Q groups g1, . . . gQ is independent of the ordering of the groups, namely,
gπ(1), . . . gπ(Q), where π is a permutation of {1, . . . , Q}, describes as well G. Consequently a partition can
be encoded by several assignment matrices, these are identical up to a permutation of their columns defining
the groups.

A binary matrix Z ∈ {0, 1}p×Q describes a partition G of {1, . . . , p} into Q groups, if and only if it
satisfies Z1 = 1 as it encodes the fact that each element belongs to exactly one group. Since groups of a
partition are disjoints, columns of assignment matrices are orthogonal. Their squared Euclidean norm and
`1 norm are equal to the size of the groups they represent, i.e. ‖Zq‖22 = ‖Zq‖1 = ZT1 = Card(gq), where
Zq is the qth column of an assignment matrix Z of a partition G = (g1, . . . , gQ). Combining two previous
comments, we conclude that size of the groups are the squared singular values of the assignment matrix., i.e.
ZTZ = diag(s) where s = (Card(g1), . . . ,Card(gQ)) encodes the size of the groups g1, . . . , gQ that Z
represents.

A regression vector w that has at most Q values can then be described by an assignment matrix Z and the
prediction weights v1, . . . , vQ such that wi =

∑Q
q=1 Ziqvq = (Zv)i. Therefore linear regression enforcing

Q group of features reads

minimize L(w) + λR(w)
subject to w = Zv, Z ∈ {0, 1}d×Q, Z1 = 1

(18)

in variables w ∈ Rd, v ∈ RQ and Z, where λ ≥ 0 is a regularization parameter.
Notice also that affine regression problems that seek for a regression vector w ∈ Rd and an intercept

b ∈ R such that y ≈ wTx + b can be treated similarly. It suffices to add a constant feature equals to one to
data points x and to consider the resulting problem in dimension d+ 1. In this case regularization function
R and partitioning constraints apply only on the first d dimensions of the resulting problem.

A.2. Classification. Numerous models have been proposed for classification, we refer the interesting reader
to Hastie et al. [2008] for a detailed presentation. Here we briefly present one of them, namely one-vs-all
linear classification, in order to focus on the optimization problem that will be constrained to group features.
In classification, data points x1, . . . , xn ∈ Rd belong to one of K classes, which can be encoded by binary
vectors yi ∈ {−1, 1}K such that yik = 1 if ith point belongs to class k and −1 otherwise. One-vs-all linear
classification aims then at computing hyperplanes defining regions of space where points are more likely to
belong to a a given class. Such hyperplanes are defined by their normals w1, . . . , wK , forming a matrix of
linear classifiers W ∈ Rd×K whose classification error on a sample (x, y) is measured by a loss `(W Tx, y)
such as the squared loss `square(W

Tx, y) = 1
2‖W

Tx − y‖22. One searches then to minimize the empirical
loss function

L(W ) =
1

n

n∑
i=1

`(W Txi, yi).

As for regression, a regularizer R(W ) can be added on the linear classifiers. Candidate classification pa-
rameters are then given by solving

minimize L(W ) + λR(W )

in variable W ∈ Rd×K , where λ ≥ 0 is a regularization parameter.
To group features, we will enforce the classifiers to share the same partition of their coefficients. Namely,

if this partition is encoded by an assignment matrix Z and vk = (v1k, . . . , vQk) represent the Q different
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coefficients of the kth linear classifier wk, then wk = Zvk. Linear classification enforcing Q groups of
constraints then reads

minimize L(W ) + λR(W )
subject to W = ZV, Z ∈ {0, 1}d×Q, Z1 = 1

(19)

in variables W ∈ Rd×K , V ∈ RQ×K and Z, where λ ≥ 0 is a regularization parameter. Observe that
constraints in (19) are essentially the same as the ones in (18), except that these are formulated on matrices.
However this simple difference has important algorithmic implications. Projection on the feasible set is
again a k-means problem but in dimension K such that it can not be solved exactly. However careful
initializations as made by k-means++ [Arthur and Vassilvitskii, 2007] offers logarithmic approximations of
the solution.

Notice that for binary classification, a vector of labels of dimension one is sufficient to encode the class
information, such that binary classification reduces to a problem of the form (1). As for regression, this
setting can be applied to compute affine hyperplanes by extending the problem in d + 1 dimension and by
applying regularization and constraints only on the first d dimensions.

APPENDIX B. NORM FOR GROUPING FEATURES

In this section, we seek to develop a norm that induce groups of features by regularization rather than
enforcing it by constraints. We begin by detailing the geometrical interpretation of standard algebraic tools
used to describe partitions.

B.1. Geometrical interpretation of algebraic tools. In Proposition 3.3 we defined subspaces from parti-
tions of {1, . . . , d}. Here we relate them to standard algebraic tools used to represent partitions. First for
a partition G = {g1, . . . , gQ} into Q groups, w ∈ EG has at most Q different values and can be encoded
using assignment matrices as presented in Section A.1. In other words, for an assignment matrix Z of G,
one has

EG = {w = Zv, v ∈ Rd}

Columns of Z are orthogonal since since groups are disjoints and not null if G has no empty groups. In this
case, Z is therefore an orthogonal basis of EG. As mentioned in Section A.1, several assignment matrices
can encode a partition, i.e. several binary matrices form a basis of a subspace EG. However EG and the
orthogonal projector on it are for their part uniquely defined by G.

For a given partition G and any assignment matrix Z of G, the orthogonal projection on EG reads M =
Z(ZTZ)†ZT ∈ Rp×p, where A† denotes the pseudo-inverse of a matrix A, here (ZTZ)† = diag(s†),
where s†q = 1/Card(gq) if gq is non-empty and s†q = 0 otherwise. It is called the normalized equivalence
matrix of G and satisfies

Mij =

{
1/Card(gq) if (i, j) ∈ (gq × gq)
0 otherwise.

To represent more generally partitions of {1, . . . , d} in any number of groups one can use binary matrices
Z ∈ {0, 1}d×d that satisfy Z1 = 1. Number of non-zero columns of such matrices are then the number
of groups of the partition they represent. Once again partitions can be represented by several assignment
matrices but are in bijection with the set of normalized equivalence matrices

M = {M = Z(ZTZ)†Z , Z ∈ {0, 1}d×d , Z1 = 1}. (20)

Number of groups of a partition G is then equal to the rank of its normalized equivalence matrix (the
dimension of EG), i.e. Card(G) = Rank(M) = Tr(M), since M is a projector.
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B.2. Convex relaxation of combinatorial penalty. Our framework constraints number of level sets of the
variables, i.e. the function

Ω(w) = Card(Part(w)).

Following Obozinski and Bach [2012] ,we investigate how this combinatorial function can be incorporated
in standard Euclidean regularization by finding the tightest convex homogeneous envelope of

Ω2(w) =
1

2
‖w‖22 +

1

2
Card(Part(w)).

Following proposition details its formulation

Proposition B.1. The tightest convex homogeneous envelope of

Ω2(w) =
1

2
‖w‖22 +

1

2
Card(Part(w))

is
‖w‖Ω2 = inf

(xM )M∈M
x=

∑
M∈MMxM

∑
M∈M

Tr(M)1/2‖MxM‖2,

where M defined in (20) is the set of normalized equivalence matrices of partitions of {1, . . . , d}.
‖w‖Ω2 is a norm, whose dual norm is

‖w‖∗Ω2
= max

M∈M

‖Mx‖2
Tr(M)1/2

.

Proof. First we give an algebraic formulation of the combinatorial function Ω. Given a vector w ∈ Rd,
Part(w) is the largest partition (in terms of � presented in Definition 3.2) in groups of equal coefficients
of w. It defines therefore the smallest subspace (see Proposition 3.3) on which w lies. Card(Part(w)) is
then the dimension of the smallest subspace defined from partitions, on which w lies. Using normalized
equivalence matrices that are orthogonal projections on these subspaces the combinatorial penalty Ω reads

Ω(w) = Card(Part(w)) = min
M∈M
Mw=w

Tr(M).

Now, following Obozinski and Bach [2012], we begin by computing the homogenized version of Ω2

defined as h(w) = infλ>0
Ω2(λw)

λ , then we compute the Fenchel bi-conjugate of h. We have

h(w) = inf
λ>0

1

2
‖w‖22λ+

1

2
Ω(w)λ−1.

= ‖w‖2Ω(w)1/2

Fenchel dual of h reads then

h∗(x) = sup
w∈Rd

xTw − ‖w‖2Ω(w)1/2

= sup
w∈Rd

max
M∈M
Mw=w

xTw − ‖w‖2 Tr(M)
1
2

= max
M∈M

sup
w∈Rd

Mw=w

xTw − ‖w‖2 Tr(M)
1
2

= max
M∈M

{
0 if ‖Mx‖2 ≤ Tr(M)1/2

+∞ otherwise

=

{
0 if maxM∈M ‖Mx‖2 Tr(M)−1/2 ≤ 1

+∞ otherwise.
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Define
‖w‖∗Ω2

= max
M∈M

‖Mx‖2 Tr(M)−1/2.

‖w‖∗Ω2
is convex as a finite maximum of convex functions, it is clearly homogeneous and as I ∈M we have

‖w‖∗Ω2
=⇒ w = 0. Hence ‖w‖∗Ω2

is a norm. h∗ is then the indicator function of the unit norm ball of
‖w‖∗Ω2

.
Fenchel bi-dual of h is then

h∗∗(w) = sup
x∈Rd

wTx− h∗(x)

= sup
x∈Rd

wTx−
∑
M∈M

sup
λM≥0

λM (‖Mx‖2 −Tr(M)1/2)

= inf
(λM )M∈M, λM≥0

∑
M∈M

Tr(M)1/2λM + sup
x∈Rd

wTx−
∑
M∈M

λM‖Mx‖2

= inf
(λM )M∈M, λM≥0

∑
M∈M

Tr(M)1/2λM + sup
x∈Rd

wTx−
∑
M∈M

λM sup
‖aM‖2≤1

xTMaM

= inf
(λM )M∈M, λM≥0

(aM )M∈M, ‖aM‖2≤1
x=

∑
M∈M λMMaM

∑
M∈M

Tr(M)1/2λM

= inf
(xM )M∈M

x=
∑

M∈MMxM

∑
M∈M

Tr(M)1/2‖MxM‖2

= ‖w‖Ω2 .

Since h∗ is the indicator function of the unit ball of ‖w‖∗Ω2
, ‖w‖Ω2 is the dual norm of ‖w‖∗Ω2

.

Computed norm ‖w‖Ω2 appears similar to the grouped norms defined for example by Jacob et al. [2009].
However we are not aware of algorithms that can compute the norm or its proximal operator such that its
utility in practice is unclear.
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