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Exporting an Arithmetic Library from Dedukti to
HOL∗

François Thiré1

1 LSV
2 ENS Paris-Saclay
3 INRIA

Abstract
Today, we observe a large diversity of proof systems. This diversity has the negative consequence
that a lot of theorems are proved many times. Unlike programming languages, it is difficult for
these systems to co-operate because they do not implement the same logic. Logical frameworks
are a class of theorems provers that overcome this issue by their capacity of implementing various
logics. In this work, we study the STT∀βδ logic, an extension of the Simple Type Theory
that has been encoded in the logical framework Dedukti [1]. We show that this new logic is a
good candidate to export proofs to other provers. As an example, we show how this logic has
been encoded into Dedukti and how we used it to export proofs to the HOL family provers via
OpenTheory [2].
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1 Introduction

There are nowadays, many proof systems, e.g. Matita, Coq, HOL Light, etc. but although
they share the same goal, these systems are based on different logics. In these systems,
Fermat’s little theorem requires to prove about 300 hundreds lemmas that are part of the
arithmetic library of the system. Elaborate such a library can be a tiresome work and we
would like to be able to translate proofs from one system to another.

The aim of this paper is to investigate the possibility to export an arithmetic library
from one proof system to others. To achieve this goal, we use the logical framework Dedukti
that is able to express several logics. In particular, we will explain how the logic STT∀βδ,
an extension of STT defined in this paper is convenient to express arithmetic statements
and can be easily encoded in Dedukti to be afterwords exported to other proof systems. In
particular, we will show how we have exported an arithmetic library from STT∀βδ to the
proof systems OpenTheory.

1.1 Why interoperability is a problem
The lack of standard in the field makes interoperability between proof systems difficult.
There are several problems that may arise at different levels. The first level is on the logical
point of view where a statement can have several equivalent definitions. As an example, the
well-foudness property for an order can be defined either as:

1. Every subset of E as a minimal element
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Logical Framework U

U[A]U[B]
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thmathmb

(a) Interoperability: first solution

Logical Framework U

U[A]U[B]

AB
thmathmb

(b) Interoperability: second solution

Figure 1 Interoperability with a logical framework

2. There is not infinite decreasing sequence

For example, the proof system HOL Light implements the first definition while the Coq
system implements the second. Moreover, the equivalence between these definitions depends
on the logic. Showing the equivalence needs one formulation of the axiom of choice that is
not provable in Coq for example. The second level is that two statements can be syntactically
different but convertible such as:

1. ∀n,m ∈ N, n+m = m+ n

2. commutative +

where commutative is defined as λf . ∀n m, f n m = f m n. Finally at the third level,
there is an issue with the name of the statements themselves. For example, the commutativity
of addition is called add_comm in Coq v8.6 or plus_comm in HOL4.

But developing from scratch a whole library is difficult and time-consuming. For example
proving the Feit-Thompson theorem [3] took several man-years and it is not imaginable
to prove such theorems from scratch in several proof systems. It is therefore necessary to
develop solutions to make interoperability between proof systems easier.

1.2 Logical Frameworks and Interoperability
One one hand, interoperability is not possible in general, since some logics are more expressive
than others. For example, one may quantify over proofs in Coq that it is not possible in
HOL. On the other hand, it is not conceivable to develop for every pair of proof systems, a
specific translation between them because there would be a quadratic number of translations.

Logical frameworks is a solution to overcome these two issues. They are a special kind of
formal provers where different logics and proof systems can be specified. Logical frameworks
can be used in two different ways to solve this problem that are exposed in Fig. 1 and
explained below. Suppose that in the proof system A a theorem thma needs a proof of
theorem thmb proved in the proof system B. In the following, if the system U is a logical
framework and A is a proof system, we denote U [A] the encoding of A in U .

A first solution is to use the logical framework to encode both proofs and combined them.
Then check that the combined proof (understandable by the logical framework) is correct.
This solution raises several problems: there are two definitions for the same objects, and
one needs to prove that both representations are isomorphic; a second problem is that the
proof is also expressed in a logic that is not obviously consistent even if it is the union of two
consistent logics. This solution has already been explored by Cauderlier in [4].

In this paper, we are interested in a second solution. This solution as described in second
picture of figure 1 can be decomposed in three steps. We first translate thmA from the proof



François Thiré Access XX:3

system A to its encoding in U [A]. Then translate thma from U [A] to U [B]. And finally
translate thma from U [B] to the proof system B. In this process, the first and last steps
are total functions. However, the second step is a partial function since the translation is
not always possible. For example, proof irrelevance is not expressable in HOL but it is in
CiC. Also, one might think that translating proofs from U [A] to U [B] is quite similar to
translating proofs from A to B, and therefore this step is also specific for the two proof
systems A and B. This is not completely true for the following reasons:

Working inside a logical framework may unify the transformations: Inductive types from
Matita or Coq will be encoded the same way in a logical framework. Moreover, if one
wishes to transform inductive types in the theory encoded in that logical framework, that
transformation does not depend on the prover where the terms are coming from but only
on the encoding.
It is possible to cut the translation in smaller steps that can be shared between several
transformations.
If a system A is a subsystem of a system B, then one can directly translate proofs from
the encoding of A to the system B directly.

1.3 Contribution
For this work, we are going to use Dedukti as our logical framework. Dedukti is based upon
the λΠ-calculus modulo theory, an extension of LF [5] with rewrite rules [1]. This extension
has three main advantages:

It is easier to express different systems in Dedukti than in LF
Proofs encoded in Dedukti are smaller thanks to rewrite rules.
Encodings can be shallow (defined in section 2) in most cases (such as STT∀βδ)

The last property mentioned above is important since one problem that could arise with
translations and encodings is to pollute statements so that statements become unreadable
and unusable. This can be avoided thanks to shallow encodings.

Our aim is to fully export the Fermat’s little theorem coming from an arithmetic library
encoded in STT∀βδ to OpenTheory and Coq. OpenTheory is already an interoperability tool
that allows to share proofs between several implementations of HOL. Therefore, targeting
OpenTheory allows us to get the proofs in every system that support OpenTheory. We have
decided to take an arithmetic library for two reasons. First, because arithmetic is a branch
of mathematics that is very common and therefore we can expect that every formal provers
is capable of proving arithmetic statements. Second, this library is neither too small nor too
big to make experimentations (340 lemmas).

STT∀βδ is an extension of STT with prenex polymorphism and is modulo βδ1. We think
that this logic is particularly well suited to export arithmetic proofs to other proof systems.

2 Dedukti and STT∀βδ

2.1 Dedukti
Dedukti is a logical framework that implements the λΠ-calculus modulo theory, a calculus
that extends LF with user-defined rewrite rules. These rules might are used in the convertib-
ility test. The syntax and the type system of λΠ-calculus modulo theory are presented in

1 δ meaning the (un-)folding of constants
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Terms A,B,t,u ::= Kind | Type | Πx : A. K | A B | λxA. B | x
Contexts Γ ::= ∅ | Γ, x : A | Γ, t ↪→ u

Figure 2 Dedukti syntax

[ ] well-formed
empty ctx

Γ ` A : s
Γ, x : A well-formed

ctx sort

Γ ` t ↪→ well-formed
Γ, t ↪→ u well-formed

ctx ↪→
Γ well-formed

Γ ` Type : Kind
ctx Type Kind

Γ well-formed (x : A) ∈ Γ
Γ ` x : A

variable
Γ ` A : Type Γ, x : A ` B : s

Γ ` ΠxA. B : s
prod

Γ ` A : s Γ, x : A ` B : s Γ, x : A ` t : B
Γ ` λxA. t : ΠxA. B

abs

Γ ` t : ΠxA. B Γ ` t′ : A
Γ ` t t′ : B

app
Γ ` A : s Γ ` t : A A ≡βΓ B

Γ ` t : B
conv

Fig. 3 λΠ typing system

Fig 2 and 3. The type system is not complete because we do not present how to derive the
judgment Γ ` t ↪→ u. A complete description of the system can be found in [6]. Roughly, a
rewrite rule t ↪→ u is well typed when the types of t and u are the same. One advantage of
using rewrite rules is that more systems can be encoded in Dedukti using a shallow encoding.
Such encoding has the two following properties: A binder of the source language is translated
as a binder in the second language (using HOAS for example) and the typing judgment from
the source language is translated as a typing judgment for Dedukti. This means that we can
use the type checker of Dedukti to check directly if a term encoded in Dedukti is well-typed.
The next two paragraphs are dedicated to the STT∀βδ system and its (shallow) encoding in
Dedukti.

2.2 STT∀βδ

Before going down to a full description of STT∀βδ, we want to stress one our two points
about interoperability. This will explain some choices made in STT∀βδ such has it is possible
to declare constants.

2.2.1 How interoperability should work
Let’s say that in the system A, I have a proof of ∀ (x y : N), x+ y = y + x, in general the
system do not define natively the type N nor the operator +, these types and operators are
user-defined. In Coq, N is a inductive type, but in HOL, it is a type operator. The same
occurs for + where in Coq it is define has a fixed point but in HOL it is defined using two
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equalities (there is no fixed point operator). Let denotes +A the operator + in the system A.
A naive inspection on interoperability could be seen as how to translate the theorem

ΣA; ∅ ` ∀ (x y : NA), xA + y = y +A x

to

ΣB , ∅ ` ∀ (x y : NB), xB + y = y +B x

. But this is problematic for the following reasons:
Definition of a type is not unique. For example, in Coq, natural numbers have three
different definitions. Which one should be used?
If one use an intermediate system to translate these proofs, the encoding from the first
system to the intermediate may degrade the original definition. Reconstitute the original
type or constant might be difficult. For example, the inductive of the natural numbers is
translated as four declarations (N, 0, S, the recursor definition) and two rewrite rules in
Dedukti. But from these declarations and these rewrite rules, it is difficult to identify
that this correspond to inductive definition of natural numbers because we cannot rely
on the names.
Finally, if one wants to automatize this translation, it is in general impossible to guess
the definition of every types and constants involved in the development inside the target
system. For example, if one identify in the previous example that this is the natural
numbers, how to automatize the translation to the target system without hard-coding
the definitions of some pre-define types and pre-define constants?

For all of these reasons, our translation process produces a library where the definition of
some constants are axiomatized.

The target user can use the definition he wants as long as the axioms related to the
constant are provable
The intermediate do not care of the meaning of some declarations nor some axioms. It
translates simply what it sees.
There is no more problems regarding automation since there is no guess nor hard-coding
to do

2.2.2 A description of STT∀βδ

STT∀βδ is an extension of STT with prenex polymorphism and type operators. A type
operator is constructed using a name and an arity. This allows to declare types such as bool,
nat or α list. The polymorphism of STT∀βδ is restricted to prenex polymorphism as full
polymorphism would make this logic inconsistent2 [7]. The STT∀βδ syntax is presented in
Fig. 4. Introducing types operator makes Prop and→ redondante since they can be declared
as type operators, respectively of arity 0 and 2. But these two types have a particular role
in the typing judgment that is why we let them in the syntax. Also, STT∀βδ allows to
declare and define constants. Declaring constants is better for interoperability as discussed
in section 2.2.1. The typing system and the proof system are as expected and presented
in Fig. 5 and Fig. 6. Also notice that we identify in STT∀βδ the terms t and t′ if they are
convertible modulo β and δ (unfolding of constants).

The meta theory of STT∀βδ is proved in the full version of this paper.

2 This papers shows also that omit types annotations for polytypes would make the logic inconsistent
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Type operators p
Type variables X
Monotypes A,B :≡ X | Prop | A→ B | p A1 ... An

Polytypes T :≡ A | ∀X. T
Constants cst
Constants terms c :≡ cst | c A
Terms variables x
Monoterms t,u :≡ x | c | λxA. t | t u | t⇒ u | ∀xA. t | λX. t

Polyterms τ :≡ t | A

X. τ

Typing Context Γ :≡ ∅ | Γ, t : T | Γ, X
Proof Context Ξ :≡ ∅ | Ξ, t
Constant Context Σ :≡ ∅ | Σ, cst = τ : T | Σ, cst : T | Σ, (p : n)
Typing Judgment T :≡ Σ; Γ ` τ : T
Proof Judgment P :≡ Σ; Γ; Ξ ` τ
Type well-formed Σ; Γ ` A wf
Typing context well-formed Σ ` Γ wf
Constant context well-formed Σ wf

Figure 4 STT∀βδ syntax

I Theorem 1. STT∀βδ is consistent.

I Theorem 2. The type checking and proof checking in STT∀βδ is decidable.

2.2.3 Example: Equality in STT∀βδ

This paragraph explains how to implement Leibniz equality (denote =L) in STT∀βδ. Its type
will be ∀X. X → X → Prop and can be inplemented as: λX. λxX . λyX . ∀PP→Prop. P x⇒
P y. From this definition, it is possible to prove that =L is reflexive expressed by the following
statement

A

X. ∀xX . x =L x

using the following derivation tree:

=L;X,x : X;P x ` P x
assume

=L;X,x : X; ∅ ` P x→ P x
⇒I

=L;X,x : X; ∅ ` x =L x
conv

=L;X; ∅ ` ∀xX . x =L x
∀I

=L; ∅; ∅ ` A

X. ∀xX . x =L x

A

I

2.3 Dedukti[STT∀βδ]
Thanks to Higher-order Abstract syntax (HOAS), we have a shallow encoding of STT∀βδ in
Dedukti shown in 7.

For the types, we declare two constants type and ptype that are respectively the types for
the types schema and the type of STT∀βδ. Therefore every type of STT∀βδ will be encoded
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X ∈ Γ
Σ; Γ ` X wf

WF var
Σ; Γ ` Prop wf

WF prop

Σ; Γ ` A wf Σ; Γ ` B wf
Σ; Γ ` A→ B wf

WF fun
Σ ` Γ wf

Σ ` Γ, X wf
WF ctx var

(p : n) ∈ Σ Σ; Γ ` Ai wf
Σ; Γ ` p A1 . . . An wf

WF tyop app
∅ wf

WF empty

Σ ` Γ wf Σ; Γ ` A wf
Σ ` Γ, x : A wf

WF ctx var
Σ wf p 6∈ Dom(Σ)

Σ, (p : n) wf
WF tyop

Σ wf cst 6∈ Dom(Σ) FV (T ) = ∅
Σ, cst : T wf

WF cst decl

Σ wf cst 6∈ Dom(Σ) Σ; ∅; ∅ ` τ : T
Σ, cst = τ : T wf

WF cst defn
Σ wf Σ ` Γ wf
C, x : A ` x : A

var

C ` f : A→ B C ` t : A
C ` f t : B

app
C, x : A ` t : B

C ` λxA. t : A→ B
abs

C ` t : Prop C ` u : Prop
C ` t⇒ u : Prop

imp
C, x : A ` t : Prop
C ` ∀xA. t : Prop

forall

C, X ` t : T
C ` λX. t : A

X. T
poly intro

FV (B) ⊆ C C ` c : A

X. T

C ` c B : T [X := B]
cst app

typeof(C, cst) = T

C ` cst : T
cst

C, X ` τ : Prop
C `

A

X. τ : Prop
Poly prop

Fig. 5 STT∀βδ typing system
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C ` t : Prop
C, t ` t

assume

C ` t C ` t⇒ u

C ` u
⇒E

C, t ` u
C ` t⇒ u

⇒I

C ` ∀xA. t C ` u : A
C ` t[x := u]

∀E

C, x : A ` t x 6∈ C
C ` ∀xA. t

∀I
C `

A

X. τ FV (A) ⊆ Γ
C ` τ [X := A]

A

E

C, X ` τ
C `

A

X. τ

A

I

C ` t t ≡βδ t′

C ` t′
conv

Fig. 6 Proof system

as an object in Dedukti. That is why we need a coercion encoded by the constant etap to
coerce a STT∀βδ type to a Dedukti type. The constant eta is not necessary but it makes
the encoding clearer. To go from type to ptype we declare the constant p. Then we need
constants to represent type constructors of STT∀βδ: bool for Prop and →̇ for →. Each type
constructor is encoded by a Dedukti constant of type type→ . . . type with n+ 1 occurences
of type if the arity of p is n. Finally, we use the constant forallKtype to encode polymorhic
types.

For the terms, since the encoding is shallow, we do not need constants for abstractions and
applications. We only need two constants for ∀ and ⇒ that encode respectively forall and
impl. We also need another constant to encode polymorphic propositions with forallKbool.
Finally, we add rewrite rules to make the encoding works. For example we want that an
encoding of a term of type Prop→ Prop of STT∀βδ is a abstraction in Dedukti. This is
possible thanks to the rewrite rule:

etap (p (arr l r)) --> eta l -> eta r

A STT∀βδ constant will be encoded by a Dedukti constant. We explain below how to
translate Leibniz equality and a reflexivity proof in Dedukti[STT∀βδ]. The full translation
can be found in the full version of this paper.

2.3.1 A proof of reflexivity:
The translation of Leibniz equality in Dedukti[STT∀βδ] is as follow. First the type of =L is
translated as:

etap (forallKtype (X:type => arr X (arr X bool)))

then its definition is translated as

A:type => x:(eta A) => y:(eta A) =>
forall (arrow A prop) (P:(eta (arrow A prop)) => impl (P x) (P y)).

Finally, the proof of refl is translated as
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type : Type

→̇ : type→ type→ type

bool : type

eta : type→ Type

ptype : Type

p : type→ ptype

etap : ptype→ Type

forallKtype : (type→ ptype)→ ptype

eps : eta bool→ Type

impl : eta(bool→̇bool→̇bool)
forall : Πt : type. eta((t →̇ bool) →̇ bool)

forallKbool : (type→ eta bool)→ eta bool

eta ↪→ λt. etap(p t)
etap(p(arr l r)) ↪→ eta l→ eta r

etap(forallKtype f) ↪→ xtype → etap (f x)
eps(forall t f) ↪→ xeta t → eps (f x)
eps(impl l r) ↪→ eps l→ eps r

eps(forallKbool f) ↪→ xtype → eps (f x)

Figure 7 Signature for STT∀βδ in Dedukti

A:type => x:(eta A) => P : (eta (arr A bool)) => h : eps (P x) => h.

that is of type

eps (forallKbool (X:type => forall X (x:(eta X) => leibniz X x x))

which is the translation of

A

X. ∀xX . x =s x

Notice that each introduction rule leads to the introduction of an abstraction while an
elimination rule leads to the introduction of an application.

One can prove that this encoding is sound and complete: every statement thm are
provable in STT∀βδ if and only if the JthmK is provable in Dedukti[STT∀βδ].

I Theorem 3 (Soundness and completness). This encoding is sound and complete

Proof. By mutual induction on the derivability of each judgment. J

3 OpenTheory

HOL (for higher order logic) is a logic that is implemented in several systems with some minor
differences. OpenTheory is a tool that allows to share proofs between several implementations
of HOL. Since we are targetting OpenTheory, we will mostly refer to the logic defined by
OpenTheory. It is a logic inspired by Q0 where the only logical connective is the equality.
Terms are the one of STLC with an equality symbol while the type system extends the
one of STLC by declaring type operators and prenex polymorphism. The proof system of
OpenTheory can be found in Fig. 8.
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t ` t
assume

Γ ` t = u

Γ ` λv.t = λv.u
absThm

Γ ` t1 = u1 ∆ ` t2 = u2

Γ ∪∆ ` t1 t2 = u1 u2
appThm

t1, . . . , tn ` u
axiom

` (λx.t)u = t[u/x]
β

Γ ` t ∆ ` u
(Γ− u) ∪ (∆− t) ` t = u

deductAntiSym
Γ ` t ∆ ` t = u

Γ ∪∆ ` u
eqMp

Γ ` t ∆ ` u
(Γ− u) ∪∆ ` t

proveHyp
` t = t

refl
Γ ` t

Γσ ` tσ
subst

Γ ` t = u

Γ ` u = t
sym

Γ ` t1 = t2 ∆ ` t2 = t3

Γ ∪∆ ` t1 = t3
trans

Fig. 8 OpenTheory proof system

3.1 STT∀βδ vs OpenTheory
One may notice that the two systems STT∀βδ and OpenTheory are quite close. However,
there are some differences that makes the translation from STT∀βδ and OpenTheory
tedious:

Terms in OpenTheory are only convertible up to α conversion while in STT∀βδ it is up
to α, β, δ conversion
All the connectives of OpenTheory are defined upon the equality symbol, while in
STT∀βδ they are defined upon ∀ and ⇒ connectives
Prenex polymorphism in OpenTheory is implicit. All free variables in a type are
implicitly quantified while in STT∀βδ it is explicit

These differences lead to three different proof transformations:
1. Encode the ∀ and ⇒ connectives using the equality of OpenTheory
2. Explicit each application of the conversion rule
3. Finally, we get rid of the type quantifier

3.1.1 Encoding ∀ and ⇒ using the equality
A first idea to encode STT∀βδ logic in OpenTheory would be to axiomitize all the rules of
STT∀βδ and then translate the proofs using these axioms. But translating a rule to an axiom
in OpenTheory requires to use the implication. But since OpenTheory does not know what
is an implication, suche axioms would be unusable since it would not be possible to use the
modus ponens to eliminate the implication itself. Therefore, one must find an encoding of
the ∀ and ⇒ connectives such that the rules of STT∀βδ ara admissible. Such encoding is
already known from Q0 [8]. This encoding preseneted in Fig. 9 uses two other connectives:
> and ∧ that can be defined in OpenTheory. Note that in this encoding, the definition of >
may remain abstract but the definition of ∧ is needed to prove the admissibility of the rules
of STT∀βδ. These definitions can be easely translated as axiom in OpenTheory.
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>
x ∧ y :≡ λf . f x y = λf . f > >
x→ y :≡ x ∧ y = x

∀x.P :≡ λx. P = λx. >

Figure 9 Encoding of ∀ and → in Q0

We stress here that it is really important to axiomatize these definitions and not to
define new constants. The difference is that it will be possible to instantiate latter these
connectives by the true connectives of HOL as long as these axioms can be proved regardless
of their definition in HOL. Also, these axioms are not too strong to satisfy because in HOL,
propositional extensionality3 is admissible. Using this encoding, it is possible to derive all
the rules of STT∀βδ in OpenTheory using the four axioms below. Below, we proof the
admissibility of the ∀I rule:

Π
C, x : A ` t x 6∈ C

C ` ∀xA. t

Below, Γ is the translation of C in OpenTheory4.

Π
Γ ` t Γ ` >

Γ ` t = >
Γ ` λx. t = λx. >

Γ ` ∀x. t x = (λx. t = λx. >)
Γ ` (λx. t = λx. >) = ∀x. t x

Γ ` ∀x. t x

The right branch is closed thanks to the forall axiom. After this translation, the syntax of
the terms is the same as STT∀βδ except that we add an equality symbol and the connectives
∀ and ⇒ become defined constants.

3.1.2 Eliminate β, δ reductions
The decidability of STT∀βδ relies on the fact that the term rewriting system defined by ↪→β

and ↪→δ is convergent. This means that to decide is t ≡βδ u we can compute the normal
form of t and u and check that they are equal up to α. This means that the conversion test

Γ ` t Γ ` t ≡βδ u
Γ ` u

can be reduced to

3 ∀P,Q, (∀x, P x = Q x⇒ P = Q)
4 In OpenTheory, free variables such as x does need to appear inside the context
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Γ ` t Γ ` t ↪→∗βδ t′ Γ ` u ↪→∗βδ u′ Γ ` t′ =α u
′

Γ ` u

Since equality in OpenTheory is also modulo α, the last judgment is not a problem
anymore. The problem remains to translate t ↪→βδ u in OpenTheory.

To handle β and δ OpenTheory has two rules:

Γ ` c = t Γ ` λx. t u = t[x := u]

However we need to apply these rules inside a context. In STT∀βδ, a context can be
described by the following grammar:

C ::= · | C u | t C | λx. C |

A

X. C | C ⇒ u | t⇒ C | ∀xA. C

The goal is to derive the following rule for every context C:

Γ ` t ↪→βδ u

Γ ` C[t] ↪→βδ C[u]

This is done inductively on the structure of C. To do that, we need an equality judgment
that goes through the context. In OpenTheory, there are two rules to handle abstractions
and applications. We need to derive such rules for the connectives of STT∀βδ. Here we show
only the admissibility of

Γ ` p = p′ Γ ` q = q′

Γ ` p⇒ q = p′ ⇒ q′

Γ, p⇒ q ` p⇒ q

Γ, p′ ` p′
Γ ` p = p′

Γ ` p′ = p

Γ, p′ ` p
Γ, p⇒ q, p′ ` q Γ ` q = q′

Γ, p⇒ q, p′ ` q′

Γ, p⇒ q ` p′ ⇒ q′
...

Γ ` p⇒ q = p′ ⇒ q′

We put dots for the right part of the DeductAntiSym rule because the proof is
symmetric.

From this rule, it is easy to derive the rule for context:

Γ ` C[t] = C[t′] Γ ` u = u

Γ ` C[t]⇒ u = C[t′]⇒ u
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3.1.3 Suppress the type quantifier

Since OpenTheory implicitely quantifies over free types variables, we need to remove the ∀
constructor on types and the Aconnective. But we cannot just remove these symbols, we
also need to avoid capture. To do that, we need to do two things:

Ensure that in each type, all the bound variables have a different name
Replace each occurence of the A

E by a renaming step with the subst rule of OpenTheory

So

C `

A

X. τ FV (A) ⊆ Γ
C ` τ [X := A]

A

E

is translated as

C ` τ Z fresh

C ` τ [X := Z]
C ` τ [Z := A]

4 From Dedukti[STT∀βδ] to Coq

Going from STT∀βδ to Coq is really easy since all the constructions in STT∀βδ are possible
in Coq. However, some subtleties comes from types operators and constant declarations. A
type operator such as nat and the two declared constants 0:nat and S : nat -> nat would
be ideally translated as an inductive type. However, it is really difficult (maybe impossible?)
to do that for all inductive types in an automatic way. But this is not a real problem since it
is possible to declare axioms and parameters in Coq. A more general observation is made
in 2.2.1. Moreover, using the Curry-De Bruijn correspondance, it is possible to translate
every proof STT∀βδ into a Coq terms. In our case, since we start from Dedukti[STT∀βδ], we
already have the lambda term.

Getting back to our reflexivity proof. One can translate the equality =s as the following
definition in Coq

Definition = : forall X:Type, X -> X -> Prop :=
fun X:Type =>

fun x:X =>
fun y:X => forall (P:X -> Prop), P x -> P y.

Then the proof of reflexivity can be translated from the Dedukti[STT∀βδ] as the coq
definition

Definition refl = : forall X:Type, forall x:X x = x :=
fun X:Type => fun x:X => fun h:P x => h.

One may notice that going from Dedukti[STT∀βδ] consists mostly to remove etap annota-
tions.
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Dedukti[STT] OpenTheory Coq
size (mb) 1.5 41 1

translation time (s) - 18 3
time to check (s) 0.1 13 6

Table 1 Arithmetic library translation

5 The arithmetic library

We have implemented these transformations and we have used them on an arithmetic library
encoded in Dedukti[STT∀βδ]. The results can be found in the table 1.

These results show that the difficult translation needed for OpenTheory impacts on the
type checking time and the size of the library. Though, this time seems reasonable. The final
statement for Fermat’s litthe theorem we get in Coq is the following:

Definition congruent_exp_pred_SO :
forall p a : nat,
prime p -> Not (divides p a) -> congruent (exp a (pred p)) (S O) p.

In the library, the constants prime, congruent and pred are defined by the library while
the constants exp, Not, O and S are declared by the library and should be instantiated by the
user. Once these constants are instantiated (with a functor mechanism of Coq for example),
the theorem is ready to use. The instantiation for these constants cannot be anythyng, they
have to satisfy some axioms. For the constant exp, the two following axioms has to be
satisfied:

Axiom sym_eq_exp_body_0 :
forall n : nat, (S O) = (exp n O).
Axiom sym_eq_exp_body_S :
forall n m : nat, (times (exp n m) n) = (exp n (S m)).

It is quite easy to come with the following definition for exp:

Fixpoint exp (n m : nat) : Datatypes.nat :=
match m with
| O => S O
| S m => n * exp n m
end

For the arithmetic library, one has to give 40 definitions for constants and prove 80
axioms. All the constants definitions follow from their name or from the axioms they have to
satisfy, and hence the axioms are easy to prove.

6 Conclusion

In this paper, we used Dedukti to export an arithmetic library from the STT∀βδ logic to the
proof system Coq and the proof system OpenTheory. We showed how STT∀βδ is a simple
logic that can be encoded easely in Dedukti and is powerful enough to express arithmetic
proofs. The differences between OpenTheory and STT∀βδ makes the translation from the
later to the former a bit tedious. To overcome this issue, we have isolated three main
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differences between the two systems and for each difference, proposed a translation. While
the translation to OpenTheory is tedious, we show how the translation to Coq is very easy
since it is basically just an embedding. Finally, we propose a framework for interoperability
between systems so that it is effectively possible to reuse a developement from one system to
another.

6.1 Future work
We would like to export this library to other proof systems such as PVS or Agda. While for
Agda, the translation should be similar to the one of Coq, for PVS this is a challenge since
there is no proof term but only tactics. In other word, each rule should be translated by an
application of one or more tactics and the behaviour can make this translation a bit tricky.

We also would like to export more arithmetic proofs and other proofs that could be
encoded in the logical framework Dedukti. Though this work requires to be able to translate
these proofs in Dedukti[STT].

Finally, we hope that this work is the beginning of a process that could lead to a
standardization of proofs. A first step would be to standardize this arithmetic library so that
every proof systems share the same arithmetic library.
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