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Abstract Computing discrete logarithms is generically a difficult problem. For divisor class groups of curves
defined over extension fields, a variant of the Index-Calculus called Decomposition attack is used, and it can
be faster than generic approaches. In this situation, collecting the relations is done by solving multiple in-
stances of the Point m-Decomposition Problem (PDPm). An instance of this problem can be modelled as a
zero-dimensional polynomial system. Solving is done with Gröbner bases algorithms, where the number of
solutions of the system is a good indicator for the time complexity of the solving process. For systems arising
from a PDPm context, this number grows exponentially fast with the extension degree. To achieve an efficient
harvesting, this number must be reduced as much as as possible. Extending the elliptic case, we introduce a
notion of Summation Ideals to describe PDPm instances over higher genus curves, and compare to Nagao’s
general approach to PDPm solving. In even characteristic we obtain reductions of the number of solutions for
both approaches, depending on the curve’s equation. In the best cases, for a hyperelliptic curve of genus g, we
can divide the number of solutions by 2(n−1)(g+1). For instance, for a type II genus 2 curve defined over F293

whose divisor class group has cardinality a near-prime 184 bits integer, the number of solutions is reduced from
4096 to 64. This is enough to build the matrix of relations in around 7 days with 8000 cores using a dedicated
implementation.

1 Introduction

The Point m-Decomposition Problem (PDPm)

The Discrete Logarithm Problem (DLP) is a well-known and generically difficult problem, and several standard
cryptographic protocols rely on its hardness (for example, Diffie-Hellman key exchange or digital signature
algorithms). We focus on its instance over the divisor class group Jac(H ) of an hyperelliptic1 curve H of
genus g defined over “small” field extensions. By small, we mean that the extension degree admits a small
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factor — typically, it is Fqnk with 2≤ k ≤ 6. Computing discrete logarithms in such groups can be done using
a variant of the Index-Calculus algorithm called Decomposition attacks. Such algorithms run in mainly two
phases. Our main interest is the first one, called relations collection or harvesting. In the harvesting phase,
a linear system is built by finding linear relations between (the discrete logarithms of) elements of a special
subset, the so-called factor base. In Decomposition attacks, relations can be found by solving multiple instances
of the following problem.

Definition 1 (Point m-Decomposition Problem (PDPm)) Given an element R and a subset B of Jac(H ),
find, if they exist, D1, . . . ,Dm in B such that:

R = D1 + · · ·+Dm.

The m-tuple (D1, . . . ,Dm) is called a m-decomposition of R, or a decomposition if the context is clear.

Nagao proposed in [38] to solve instances of this problem by describing decompositions using functions
in adequate Riemann-Roch spaces. If H has genus g and is defined over some Fqn , he selected the factor base
as B = {P ∈H , x(P) ∈ Fq} and used the linear structure of Fqn over Fq to describe a decomposition by a
multivariate polynomial system. This process is usually called Weil descent in the litterature, and we will do
the same. When the curve is elliptic, i.e. g = 1, an alternate approach involving Weil descent on Summation
polynomials [40] can also be used, as shown by Diem [10] and Gaudry [23]. The systems arising from these
methods are generally zero-dimensional and solved by Gröbner bases methods.

For zero-dimensional ideals, the standard solving strategy using Gröbner bases is to first compute a basis
for a total degree order, then to change for a lexicographical basis using a change-order algorithm. Total de-
gree order bases are computed with the algorithms F4 [14] or F5 [15], and for zero-dimensional ideals, the
change-order step is done with FGLM’s algorithm [13] or its Sparse variant [18]. On the one hand, F4 or F5’s
complexities are expressed using the degree of regularity of the ideal [1]. In the context of a Decomposition
attack, it can be approximated by the number of solutions of the system. On the other hand, the classic FGLM
is usually the computational bottleneck in PDPm solving, even when the Sparse variant is used (although very
important speed-ups are observed). Its complexity depends polynomially on the dimension of the quotient al-
gebra as a linear space. This dimension equals the number of solutions of the system over an algebraic closure,
and coincides with the degree of the ideal. Hence we will use both terminologies throughout the presentation,
and we use this quantity to estimate the complexity of solving a PDPm instance. Efficient implementations of
Gröbner bases algorithms exist in Magma [2] and in Maple with the FGb package [12]. These were also our
main tool for experimentations.

In genus 1, Summation and Nagao’s approaches give systems with 2n(n−1) solutions, the Summation ap-
proach being experimentally faster. When g > 1, Nagao’s approach leads to systems with dNag = 2n(n−1)g so-
lutions. In both cases, the number of solutions grows too quickly with the extension degree (and the genus) to
consider practical computations, and even experiments. For example, for k = F65521, g = 2 and [K : k] = n = 3,
a Magma 2.19 [2] implementation of Nagao’s method needs roughly 1300 sec to solve a degree 4096 system
and thus a PDP6 instance. The probability to find a 6-decomposition is 1/6!, hence 6!× 1300sec. = 936000
sec. are needed in average to find a single relation. Therefore to achieve an efficient relation harvesting in a
Decomposition attack, the degree of the ideals must be reduced.

Contributions

Throughout this article efficiency means time efficiency. Our general goal is to design an efficient approach
for solving PDPm instances, in order to implement a Decomposition attack over a meaningful genus 2 curve.
In other words, the cardinality of its divisor class group is a near-prime integer whose size is close to lowest
acceptable security level. To do this, we propose new ways to reduce the degree of the systems arising from the
harvesting in even characteristic. Our contributions can be separated in two categories: those which deal with
Nagao’s approach, and those which focus on the Summation approach. We develop both in parallel and show
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how to reduce the degree for both methods in even characteristic. Another benefit is that, informally, the re-
duction process tends to give a more “homogeneous” shape to the system’s equations. The more homogeneous
a system is, the better its behaviour during a Gröbner basis computation tends to be [46]. In the last chapter
we finally compare them, adding our new degree reduction algorithms, to determine which is more efficient
when g > 1. Nagao’s approach reveals to be more efficient in practice, and thus it is used in the last Section to
estimate the total running time for the harvesting on a binary genus 2 curve with a class group of around 2184

elements. We now detail the organization of the article.

Reducing the degree of the ideals for Nagao’s modelling in even characteristic Our first focus is Nagao’s ap-
proach for solving PDPng instances when g > 1. We introduce the Decomposition polynomial, which describes
the generic intersection between a function with prescribed valuation at infinity and the target hyperellip-
tic curve. Its coefficients depend symbolically on the coordinates of the function in an adequate basis of a
Riemann-Roch space, and are used to generate the polynomials systems describing PDPng instances.

In characteristic 2 we observe that one of these coefficients is always univariate. This enables a “presolving”
by determining up to n−1 solutions of the system. Additionally we observe that some other coefficients of the
Decomposition Polynomial are squares. Any square equation can be replaced by its square root, and each
replacement reduces the degree of the final system. We give an explicit formula for the number of square
equations, that depends on the length of h1, defined as the difference between the degree of the leading and the
trailing term. From this we deduce bounds on the reduced degree of the system after the Weil Descent. More
precisely, if we denote by dopt the reduced degree, we obtain

2(n−1)((n−1)g−1) ≤ dopt ≤ 2(n−1)(ng−1),

compared to the previous dNag = 2n(n−1)g. The Section ends with an exhaustive analysis of the degree reduction
for binary genus 2 curves, where a complete classification is known.

Defining Summation ideals for hyperelliptic curves Our second focus is the use of Summation Polynomials
for modelling PDPm instances when g ≥ 2. The idea behind this study is that using Summation polynomials
for Decomposition attacks over elliptic curves revealed to be more efficient than Nagao’s approach. The major
reason was the possibility to exploit symmetries to reduce the degree of the system to solve [16][17][22], and
another yet less impactful reason was the smaller number of variables. While the existence of such objects is
intuitive, to the best of our knowledge, the only computational approach proposed in the litterature was [44].
However, several problems inherent to the proposed modelling prevented a reasonable usage for PDPm solving.
The main concerns were the cost of solving a system, and the harder and seemingly not possible generaliza-
tion to any hyperelliptc curves of genus g > 1. Our new approach is more close to the geometric framework
proposed in [10]. It is also computational in nature, and solves the previous concerns at least theoretically. In
particular our notion of Summation polynomials can be defined for any algebraic curves, although we focus on
hyperelliptic ones.

For any hyperelliptic curve H given in imaginary model, we follow the geometric presentation of [10] and
the ideas of [30] to introduce Summation varieties as

Vm,R = {(P1, . . . ,Pm) :
m

∑
i=1

(Pi−P∞) = R,Pi ∈H },

where P∞ is the point at infinity and R∈ Jac(H ) is a fixed reduced divisor. Let π be the projection on the x-line
(informally). We define the mth Summation ideals of H as the ideal associated to π(Vm,R), and mth Summation
polynomials as any generating sets for this ideal. We give a polynomial parametrization of π(Vm,R), thus an
algorithmic way to describe and compute Summation polynomials. This description enables us to show that
codimπ(Vm,R)= g, so that such sets must have at least g elements. The standard elliptic Summation Polynomial
from Semaev is recovered2 as the case g = 1, hence this new notion extends Semaev’s [40]. To the best of our

2 It was already observed in [30]
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knowledge, it was not mentioned anywhere in the litterature before, neither in the recent survey [21]. Also,
our experiments and the geometric framework leads us to formulate a conjecture that degπ(Vm,R) = 2m−g.
This conjecture allows us to estimate the number of solution if a PDPm instance is generated using Summation
polynomials. We note that it was already proven by Diem [10] for elliptic curves. We give a new algorithm to
solve PDPm instances for hyperelliptic curves and discuss its efficiency compared to Nagao’s, assuming our
degree conjecture is true.

Reducing the degree for the new Summation modelling in even characteristic: exploiting Frobenius The prop-
erties we observe for the coefficients of the Decomposition Polynomial translate differently when a Summation
approach is selected. In even characteristic, the presence of square coefficients expresses as the action of the
Frobenius automorphism. These systems are particular case of polynomial parametrizations in perfect fields
of characteristic p ≥ 2. We elaborate on the general situation rather than directly on the PDPm setting, as we
believe our results here to be of more general interest. A polynomial parametrization is an ideal generated by
polynomials as Xi−Pi(a1, . . . ,al). If some Pi’s can be written as a pth power of other polynomials, then we can
consider the ideal obtained by removing these powers. In characteristic p, the solutions we found after elimi-
nation of a1, . . . ,al should be essentially the same for both ideals, up to action of the Frobenius automorphism.
We show that this is indeed the case. While it makes no difference geometrically to work with an ideal or the
other, removing the pth powers reduces the degrees of the defining equations, which is a crucial parameter in
any Gröbner basis computation. This reduction expresses as a faster running time in the computation of a basis.
It also leads to a reduction of the degree of the systems in a PDPm context in even characteristic. If I is the
system to be solved in this setting, we show that its number of solution is

degI=Cn
1 ·

dNag

2(n−1)g+L1
,

where the degree ratio C1 (Definition 28) is a constant that depends only the polynomial h1 in the curve’s
equation, and L1 is the length of h1.

Comparisons of methods and discrete logarithm computations for genus 2 curves over F293 The next step is
to compare both methods using Magma [2] implementations, see Tables 5 and 6. In odd characteristic our
experiments show that Nagao’s approach is more efficient. In even characteristic, we focus on genus 2 binary
curves. The reason is that there were at a time suggested as additional standards [4], and they have been
shown some arithmetical interest recently [7][25][26][36][39]. For Type II curves, that is to say, curves such
that Jac(H ) has 2-rank one, the Summation approach and Nagao’s lead to ideals of the same degrees after
reduction, and the reduced degree is the smallest we could obtain with this work. Our comparative experiments
reveal that Nagao’s is faster overall.

The last Section describes our implementation of a Decomposition attack on a Type II binary curve H
defined over F23·31 , whose Class Group Jac(H ) has a nearly prime cardinality of

#J = 2×3×16346619102569543707881667303220993643142373107431938653,

where the biggest factor is 184 bits long. Hence a generic algorithm would need around 292 operations to
compute a discrete logarithm in this group. From our previous comparisons, Nagao’s approach is selected and
our degree reduction algorithm is added. Then we implemented an optimized and dedicated version of the
relation harvesting using efficient Gröbner bases algorithms. More details on the implementation can be found
in Section 5.3.

For this curve, n = 3 and g = 2, and systems of degree 2(n−1)((n−1)g−1) = 22·(4−1) = 64 must be solved. Our
dedicated implementation reduces the time to solve one PDP6 instance to about 3.2 ·10−3sec. on H . Overall,
approximately 6!× 3.2 · 10−3sec.= 2.3sec. are needed in average to find a solution. Using 8000 cores, it then
takes a bit more than 7 days to build an overdetermined matrix. We also estimate the number of operations linear
algebra to around 263 (after efficient filtering steps [3][5]). Security-wise, this suggest that Type II curves are
weaker than expected against Decomposition attacks.



Efficient decompositions of points for binary hyperelliptic curves 5

Magma code: The Magma code we used to obtain the timings in the experiments is available at hypersum.
gforge.inria.fr.

2 Nagao’s approach for PDPm solving

We first remind some theoretical background about divisors and the Jacobian variety of hyperelliptic curves,
seen as its degree 0 divisor class group. We also recall Nagao’s approach to PDPm solving, highlighting the
Decomposition polynomial (Definition 6). Its coefficients are used to generate the multivariate systems related
to an instance, and they are the focus of the rest of the Section. In the rest of the article, we always assume that
we are working over a perfect field.

2.1 Riemann-Roch’s coordinates to model PDPng instances

Let H be an imaginary hyperelliptic curve of genus g, defined over a field F by a Weierstrass equation y2 +
h1(x)y = h0(x), degh1 6 g,degh0 = 2g+1, and let P∞ be its single point at infinity. The degree 0 divisor class
group of the curve is denoted by Jac(H ). In any class, there exists a unique divisor R = P1 + · · ·+Pk− kP∞,
with k ≤ g, such that no two Pi,Pj are the images of each other by the hyperelliptic involution. Such divisor
is called reduced, so that any class in Jac(H ) can be thought as a reduced divisor. A computational way to
represent reduced divisors is the Mumford Representation.

Definition 2 (Mumford representation) Let R = P1 + · · ·+Pk − kP∞ ∈ Jac(H ) be a reduced divisor with
P = (xi,yi) ∈H . Let u(X) = ∏1≤i≤k(X− xi). There exists a unique v(X) ∈ F[X ] such that:

– degv < degu = k, and v(xi) = yi for 1≤ i≤ k.
– u | (v2 + vh1−h0).

The pair (u(X),v(X)) is called the Mumford representation of R, and we write R = (u,v) to denote that (u,v)
is the Mumford representation of R. We call the integer k the weight of D.

When we write R ∈ Jac(H ) we mean that we consider a reduced divisor, unless we state otherwise.

Remark 3 A random divisor in Jac(H ) has weight g with very high probability.

For any divisor D, we denote by L (D) the Riemann-Roch space associated to D. It is a F-linear space of
finite dimension. When a reduced divisor R of weight g is fixed, we are particularly interested in Riemann-Roch
spaces as L (mP∞−R), m ∈ N.

Remark 4 If m < g+ 1 then no basis of L (mP∞−R) can contain a function involving y, since it has a pole
of order 2g+ 1 at P∞. But if f is a function of x and vanishes at P, then it also vanishes at −P and thus
P+(−P)−2P∞ is in the support of div f . Any such divisor reduces to O in the Jacobian, and therefore we need
at least m≥ g+1. We will always assume that this is the case in this Section.

If (u,v) is the Mumford representation of R with degu = g, then a natural basis of L (mP∞−R) is given by

{u,xu, . . . ,xd1 u,y− v,x(y− v), . . . ,xd2(y− v)}, (1)

with d1 = b(m−g)/2c and d2 = b(m−g−1)/2c. If we let d = m−g = d1 +d2 +1, then any f ∈L (mP∞−R)
can be written as

f (x,y) = u(x) ·
d1

∑
i=0

a2i+1xi +(y− v(x)) ·
d2

∑
i=0

a2i+2xi, (2)
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where a1, . . . ,ad+1 ∈ F. It can be verified that f (x,y) f (x,−y−h1(x)) is a degree m+g polynomial in x, and is
generally given by:

f (x,y) f (x,−y−h1(x)) = (vq−up)2 +q(vq−up)h1−q2h0

= (up)2−upq(2v+h1)+q2(v2 + vh1−h0).

Considering the degrees of all polynomials involved, we see that its leading coefficient is LC((up)2)= a2d1+1 =
ad+1 if m−g is even and LC(−q2h0) =−a2d2+2 =−ad+1 if m−g is odd. In the rest of this article, functions are
always normalized at infinity, that is to say we set ad+1 = 1. This implies that (−1)m−g f (x,y) f (x,−y−h1(x))
is monic.

In term of of the quadratic field extension F(H ) | F[x], the polynomial f (x,y) f (x,−y− h1(x)) is known
as the norm of the function f , and can also be computed as a resultant with respect to y since the function is
polynomial. We keep a close terminology in the next Definition.

Definition 5 Let R = (u,v) ∈ Jac(H ) of weight g, and let d = dimL (mP∞−R)−1.

– A polynomial f (X ,Y )∈ (F[a1, . . . ,ad ])[X ,Y ] as in Equation (2) is called a generic function in L (mP∞−R).
– The generic norm of a generic function is N( f ) = (−1)m−gResY ( f (X ,Y ),Y 2 +h1(X)Y −h0(X)).

The generic norm is a monic polynomial in (F[a1, . . . ,ad ])[X ]. We now fix a reduced divisor R = (u,v) ∈
Jac(H ) of weight g. Recall that an equivalence of divisors R=P1+ · · ·+Pm−mP∞ is called a m-decomposition
of R in this article, or decomposition if the context is clear. Considering a decomposition means there is f ∈
L (mP∞−R) such that div f +R = ∑

m
i=1(Pi−P∞). Hence for a generic function f ∈L (mP∞−R),

N( f )
u(X)

= F(X) = Xm +
m−1

∑
i=0

Nm−i(a1, . . . ,ad)X i, (3)

is also a polynomial in (F[a1, . . . ,ad ])[X ], with degNi = 2 for all i. As F vanishes exactly at the abscissae of
the Pi’s, it describes a decomposition of R. This polynomial is core to our contributions so we give it its own
definition.

Definition 6 Let R = (u,v) ∈ Jac(H ) of weight g, and let f be a generic function in L (mP∞−R). The poly-
nomial F(X) = N( f )

u(X) ∈ (F[a1, . . . ,ad ])[X ] is called the Decomposition polynomial.

If the context is not clear, we may say the R-Decomposition polynomial to highlight that it describes a decom-
position of R.

Nagao’s approach to find decompositions In a Decomposition attack, the field is Fqn and the genus g is fixed.
The standard factor basis is B = {P−P∞ : x(P) ∈ Fq} and we solve PDPng instances: given R ∈ Jac(H ), we
try to find a decomposition as R= P1+ · · ·+Png−ngP∞. This is equivalent to the existence of f ∈L (ngP∞−R)
such that

div f +R = P1 + · · ·+Png−ngP∞, (4)

where all Pi are in B, and with m = ng and d = (n−1)g. The goal is to determine such a function f , that is to
say, its coefficients a1, . . . ,ad . as in Equation (2). To do this we compute the Decomposition polynomial as in
Equation (3). Let xi be the abscissa of Pi. To have all xi ∈ Fq, it is necessary that F ∈ Fq[x], or equivalently, that
we find a∗1, . . . ,a

∗
d ∈ Fqn such that Ni(a∗1, . . . ,a

∗
d) ∈ Fq for all 1≤ i≤ ng.

This can be achieved with a so-called Weil descent. Let 1, t, . . . , tn−1 be a power basis of Fqn , and write
ai = ∑

n−1
j=0 ai, jt j with ai, j ∈ Fq. Using the notation a = (a1,0, . . . ,a1,n−1, . . . ,ad,0, . . . ,ad,n−1), we have

Ni(a1, . . . ,ad) =
n−1

∑
j=0

Ni, j(a)t j, (5)
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with Ni, j ∈ Fq[a], so that all Ni belong to Fq exactly at the solutions of the system

N = {Ni, j(a) = 0, 1 6 i 6 ng, 1 6 j 6 n−1}. (6)

Assume s is such a solution. Then in addition, we have to check that the specialized polynomial F∗(X) =

Xng +∑
ng−1
i=0 Nng−i(s)X i is split over Fq. When it is the case, its roots are the abscissae of the Pi’s, giving a

decomposition of R. If Sn denotes the symmetric group of n elements, the probability of finding such decom-
positions is heuristically given by

#
(
Bng
�Sng

)
#Jac(H )n ≈ qng

(ng)!
1

qng =
1

(ng)!
.

Solving systems in Nagao’s approach Having n(n− 1)g quadratic equations in n(n− 1)g variables, systems
like N are generally zero-dimensional, and we solve them using Gröbner bases methods. In the introduction,
we mentioned that the complexity of the strategy using Gröbner bases can be estimated by the number of
solutions.

With Nagao’s approach to Decomposition attacks, systems as N usually have dNag = 2n(n−1)g solutions.
This grows exponentially fast with the genus and the extension degree, and moreover, the probability of finding
a solution drops exponentially fast as well. Even experimentally, computations generally take too long when
n(n− 1)g > 12 to find relations. This is a first reason why we strive to reduce the degree dNag as much as
possible.

2.2 Properties of the Decomposition polynomials’ coefficients

We give a general expression for the Decomposition polynomial. In even characteristic, it is used to show that
the coefficient of highest degree is an univariate polynomial, and that some other are squares. If L1 is the length
of h1 (Definition 10), we count the number of square coefficients as g+1−L1. Additional squares can be found
when the leading coefficient of h1 belong to a subfield — in practice, h1 is monic. The number of square is
directly related to the degree reduction, as any squared equation can be replaced by a linear equation in even
characteristic.

Let H : y2+h1(x)y= h0(x) a hyperelliptic curve of genus g defined over a field F of arbitrary characteristic
for now, but soon we will impose that it is even. Throughout this Section, we fix R∈ Jac(H ) of weight g, unless
we state otherwise.

An expression for the Decomposition polynomial Using the natural basis (1) of L (mP∞−R) with d1 = b(m−
g)/2c,d2 = b(m−g−1)/2c and d =m−g, set p(X) =∑

d1
i=0 a2i+1X i and q(X) =∑

d2
i=0 a2i+2X i to write a generic

function f , normalized at infinity, as:

f (X ,Y ) = u(X)p(X)+(Y − v(X))q(X).

Its norm is then a monic polynomial in (F[a1, . . . ,ad ])[X ] of degree m+g in X , given by:

(−1)m−gN( f ) = (vq−up)2 +q(vq−up)h1−q2h0

= (up)2−2upvq−upqh1 +q2(v2 + vh1−h0)

= u(up2− pq(2v+h1)+q2w),

where u,h1,w ∈ F[X ] and w is a polynomial such that uw = v2 + h1v− h0, coming from the properties of the
Mumford representation. We note that LCX (v2 + h1v− h0) = LCX (−h0) = −1, that is to say −w is monic.
Hence the Decomposition polynomial has the following general expression in (F[a1, . . . ,ad ])[X ]:

(−1)m−gF(X) = up2− pq(2v+h1)+q2w = Xm +
m−1

∑
i=0

Nm−i(a1, . . . ,ad)X i. (7)
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The coefficient N1 is univariate We now assume that Char(F) = 2 for the rest of the Section, unless stated
otherwise. The next Proposition generalizes an observation in [30] to every genus.

Proposition 7 Let h1(X) = ∑
g
i=0 HiX i with Hi = 0 for i > degh1, and write h0(X) = X2g+1 + h2gX2g + · · · .

Let R = (u,v) ∈H of weight g, and write u(X) = Xg + u1Xg−1 + · · · ∈ F[X ]. Let F be the R-Decomposition
polynomial. Then its coefficient N1(a1, . . . ,ad) is always an univariate polynomial. More precisely, we have:

N1(a1, . . . ,ad) = N1(ad) =

{
a2

d +Hgad +u1, if d is even
a2

d +Hgad +u1 +h2g, if d is odd
.

Proof First we notice that degX pqh1 ≤ m−1 and if Hg 6= 0, then LCX (pqh1) = Hgad . Before normalization,
we can write

up2 =(Xg +u1Xg−1 + · · ·)(a2
2d1+1X2d1 +a2

2d1
X2d1−2 + · · ·)

=a2
2d1+1X2d1+g +u1a2

2d1+1X2d1+g−1 + · · ·

and

q2w =(a2
2d2+2X2d2 +a2

2d2
X2d2−2 + · · ·)(Xg+1 +wgXg + · · ·)

=a2
2d2+2X2d2+g+1 +wga2

2d2+2X2d2+g + · · ·

If d is even, then p is monic as a polynomial in X , and so is up2 in expression (7), and we have degX up2 =
m, degx q2w = m−1. The leading coefficient in X of up2−Xm is u1. We conclude as LCX (q2w) = a2

d .
If d is odd, then q is monic as a polynomial in X , and we have degX up2 = m− 1, degX q2w = m. In this

case LCX (q2w−Xm) = wg. Since we have uw = v2 +2h1v+h0, and that v2 and vh1 have degree less than 2g,
then wg = u1 +h2g. We conclude as LCX (up2) = a2

d .
ut

Now let F= F2kn with F2k -power basis 1, t, . . . , tn−1 and write ad = ∑
n−1
i=0 ad,it i. For simplicity, we assume

temporarily that d is even. If Hg ∈ F2k , which is generally the case as h1 is monic in practice, then Proposition 7
gives:

N1(ad) = a2
d +Hgad +u1

=

(
n−1

∑
i=0

ad,it i

)2

+Hg

n−1

∑
i=0

ad,it i +
n−1

∑
i=0

u1,it i

=
n−1

∑
i=0

a2
d,it

2i +Hgad,0 +Hg

n−1

∑
i=1

ad,it i +
n−1

∑
i=0

u1,it i

= N1,0(ad,0, . . . ,ad,n−1)+
n−1

∑
i=1

N1,i(ad,1, . . . ,ad,n−1)t i.

This shows that the last n−1 coefficients in t of N1(ad) form a system with n−1 equations of degree 2

S1 = {N1,i(ad,1, . . . ,ad,n−1) = 0 : 1≤ i≤ n−1}.

It is generally 0-dimensional, with 2n−1 solutions. As n ≤ 4 in practice, solving it is quasi-instantaneous and
leads to values for the variables ad,i. What is more interesting is that S1 has a solution in almost every situation.

Proposition 8 Let F = F2kn and use the same notations as Proposition 7. If Hg = 0 or TrF2kn |F2k
(H−2

g ) 6= 0,
then there exists x ∈ F2kn such that N1(x) ∈ F2k .
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Proof First, we assume that d is even. If Hg = 0, then we have N1(ad) = a2
d + u1 = (ad +

√
u1)

2 because of
the characteristic and N1(

√
x+
√

u1) ∈ F2k for any x ∈ F2k . Now if Hg 6= 0 with TrF2kn |F2k
(H−2

g ) 6= 0, there is
x ∈ F2kn such that N1(x) ∈ F2k if and only if there exist z ∈ F2k such that N1(x)+ z = 0. In other words we look
for possible roots of N1(ad)+ z for some z ∈ F2k . We use the change of variable a← Hgad on the polynomial
N1(ad)+ z to obtain N1(a) = a2 + a+H−2

g (u1 + z). From [35, prop 3.79 p.127], polynomials such as N1(a)
are split iff TrF2kn |F2 (H

2
g (u1 + z)) = 0. In particular we can choose z = TrF2kn |F2 (u1) if h1 is monic. If it is not

monic, “chain rule” for traces gives

TrF2kn |F2 (H
−2
g (u1 + z)) = TrF2k |F2 (TrF2kn |F2k

(H−2
g (u1 + z)).

Therefore TrF2kn |F2k
(H−2

g (u1 + z)) needs to be a root of the 2-polynomial TrF2k |F2 , which is split [37] over F2k .
Let α ∈ F2k be such a root, so that we want z such that α = TrF2kn |F2k

(H−2
g (u1 + z)). Properties of trace gives

α +TrF2kn |F2k
(H−2

g u1) = TrF2kn |F2k
(H−2

g z)

= zTrF2kn |F2k
(H−2

g ).

With the hypothesis it is possible to write

z =
α +TrF2kn |F2k

(H−2
g u1)

TrF2kn |F2k
(H−2

g )
∈ F2k .

The proof for d odd is obtained by replacing any u1 in the above by u1 +h2g. ut

Since TrF2kn |F2k
is a 2k-polynomial over F2k of degree 2k(n−1), the probability that H−2

g ∈ F2kn is one of its

root is 1/2k which is negligible in practice and is decided once and for all when the curve is chosen.

Corollary 9 If Hg = 0 or TrF2kn |F2k
(H−2

g ) 6= 0, the system S1 has a solution over F2k .

Proof From Proposition 8, we always find a value a∗d ∈ F2kn such that N1(a∗d) ∈ F2k in this situation. The
conclusion follows since N1(a∗d) ∈ F2k if and only if there exists a solution (a∗d,1, . . . ,a

∗
d,n−1) of S1. ut

Square Coefficients Using the previous notations, we have in characteristic 2

F(X) = p(X)2u(X)+ p(X)q(X)h1(X)+q(X)2w(X) = Xm +
m−1

∑
i=0

Nm−i(a1, . . . ,ad)X i, (8)

with p(X) = ∑
d1
i=0 a2i+1X i and q(X) = ∑

d2
i=0 a2i+2X i ∈ (F[a1, . . . ,ad ])[X ]. Let

M = {aia j : 1≤ i 6= j ≤ d}∪{a1, . . . ,ad} and M = {a2
i : 1≤ i≤ d}.

Then any monomial of M appearing in a Ni ∈ F[a1, . . . ,ad ] in expression (8) has to come from a coefficient
in X of the polynomial pqh1. If no such monomials appears in Ni, then it is a square since the characteristic of
the field is even. Hence, the number of such square coefficients depends only on h1, or more precisely on its
length.

Definition 10 (Length of a polynomial) Let P be a univariate polynomial. Let dP and ip be respectively the
degree of the leading and trailing term of P. The length of P is defined as dP− iP.

Proposition 11 Let F be a field of even characteristic and H : y2 + h1(x)y = h0(x) a hyperelliptic curve of
genus g defined over F. Let R ∈ Jac(H ) of weight g, and L1 be the length of h1. There are g+1−L1 squares
among the coefficients in X of the R-Decomposition polynomial.
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Proof Let pq = ∑
d−1
i=0 MiX i with Mi ∈ F[a1, . . . ,ad ],degMi = 2 and dega j

Mi = 1 for 0 ≤ j ≤ d, and h1 =

∑
dh
i=ih

HiX i. Then the Cauchy product rule gives

pqh1 =
d−1+dh

∑
i=ih

(
i

∑
j=0

M jHi− j

)
X i =

d−1+dh

∑
i=ih

CiX i, (9)

with the convention that Md = . . . = Md−1+dh = Hdh+1 = . . . = Hd−1+dh = 0, and Ci ∈ F[a1, . . . ,ad ]. We have
SuppCi ⊂M for all ih ≤ i≤ d−1+dh. Recall that m−g−1≤ 2d1 ≤m−g, m−g−2≤ 2d2 ≤m−g−1 and
that degw = g+1. We let

up2 = u ·
d1

∑
i=0

a2
2i+1X2i =

2d1+g

∑
i=0

DiX i,

q2w = w ·
d2

∑
i=0

a2
2i+2X2i =

2d2+g+1

∑
i=0

EiX i,

with SuppDi ⊂M and SuppEi ⊂M for all i, and degDi = degEi = 2. We can write the Decomposition
polynomial F as

F(X) =
ih−1

∑
i=0

(Di +Ei)X i +
d−1+dh

∑
i=ih

(Ci +Di +Ei)X i +
m−1

∑
i=d+dh

(Di +Ei)X i +Xm. (10)

Then Supp(Di +Ei) ⊂M and M ∩ Supp(Ci +Di +Ei) 6= /0 whenever Ci is not zero. From their definition,
we see that Ci = 0 can only happen if Hi = 0 for all i, which is excluded by the fact that H is a binary
hyperelliptic curve. Now the number of squares among the coefficients of F amounts is read on Expression
(10) as m− (d +dh)+1+ ih = g+1−L1. ut

Remark 12 Since F is monic in general, the number of relevant squares among the coefficients of F is g−L1.

Additional squares depending on LC(h1) Note that N1 is a square if and only if degh1 = dh < g. If it is the
case, then the leading term in X of pqh1 is LTX (pqh1) = Hdh ad , and it appears in the coefficient N1+g−dh as the
only one involving a monomial from M . When Hdh ∈ F2k we write

Hdh ad = Hdh

(
ad,0 +

n−1

∑
i=0

ad,it i

)
,

and observe that in N1+g−dh(a1, . . . ,ad)=∑
n−1
j=0 N1+g−dh, j(a)t

j the monomial ad,0 appears only in the coefficient
of degree 0 in t. If a solution a∗ = (a∗d,1, . . . ,a

∗
d,n−1) of S1 is found, as the Weil Descent here deals only with

the n−1 last coefficients, we find n−1 new square equations with each N1+g−dh, j, for 1≤ j ≤ n−1.

Remark 13 All results hold for binary elliptic curves.

2.3 Reducing the degree of PDPng systems

Let F= F2kn , and consider a F2k -power basis 1, t, . . . , tn−1 of F2kn . If H : y2 +h1(x)y = h0(x) is a hyperelliptic
curve of genus g defined over F2kn , we fix LC(h1) to 1, as it is generally the case in practice, but we do not fix its
degree dh≤ g. Consider a PDPng instance for R∈ Jac(H ), with factor basis B = {P−P∞ : P∈H ,x(P)∈F2k},
and let F be the Decomposition polynomial as in Equation (8). Following Proposition 7 we obtain by Weil
descent a first system over F2k

S1 = {N1,i(ad,1, . . . ,ad,n−1) = 0 : 1≤ i≤ n−1},
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and we let a∗ = (a∗d,1, . . . ,a
∗
d,n−1) be a solution of S1, see Proposition 8. We evaluate the remaining equations

at a = (a1,0, . . . ,a1,n−1, . . . ,ad−1,n−1,ad,0) to form the system

S2 = {Ni, j(a,a∗) : 2≤ i≤ ng,1≤ j ≤ n−1}.

with (ng− 1)(n− 1) variables and equations. Generally, this quadratic system is 0-dimensional and therefore
generates an ideal of degree 2(ng−1)(n−1).

When we start the Weil descent over F2kn , the characteristic enables to replace square equtions by linear
ones: indeed, if Ni is a square, then it can be written Ni = N2

i with degNi = 1. We then write

Ni(a1 . . . ,ad) =
n−1

∑
j=0

Ni, j(a)t j = Ni(a1 . . . ,ad)
2

=

(
n−1

∑
j=0

Ni, j(a)t j

)2

=
n−1

∑
j=0

Ñi, j(a)2t j

with degNi, j = deg Ñi, j = 1, and the polynomials Ñi, j are linear combinations of the linear polynomials Ni, j.
As we have for all i, j

Ni, j(a) = 0⇔ Ñi, j(a) = 0⇔ Ñi, j(a,a∗) = 0,

we can build a new system from S2 by replacing any Ni, j(a,a∗)∈S2 that is a square by its square root, namely
the linear equation Ñi, j(a,a∗). We call this new system unsquared and denote it by

√
S2 from now on.

Proposition 14 Let H : y2 + h1(x)y = h0(x) be a hyperelliptic curve of genus g defined over F2kn , with h1
monic. Let L1 be the length of h1 and R ∈ Jac(H ) of weight g. The unsquared system

√
S2 related to R

contains (n−1)(g−L1) linear equations.

Proof Recall that L1 = dh− ih, where dh resp. ih is the degree of the leading resp. trailing term of h1. There are
two possible cases:

– If dh = g, Proposition 11 tells us that all squares in S2 come from the ithh coefficients of lower degree in F ,
so that

√
S2 contains (n−1)ih linear equations.

– If dh < g, N1 counts as a square in Proposition 11 but we do not use it to build
√

S2 since it was used for S1,
so that g−L1−1 square coefficients are used. Using the description before Remark 13, the Weil Descent
gives us n−1 additional square equations in S2. Overall, this leads to (n−1)(g−L1) linear equations in√

S2.

In any case, there are (n−1)(g−L1) linear equations in
√

S2. ut

It never occured in our experiments that a linear equation was a combination of the others. As systems like
S2 are generally of dimension 0 the following assumption is reasonable:

Genericity assumption 15 The linear equations created during the “unsquaring” process are independent.
In other words, the ideal generated by

√
S2 has dimension 0.

Under this assumption, the degree of S2 is generally divided by 2 with every linear equation replacing a
quadratic one, and any linear equation can be used to eliminate a variable. A new system S3 is built that way,
containing the remaining quadratic equations. If L1 is the length of h1, there are (n− 1)((n− 1)g+ L1− 1)
variables and as much quadratic equations left in S3. Hence it is generally of dimension 0 and has degree:

degS3 = 2(n−1)((n−1)g+L1−1).
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As 0≤ ih ≤ dh ≤ g, we see that the best case happens when L1 = 0 and LC(h1) ∈ F2k , e.g. when h1 has only
one term with coefficient in the subfield of interest, in which case we find the lower bound

dopt = 2(n−1)((n−1)g−1) ≤ degS3.

We conclude by remarking that since h1 encodes the 2-rank of Jac(H ), then there should be a link between
this reduction and the action of 2-torsion elements over the set of decompositions of a given R, analogous to
the one exploited in [17].

2.4 Analysis of the degree reduction for genus 2 binary curves

We conclude this Section with an exhaustive analysis of genus 2 binary curves, summed up in Table 1. Such
curves are classified in three types depending on the rank of the two-torsion subgroup in Jac(H ) — see
Section 2.4 for details. Among such curves, Type II curves were particularly highlighted in [4] because of their
lower cost arithmetic. Our study reveals that they are as weak as Supersingular curves (type III) considering
Decomposition attacks.

Classification of genus 2 binary curves Let H : y2 + h1(x)y = h0(x) be a genus 2 curve defined over a field
F2n , so that degh1 = dh ≤ 2 and degh0 = 5. We write h1(x) = H2x2 +H1x+H0 and h0(x) = x5 +∑

4
i=0 fixi. Let

t ∈ F2n an element of absolute trace 1, and ε ∈ F2, and see [4][42] for details on their definition. There are three
types of binary genus 2 curves, depending by h1.

1. Type I curves: A curve is a type I curve if and only if dh = 2. It then falls into one of two subtypes whether
h1 has roots in the ground field or not. We emphasize that if n is odd then we can set t = 1.

– If h1 is irreducible over F2n , then H is type Ia and is isomorphic to the curve

HIa : y2 +(x2 +H1x+ tH2
1 )y = x5 + tεx4 + f1x+ f0.

– Else h1 has its roots in F2n , H is type Ib and isomorphic to the curve defined by

HIb : y2 + x(x+H1)y = x5 + tεx4 + f1x+ f0.

2. Type II curves: If dh = 1, there are two subtypes depending on the parity of the extension degree n.
– If n is odd then H is isomorphic to

HII : y2 + xy = x5 + f3x3 + εx2 + f0.

– If n is even then H is isomorphic to

HII : y2 +H1xy = x5 + ε
′x3 + tεH2

1 x2 + f0,

with ε ′ ∈ F2.
3. Type III curves: Lastly if dh = 0 then H is isormorphic to the curve defined by

HIII : y2 + y = x5 + f3x3 + f1x+ tε.

There are subtypes for type III as well but as such curves are known to be supersingular, and therefore
weak to the Frey-Rück attack [19] we do not go into further details. There are also other forms for h0 for each
type, coming at the expense of more coefficients in h1. We focus on the above forms for genus 2 binary curves,
and we call them canonical forms in the rest of the presentation.
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Comparisons of degree reductions depending on canonical forms Table 1 shows the minimal degrees obtained
after the degree reduction process applied to each canonical form of curves defined over a field F2kn with
2 ≤ n ≤ 4. The dNag column shows the degree expected by a Nagao modelling without refinement while dred
resp. dopt stands for reduced degree resp. optimal degree as in previous section. Column Univariate gives the
number of variables that can be determined by using equation N1, and columns Square and LC(h1) show the
number of linear equations to be expected after building the system S2. If n is even, then TrF2kn |F2k

(1) = 0.
Proposition 8 cannot be applied and the system S1 may not have a solution. This is indicated by a “≤” sign in
the corresponding cell. Nonetheless we only indicate the minimal degree for each type of curve.

Table 1 Degree reduction in genus 2 for small extension fields

Type degh1 L1 n Univariate Square LC(h1) dred dNag

Ia 2 2
2 ≤ 1 - - 8 16
3 2 - - 1024 4096
4 ≤ 3 - - 221 224

Ib 2 1
2 ≤ 1 1 - 4 16
3 2 2 - 256 4096
4 ≤ 3 3 - 218 224

Ib with h1(x) = x2 2 0
2 ≤ 1 2 - 2 = dopt 16
3 2 4 - 64 = dopt 4096
4 ≤ 3 6 - 215 = dopt 224

II 1 0
2 1 1 ≤ 1 2 = dopt 16
3 2 2 ≤ 2 64 = dopt 4096
4 3 3 ≤ 3 215 = dopt 224

III 0 0
2 1 1 1 2 = dopt 16
3 2 2 2 64 = dopt 4096
4 3 3 3 215 = dopt 224

For type Ia the reduction comes only by using the univariate equations to find values for some variables. The
type Ib has a particular subcase when h1(x) = x2, i.e. when H1 = 0 where dopt can be reached. The polynomial
h1 for type II depends on the extension degree and LC(h1)’s base field. As we mentioned already, if H1 ∈ F2k

then additional squares can be found in the system. For type III, h1 is always monic so we can exploit all steps
of reduction. This reinforces the weakness of those curves.

Finally notice that if kn is odd and as LC(h1) = 1 in practice, then the degree reduction for type II curves
reaches dopt = 2(n−1)((n−1)g−1). This reveals a weakness for this type while they were suggested as potential
new standards for implementation in [4], and we use this to design a practical Discrete Logarithm computation
for realistic parameters, see Section 5.3.

It is also worth mentioning that if g = 2,n = 4 and while the computation time is not practical (more than
250 hours with Magma 2.19), it is now possible to solve a given PDP8 instance on a Type II curve by solving
ideals of degree 215 instead of 224, a number of solutions previously too high to even consider a try.

The case h1(x) = x2: In our situation, the length of h1 is the principal indicator of the reduction factor we can
obtain. In particular, curves of type Ib with h1(x) = x2 are such that L1 = 0 and therefore we can expect the
best reduction factor. If h1(x) = x2, then f1 6= 0 or else it can be verified that the curve has a simple singularity
at (0,

√
f0), and so has genus 1. It can be checked that genus 2 curves with h1(x) = x2 are isomorphic to type

II curves using the change of variables x = 1/x′ and y = y′/x′3 +
√

f0. However, as seen in Table 1, small
differences appears depending on the chosen model. This is why we choose to distinguish the two cases.

3 Summation sets and PDPm solving

This section introduces an alternate modelling of PDPng instances in all genus, derived from Gaudry and Diem’s
usage of elliptic Summation polynomials introduced in [40]. We generalize this notion to hyperelliptic curves
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and mention that the presentation could be extended to any curves. As our description enables algorithmic com-
putations of these new objects, we give thereafter simple examples and timings for experiments. The Section
ends with some discussions on the impact of the canonical double cover of degree 2 given by the projection
over the abscissa for any hyperelliptic curve regarding the computations of Summation Polynomials and their
usage in solving PDPm instances.

3.1 Geometric description of PDPm setting

To simplify the presentation we assume that the base field F is algebraically closed, but the whole presentation
extends to any fields. During this Section we fix an hyperelliptic curve H : y2 +h1(x)y = h0(x) in imaginary
model defined over F and of genus g, and a reduced divisor R = (u,v) ∈ Jac(H ). Following Remark 4, we
consider integers m≥ g+1. It is clear that the order of the points in a decomposition as R= P1+ . . .+Pm−mP∞

does not matter. This means the mth-symmetric group Sm acts on the set of all such decomposition. This
prompts the next Definition.

Definition 16 The algebraic variety Vm,R = {(P1, . . . ,Pm) : ∑
m
i=1 Pi−mP∞ =R}/Sm is called the m-Summation

Variety associated with R, or the m-Summation Variety if the context is clear.

The following description will allow us to compute “symmetrized” polynomials that generates this variety,
that is to say, polynomials whose variables describes symmetric expression of the standard variables. Let π :
H m −→ (P1)m be the map induced by the double cover x : H −→ P1. Our first goal is to describe Vm,R in
general and its projection “on the x-line” π(Vm,R). We give a description for R of weight g as it is the usual
case, but it can be extended to any R straightforwardly. From Section 2, a generic function normalized at
infinity in L (mP∞−R) is written as f (X ,Y ) = p(X)u(X)+ (Y − v(X))q(X), with p(X) = ∑

d1
i=0 a2i+1X i and

q(X) = ∑
d2
i=0 a2i+2X i. We have d1 +d2 = m−g−1 = d−1 and we let a = (a1, . . . ,ad). From Section 2.2, the

Decomposition polynomial is the monic polynomial in (F[a])[X ] given by

F(X) =
N( f )
u(X)

= (−1)m−g(up2− pq(2v+h1)+q2w) = Xm +
m−1

∑
i=0

Nm−i(a)X i, (11)

with degNi = 2 for 1≤ i≤ m. Assume now that f describes a decomposition of R as P1 + · · ·+Pm−mP∞ = R
and let x = (x(P1), . . . ,x(Pm)). We know that F vanishes exactly at all the x(Pi)’s so we can write

F(X) =
m

∏
i=1

(X− x(Pi)) = Xm +
m−1

∑
i=0

(−1)m−iEm−i(x)X i, (12)

where Ei denotes the ith elementary symmetric polynomial in m variables. Let e = (e1, . . . ,em) be variables
standing for these symmetric expressions. Equating coefficients of (11) and (12) we obtain a polynomial ideal
Im,R generated by 

e1 = N1(a),
...

em = (−1)mNm(a),

(13)

of m equations in 2m−g variables. We claim that Vm,R is (isomorphic to) the variety associated to Im,R.

Proposition 17 Let H be a hyperelliptic curve in imaginary model of genus g, and let R ∈ Jac(H ) of weight
g. For any m≥ g+1, define Im,R as the ideal in F[a,e] generated by system (13). The Summation Variety Vm,R
is isomorphic to V (Im,R). It is an irreducible variety and its associated ideal is Im,R.
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Proof If ((x1,y1), . . . ,(xm,ym)) ∈ Vm,R, then there is a f ∈L (mP∞−R), unique if normalized at infinity, such
that div f +R=∑

m
i=1 Pi−mP∞, hence Vm,R⊂V (Im,R). For the reverse inclusion, let (a1, . . . ,ad ,e1, . . . ,em) be in

V (Im,R). As F is algebraically closed, we find x1, . . . ,xm such that ∏
m
i=1(X−xi) = Xm +∑

m−1
i=0 (−1)m−iem−iX i.

We want to show that there exist y1, . . . ,ym ∈ F such that Pi = (xi,yi) ∈H and ∑
m
i=1 Pi−mP∞ = R. First we

specialize a generic function f with a1, . . . ,ad . This gives an element f ∈L (mP∞−R). Next, provided that
q(xi) 6= 0, we can set yi =

v(xi)q(xi)−p(xi)u(xi)
q(xi)

for 1≤ i≤ m and check that Pi ∈H and that f (xi,yi) = 0.
If q(xi) = 0 for at least one i, then the expression of the generic function in L (mP∞−R) implies that

u(xi)p(xi) = 0. If u(xi) = 0, then yi = v(xi) by properties of Mumford representation. Else, then p(xi) = 0,
which means f (xi,y) = 0 for all y ∈ F, so that f (x,y) = (x− xi) f̃ (x,y) with f̃ ∈ L ((m− 2)P∞). Since F is
algebraically closed3, the polynomial y2 +h1(xi)y+h0(xi) have roots yi and −yi−h1(xi) and thus f vanishes
at Pi and −Pi.

The ideal Im,R is an example of a polynomial parametrization. It is known [8, Prop. 5, p. 199] that such
ideals are always primes, and therefore radical. ut

We now define Summation sets:

Definition 18 (Summation polynomials for hyperelliptic curves) Let H be a hyperelliptic curve of genus g
given by a Weierstrass equation y2+h1(x) = h0(x), m≥ g+1 and R∈ Jac(H ) of weight g. The mth summation
ideal associated to H and R is defined as the elimination ideal Im,R∩F[e] where Im,R is the ideal in F[a,e]
generated by equations (13). Any (finite) set Sm,R⊂F[e] generating Im,R∩F[e] is called a set of mth Summation
polynomials, or a mth summation set, associated with R.

The ideal Im,R ∩F[e] essentially describes π(Vm,R). To “compute” this projection, we usually compute a
Gröbner basis of Im,R for an adequate elimination order (we refer to [8] for a description of the corresponding
notions). For any set S of polynomials we denote by S(x1, . . . ,xm) the set of all elements in S evaluated at
(x1, . . . ,xm). The next proposition generalizes a result known for elliptic curves:

Proposition 19 For any m ≥ g+ 1, the variety V (Im,R ∩F[e]) is irreducible, and its associated ideal is the
Summation ideal. A set Sm,R of mth Summation polynomials associated to R exists, and it verifies:

Sm,R(e1, . . . ,em) = 0⇔ ∃ Pi = (xi,yi) ∈H ,1 6 i 6 m, such that ei = Ei(x1, . . . ,xm)

and P1 + · · ·+Pm−mP∞ = R.

Proof It is shown in the proof of [8, Prop. 3, p. 347] that relation ideals associated with polynomial parametriza-
tions are prime. The (mostly) technical part of the proof is to show that if h(N1(a), . . . ,Nm(a)) = 0, then h is
in Im,R∩F[e]: this tells that the elimination ideal is the relation ideal, in other words that Im,R∩F[e] = {g ∈
F[e] : g(N1(a), . . . ,Nm(a)) = 0}. We reproduce the (more interesting) argument of [8, Prop.1, p.344] for pri-
mality, for the sake of completeness. Let gh be in Im,R∩F[e]. Then g(N1(a), . . . ,Nm(a))h(N1(a), . . . ,Nm(a)) =
0 in the integral domain F[a]. This means g or h is in Im,R ∩F[e]. Thus V (Im,R ∩F[e]) is irreducible, and
the Summation ideal is the ideal associated to V (Im,R ∩F[e]). This proves the first statement. The existence
of Summation sets comes from Hilbert Basis theorem. Now if e is in V (Im,R ∩F[e]), according to the exten-
sion theorem [8, p. 118] we can find a = (a∗1, . . . ,a

∗
d) such that (a,e) ∈ V (Im,R). The conclusion comes from

Proposition 17. ut

Remark 20 Geometrically, a Summation set Sm,R satisfies V (Sm,R) =V (Im,R∩F[e]).

We briefly discuss the cardinality of Summation sets, assuming for simplicity that we are in a generic
situation. Being described by m equations in a 2m−g dimensional space, Vm,R has dimension m−g, so π(Vm,R)
has codimension g in an ambient space of dimension m. This means that a minimal generating family for a
Summation ideal should have at least g elements. These varieties seem far from being complete intersections,
as our experiments in the next Section suggest.

3 In the general case, we look for yi in the algebraic closure of F.
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When g= 1, the Summation ideal is principal, which “shows” that the mth summation polynomial is unique
(up to a constant) in the elliptic case. Proposition 19 gives an another proof of the irreducibility of elliptic
Summation polynomials.

While this presentation focuses on the hyperelliptic case, it can be adapted to non-hyperelliptic curves as
well by using bases of L (mO−R), where O is a distinguished point of the curve. We ran some experiments
for superelliptic curves and Ca,b curves of small genus but we did not investigate further as such curves are not
considered in practice.

3.2 Examples of summation sets and experiments

Using the Magma code from the URL we provided, one can compute Summation polynomials for elliptic
curves and confirms that, following the process described in the previous Section, the elliptic Summation
polynomial from [40] is obtained. Here we give Summation sets in genus 2, for the smallest possible sum (of
length 3). We then report experimental timings for computation of Summation sets.

3.2.1 First summation polynomials in genus 2

Odd characteristic We assume for simplicity that F has characteristic 6= 5. Then an imaginary hyperelliptic
curve admits a Weierstrass equation H : y2 = x5 + h3x3 + h2x2 + h1x+ h0, with hi ∈ Fq. Using Section 3.1,
the smallest decomposition is obtained for m = g+ 1 = 3. For a fixed R = (u,v) of weight g in Jac(H ), a
convenient Fq-basis of L (3P∞−R) is {u,y− v}, and we have d1 = d2 = 0, d = m−g = 1. With the previous
notations, this means p(X) = a1 and q(X) = 1. Let u = X2 +u1X +u0 and v = v1X + v0 to find

w =−X3 +u1X2 +(u0−h3−u2
1)X +(u3

1 +h3u1−2u1u0 + v2
1−h2).

Hence the Decomposition polynomial can be written

F(X) = (−1)d(up2−2pqv+q2w)

= X3− (a2
1 +u1)X2 +(2a1v1 +u2

1 +h3−u0−a2
1u1)X +2a1v0 +2u1u0 +h2−a2

1u0−u3
1−h3u1− v2

1,

and can also be expressed as

F(X) = X3− e1X2 + e2X− e3.

Equating coefficients gives the following system:
e1 = a2

1 +u1,

e2 = 2a1v1 +u2
1 +h3−u0−a2

1u1,

e3 = u3
1 +h3u1 + v2

1−2a1v0−2u1u0−h2 +a2
1u0.

Treating the parameters ui,vi,hi as non-zero numbers, that is to say, compute a Gröbner basis over an adequate
function field, we obtain the following “symbolic” Summation polynomials after elimination of a1, assuming
e3 > e2 > e1 and that the order for this block of variables is grevlex:

S5,1 = e2
2 +2u1e2e1 +u2

1e2
1 +(−2h3−4u2

1 +2u0)e2 +(−2h3u1−4u3
1 +2u1u0−4v2

1)e1 +h2
3 +4h3u2

1−2h3u0

+4u4
1−4u2

1u0−4u1v2
1 +u2

0,

S5,2 = v1e3 + v0e2 +(u1v0−u0v1)e1 +3u1u0v1 +u0v0 +h2v1−h3u1v1−h3v0−u3
1v1−2u2

1v0− v3
1.

We observe that if both v0 = v1 = 0, then S5,2 above is always zero. Then the result of the Gröbner basis
computation will not be the one displayed here. However, this case rarely happen, as v1 = v0 = 0 implies either
R is a 2-torsion element in Jac(H ). In odd characterstic, there is at most 16 such elements. For the sake of
clarity we do not display the Summation set obtained in this special case. Instead, we give an instantiated
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example on very small parameters. Let F = F31, and H : y2 = x5 + 6x3 + 27x2 + 11x + 29. We find P1 =
(20,17),P2 = (17,7),P3 = (4,11) as rational points in H , and the divisor P1 +P2 +P3− 3P∞ reduces to R =
(X2 +13X +9,15X +12). This gives the Summation set

{
e2

2 +26e2e1 +14e2
1 +26e2 +27e1 +27,

e3 +7e2 +20e1 +15.

One checks that both polynomials vanish at the symmetric expressions of the x(Pi)’s.

Even characteristic The general case gives equations such as H : y2 + h1(x)y = h0(x), with degh1 ≤ 2 and
degh0 = 5. If h1 j is the jth coefficient of h1, we obtain the following parametrization


e1 = a2

1 +h12a1 +h4 +h2 +u1,

e2 = u1a2
1 +h11a1 +h4u1 +h3 +h2u1 +h12v1 +u2

1 +u0,

e3 = u0a2
1 +h10a1 +h4u2

1 +h4u0 +h3u1 +h2u2
1 +h2u0 +h12u1v1 +h12v0 +h11v1 +u3

1 + v2
1.

We first compute a Gröbner basis of the elimination ideal as in the previous paragraph and obtain:

S5,1 = e2
2 +u2

1e2
1 +(h2

12u1 +h12h11)e2 +(h12h11u1 +h2
11)e1 +h4h2

12u2
1 +h4h2

11 +h2
3 +h3h2

12u1 +h3h12h11

+h2h2
12u2

1 +h2h2
11 +h3

12u1v1 +h2
12h11v1 +h2

12u3
1 +h2

12u1u0 +h2
12v2

1 +h12h11u0 +h2
11u1 +u2

0,

S5,2 = (h12u1 +h11)e3 +(h12u0 +h10)e2 +(h11u0 +h10u1)e1 +h4h12u3
1 +h4h11u2

1 +h3h12u2
1 +h3h12u0

+h3h11u1 +h3h10 +h2h12u3
1 +h2h11u2

1 +h2
12u2

1v1 +h2
12u1v0 +h2

12u0v1 +h12h11v0 +h12h10v1 +h12u4
1

+h12u2
1u0 +h12u1v2

1 +h12u2
0 +h2

11v1 +h11u3
1 +h11u1u0 +h11v2

1 +h10u0.

One can instantiate these formula on small parameters to check the vanishing of the Summation set. For a type
II genus 2 curve over F2d with d odd, an equation is y2 + xy = x5 + f3x3 + εx2 + f0, ε ∈ F2, see 2.4. Then a
Summation set is way sparser:

S5,1(e1,e2,e3) = e2
2 +u2

1e2
1 + e1 +h2

3 +u1 +u2
0,

S5,2(e1,e2,e3) = e3 +u0e1 +h3u1 +u3
1 +u1u0 + v2

1 + v1 +1.

The expressions of those summation polynomials are also very similar to the genus 1 case.

3.2.2 Computation Timings

Timings in odd characteristic Table 2 shows the details of the computations for the first sets of summa-
tion polynomials, expressed in the symmetric elementary functions e1, . . . ,em, for hyperelliptic curves with
g = 2,3,4. The base field is F65521 and all the curves are given by a general Weierstrass equation with ran-
domized coefficients. The computation of the elimination ideal was carried with the Magma 2.19 [2], on a
Intel R© Xeon R©@2.93GHz processor. The time is expressed in seconds, and averaged over several curves. Next
columns give the average number (rounded) of monomials and average total degree of elements in the summa-
tion set. The degree is computed considering that degei = i. When a Summation set Sm,R can be computed, we
also compute degV (Sm,R) using the Hilbert Series, see last column. We interrupted the computations if any of
our strategies could not compute the basis in less than 8 hours or if the needed memory exceeded 120 GB.
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genus g m #vars Time #Sm,R Avg. len. Avg. deg. degV (Sm,R)

2

3 4 0.000s 2 5 4 2
4 6 0.000s 7 28 10 4
5 8 0.18s 13 248 21 8
6 10 3505s 130 5901 50 16

3

4 5 0.000s 3 5 4 2
5 7 0.000s 6 16 8 4
6 9 0.22s 45 159 19 8
7 11 54.3s 194 2028 36 16
8 13 - - - - 32

4

5 6 0.00s 4 5 4 2
6 8 0.00s 7 15 8 4
7 10 0.03s 24 80 15 8
8 12 - - - - 16

Table 2 Computations of Specialized Summations Sets in odd characteristic

Timings in even characteristic In Table 3 we report computation times for the first summation sets for binary
hyperelliptic curve of genus 2,3,4. This is done with Magma on the same processor. The base field was fixed
as F215 and curves’ coefficients were randomly chosen, considering the most general case. In genus 2, we
observe that the use of canonical forms speeds up the computation and lead to sparser sets, because less non-
zero coefficients in the curve’s equation means less monomials in the support of the parametrization of Vm,R.
The column headings in the table are the same as in the previous paragraph, and we used the same criterion to
interrupt a lengthy computation.

genus g m #vars Time #Sm,R Avg. len. Avg. deg. degV (Sm,R)

2

3 4 0.000s 2 5 4 2
4 6 0.000s 3 14 8 4
5 8 0.03s 5 89 17 8
6 10 12.7s 15 1032 36 16
7 12 - - - - -

3

4 5 0.000s 3 4 4 2
5 7 0.000s 4 12 7 4
6 9 0.1s 6 46 13 8
7 11 0.89s 14 276 23 16
8 13 - - - - 32

4

5 6 0.00s 4 4 4 2
6 8 0.00s 5 11 7 4
7 10 0.01s 7 40 12 8
8 12 0.3s 12 127 19 16
9 14 - - - - -

Table 3 Computation of Specialized Summation Sets in even characteristic

As for elliptic Summation polynomials, computations are easier to complete in even characteristic, and the
summations sets’ elements are sparser and fewer.

3.3 Degree of Summation Ideals

In general, the degree of an algebraic variety can be defined as the number of elements in a “generic enough”
subvariety of dimension 0. If the variety is an hypersurface, then it is also the (total) degree of a defining
polynomial. Because we are interested in solving 0-dimensional systems linked to Summation varieties, we
need at least an estimation of degVm,R. This is the purpose of this Section.
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Let R be a point on an elliptic curve, and let Sm,R = Sm+1(X1, . . . ,Xm,x(R)) be the m+1th elliptic Summation
polynomial evaluated at x(R). It is known [10] that degSm,R = 2m−1. This fact added to the last column of
Tables 2 and 3 leads us to the following conjecture.

Conjecture 21 Let H be an hyperelliptic curve of genus g≥ 2, R ∈ Jac(H ) of weight g and m≥ g+1. The
degrees of the m-Summation variety Vm,R and its projection V (Sm,R) are:

degVm,R = degV (Sm,R) = 2m−g.

Conjecture 21 is strengthened by the following informal discussion, where it is assumed that the base field
is algebraically closed. For an imaginary hyperelliptic curve H in a Weierstrass model and P ∈H , we denote
by −P the image of P by the canonical hyperelliptic involution [−]. If x : H −→ P1 is the double cover given
by the abscissa, for all m ∈N∗, we denote by π : H m/Sm −→ (P1)m/Sm the induced cover of degree 2m . Let
R∈ Jac(H ) of weight g. With notations of Section 3.1, Proposition 19 tells us that π(Vm,R) =V (Im,R∩F[e]) =
V (Sm,R) for any summation set4 Sm,R. Overall we have a commutative diagram

Vm,R
� � //

��

H m/Sm

π

��
V (Sm,R)

� � // (P1)m/Sm

If we consider a vanishing sum as P1+ · · ·+Pm−mP∞ =R on a genus g curve, then once m−g points have been
fixed the last g points are generally determined. In other words, dimV (Sm,R) = m− g and if (e1, . . . ,em−g) ∈
Fm−g are given, then it determines em−g+1, . . . ,em such that (e1, . . . ,em) ∈ V (Sm,R). With a slight abuse of
notations, the fiber π−1({e1, . . . ,em−g}) has 2m−g elements, that all lead to a decomposition of R. While this is
just a sketch of proof and intuitive thinking, it strongly suggests that degVm,R = 2m−g.

Now, whenever (e1, . . . ,em) is given in V (Sm,R), then it determines the two decompositions R = P1 +
. . .+Pm−mP∞ and −R = (−P1) + · · ·+ (−Pm)−mP∞. The latter is an element of the larger variety V ′ =
{(P1, . . . ,Pm) : ∑

m
i=1 Pi−mP∞ = ±R}, so the previous sentence informally says that V ′/[−] ' Vm,R and that

the projection π : V ′ −→ V (Sm,R) has degree at least 2. It is possible to show that it has degree 2. Factoring
this map through the quotient, we obtain that Vm,R is birationally equivalent to V (Sm,R), the map giving the
equivalence being the restriction of π to Vm,R, so degV (Sm,R) = 2m−g.

3.4 Using Summation polynomials for PDPm solving

In this Section we consider fields as Fqn , and we fix a hyperelliptic curve H of genus g, and R ∈ Jac(H ) of
weight g. Solving the PDPng related to R with the factor base B = {P−P∞ : P ∈H ,x(P) ∈ Fq} can be done
following [10][23] with a Weil Descent, which means we want to find points in a 0-dimensional subvariety of
the Weil restriction of V (Sm,R).

Degree of Weil restrictions For a variety V defined over Fqn we denote by Wn(V ) its Weil Restriction over
Fq. It is an algebraic variety defined over Fq with dimFq Wn(V ) = n ·dimFqn V and degWn(V ) = (degV )n. If a
generating set S for the (radical) ideal I associated with V is given, we also use the notation Wn(S) or Wn(I). If
Conjecture 21 holds, then degWn(Sm,R) = 2n(m−g) in general, and in Decomposition attacks where m = ng, we
obtain

degWn(Sm,R) = 2n(n−1)g = dNag.

This has to be expected since we used the Decomposition polynomial to both describe Nagao’s approach and
Summation sets.

4 In particular, Summation ideals depend on the choice of the double cover. When g = 1, the authors of [17] use the fact that
different covers can be obtained by action of Aut(P1) = PGL2 to find a cover having a good behaviour wrt. the group of symmetry
of the m-Summation variety and to compute Summation Polynomials associated to this cover.
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A new solving algorithm for PDPng instances Let m= ng, e=(e1, . . . ,em), ē=(e1,1, . . . ,e1,n, . . . ,em,1, . . . ,em,n).
The solving algorithm is straightforward:

1. Compute a Summation set Sm,R = {S1, . . . ,Sr} ⊂ Fqn [e].
2. Using a power basis 1, t, . . . , tn−1 of Fqn over Fq, write Si(e) = ∑

n−1
j=0 Si, j(ē)t j, and build the system

{S1,0, . . . ,S1,n−1, . . . ,Sr,0, . . . ,Sr,n−1} ⊂ Fq[ē].
3. Build the system S = {Si, j(e1,0, . . . ,0,e2,0, . . . ,0, . . . ,em,0, . . . ,0) ∀ i, j} by evaluation.
4. Solve S over Fq with the standard Gröbner bases strategy.
5. For all solutions (e∗1, . . . ,e

∗
m) of S :

– check if F∗(X) = Xm +∑
m−1
i=0 (−1)m−ie∗m−iX

i is split over Fq.
– If it is, build the associated decomposition of R.

Steps 2,3 and 5 are usually done in time negligible compared to the others. While step 1 can become a
blocking step, as highlighted by the timings in Section 3.2.2, we assume it finishes in reasonable time compared
to step 4 for the sake of the following analysis. As codimV (Sm,R) = g, we deduce that S contains more than
m = ng equations. By construction, it also depends on at most ng variables. The following general assumption
is natural, and it was always true in our experiments.

Genericity assumption 22 The Weil descent on Summation varieties produces 0-dimensional systems.

We already stated that the number of solutions of S is a good indicator of the complexity of its solving.
By definition of the degree of a variety, it follows that S has precisely degWn(Sm,R) = 2n(n−1)g solutions. The
efficiency of this algorithm should be really close to that of Nagao’s, provided step 1 finishes in a reasonably
short time.

3.5 On computational aspects of Summation sets

We discuss the impact of the curve’s genus and the degree of the projection π : H m −→ (P1)m induced by the
projection over the abscissae in the computation of Summation set.

Obstruction for recursive computations Semaev proposed [40] a recursive approach for computing summation
polynomials for a genus 1 curve E is found by decomposing a sum into two smaller sums:

P1 + · · ·+Pm = O ⇔ ∀ k ∈ {2, . . . ,m−3}, ∃ Q ∈ E(F) :

{
P1 + · · ·+Pk = Q
Pk+1 + · · ·+Pm =−Q

Using X as an indeterminate for the abscissae of the intermediate summand Q and xi = x(Pi), we deduce that
Sk+1(x1, . . . ,xk,X) and Sm−k+1(xk+1, . . . ,xm,X) have a common root. Hence their resultant with respect to X
must vanish. If we see Sk and Sm−k+1 in F[X1, . . . ,Xm,X ], then geometrically this corresponds to the projection
of V (Sk(X1, . . . ,Xk,X))∩V (Sm−k+1(Xk+1, . . . ,Xm,X)) on the m first coordinates. In general, both varieties are
hypersurfaces in a m+ 1-dimensional space. Thus their intersection has dimension m− 1. The projection on
a m-dimensional subspace is then of codimension 1 and its defining ideal is indeed generated by the resultant
with respect to X of both summation polynomials.

However this observation cannot be generalized in higher genus to obtain a recursive method of compu-
tation. Because a fiber as π−1({x1, . . . ,xg}) has cardinality 2g, the projection of V (Sk)∩V (Sm−k−2) describes
more than the vanishing sums of m points (or their opposite). Consequently, there is little hope to achieve the
same kind of equivalence as in the elliptic case using this approach.

Still, there are several ways to model the situation as an elimination problem. Because of the above ob-
servation and the end of Section 3.1, the computation asks for the elimination of at least g variables between
two sets of polynomials, which seems harder to do than a resultant between two polynomials. Computations
indeed proved to be intractable in odd characteristic, even for the simplest case. In even characteristic, a first
set of polynomials for sums of size 4 could be computed in genus 2 — the running time of the computation
was longer than with the method of Section 3.1. This set of polynomials indeed vanished on sums of length m
as well as other.
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Usage in PDPm solving In the algorithm of the previous Section, the first step is to compute a Summation set
related to a given R ∈ Jac(H ). This step can dominate the whole routine, and its complexity is hard to derive,
as not much is known on the cost of computing Gröbner bases for elimination orders. Several strategies can
be used to speed-up this computation, such as eliminating variables in several steps instead oof one. However,
such strategies are mainly based on observations made on the behaviour on the computation and the shape of a
particular system.

Another approach would be to compute a more general type of Summation sets, in the spirit of what is done
for Decomposition attacks over elliptic curves. More precisely, we can compute once and for all a generating set
for the projection of the variety Vm = {(P1, . . . ,Pm+g) : ∑Pi−(m+g)P∞ =O}, where O is the neutral element
of Jac(H ), then evaluate it at the “coordinates” of an R ∈ Jac(H ) that we try to decompose. Describing this
variety can be done straightforwardly following the presentation of Section 3.1, but considering the generic
norm instead of the Decomposition polynomial. While such sets can be used to find decompositions of R, from
the point of view of the polynomial system solving, this approach will always be less efficient because π(Vm)
has degree greater than V (Sm,R) in general.

Indeed, let Sm be a generating set for the variety π(Vm). Assume R is represented by the reduced divisor
R1+ . . .+Rg−gP∞, and let H be the intersection of the hyperplanes describing the symmetric expression in the
x(Ri)’s. This way, computing Sm then specializing it at the x(Ri)’s amounts to working in the variety V (Sm)∩H.
In general, the fiber π−1(π(R)) = {±R1 · · ·±Rg} contains 2g elements, so as soon as g≥ 2, the previous variety
describes more tuples of points than we actually need, since we are only interested in the decomposition of R
(or −R). More precisely, we have generally

deg(V (Sm)∩H) = 2g−1 ·degV (Sm,R). (14)

First, this shows that working with V (Sm)∩H and V (Sm,R) is equivalent in genus 1. In fact it can be shown
that these varieties are equal: both are hypersurfaces of same degree, and the latter is (informally) included in
the former. In particular, if Sm+1 denotes the m+ 1 elliptic (symmetrized) Summation polynomial, it implies
that Sm,R(e1, . . . ,em) = Sm+1(e1, . . . ,em,x(R)). Second, it explains why it will always be less efficient to use the
former in PDPm solving context when g≥ 2.

4 Reducing degree of ideals in Summation approach in even characteristic

If a polynomial parametrization is generated by polynomials as Xi − Pi(a1, . . . ,al)
p in characteristic p, the

action of the Frobenius automorphism expresses as a non-standard “hidden” graduation on the polynomial
algebra. This can be described by the weighted degree of an ideal, that can be determined by computing the
Hilbert series of the graded quotient algebra. The analysis of the link between the Hilbert series of the involved
ideals allows us to precisely quantify the impact of the different graduation, as the reduction factor reveals to
be close to the product of the weight involved in the graduation. Instantiating to a PDPm context, this leads to
a degree reduction of the systems to be solved, akin to the one we describe in Section 2.2.

We emphasize here that it is possible to furhter reduce the degree in a PDPm setting modelled by a Sum-
mation approach, by exploiting the properties of the Decomposition polynomial in a different manner than
in Section 2.2. However, a rigorous description of the reduction would mean introducing more notations and
subcases, and does not give more insight on the situation either. Lastly, the best reduction we can obtain this
way is equivalent to the one we obtain in Section 2.2. For this reason we do not go into more details in this
reduction.

4.1 Action of the Frobenius automorphism over polynomial parametrizations

Let F be a perfect field of characteristic p≥ 2, and σ(x) = xp the Frobenius Automorphism. If f = ∑cαmα ∈
F[X1, . . . ,Xm], we denote by f σ = ∑cp

αmα the polynomial obtained by Frobenius action over its coefficients.
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We observe that f σ (X p
1 , . . . ,X

p
m) = f (X1, . . . ,Xm)

p. Assume m ≥ 2, let 1 ≤ l ≤ k ≤ m be integers and let a =
(a1, . . . ,al),X = (X1, . . . ,Xm). For polynomials P1, . . . ,Pm ∈ F[a], we consider the ideals

I = 〈 Xi−Pi(a)p : 1≤ i≤ k ; Xi−Pi(a), k+1≤ i≤ m 〉 ,
J = 〈 Xi−Pi(a) : 1≤ i≤ m 〉 .

We also define their ideals of relations, i.e. the l-th elimination ideals

Ie = I∩F[X], Je = J∩F[X].

Recall that all such ideals are radical — arguments have been given in Section 3.1. It is straightforward to check
that (z1, . . . ,zm,a1, . . . ,al) ∈V (I) if and only if ( p√z1, . . . , p√zk,zk+1, . . . ,zm,a1, . . . ,al) ∈V (J). This suggests a
natural weight p on Xk+1, . . . ,Xm. We turn to eliminations ideals and derive a similar property.

Lemma 23 Let Ie = I∩F[X] and Je = J∩F[X] be the ideals of relations associated to I,J.

1. g ∈ Je⇔ gσ (X1, . . . ,Xk,X
p
k+1, . . . ,X

p
m) ∈ Ie.

2. g ∈ Ie⇔ g(X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) ∈ Je.

Proof From the definition of Ie and Je we get

g ∈ Je⇔ g(P1, . . . ,Pm) = 0 and g ∈ Ie⇔ g(Pp
1 , . . . ,P

p
k ,Pk+1, . . . ,Pm) = 0.

Then we observe that

1. g ∈ Je⇔ g(P1, . . . ,Pm)
p = 0⇔ gσ (Pp

1 , . . . ,P
p
m) = 0⇔ gσ (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m) ∈ Ie.

2. g ∈ Ie⇔ g(X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) ∈ Je. ut

For any ideal I, let Ip = 〈 f p : f ∈ I〉. Write Ie = 〈g1, . . . ,gr〉 and Je = 〈 f1, . . . , fs〉, and define

I′ =
〈

gσ
i (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m),1≤ i≤ r

〉
,

J′ =
〈

fi(X
p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) ,1≤ i≤ s

〉
,

then Lemma 23 states that I′ ⊂ Ie and J′ ⊂ Je. The next Proposition makes this link precise.

Proposition 24 With the previous notations, Ip
e ⊂ I′ ⊂ Ie and Jp

e ⊂ J′ ⊂ Je.

Proof Let f ∈ Ie. Lemma 23 gives that f (X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm)∈ Je. Hence there exists qi ∈ F[X] such that

f (X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) =

r

∑
i=1

qi(X1, . . . ,Xm)gi(X1, . . . ,Xm).

Evaluating at X1, . . . ,Xk,X
p
k+1, . . .X

p
m and taking p-th power give

f (X p
1 , . . . ,X

p
m)

p =
r

∑
i=1

qi(X1, . . . ,Xk,X
p
k+1, . . . ,X

p
m)

pgi(X1, . . . ,Xk,X
p
k+1, . . . ,X

p
m)

p

=
r

∑
i=1

qσ
i (X

p
1 , . . . ,X

p
k ,X

p2

k+1, . . . ,X
p2

m )gσ
i (X

p
1 , . . . ,X

p
k ,X

p2

k+1, . . . ,X
p2

m )

which means that

f (X1, . . . ,Xm)
p =

r

∑
i=1

qσ
i (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m)

pgσ
i (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m)

so that f p ∈ I′. The other inclusion follows similar arguments. ut

Corollary 25 With the previous notations, Ie is the radical of I′ and Je is the radical of J′.
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Proof Proposition 24 implies that Ie ⊂
√

I′. As
√

I′ is the smallest radical ideal containing I′, and since Ie is
radical, then in fact Ie =

√
I′. The other statement is proved the same way. ut

Assuming the base field is algebraically closed, we know from Corollary 25 that
√

I′ = Ie, so that I(V (I′)) = Ie
and V (Ie) =V (I′). Then a tuple (z1, . . . ,zm) is in V (Ie) if and only if for all 1≤ i≤ r,

gσ
i (

p√z1
p, . . . , p√zk

p,zp
k+1, . . . ,z

p
m) = 0 = gi(

p√z1, . . . ,
p√zk,zk+1, . . . ,zm)

p,

equivalently, ( p√z1, . . . , p√zk,zk+1, . . . ,zm) ∈V (Je). In other words it is equivalent to work with V (Ie) or V (Je).
Since the two associated ideals are radical, in practice we can use either Ie or Je for computations. To proceed to
degree analysis, we now need to introduce the weighted degree of an ideal. This quantity can be computed using
the Hilbert Series of the quotient algebra, which is the generating power series for the number of monomials
of degree d, d ≥ 0, in the algebra. It is defined for homogeneous ideals, but it can be extended to any ideals
by considering its homogenization. Indeed, the homogenization of the elements in a Gröbner basis for a a
degree order is a Gröbner basis for the homogenization ideal [8, Thm. 4, p.388]. When the ideal is radical,
geometrically it amounts to working in the projective closure of the variety generated by the ideal. More details
can be found in [31][46].

Definition 26 ([46]) Let I be a polynomial ideal of dimension d in K[X1, . . . ,Xn] equipped with weight w =
(w1, . . . ,wn). Let HSI(T ) be the Hilbert Series of K[X1, . . . ,Xn]/I. Let Q(T ) = (1−T )dHSI(T ). The weighted
degree of I is degw I = Q(1). The weighted degree of a variety is the weighted degree of its associated ideal.

If the weights give the standard graduation (i.e. w= (1, . . . ,1)), then Q(T ) is a polynomial and the weighted
degree is the classical degree of an ideal, denoted by deg I. We now use the ideals I′ resp. J′ to estimate the
weighted degree of Ie, resp. Ie.

Proposition 27 For 1≤ i≤ k let wi = 1 and w′i = p, and for k < i≤ m, let wi = p and w′i = 1. For the weight

systems w = (w1, . . . ,wm) and w′ = (w′1, . . . ,w
′
m), we have degw Je =

deg I′

pm−k and degw′ Ie =
degJ′

pk .

Proof Let first A= (F[X1, . . . ,Xm],(1, . . . ,1)) be the polynomial algebra with standard graduation, and consider
the w-graded algebra Aw = (F[Y1, . . . ,Ym],(w1, . . . ,wm)). We see the ideal Je = 〈g1, . . . ,gr〉 in this algebra, and
we let also Jσ

e =
〈
gσ

1 , . . . ,g
σ
r
〉
. Using the injective homomorphism of graded algebras ϕ : Aw −→ A defined

byϕ(Yi) = Xwi
i , Lemma 23 restates as ϕ(Jσ

e ) = I′. From [46, prop. 3.10, p.96], we have degw Jσ
e = degϕ(Jσ

e )

pm−k , so
the last thing to do is to verify that degw Je = degw Jσ

e .
Wlog. we can assume that the generators of Je form a Gröbner Basis for some total degree order. Since

LM(gi) = LM(gσ
i ) for all i, then {gσ

i : 1≤ i≤ r} is a Gröbner Basis for Jσ
e , hence degw Je = degw Jσ

e . The other
equality is obtained by adapting the whole argument. ut

4.2 Application to Summation varieties in even characteristic

Consider a hyperelliptic curve H : y2 + h1(x)y = h0(x) of genus g, defined over a (perfect) field F of char-
acteristic 2. Let R ∈ Jac(H ) of weight g and F be the associated m-Decomposition polynomial, for some
m≥ g+1:

F(X) = Xm +
m−1

∑
i=0

Ni(a)X i.

If L1 is the length of h1, Proposition 11 tells us that F has k = g−L1 relevant squared coefficients. Assume
that L1 < g, and for simplicity, renumber the coefficients of F and the ei such that the squares are N1(a) =
Ñ1(a)2, . . . ,Nk(a) = Ñk(a)2. We will always assume this is the case through the rest of this Section. We focus
the ideal I associated to Vm,R and the ideal J defined by:

I = 〈 ei +Ni(a) : 1≤ i≤ m 〉 , Ie = I∩F[e],
J =

〈
ei + Ñi(a) : 1≤ i≤ k, ei +Ni(a), k+1≤ i≤ m

〉
, Je = J∩F[e]. (15)
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A first benefit of using J instead of I is that some quadratic equations have been replaced by linear equa-
tions. Hence it should be faster to compute a basis of Je than to compute a basis of Ie. A second benefit is that
the degree of the ideal obtained after Weil Descent over Je is lower than the one obtained with Ie. To show this,
we need to highlight the differences between the degrees of Je and Ie. However, Proposition 27 gives only a
link between degw Je and deg I′. This prompts the introduction of the next constant.

Definition 28 The degree ratio between I′ and Ie is noted C1 =
deg I′

deg Ie
.

Since I′ is the image of Jσ
e by an injective homomorphism of algebras, then dim I′ = dimJe = dim Ie. Since

I′ ⊂ Ie, we infer that deg I′ ≥ deg Ie. With Proposition 24, we obtain 1≤C1 ≤ deg I2
e

deg Ie
. We can now estimate the

reduction factor obtained by working with Je.

Proposition 29 With the previous notations, we have:

degw V (Je) =C1 ·
degV (Ie)

2m−g+L1
.

Proof Since Ie and Je are radical, we have degw V (Je) = degw Je and degV (Ie) = deg Ie for any weight system.
From Proposition 11, the Decomposition Polynomial has k = g−L1 squares among its coefficients in X . Let
w = (w1, . . . ,wm) with w1 = . . . = wk = 1 and wk+1 = . . . = wm = 2 and consider Je in the graded algebra
(F[e],(w1, . . . ,wm)). Proposition 27 states that

degw Je =
deg I′

2m−g+L1
=

C1 ·deg Ie

2m−g+L1
.

ut

Experimentally from genus 2 to 4, in this setting, C1 is a power of 2 with exponent much less than m−g+
L1, so the weighted degree of V (Je) is indeed divided by a number close to the product of the weights. Further
in the presentation we propose a conjecture to the value of its exponent.

In the context of a Decomposition attack, the field is some F2dn , and m = ng. The Weil descent involves
cutting the Weil restriction of Je by hyperplanes. This is where the second benefit of working with Je appears.
The next result takes the graduation into account when we cut Wn(Je) by hyperplanes, and gives an estimate of
the weighted degree of the zero-dimensional ideal produced by the Weil Descent.

Proposition 30 Keeping previous notations, and assume that the field is now F2dn . Let I be the ideal obtained
by a Weil Descent on Je. Under Genericity assumption 22, we have:

degw I=Cn
1 ·

degWn(Ie)

2(n−1)g+L1
.

Proof With m = ng, Proposition 29 gives:

degw Wn(Je) =Cn
1 ·

degWn(Ie)

2n((n−1)g+L1)
.

Let 1, t, . . . , tn−1 be a a power F2d -basis of F2dn and write ei = ∑
n−1
j=0 ei, jt j. As the graduation involves the

characteristic, it extends naturally to the Weil Restriction. To see this, we observe that e2
i = ∑

n−1
j=0 e2

i, jt
2 j so

that only squares of the ei, j will appear in this expression: in other words the graduation is applied on the
new variables coming from the Weil restriction. Let w = (w1,0,w1,1, . . . ,wng,n−1) with w1,0 = w1,1 = . . . =
wk,n−1 = 1 and wk+1,0 = wk+1,1 = . . . = wng,n−1 = 2, and consider I(Wn(Je)) as an ideal in the w-graded
algebra F2d [e1,0, . . . ,eng,n−1]. Geometrically, the Weil Descent amounts to cut Wn(Je) by the intersection of the
(weighted) hyperplanes

H =
⋂

1≤i≤ng
1≤ j≤n−1

V (ei, j),
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with degw V (ei, j) = 2 for g− L1 + 1 ≤ i ≤ ng,1 ≤ j ≤ n− 1 and thus degw H = 2((n−1)g+L1)(n−1). Let now
I be the ideal associated to Wn(Je)∩H. With the Genericity assumption 22, its dimension is 0, so that the
intersection has weighted degree degw I= degw Wn(Je) ·degw H. The claim follows:

degw I=Cn
1 ·

degWn(Ie)

2n((n−1)g+L1)
·2((n−1)g+L1)(n−1)

=Cn
1 ·

degWn(Ie)

2(n−1)g+L1
.

ut

If I is a zero-dimensional ideal in K[Y1, . . . ,Yn] graded by w, then degw I = dimK K[Y1, . . . ,Yn]/I, where the
dimension is meant as the dimension as a K-linear space. To see this, consider the injective homomorphism of
graded algebras ϕ : (K[Y1, . . . ,Yn],w)−→ (K[X1, . . . ,Xn],(1, . . . ,1)) defined by ϕ(Yi) = Xwi

i . Then dimϕ(I) = 0
and by [46, prop. 3.10] we have

degw I =
degϕ(I)
∏

n
i=1 wi

=
dimK K[X1, . . . ,Xn]/ϕ(I)

∏
n
i=1 wi

.

Now the image by ϕ of a Gröbner basis of I for the w-grevlex order is a Gröbner basis for the grevlex order
for ϕ(I). Informally, this means that “going through ϕ” multiplies the volume under the stair of I by ∏

n
i=1 wi.

From this we obtain degw I = dimK K[Y1, . . . ,Yn]/I, and this means that for zero-dimensional (radical) ideal, the
weighted degree also counts the number of elements in the associated variety. Hence for a 0-dimensional ideal
I we use the notation deg I to count its number of solutions, independently of the graduation.

From the point of view of FGLM’s algorithm, this says that the complexity of the change-order step can
be expressed in term of the weighted degree of I. The next result formulates this observation in the context of
Decomposition attacks, and sums up this Section.

Corollary 31 Let H : y2 + h1(x)y = h0(x) be a genus g hyperelliptic curve defined over F2dn , and fix R ∈
Jac(H ) of weight g. Let L1 be the length of h1. The PDPng instance related to R can be solved by computing a

lexicographical Gröbner Basis for a zero-dimensional ideal I of degree Cn
1 ·

degWn(Ie)

2(n−1)g+L1
.

Remark 32 If Conjecture 21 is true, then degV (Ie) = degV (Sm,R) = 2m−g and degWn(Ie) = 2n(n−1)g. In
this case Proposition 29 rewrites as degw V (Je) = C1 · 2−L1 , and Proposition 30 then tells that degI = Cn

1 ·
2(n−1)2g−L1 .

4.3 Analysis for genus 2 curves

We checked over thousands of genus 2 curves (of all types) that C1 was a power of 2 depending on the polyno-
mial h1 in the curve’s equation. More precisely,

C1 =


1, if H is Type Ib with h1(x) = x2, Type II, or Type III
2, if H is Type Ib with h1(x) 6= x2

4, if H is Type Ia.

Roughly, the more squares there are among the coefficients of the Decomposition polynomial, the closer deg I′

is to deg Ie and C1 is to 1. No square appears among the Decomposition polynomial’s coefficients if the type
is Ia, hence no reduction can be obtained this way. If we consider the other types of curves, and instantiate the
formula of Proposition 30 for PDP2n where m = 2(n− 1) and the non-reduced degree is dNag = 22n(n−1), we
obtain the following degrees:
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Type C1 L1 degI Reduction factor
Ib, h1(x) 6= x2 2 1 2(2n−1)(n−1) 2n−1

Ib, h1(x) = x2 1 0 22(n−1)2
22(n−1)

II or III 1 0 22(n−1)2
22(n−1)

Table 4 First step of degree reduction for genus 2 binary hyperelliptic curves.

Higher genus The value of the constant C1 seems to be linked with the length of h1, or more accurately, to the
rank of the 2-torsion in Jac(H ). The following additional experiments in genus 3 (over thousands of curves)
further confirmed our observation for the behaviour of C1:

– For curves with h1(x) ∈ {1,x,x2,x3}, we always observe C1 = 1.
– For curve with h1 a monic degree 2 polynomial with two distinct roots, we observe C1 = 2; up to a linear

change of variables, such polynomial have a shape x(x+α) for some α in the ground field, and verifies
L1 = 1. If h1 is monic of degree 2 and irreducible, we observe C1 = 4, and L1 = 2.

– When h1 is monic of degree 3 and split or has exactly one root in the base field, C1 = 4; up to a linear
change of variables, such polynomials have respectively a shape x(x+α)(x+ β ) or (x2 +αx+ β )x for
some α,β in the ground field, thus L1 = 2. When h1 is monic and irreducible of degree 3, then C1 = 8 with
L1 = 3. Recall that there are no square among the coefficients of the R-Decomposition Polynomial if h1 is
irreducible.

A similar behaviour was identified for some cases in genus 4. Hence we propose the next Conjecture to
sum up this Section:

Conjecture 33 Let H : y2 +h1(x)y = h0(x) be a hyperelliptic curve of genus g defined over F2dn . Assume h1
is not irreducible of degree g and of length L1. Then the degree ratio C1 defined in Proposition 29 is a power
of 2 that only depends on the polynomial h1. More precisely, we have:

C1 = 2L1 .

Using a Summation modelling, a PDPng instance on H can then be solved by computing a lexicographical
Gröbner Basis of an ideal I of degree

degI= 2(n−1)((n−1)g+L1).

Remark 34 If this Conjecture is true, then we find the following bounds for the first reduction step:

2(n−1)2g ≤ degI≤ 2(n−1)(ng−1).

While there is no known classification for binary hyperelliptic curves in general when g≥ 3, the (squarefree
part of the) polynomial h1 determines the 2-rank of Jac(H ). It may be possible to classify all the possible
degree reductions based on the squarefree decomposition of h1.

5 Comparisons of methods and practical impact

We proposed an new method to solve PDPm instances using Summation polynomials instead of Nagao’s ap-
proach. The natural question is now to compare them to estimate which one is the most efficient for a given
task. We start by a quick comparison in odd characteristic, and then turn to even characteristic. The timings
we obtain shows that overall Nagao with our degree reduction algorithm is a better approach. We also see that
the Summation approach with degree reduction is way faster than the standard Nagao’s approach. This illus-
trates the power of the degree reduction in polynomial system solving. The Section and the article ends with a
description on how we handle the realistic computation for a genus 2 Type II class group with 2184 elements.
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5.1 Nagao vs Summation in Odd characteristic

Experiments were done on Fqn with logq = 16, n = 2,3, and imaginary genus 2 curves given by general
Weierstrass equation y2 = h(x). This means we look for 2n-decompositions of a given R of weight g. For each
approach we listed the time needed to build the system, to compute a Degree Order basis, then to obtain a lexi-
cographical basis with FGLM. For Summation modelling, building the system means computing a Summation
set for a given R of weight 2, that is to say, eliminating variables from a parametrization of the corresponding
Vm,R. Implementation were done with Magma 2.19 [2], so that DRL Gröbner basis and elimination basis are
computed with F4, on the same computer as the previous experiments of this article.

Table 5 Comparisons of Nagao and Summation modelling in odd characteristic

n Degree
Method

RatioNagao Summation
System DRL FGLM Total System DRL FGLM Total

2 16 - 0.001s. 0.001s. 0.002s. 0.005s. 0.004s. 0.001 0.010 5
3 4096 - 159s. 1254s. 1413s. 137.6s* 2280s. 7358s. 9775s. 6.9

For n = 2, both approaches are extremely fast and of comparable speed. Therefore timings of this row
are averaged over thousands of tests, for several curves. For n = 3, we stress that a well-planned computing
strategy had to be designed to compute Summation sets in reasonable time. Indeed, eliminating without care the
variables to compute S6,R takes more than 116000 sec. We avoided this very long computation by eliminating
only 3 variables in two steps, computing a basis for weighted degree order — this is higlighted by a star in the
table. The system is then solved with the classic strategy.

Even if we assume that a symbolic Summation set is given as raw input, we see that Nagao’s modelling is
faster by a ratio of nearly 7. This may be explained by the degree of the defining equations obtained in Summa-
tion modelling. Nagao’s approach always gives as many quadratic equations as variables, whereas Summation’s
approach needs less variables but gives equations of greater degree.

5.2 Nagao vs Summation for binary genus 2 curves

We focus on fields F2nd with d = 15, n= 3, and curves of type Ib with h1(x)= x2 as well as curves of type II with
h1(x) = x. This choice is made because these are curves where dopt = 64 can be reached for both modelling, as
observed in Table 1 and Section 4. For n = 2, the systems have degree 2 after the degree reduction. In particular
a symbolic lexicographical Gröbner Basis could be precomputed, then solved for each new R. Therefore we
did not consider this very simple case.

To show the impact of the degree reduction we also give timings for “Old” approaches, that is to say, Na-
gao or Summation modelling without any degree reduction. Headings “Method” refer to Nagao or Summation
approach. For each of those rows, the upper subrow gives the timing for “Old” approach and the lower sub-
row gives timing for the new Reduced approach. “Style Ratio” is obtained by comparing Old and Reduced
approaches, and “Method Ratio” by comparing Reduced Nagao and Reduced Summation. In the first column,
dold stands for the degree of the system obtained with the old approach, while dred stands for the new reduced
degree.

The timings highlighted by exclamations marks are abnormally long. Since, once computed, the lexico-
graphical bases are not in Shape position, this suggests a problem in Magma 2.19 implementation5 of FGLM,
as it should be faster to compute a lexicographical basis not in Shape position than a basis in Shape position.
To obtain a fairer comparison, we estimated the running time of FGLM on random systems over F215 with

5 We did not try more recent version.
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Table 6 Comparisons of Nagao and Summation modelling in even characteristic

Curve Method System DRL FGLM Total Style Ratio Method Ratio
Type Ib,
h1(x) = x2,
dold = 4096,
dred = 64

Nagao - 166.76s. 34152s. !! 34318s. !!
1.7 ·106

17- 0.02s. 0.000s. 0.02s.

Summation 1.04s. 0.9s. 8.7s. 10.64s. 310.27s. 0.06s. 0.01s. 0.34s.
Type II,
h1(x) = x,
dold = 4096,
dred = 64

Nagao - 185.56s. 33917s. !! 34102s !!
1.1 ·106

14- 0.02s. 0.009s. 0.029s.

Summation 0.84s. 0.65s. 7.7s. 9.19s. 230.27s. 0.14s. 0.01s. 0.42s.

n(n− 1)g = 12 quadratic equations in n(n− 1)g = 12 variables. The running time of FGLM for such sys-
tems (usually in Shape Position) is around 1500sec. If we consider this time as a reference for the Old Nagao
approach, the speed-up ratio obtained by the Reduced approach is around 75000.

We again used computational strategies to compute Specialized Summation Sets. The elimination Basis
was computed for a weighted order, in two steps: of the 4 variables to be eliminated, three are eliminated in
first step, then the last is eliminated. This strategy leads to important speed-ups in our experiments for the
elimination, but this step was still the bottleneck in Reduced Summation approach. Table 6 shows that Refined
Nagao’s modelling is also practically faster than the Refined Summation Modelling. For the next and final
Section of this article, we therefore used a Refined Nagao’s approach to solve PDP instances.

5.3 Running time of DLP solving for a realistic binary genus 2 curves

Let ω such that ω31 +ω3 +1 = 0 and F231 ' F2[ω], and let t such that t3 +αt +β = 0 with α = 7BCEB1AC
and β = 50F6CCC4. These values are obtained by considering α,β as polynomial in ω , evaluate them at 2 and
converting the integer we obtained in hexadecimal. Let also F293 = F231·3 ' F231 [t]. We solve PDP6 instances
using our refined Nagao modelling.

Type II curve: Let H : y2 + xy = x5 + f3x3 + x2 + f0, with

f3 =A814B6C09256168AC93ABA1,

f0 =16400CBCC65A5EE5F67165AC,

#H (F293) = 9903520314283080096056319534≥ 293

These parameters were obtained with several tries with Magma, until the cardinality of the class group was large
enough. Using Magma 2.19 implementation Vercauteren’s version [45] of Kedlaya’s algorithm for counting
points, it takes approximately 24 seconds to verify that the class group has order

#Jac(H ) = 2×3×16346619102569543707881667303220993643142373107431938653,

which is nearly prime. Its larger prime factor is a 184 bits number, hence a generic attack method would need
around 292 operations.

We start by counting (with Magma) the elements in the factor base B = {P : P∈H ,x(P)∈F231} and find a
set with cardinal a number of 31 bits ; its enumeration can be parallelized easily. For example, with 8000 cores,
each can enumerate on a subset of size 231/8000≈ 219 of a partition of F231 . A single Intel R©Xeon R©@2.93GHz
cpu needs roughly 40 sec. to complete its part of the enumeration.

The systems coming from the univariate polynomial among the defining equations can be symbolically
solved by hand. If we write R= (x2+u1x+u0,v1x+v0) = (u1,u0,v1,v0), then N1(a4) = a2

4+u1 = (a4+
√

u1)
2.

Because the Frobenius automorphism fixes every subfield, N1(a4) ∈ F231 ⇔ a4 +
√

u1 ∈ F231 . Hence if we let
a4 = a4,0 +a4,1t +a4,2t2 and

√
u1 = u′1,0 +u′1,1t +u′1,2t2 then we have

N1(a4) ∈ F231 ⇔ a4,i = u′1,i for i = 1,2.
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Hence those values are directly known once an input R is given. It is even possible to precompute a symbolic
unsquared system S2 with a4,1,a4,2,u1 and u0 as parameters.

After this, the harvesting of relations is started. Each new R ∈ Jac(H ) to decompose is computed using a
pseudo-random walk as proposed by Gaudry [24]. If it is not of weight 2, then it is discarded and a new one
is computed. The symbolic unsquared system

√
S2 is then evaluated at coordinates of R and corresponding

values for a4,1,a4,2, following Section 2.2. The resulting system has resp. 4 (resp. 6) linear (resp. quadratic)
equations in 10 variables, and is solved following the classic strategy for 0-dimensional systems:

– a DRL Gröbner Basis for
√

S2 is computed in 3.87 · 10−4sec, using code generating techniques and F5
[15] algorithm. We can check that

√
S2 has 64 solutions.

– With Sparse-FGLM algorithm [18], we obtain indeed a univariate polynomial of degree 64 in 5.93 ·
10−4sec.

– The last step of the solving process is to find its roots using NTL [43]. This is done in 2.22 ·10−3sec.

Overall, solving one PDP6 instance over H take 3.2 · 10−3sec., and finding the roots of the degree 64
univariate polynomial becomes the bottleneck of the computation. This is because we did not try to use any
optimizations to speed-up this particular step. If such optimizations were to be used, it is believable that the
harvesting time could be slightly reduced. Memory-wise the whole process is really efficient as approximately
1.1 MB is needed.

The probability to get a decomposition for each R is 1/6!, so we need in average 720× 3.2 · 10−3sec.=
2.3 sec. to find a relation. The factor base has approximately 231 elements and is invariant by the canonical
involution on H , we would normally need around 231/2 = 230 relations to start linear algebra. However,
computing at least twice this minimal number of relations enables us to use efficient filtering techniques [3][5]
to reduce the size of the matrix. Computing more relations can lead to even more efficient filtering. Using 8000
cores, the harvesting phase can be completed in a bit more than 7 days. The filtering is then performed and can
reduce the size from 231 to 250 millions rows (around 228) with 87 non-zero elements per row in average. A
sparse linear algebra algorithm — usually a block Wiedemann — is expected to run in around 263 operations.

This can be compared to the size of the matrices obtained after the filtering step in the record factorizations
of a RSA-768 modulus [32] or a 1061 bits number [6], and more interestingly, to the recent computation of
a discrete logarithm in a finite field of size 768 bits reported in [33]. There the authors harvested around 10
billions relations in 4000 core years. After an efficient and dedicated filtering, the linear algebra was done on
a matrix with roughly 25 millions rows and an average of 134 non-zero elements by row. Computation of the
kernel was done modulo a 767 bits integer in around 920 core years. By comparison, the harvesting could be
run much longer in our context: for example for 6 months, which is less than the harvesting duration of [33],
it can be hoped that around 235 relations could be obtained. The linear algebra in our setting would be modulo
a 184 bits integer. Assuming a dedicated filtering could be designed, we may hope that the reduced matrix is
small enough (for example, 50 millions row) so that the computations can be done in comparable time with the
768 bits finite field DLP.

Conclusion: This practical simulation confirms that characteristic 2 curves are weaker than their odd charac-
teristic counterparts in general. This strenghtens that curves based cryptographic standards should now focus
on odd characteristic. In particular, we highlighted that, on a binary genus 2 curves defined over extensions
which degree admits a factor of 2 or 3, an efficient harvesting phase can be designed. Indeed, we showed that,
using 8000 cores, around 1 week is needed to build an overdetermined matrix for a curve satisfying a generic
bound of 292. The degree reduction is linked to the length of the polynomial h1 defining the curve. The shorter
h1 is, the more efficient the arithmetic can be, but the more vulnerable the curve is to decomposition attacks.
Therefore extensions with degree having a small factor should in general be avoided for curves with short h1.
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