Application of sequential pattern mining to the analysis of visitor trajectories

Nyoman Juniarta, Amedeo Napoli

To cite this version:

Nyoman Juniarta, Amedeo Napoli. Application of sequential pattern mining to the analysis of visitor trajectories. BDA 2017-33ème conférence sur la Gestion de Données - Principes, Technologies et Applications, Nov 2017, Nancy, France. hal-01667442

HAL Id: hal-01667442
https://hal.inria.fr/hal-01667442
Submitted on 19 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Application of sequential pattern mining to the analysis of visitor trajectories

Nyoman Juniarta, Amedeo Napoli nyoman.juniarta@loria.fr, amedeo.napoli@loria.fr

Introduction

In this work, we demonstrate the proof of concept of clustering 254 visitors based on their trajectories in a museum. We used a real dataset from Haifa Museum (Figure 1), where each trajectory is treated as a sequence of itemsets. We applied $\operatorname{sim}_{\text {ACS }}$ as a similarity measure between any two sequences.

START	END	ARTIFACT
\ldots	\ldots	..
$12: 47: 23$	$12: 47: 29$	GlassOvenVessels
$12: 48: 34$	$12: 48: 39$	WoodenTools
$12: 48: 51$	$12: 49: 46$	ReligionAndCult
\ldots	\ldots	\ldots

Figure 1. An example of raw dataset from one visitor.

Behavior of visitors

According to [1], a visitor can be grouped as one of four defined behavior: ant, grasshopper, butterfly, and fish, as illustrated in Figure 2. These behaviors are described by the movement of a visitor around the artifacts in a museum.

Figure 2. An example of raw dataset from one visitor.

Sequence

Sequence is an ordered list of itemsets. A sequence $s=\left\langle s_{1}, s_{2}, \ldots s_{m}\right\rangle$ is a subsequence of $s^{\prime}=\left\langle s_{1}, s_{2}, \ldots s_{n}\right\rangle$ if there exist indices $1 \leq i_{1}<i_{2}<i_{m} \leq n$ such that $s_{j} \subseteq s^{\prime}{ }_{i j}$ for all $j=1 \ldots m$ and $m \leq n$.

$$
S=\langle\{a, b\},\{c, d\},\{a, c, d\}\rangle
$$

Subsequences
Not subsequences

$$
\begin{gather*}
\langle\{a, b\},\{d\}\rangle \\
\langle\{c\},\{a, c\}\rangle
\end{gather*}
$$

$\langle\{d\},\{a, b\}\rangle$

Sequence clustering

In order to cluster a set of sequences, a similarity measure must be defined. Distance between any two sequences can be measured by $\operatorname{sim}_{\text {ACS }}$ [2], that counts all their common subsequences.

$$
\operatorname{sim}_{A C S}=\frac{\phi_{A}\left(s_{1}, s_{2}\right)}{\max \left\{\phi_{D}\left(s_{1}\right), \phi_{D}\left(s_{2}\right)\right\}}
$$

$\phi_{D}(s)$ is the number of all distinct subsequences of s, and $\phi_{A}\left(s_{1}, s_{2}\right)$ is the number of all common subsequences between s_{1} and s_{2}.

Clustering of visitors

In order to group visitors according to their trajectories, each trajectories was converted into a sequence of itemsets. An itemset corresponds to an artifact, and it possesses the information about duration and distance between previous artifact. These two elements were discretized such that duration has values short and long, while distance has near and far. Example:

$$
\begin{aligned}
& v_{1}=\langle\ldots,\{\text { short, near\}, \{short, far\}, \{short, near\}, ... }\rangle \\
& v_{2}=\langle\ldots,\{l o n g, \text { far\}, \{long, far\}, \{short, near\}, ... }\rangle
\end{aligned}
$$

Having the sequences of itemsets and non-Euclidean similarity measure, we applied hierarchical clustering over 254 sequences, using hclust from R software.

Result

Using 15 clusters as hclust's dendrogram cut, we obtained 4 big clusters and 11 small clusters, as shown in Figure 3.

Figure 3. Result of hierarchical clustering over 254 visitors.

We calculated the presence of four possible itemsets in each cluster to map them into four visiting patterns. An ant corresponds to \{long, near\} itemset, while fish contains \{short, near\}. The \{long, far\} itemset can be correlated with both butterfly and grasshopper, but the latter has relatively short sequence.
Furthermore, within the 11 small clusters, the four possible itemsets have relatively the same support. This suggests that they correspond to visitors who frequently change their behavior while visiting the museum.

Acknowledgments

The thesis of Nyoman Juniarta is financed by the Région Grand-Est and the European project CrossCult.

References

[1] Massimo Zancarano et al. 2007. Analyzing museum visitors' behavior patterns. In International Conference on User Modeling. Springer, 238-246.
[2] Elias Egho et al. 2015. On measuring similarity for sequences of itemsets. Data Mining and Knowledge Discovery 29, 3, 732-764.

