archives-ouvertes

Large-scale experiment for topology-aware resource
management

Yiannis Georgiou, Guillaume Mercier, Adele Villiermet

» To cite this version:

Yiannis Georgiou, Guillaume Mercier, Adele Villiermet. Large-scale experiment for topology-aware
resource management. Open workshop on data locality, Aug 2017, Santiago de Compostella, Spain.
hal-01667350

HAL Id: hal-01667350
https://hal.inria.fr /hal-01667350
Submitted on 19 Dec 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/hal-01667350
https://hal.archives-ouvertes.fr

Large-scale experiment for topology-aware
resource management

Yiannis Georgiou!, Guillaume Mercier®=, and Adele Villiermet3

1 Atos-Bull
yiannis.georgiou@atos.net
2 Bordeaux INP
guillaume.mercier@bordeaux-inp.fr
3 INRIA Bordeaux Sud-Ouest

adele.villiermet@inria.fr

Abstract. A Resource and Job Management System (RJMS) is a cru-
cial system software part of the HPC stack. It is responsible for efficiently
delivering computing power to applications in supercomputing environ-
ments and its main intelligence relies on resource selection techniques to
find the most adapted resources to schedule the users’ jobs. In [§8], we
introduced a new topology-aware resource selection algorithm to deter-
mine the best choice among the available nodes of the platform based on
their position in the network and on application behaviour (expressed as
a communication matrix). We did integrate this algorithm as a plugin
in SLURM and validated it with several optimization schemes by mak-
ing comparisons with the default SLURM algorithm. This paper presents
further experiments with regard to this selection process.

Keywords: Resource management, Job allocation, Topology-aware place-
ment, Scheduling, SLURM

1 Introduction

Computer science is more than ever a cornerstone of scientific development, as
more and more scientific fields resort to simulations in order to help refine the
theories or conduct experiments that cannot be carried out in reality because
of their scale or their prohibitive cost. Currently, such computing power can be
delivered only by parallel architectures. However, harnessing the power of a large
parallel computer is no easy task, because of several factors. It features most of
the time a huge amount of computing nodes, and this scale has to be taken into
account when developing applications. Then, the nodes architecture has become
more and more complex, as the number of cores per node is in constant increase
from one generation of CPU to the next. One way of dealing with this complexity
would be to take into account the application behavior (e.g its communication
pattern, or its memory access pattern) and to deploy it on the computer accord-
ingly by mapping processes to cores depending on their affinity [9]. However,

since a parallel machine can be very large, it is often shared by many users run-
ning their applications at the same time. In such a case, an application execution
will depend on a nodes allocation that has been determined by the Resources
and Jobs Management System (RJMS). Most of the time, a RIMS works in a
best-effort fashion, which can lead to suboptimal allocations. As a consequence,
we did investigate in [8] the idea of taking into account an application behaviour
directly in the RJMS, in its process of allocation and reservation of computing
resources (nodes). We carried out experimental validation on small scales and
did conduct simulations for larger scales. In this paper, we shall present larger
experiments (not simulations) to confirm our simulations results. This paper is
organized as follows: Section 2 gives an overview of the context and background
of this work. It introduces the software elements leveraged by this work be-
fore giving some technical insights about the integration of TREEMATCH into
SLURM. Then Section 3 shows and explains the results obtained. We discuss the
comparison between simulation and emulation in Section 4 while some related
works are listed in Section 5. Finally, Section 6 concludes this paper.

2 Context and background

A substantial part of this work deals with the integration of a new resource
allocation and reservation policy within the SLURM [14] RJMS. This policy takes
into consideration application behaviour and a matching between the needed
resources and the behaviour is determined, thanks to a dedicated algorithm
called TreeMatch [10]. We now describe both software elements in this section.

2.1 SLURM

Simple Linux Utility Resource Management (a.k.a SLURM) is a RJMS used and
deployed on a large number of parallel machines.

Its resource selection process takes place as part of the global job schedul-
ing procedure. In particular, this procedure makes use of the plugin/select,
which is responsible for allocating the computing resources to the jobs. There are
various resource selection plugins in SLURM that can take into account the speci-
ficities of the underlying platforms’ architecture such as linear and cons_res.
The select/cons_res plugin is ideal for multicore and manycore architectures
where nodes are viewed as a collection of consumable resources (such as cores
and memory). In this plugin, nodes can be used exclusively or in a shared mode
where a job may allocate its own resources differently than the other jobs sharing
the same node [1].

2.2 TreeMatch

TREEMATCH [10], is a library for performing process placement based on the
topology of the underlying machine and the behaviour of the application. This
behaviour can be expressed in several ways: communication scheme, memory

accesses pattern, etc. As for the target architectures, TREEMATCH is able to
deal with multicore, shared memory machines as well as distributed memory
machines. It computes a permutation of the processes to the processors/cores
in order to minimize some cost function (e.g. communication costs). To be
more specific, it takes as input a tree topology (where the leaves stand for
computing resources and internal nodes correspond to switches or cache lev-
els) and a matrix describing the affinity graph between processes. Such a ma-
trix can be obtained using an application monitoring tool [2]. A hierarchy is
extracted from this graph that matches the topology tree hierarchy. The out-
come is therefore a mapping of the processes onto the underlying comput-
ing resources. The objective function optimized by TREEMATCH is the Hop-
Byte [15], that is, the number of hops weighted by the communication cost:
Hop-Byte(o) = 32, <, j<, w(i,5) x d(o(i),0(j)), where n is the number of pro-
cesses to map, o is the process permutation produced by TREEMATCH (process
i is mapped on computing resource o()), A = (w;;) 1 <i<n, 1 <j<n
is the affinity matrix between these entities and hence w(i, j) is the amount of
data exchanged between process i and process j and d(p1, p2) is the distance, in
number of hops, between computing resources p; and ps. An important feature
of TREEMATCH lies in its ability to take constraints into account. When not
all leaves are available for mapping (because some of them are already used by
other applications as it is the case in this paper), there is a possibility to restrict
the leaves onto which processes can be mapped so that only a subset of nodes is
used for the mapping.

2.3 TreeMatch Integration within SLURM

We have implemented a new selection option for the SLURM cons_res plugin. In
this case the regular best-fit algorithm used for nodes selection is replaced by
our TREEMATCH variant. To this end, we need to provide three pieces of infor-
mation: the job affinity matrix, the hardware topology but also the constraints
due to other jobs allocations. The communication matrix is provided at job sub-
mission time through a distribution option available in the srun command. As
for the global cluster topology, it is provided to the controller by a new param-
eter in a SLURM configuration file. Whenever a job allocation is computed, this
topology is completed by the constraints information. These constraints are pro-
vided by the nodes and cores bitmaps used by the SLURM controller to describe
the cluster utilization. TREEMATCH then utilizes all these pieces of information
to compute the allocation of resources tailored for the submitted job. However,
as the TREEMATCH overhead increases with the size of the hardware topology
(in terms of nodes count), we improve the computation time by restricting the
search in a fitting subtree in the global architecture.

3 Experimental Validation

We presented some preliminary results in [8] that we completed with new exper-
iments described in this section. We carried out experiments on a larger scale

than previously and we also make comparisons between these real-world results
and the simulations of large-scale experiments shown in [8] to demonstrate the
accuracy of the simulator used in our work. Our experiments have been carried
out on the Edel cluster from the Grid’5000 Grenoble site. Edel is composed of 72
nodes featuring 2 Intel Xeon E5520 CPUs (2.27 GHz, 4 cores/CPU) and 24GB of
memory. We use the Edel cluster to emulate Curie (a TGCC cluster with 5040
nodes and 80640 cores?) using an SLURM internal emulation technique called
multiple-slurmd initially described and used in [6]. We base our experiments
on a Curie workload trace taken from the Parallel Workload Archive®. Two sets
of jobs are considered: the first one fills the cluster, and the jobs belonging to
this set are always scheduled using SLURM in order to have the same starting
point for all the experiments. The second set, called the workload, is the one
we actually use to compare the different strategies. All the measurements are
done through the SLURM login system which gives us workload traces similar
to the ones obtained from Curie. Finally, we need to provide each job with a
communication matrix in order to use TREEMATCH. For these experiments we
use randomly generated matrices featuring various sparsity rates. Since we do
not know the real nature of the jobs executed on Curie, creating random matri-
ces is acceptable as the only available data from the original workload is a job
duration. However, in a real setting, we will need the user to provide the commu-
nication matrix of its application. This can be done through monitoring in the
MPI library with [2]. Moreover, in the real case, it may happen that not every
application can provide their communication matrix. We have studied this in
simulation in [7] and show that the whole system can benefit from this approach
even though only a fraction of the applications provide their communication
matrix.

We made comparisons between three cases : the classical topology-aware
SLURM selection mechanism (SLURM), the same mechanism but using TREEMATCH
for process placement after the allocation process and just before the execution
starts (TM-A) and last when TREEMATCH is used both for the allocation pro-
cess and for the process placement using the subtree technique to reduce the
overhead (TM-Isub).

Three metrics have been used in this performance assessment: two of them
regard the whole workload while the last one concerns each individual job:

— makespan measures the time taken between the submission of the first job
and the completion of the last job of the workload.

— wutilization represents the ratio between the CPUs used and the total number
of CPUs in the cluster during the execution of the workload.

— job flowtime (or turnaround time) represents the time taken between the
submission and the completion of a given job.

In our previous work, the workload comprised about 60 jobs. In this paper
we used a much larger workload of 1500 jobs. To keep jobs duration reasonable

4 http://www-hpc.cea.fr/en/complexe/tgcc—curie.htm
® http://www.cs.huji.ac.il/labs/parallel/workload/

Com|[SLURM |TM-A |TM-Isub| |Com|SLURM|TM-A|TM-Isub
50%| 51002 |38252| 37230 50%| 34% | 44% 46%
33%| 50997 |45897| 41817 33%| 34% | 38% 42%

(a) Makespan (b) Utilization

Fig. 1: Workload Metrics for various strategies and different amounts of commu-
nication ratio. Emulation of the Curie Cluster with the Edel cluster (Grid’5000)

we decreased their runtime by a 50% factor. This reduction factor impacts the
flowtime and was used to keep our experiments under the 48 hours time limit
for each case. Figure 1 describes the results obtained for this workload and two
different communication ratios of the jobs. The communication represents the
ratio between the communication time over the whole runtime of the application.
These ratios are fixed to 33% and 50% to illustrate the case of a communication
bound application (50% of communication ratio) and more compute-bound cases
(1/3 of communication time). However, as they are not an input of the algorithm,
we will not need to measure it in a real setting. Here, we use these ratios to see
their impact on the performance of the algorithm. Figure la shows that using
TREEMATCH to reorder the process ranks of the jobs reduces the makespan,
but using it inside SLURM to allocate nodes decreases it even more. We can
also see that the larger the communication ratio, the greater the gain. This is an
expected outcome, as TREEMATCH reduces the communication times. Figure 1b
also shows that for the same submission workload, TREEMATCH improved the
resource utilization.

33% of communication 50 % of communication

[5s, 455] - 520.64s/0.87 [4s,27s] - 630,23/0,93
[18s,585s] || [8s,510s] - [165,588s] || [4s,508s] -

(a) 33% of communication

(b) 50% of communication

Fig. 2: Statistical comparison of selection methods: flow time. Emulation of the
Curie Cluster with the Edel cluster (Grid’5000)

In Figure 2, we use paired comparisons between different strategies for jobs
flowtime. In this case, we considered job-wise metrics, as we want to understand
if, when we average all the jobs, a strategy turns out to be better than another.
Each strategy is displayed on the diagonal. On the upper right, we have the

average difference between the strategy on the column and the one on the row
and the geometric mean of the ratios. For instance, we see that on average the
job flowtime is 608.40s faster with TM-Isub than with SLURM and the average
ratio is 1.13. On the lower left part, we plot the 90% confidence interval of
the corresponding mean. The interpretation is the following: if the interval is
positive, then the strategy on the row is better than the strategy on the column
with a 90% confidence. In this case, the corresponding mean is highlighted in
green. If the interval is negative, the strategy on the line is better than the one
on row and the corresponding mean is highlighted in red. Otherwise, we cannot
statistically conclude with a 90% confidence on which strategy is the best and
we do not highlight the corresponding mean. For example, we can see that using
TREEMATCH in SLURM is better than not using it.

4 Comparison Between Simulation and Emulation

As explained in the previous section, we have emulated the SLURM execution
of the Curie machine using the Edel cluster of Grid’5000. As a matter of fact,
it is not possible to experiment new scheduling strategies for a batch scheduler
on a production machine. As the SLURM engine is unmodified, this emulator
is, in any cases, very close to the real behavior of SLURM. On the other hand
in [8,7], we have used a simulator to perform extensive tests on different set-
tings. Here, we present early results to validate the simulator using emulation
measurements. In 3 we present the comparison between the simulation and the
emulation flowtime for the 1500 jobs used in experiments of the previous sec-
tions. Measuring the average flowtime is very important as this metric assesses
each job independently and is less affected by the last submitted job than the
makespan.

We plot the results for the different strategies (plain SLURM, TREEMATCH
after (TMA) or TREEMATCH inside SLURM (TMI)). We see that the simulator
keeps the order of the emulator concerning this metric: in both cases, TMI
is better than TMA that is better than plain SLURM. Moreover, we see that
simulation results are very close to emulation results (be aware that the y-axis
does not start at 0). In all cases, the simulator has at least 6% of accuracy.

Having a simulator that is very close to the emulator is very important. This
justifies the use of simulations and hence saves a lot of experimental time and
allows for testing many different settings.

5 Related works

Many RJMS take advantage of the hardware topology to provide compact and
contiguous allocations (SLURM [14], PBS Pro [12], Grid Engine[11], and LSF [13]
or Fujitsu [5]) so as to reduce the communication costs during the application
execution (switches that are the deeper in the topology tree are supposed to
be cheaper communication-wise than upper ones). Some other RJMS offer task

32200
W slurm simulated

32000

31800

31600

31400 slurm emulated

31200 TMA emulated

-)

31000 TMI simulated
TMI emulated

30800

30600

33 50

TMA simulated

average flowtime (s)

% ofcommunication

Fig. 3: Comparison of the emulated flowtime vs. the simulated one for 1500 jobs
of the Curie trace. Remark that the Y-axis does not start at 0.

placement options that can enforce a clever placement of the application pro-
cesses. It is the case of Torque [4] which proposes a NUMA-aware job task place-
ment. OAR [3] uses a flexible hierarchical representation of resources which offers
the possibility to place the application processes upon the memory /cores hierar-
chy within the computing node. However, to the best of our knowledge there is
no work that considers the application communication pattern to optimize the
HPC resource selection and mapping.

6 Conclusion and Future Work

Job scheduling plays a crucial role in a cluster administration and utilization,
enabling both a better response time and a better resource usage. In this paper,
we have presented the results of large-scale experiments using our allocation
policy that allocates and maps at the same time application processes onto
the computing resources, based on the behaviour (a communication matrix in
our case) of the considered application. This strategy has been implemented in
SLURM. We have tested this strategy on emulation and compared it with the
standard SLURM topology-aware policy and the method consisting in mapping
processes after the allocation is determined.

Results show that our solution yields better makespan, flowtime and utiliza-
tion compared to these approaches and especially to the standard SLURM policy,
which is what we had shown through simulation only in our previous work.

To get further insights we plan to compare these large-scale experiments with
the results obtained through simulation in more details.

Acknowledgments Experiments presented in this paper were carried out using
the Grid’5000 testbed (see https://www.grid5000.fr). Part of this work is also
supported by the ANR MOEBUS project ANR-13-INFR-0001 and by the ITEA3
COLOC project #13024.

References

1. Susanne M. Balle and Daniel J. Palermo. Enhancing an open source resource
manager with multi-core/multi-threaded support. In JSSPP 2007, Seattle, WA,
USA, pages 37-50, 2007.

2. George Bosilca, Clément Foyer, Emmanuel Jeannot, Guillaume Mercier, and Guil-
laume Papauré. Online dynamic monitoring of mpi communication. In 23rd
International European Conference on Parallel and Distributed Computing (Eu-
roPar), page 12, Santiago de Compostella, aug 2017. Extended verion in https:
//hal.inria.fr/hal-01485243.

3. Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille
Martin, Grégory Mounié, Pierre Neyron, and Olivier Richard. A batch scheduler
with high level components. In Cluster computing and Grid 2005 (CCGrid05),
Cardiff, United Kingdom, 2005. IEEE.

4. Adaptive computing. Torque resource manager.
http://docs.adaptivecomputing.com/torque/6-0-0/Content /topics/torque/2-
jobs/monitoringJobs.htm.

5. Fujitsu. Interconnect topology-aware resource assignment.
http://www.fujitsu.com/global /Images/technical-computing-suite-bp-sc12.pdf.

6. Yiannis Georgiou and Matthieu Hautreux. Evaluating scalability and efficiency of
the resource and job management system on large HPC clusters. In JSSPP 2012,
Shanghai, China, pages 134-156, 2012.

7. Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adele Villiermet.
Topology-Aware Job Mapping. International Journal of High Performance Com-
puting Applications, 2017. Accepted for publication.

8. Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adele Villiermet.
Topology-aware resource management for HPC applications. In Proceedings of the
18th International Conference on Distributed Computing and Networking, Hyder-
abad, India, January 5-7, 2017, page 17, Hyderabad, India, January 2017. ACM.

9. E. Jeannot and G. Mercier. Near-Optimal Placement of MPI processes on Hierar-
chical NUMA Architectures. In Pasqua D’Ambra, Mario Rosario Guarracino, and
Domenico Talia, editors, Euro-Par 2010 - Parallel Processing, 16th International
FEuro-Par Conference, volume 6272 of Lecture Notes on Computer Science, pages
199-210, Ischia Italie, SEPT 2010. Springer.

10. Emmanuel Jeannot, Guillaume Mercier, and Frangois Tessier. Process Placement
in Multicore Clusters: Algorithmic Issues and Practical Techniques. IEEE Trans.
Parallel Distrib. Syst., 25(4):993-1002, 2014.

11. Oracle. Grid engine.

12. PBSWorks. Pbs. http://www.pbsworks.com/PBSProduct.aspx?’n=PBS-
Professional&c=0verview-and-Capabilities.

13.

14.

15.

C. Smith, B. McMillan, and I. Lumb. Topology aware scheduling in the lsf dis-
tributed resource manager. In Proceedings of the Cray User Group Meeting, 2001.
AndyB. Yoo, MorrisA. Jette, and Mark Grondona. Slurm: Simple linux utility for
resource management. In Job Scheduling Strategies for Parallel Processing, pages
44-60. 2003.

Hao Yu, I-Hsin Chung, and Jose Moreira. Topology mapping for blue gene/l
supercomputer. In Supercomputing’06, New York, NY, USA, 2006. ACM.

