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Abstract

A domain decomposition method which couples a high and a low-fidelity model is proposed to
reduce the computational cost of a flow simulation. This approach requires to solve the high-fidelity
model in a small portion of the computational domain while the external field is described by a
Galerkin-free Proper Orthogonal Decomposition (POD) model. We propose an error indicator to
determine the extent of the interior domain and to perform an optimal coupling between the two
models. This zonal approach can be used to study multi-body configurations or to perform detailed
local analyses in the framework of shape optimisation problems. The efficiency of the method to
perform predictive low-cost simulations is investigated for an unsteady flow and for an aerodynamic
shape optimisation problem.

Keywords— POD, Reduced Order Model, boundary conditions, shape optimisation, Galerkin-free
model

1 Introduction

One of the main issues in the simulation of fluid flows is the definition of appropriate boundary con-
ditions. In most cases, the dilemma of the boundary conditions dictates de-facto the choice of the
computational domain. Generally speaking, the computational domain is extended from the region of
interest until its boundaries fall in a region for which some values or model for the boundary condition
may be derived. Unfortunately, even when relaxing on the position of the boundary condition, exact
information regarding the values are unknown in most cases. The dominant approach consists in trying
to minimise the spurious effects of the boundary conditions by locating them as far as possible from
the crucial region or at some natural choices (like sonic throats in nozzles). In fact, one of the crucial
(empiric) engineering know-how, is to evaluate the trade-off between size of the computational domain
and accuracy of the boundary conditions and how this choice impacts on the over-all design work-flow.
A systematic approach to this problem is still out of reach for most industries, since error-bounds and
uncertainties should be propagated and quantified throughout the entire design process.

In external aerodynamics the computed body forces are particularly sensitive to the location of the
far-field boundaries where undisturbed values are assumed. In order to reduce the computational do-
main, two different families of approaches can be found in literature. A first set of family focuses on the
implementation of absorbing and non-reflecting boundary conditions for both compressible and incom-
pressible flows (see for example [41] and [29]). The main idea behind these methods is to allow the correct
propagation of starting waves, which are generated at the body, out of the computational domain as if
the domain was unbounded. The use of these boundary conditions introduces several benefits but the
requirements on the size of the computational domain can still be demanding. For example, the distance
between a lifting body and the far-field boundary modelled with non-reflecting boundary conditions is
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up to hundreds times the characteristic size of the body [11].

Another family uses simplified flow models to derive boundary conditions closer to the solid. These
techniques rely on the observation, that non-linear, viscous or rotational effects decay far from the body
and that a simpler model may express the boundary conditions. Such an approach was proposed by
Thomas and Salas [52] for flows around lifting bodies through a point vortex correction method. In their
approach, the velocity boundary condition is improved by introducing a correction given by the velocity
induced by a point vortex located on the body, whose intensity is derived by monitoring the circulation
around the body. In other words, the knowledge of the computed flow field inside the domain is used to
correct and improve automatically the boundary condition. In this way, the size of the computational
domain can be significantly reduced without introducing a significant dependence of the solution on the
shape of the external boundary. A similar approach has been proposed for the continuation of inviscid
vortex patches in 2D configurations [22].

For internal flows, inlet and outlet conditions may be even harder to derive if the simulated compo-
nent is part of large complex system. For these cases, multi-scale methods, which introduce a two-way
coupling between the component (modelled through an high-fidelity model) and the system (modelled
through a network of lumped coefficients) have proven to be a viable approach (see for example [21]).
The two-way coupling is achieved through the boundary conditions, computed by the network model
and used for the high-fidelity computation, and the lumped coefficients, computed by the high-fidelity
model and used in the network model. The cost of re-iterations introduced by the two-way coupling is
generally much lower than using the high-fidelity model throughout the entire system. For example, the
performances of aerospace propulsion systems are usually evaluated by using this approach [53]. Another
application concerns the simulation of the heart and its interaction with the circulatory system [42].
For the sake of the later discussion, we can say that boundary conditions are (sub) models, which may
predict the values of flow variables at the boundary. The errors introduced depend on the position of the
boundary and on the sophistication of the model. The easiest boundary conditions impose just a value,
while more complicated boundary conditions may mimic an entire system.

Lately, empirical Reduced Order Models (ROM) are gaining considerable attention as a generic
framework for reducing the computational cost of complex simulations. Most ROMs rely on an offline
phase where numerical experiments are performed in order to collect the empirical knowledge necessary
to derive the ROM. Within an online phase, the ROMs may be evaluated at a very competitive cost,
which is generally orders of magnitude less than the original Full Order Model (FOM). Several ROM
approaches are nowadays available: Proper Orthogonal Decomposition (POD) [13, 15, 26, 36, 45, 46, 49,
50, 59]), Proper Generalised Decomposition (PGD) [19], Reduced Basis (RB) [43, 44], Dynamic Mode
Decomposition [47], Empirical Interpolation Method (EIM) [7], Discrete Empirical Interpolation Method
(DEIM) [18], hierarchical model reduction [40].

Proper Orthogonal Decomposition is an attractive choice to define the reduced solution space. The
POD algorithm allows to identify the most relevant structures in the flow field starting from a collection
of snapshots [50]. This allows a significant compression of the information because just a few modes can
contain the information, which is associated to several snapshots, especially in unsteady problems.

In the classical POD approach the equations which govern the flow field are projected onto the POD
basis by means of a Galerkin projection [8, 36, 46]. This makes it possible to get a set of ordinary
differential equations which describe the time evolution of the POD coefficients. A typical application
of this approach is the study of flow control problems [37, 56, 57]. This approach is very powerful
since it reduces significantly the number of degrees of freedom of the discretisation. However, the
POD-Galerkin method can give unstable results, especially for high Reynolds number flows because
it misses the stabilisation effects related to the truncated small scales. The classical remedy for this
problem is based on the introduction of artificial dissipation terms which make the model stable [5,
8, 38, 55, 58]. Alternative techniques based on Petrov-Galerkin projections are also possible [17, 25].
All these approaches are characterised by a strong reduction in the number of degrees of freedom of
the discretisation but their application to the prediction of general non-linear problems is challenging
because they often require problem-dependent stabilisation terms.

A further burden of these approaches, especially in an industrial context, is the cost of the offline
phase, which is often not discussed. The number of numerical realisations in order to have a representative
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database is strongly dependent on the size of the parameter space and on the non-linearity of the problem.
Since POD modes are linear combinations of snapshots, non-linear behaviour could be recovered by
sufficiently fine-grained sampling of the parameter space or by the use of local models based on machine
learning techniques [3, 60]. For example, in aerodynamic shape optimisation O(10)-O(100) parameters
are generally used and very non-linear effects like flow separation, recirculation bubbles, shocks and
turbulence are the rule rather than the exception. In these cases, the cost of the generation of the
requested database may not be amortised by the subsequent cost savings due to the ROM.

A further obstacle in projection based ROMs is the difficulty to account for geometrical modifications
of the computational domain. Finite-element solvers can account for different element mappings if the
connectivity vector remains unaltered throughout the database. If re-meshing of the domain is necessary
or if topological changes are present, it may be very difficult or impossible to employ these methods.

In this work, a zonal Galerkin-free POD method is derived through a domain decomposition approach
in which an high-fidelity solver is applied in a subset of the computational domain while the solution
in the external region is described by a POD reconstruction. The core of this hybrid approach is a
technique to derive near-field boundary conditions for the high-fidelity solver. This methodology can
be seen as a generalisation of the point vortex correction method: instead of introducing a boundary
correction based on one mode whose shape is decided a-priori (the point vortex), a general set of correction
modes (the POD modes) is automatically built from an empirical basis. The POD reconstruction is
then dynamically coupled to the high-fidelity solution by introducing some compatibility conditions in
a weak sense. This methodology is not restricted to any class of problems, and may be adopted for
simulations of compressible and incompressible flows of external and internal problems. Anyhow the
expected computational gains may vary significantly depending on the considered problem.

Although this zonal approach gives a less impressive reduction of the computational cost with respect
to the POD-Galerkin approach, this methodology may be a more suitable alternative for an industrial
context. The method does not suffer from instability when non-linear phenomena are present and it
does not need a priori a very fine sampling in order to predict them correctly. Since the method uses the
canonical high-fidelity solver where the POD basis fails to reproduce non-linear effects, it simply exempts
the reduced basis from this responsibility. For non-linear problems, it will be shown in the test cases
considered in this paper that the sampling influences the size of the domain where the high-fidelity solver
must be employed. Consequently the method will benefit from a finer sampling, since the high-fidelity
domain may be further reduced while keeping error-bounds constant. Furthermore the method does not
rely on any one-to-one mapping of the computational domain. Mesh and even topological changes in the
geometry can be handled in a straight-forward manner.

While the basic idea of this approach has been proposed by Buffoni et al [14], in this work we present
how to exploit the empirical basis in order to decide the domain-decomposition and how to derive an
optimal coupling between the POD reconstruction and the high-fidelity solver. Furthermore the method-
ology is extended to incompressible flows.

The paper is outlined as follows. In section 2, in order to demonstrate that this approach is compatible
with virtually any CFD tool, two solvers are presented, which have been enhanced with the proposed
technology. In section 3, the zonal Galerkin-free POD approach is depicted. In section 4.1, a prediction
error indicator is presented and employed to define the domain decomposition and to perform an optimal
coupling between the high-fidelity solver and the POD reconstruction. In section 5, the performance
of this methodology is evaluated by performing a study on the interaction between a vortex and a
NACA0012 airfoil at low Reynolds numbers. In section 6, the methodology is applied in the framework
of shape optimisation of an automotive test case in order to reduce aerodynamic drag solving the Reynolds
Averaged Navier Stokes (RANS) equations. A critical discussion of the methodology, concluding remarks
and an outline of further improvements are presented in a final section.
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2 High-fidelity discretisation of incompressible Navier-Stokes
equations

The flow fields studied in this work are described by the incompressible Navier-Stokes equations (NS) or
by the incompressible Reynolds Averaged Navier-Stokes (RANS) equations. The NS equations are:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u,

∇ · u = 0,

(1)

where u and p are the velocity and pressure fields, and ν = µ/ρ is the kinematic viscosity, with µ the
dynamic viscosity and ρ is the density. The RANS equations are obtained by applying an average oper-
ator on the previous equations and introducing a closure model. The RANS model used in this work is
the Spalart-Allmaras [51] one equation model.

The simulations reported in this work are performed with two different numerical models in order
to test the zonal Galerkin-free POD approach with different numerical schemes and physical models. In
particular, the simulations on the interaction between the airfoil and the vortex are performed by means
of an immersed boundary cartesian code. The simulations related to the automotive shape optimisation
problem are performed through the OpenFoam package[28].

2.1 Projection scheme for low Reynolds number unsteady flow

The incompressible Navier-Stokes equations are solved by means of an incremental fractional step method
based on the approach of Chorin-Temam [20]. The method requires to perform a prediction step by
integrating the momentum equation with time step ∆t in order to get an approximate intermediate
state:

u∗ − un

∆t
= −1

ρ
∇p̄− [(u · ∇)u]

n+ 1
2 + ν∇2un+ 1

2 , (2)

where p̄ is an approximation of the pressure field at time n+ 1
2 , and the convection and diffusion terms

at time n + 1
2 are obtained with an Adams-Bashforth extrapolation. Usually we chose p̄ = pn and we

have:

u∗ = un + ∆t

[
−1

ρ
∇pn −

(
3

2
(un · ∇)un − 1

2
(un−1 · ∇)un−1

)
+ ν

(
3

2
∇2un − 1

2
∇2un−1

)]
. (3)

The space discretisation is based on finite differences evaluated on cartesian meshes with spacing h
for cell centered collocated variables. The convective terms are approximated by a third order upwind
scheme. The diffusive terms are approximated by a second order centered scheme.

The intermediate velocity field u∗ is not divergence-free. It is corrected by solving a Poisson problem
on the pressure correction variable Φ̂ which makes it possible to get a divergence free velocity field at
the end of the time step (un+1) :

Φ̂ = ∆t(pn+1 − pn). (4)

∇2Φ̂ = ρ∇ · u∗f . (5)

un+1 = u∗ − 1

ρ
∇Φ̂, (6)

where u∗f is the face centered velocity field built from cell centered velocities u∗ [33],

u∗∗ = u∗ +
∆t

ρ
∇pn|cc ,

u∗f = I(u∗∗)− ∆t

ρ
∇pn|fc ,
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where I denotes a function of interpolation from cell centered to face centered position. The subscripts
cc and fc denote cell centered (over 2h) and face centered derivatives (over h), respectively. The use of
u∗f helps removing the possible odd-even oscillations.

Appropriate boundary conditions are imposed on u∗ and Φ̂ to solve (3) and (5).

The presence of bodies immersed into the fluid is taken into account by a penalization term γχ(û−u∗)
which is added to the right hand side of (3). The characteristic function is χ = 1 inside the body and
χ = 0 elsewhere, γ � 0 is the penalization parameter and û is the body velocity on nodes inside the
body. In order to improve the accuracy in the wall region, the body velocity û is artificially modified in
the first layer of points inside the body to get a second order accurate velocity discretisation [10, 24].

2.2 Steady simulation of RANS equations

For the solution of the steady-state RANS equations, we use simpleFoam, an OpenFOAM solver based
on a cell-centered finite volume method, implementing the SIMPLE pressure-velocity coupling proposed
by Patankar [39]. As shown in [27], the method relies on the derivation of an explicit equation for the
pressure, starting from the semi-discretised form of the momentum equation:

apup = H(u)−∇p, (7)

where ap are the matrix diagonal coefficients and H(u) contains both the neighbours contributions and
the source terms apart from the pressure gradient.

The continuity equation can be discretised in terms of the face fluxes as:

∇ · u =
∑
f

s · uf = 0, (8)

where s is the face area vector and uf represents the velocity interpolated on the face, which is obtained
from Eq. 7:

uf =

(
H(u)

ac

)
f

−
(

1

ap

)
f

(∇p)f . (9)

Substituting Eq. 9 into Eq. 8, we obtain the discretised pressure equation:

∑
f

s ·

[(
1

ap

)
f

(∇p)f

]
=
∑
f

s ·
(

H(u)

ap

)
f

. (10)

Eq. 7, Eq. 8 and Eq.10 are solved iteratively through under-relaxation, until convergence is attained.
First, the momentum equation is under-relaxed implicitly and solved in order to obtain the predicted
velocity u?, using the pressure field from the previous iteration to compute the pressure gradient term.
u? is then used in the pressure equation to evaluate the new pressure distribution. Once that the new p is
obtained, the face fluxes are corrected and the new pressure field to be used in the momentum predictor
step is computed by under-relaxing p.

The equations are discretised with Gaussian integration, using different schemes for each term. For
the gradient terms, we use a second-order accurate centered scheme for p and u and a cell limited version
for turbulent quantities. The Laplacian terms are approximated by a blending of a bounded, first order,
non-conservative scheme and an unbounded, second order, conservative scheme. The convective terms
in the turbulence equations are discretised using a total variation diminishing (TVD) bounded scheme,
whereas linear upwind differencing is employed in the momentum equation.

3 A zonal Galerkin-free POD model

The main idea is to solve the high-fidelity model where a given degree of accuracy is required and to
approximate the solution by an empirical modal representation elsewhere. The objective is to reduce the
extent of the domain where a high-fidelity simulation is performed, see Figure 1.
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Figure 1: Zonal simulation based on domain decomposition.

The empirical low-dimensional representation is obtained by a previously computed database of high-
fidelity solutions on a large computational domain (Ω) for different working conditions or system config-
urations. This first step is performed offline. The sampling of the parameter space will strongly influence
the accuracy of the modal representation and hence the ability to perform actual predictions (configu-
rations not included in the database). In this sense, several techniques for an efficient sampling of the
parameter space have been proposed in the literature (adaptive sampling for POD-base surrogates [54],
adaptive sampling based on a leave-one-out error indicator [12, 60], compact POD bases [16], greedy
approaches based on Voronoi tessellation [9]). Here, we will limit ourself to a simple cartesian sampling
of the parameter space as explained in the following.

The whole computational domain (Ω) includes three regions: a domain (ΩHF ) where a high degree of
accuracy is required, a domain (ΩLF ) where the solution is represented by empirical modes (here POD
modes) and an overlapping region (ΩO). We have:

ΩHF ⊂ Ω, ΩLF ⊆ Ω and ΩO = ΩHF ∩ ΩLF . (11)

The high-fidelity solution and the low-order representation are matched in the overlapping domain ΩO
as explained in the following. Moreover, a criterium to determine ΩHF based on an error indicator will
be introduced in Section 4.2.

3.1 POD modal representation in ΩLF

The zonal method described in this paper can be applied to different modal representations such as
reduced basis [43, 44] or stability modes [4, 6, 34, 35] approaches. Here we focus on Proper Orthogonal
Decomposition (POD) for the description of the external region.

The phenomena considered in the present study are described by the incompressible Navier-Stokes
equations or by the incompressible Reynolds Averaged Navier-Stokes (RANS) equations. A modal de-
scription of the velocity field ũ and of the pressure field p̃ is:
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ũ(x, t) = fu(x, t) +

N∑
i=1

ûi(t)Φi(x) ûi ∈ IR,Φi ∈ IRd,x ∈ ΩLF ,

p̃(x, t) = fp(x, t) +

N∑
i=1

p̂i(t)Ψi(x) p̂i ∈ IR,Ψi ∈ IR,x ∈ ΩLF ,

(12)

where N is the number of modes, d is the space dimension and Φi and Ψi are the velocity and pressure
modes, respectively. The variable x identifies the position in space and the parameter t represents the
time if unsteady problems are considered. In steady problems, the parameter t can be seen as a parameter
which identifies the working condition or the configuration of the system.

In some applications it is useful to set the forcing fields (fu and fp) equal to the average fields
obtained by applying an average operator to all the configurations in the database. For example, in
external aerodynamic problems the average velocity field is a key quantity because it fixes the far field
velocity magnitude.

According to the approach of Sirovich [50] the POD modes (Φi, Ψi) can be computed as a linear
combination of Ns snapshots (uj(x) = u(x, tj), pj = p(x, tj)). Here, to fix notations, we briefly detail
the procedure for the velocity field but it can be applied exactly in the same way for any other variable.
In this work, the POD modes describe the difference between ũ and fu, hence we have

Φi(x) =

Ns∑
j=1

bj (uj(x)− fu(x, tj)) . (13)

Let define the discrete scalar product operator 〈·, ·〉ΩLF
according to the numerical scheme which is

used in the high-fidelity model. In this work a finite volume (FV) scheme on unstructured meshes or a
finite difference (FD) scheme on uniform cartesian meshes are used and hence we have

〈g(x),h(x)〉ΩLF
=

∫
ΩLF

g(x) · h(x)dΩ ≈
Np∑
l=1

g(xl) · h(xl)Vl, (14)

where Np is the number of degrees of freedom used by the numerical scheme to describe the solution in
ΩLF and Vl is the volume related to the lth cell of the discretisation. Let || · ||ΩLF

be the norm related
to this scalar product.

The procedure for computing the coefficients bj is based on a maximisation problem. The POD
modes are found such that the projection of the snapshots on the modes is maximised:

max
bj

[
Ns∑
k=1

〈uk(x)− fu(x, tk),Φi(x)〉2ΩLF

]
= 0 subject to ||Φi(x)||ΩLF

= 1 1 ≤ i, j ≤ Ns. (15)

When Eq. 13 is substituted in Eq. 15 an eigenvalue problem is obtained. The eigenvectors of
the resulting system give the coefficients bj required by Eq. 13. The associated eigenvalues rank the
contribution of each POD mode to the representation of the snapshot database.
In this work two completely independent POD basis are built for the velocity and pressure fields.
The approach described here for pressure and velocity is applied exactly in the same manner also to the
variables of the turbulence model when RANS equations are considered.

The eigenvalues (λi) related to the POD modes allow to estimate the contribution given by each
mode to the reconstruction of the snapshots. The sum of all the eigenvalues can be seen as the Total
Information (energy) Content related to the fluctuations in the snapshots. The Relative Information
Content (RIC) indicator can be defined as:

RIC(N) =

∑N
i=1 λi∑Ns

i=1 λi
0 ≤ N ≤ Ns, (16)
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where Ns is the number of snapshots and hence the maximum possible size of the POD basis.

Assuming that the eigenvalues are ordered with decreasing value, it is possible to choose the size
(N) of the POD basis by truncating the expansion after the first term which guarantees a given level of
information RIC > σE (for example 99.9%).

3.2 Galerkin-free POD model

In ΩO both the high-fidelity and the POD modal representation are defined. This region is the key to
perform the coupling between the two models in the zonal simulation. On one hand, the POD solution
is used to define the boundary conditions required by the high-fidelity solver. On the other hand, the
high-fidelity solution inside the overlapping region is used to evaluate the POD expansion coefficients (ûi
and p̂i) which appear in Eq.12. This introduces a feedback of the high-fidelity solution onto the POD
reconstructin which will be updated at each time step according to the evolution of the high-fidelity
solution.
In order to compute the coefficients of the POD expansion, a minimisation problem is defined. In
particular, the distance between the POD reconstruction (ũ, p̃) and the high-fidelity solution (u, p) is
minimised in the L2-norm sense in the overlapping region, in order to match the two representations:

{ûi}Ni=1 = argmin
[
〈u(x, t)− ũ(x, t),u(x, t)− ũ(x, t)〉ΩO

]
. (17)

{p̂i}Ni=1 = argmin
[
〈p(x, t)− p̃(x, t), p(x, t)− p̃(x, t)〉ΩO

]
. (18)

This leads to the definition of a small linear system (size N) whose solution gives the coefficients of
the expansion (ûi, p̂i) which match the POD and the high-fidelity solutions at the current iteration of
the zonal simulation:

N∑
i=1

ûi(t) 〈Φi(x),Φj(x)〉ΩO
= 〈u(x, t)− fu(x, t),Φj(x)〉ΩO

1 ≤ j ≤ N. (19)

N∑
i=1

p̂i(t) 〈Ψi(x),Ψj(x)〉ΩO
= 〈p(x, t)− fp(x, t),Ψj(x)〉ΩO

1 ≤ j ≤ N. (20)

The overlapping region shown in Figure 1 consists in a layer of points close to the boundary of the
high-fidelity domain. However, more general shapes can be considered. A possible criterium for the
choice of the overlapping region is reported in Section 4.3.

4 Definition of ΩHF and ΩO

4.1 A prediction error indicator

The zonal approach requires to split the computational domain in a region described by the high-fidelity
solution and a region described by the POD reconstruction. However, it is not clear how to perform this
splitting a priori. In order to answer this question an offline error indicator obtained from the snapshot
database is proposed.

The main idea is to identify the regions where the representation of the flow field by the POD basis
is strongly affected by a change in the input parameters. In order to find these zones we apply a leave-
one-out strategy to the simulation database which contains the information from Nsp sampling points,
where a sampling point represents a configuration in the space of the parameters. This method requires
to iteratively remove each sampling point from the database in turn and to use the remaining simulations
to build a new POD basis. This new basis then is used to approximate the missing configuration and to
get an insight on the ability of the basis to reconstruct new configurations.
The leave-one-out method belongs to the class of the cross-validation techniques used for model selection
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in statistics [23] and can be used as a procedure to perform adaptive sampling for building robust POD
models [12, 60].

In this work, the leave-one-out strategy is not used to improve the sampling of the database but to
get an error distribution map which can be exploited to choose the size of ΩHF and ΩO.
In order to clarify the strategy, we apply this approach to the velocity field but the same analysis can
be performed on any other variable which appears in the governing equations. Let the database include
Nsp sampling points and Nk

s be the number of snapshots related to the kth sampling point. This means

that the number of snapshots in the database will be equal to Ns =
∑Nsp

k=1N
k
s .

The Nk
s snapshots of the kth simulation (in the following denoted as ukj ) are removed from the

database and the remaining snapshots are used to build a POD basis. In this offline phase, we set
ΩLF = Ω. The missing snapshots ukj are projected onto the POD basis in the domain ΩLF :

PPOD(ukj (x)) = fu(x, tj) +

N∑
i=1

〈
ukj (x)− fu(x, tj),Φi(x)

〉
ΩLF

Φi(x). (21)

The projection PPOD(ukj ) is compared with the missing high-fidelity snapshot (ukj ). The differences

between these two fields are used to define an error indicator (ekj (x)) which represents an estimate of the
error that would be associated to the prediction of new configurations out of the database.

When the analysis is applied to the velocity field a possible approach is to define the error indicator
as the error on the velocity magnitude (|u| =

√
u · u):

ekj (x) =
∣∣|ukj (x)| − |PPOD(ukj )(x)|

∣∣ . (22)

The maximum of the reconstruction error (ek(x)) is computed over all the Nk
s snapshots of the

kth simulation that was removed from the database. The same quantity is computed for all the Nsp
configurations in the database and finally the maximum between all the configurations is computed
(e(x)). The pseudocode reported in the Algorithm 1 summarises the method.

Algorithm 1 Compute error indicator

1: for (k=1, Nsp) do{
2: Remove the Nk

s snapshots of the kth simulation from the database
3: Build a POD basis with the remaining snapshots
4: for (j=1, Nk

s ) do{
5: Compute the projection (PPOD(ukj )) of the snapshot ukj onto the POD basis

6: Compute the error indicator field ekj (x) =
∣∣|ukj (x)| − |PPOD(ukj )(x)|

∣∣
}

7: ek(x) = max
1≤j≤Nk

s

(ekj (x))

}
8: e(x) = max

1≤k≤Nsp

(ek(x))

The procedure is simplified when steady problems are considered because in that case there is only
one snapshot for each simulation (Nk

s = 1, 1 ≤ k ≤ Nsp ).

4.2 Determination of ΩHF

The error indicator field e(x) obtained by the analysis of the database can be used to estimate the required
extension of the high-fidelity domain ΩHF . In particular, the error indicator shows which are the zones
where the solution is strongly influenced by the working conditions and where the POD reconstruction
introduces large approximation errors. We propose to choose the size of ΩHF by defining a threshold on
the acceptable error σR . Ideally, ΩHF should be chosen as the set of points in which the reconstruction
error e(x) is larger than the threshold σR:

Ω̃HF = {x ∈ Ω : e(x) > σR} . (23)
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In this way, the regions where the POD model is not able to perform accurate predictions are directly
studied by means of the high-fidelity solver. Practically, Eq.23 would lead to an irregular shape of the
computational domain and so ΩHF can be chosen as a rectangular box which includes Ω̃HF .

The extension of ΩHF could become similar to the size of the full domain Ω for small values of the error
threshold σR. In this case the computational gain of the zonal approach would vanish. The occurrence
of such a situation would mean that the POD basis is not suitable to perform predictive simulations with
the required accuracy. In other words, the database does not contain enough information and should be
improved.
The error indicator field e(x) obtained at the end of the leave-one-out procedure does not allow to identify
which are the regions in the parameters space which require more exploration to improve the database.
However, it is possible to compare the Nsp different error fields ek(x) obtained during the leave-one-out
analysis: if ek(x) is significantly larger for certain values of k then it is useful to add new sampling points
in the parameters space in the neighbouring of the kth sampling point. An example of this strategy is
adopted in [60].

4.3 Determination of ΩO

After choosing the size of ΩHF it is necessary to define the overlapping region ΩO. The most natural
choice would be to set the overlapping region equal to the entire high-fidelity region ΩHF . In this way,
the coefficients of the POD expansion would be computed by minimising the distance between the high-
fidelity and the POD reconstruction in all the points of ΩHF . However, this choice could be suboptimal
when performing predictive zonal simulations.
This aspect can be understood by considering the prediction error distribution obtained by the Algorithm
1. The error distribution shows that the regions where the reconstruction error is maximum are inside
ΩHF . This means that there are some points inside ΩHF in which the POD basis is not able to predict
properly the solution of a new configuration. It could be useful to investigate how the inclusion of
these points into the overlapping region will influence the prediction error on a given goal function. In
particular, it is possible to exclude from the overlapping region all those points which are characterised
by a prediction error larger than a given threshold (σO). In other words, if the POD basis gives a very
poor prediction in a region it could be better not to use that region for the computation of the POD
coefficients. The previous idea can be exploited in the framework of a leave-one-out strategy to evaluate
the effects of the choice of the overlapping region on the prediction error related to a given goal function.
The procedure is described by the pseudocode reported in Algorithm 2 where σminO , σmaxO and ∆σO
represent the boundaries and the sampling size of the range in which σO is investigated. This analysis

can be done offline and requires Nsp
σmax
O −σmin

O

∆σO
zonal POD simulations.

Algorithm 2 Test overlapping region

1: for (k=1, Nsp) do{
2: Remove the Nk

s snapshots of the kth simulation from the database
3: Build a POD basis with the remaining snapshots
4: for (σO = σminO , σmaxO ,∆σO) do{
5: Define the overlapping region as ΩO = {x ∈ ΩHF : e(x) < σO}
6: Perform a zonal POD simulation with the chosen overlapping region
7: Evaluate the prediction error on a goal function from the zonal POD simulation

}
}

In general it is possible to perform the previous analysis for each state variable which appears in
the physical model in order to define an ad-hoc overlapping region for each variable. Alternatively, it
is possible to perform the study only on a single variable (for example the velocity) and then the same
overlapping region can be used for all the variables (velocity, pressure and turbulence model’s variables).

4.4 Extension of ΩLF and goal function

The leave-one-out strategy described at the beginning of this Section is based on the use of a POD basis
defined on the full computational domain (Ω). This is a natural choice that can be always done when
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Algorithm 1 is applied during the offline analysis.
As far as the zonal POD simulations are concerned, there are several possible choices about the extension
of ΩLF . In particular, the extension of the zone in which the POD solution is needed depends on the goal
function which is under study. Consider for example the configuration reported in Figure 1. If the goal
is the prediction of the force on the airfoil then the zonal simulation can be performed by using a POD
basis which is defined only in the high-fidelity region (ΩHF ) and in a layer of points on its boundary in
order to define the boundary conditions required by the high-fidelity solver. This is due to the fact that
the goal function can be directly computed by integrating the solution inside the high-fidelity domain
(ΩHF ) and the knowledge of the external solution is useless for this purpose. In this way, the POD basis
can be efficiently exploited to describe only the useful information and the energy ranking of the modes
will not be affected by the structures in the external flow field. This means that less modes could be
required to get a given accuracy level with respect to a POD basis defined everywhere. This approach
will be used in the example of Section 5.
On the other hand, there are configurations in which the goal function is an integral quantity which
depends on both the internal high-fidelity solution and the external POD reconstruction. The problem
studied in Section 6 is an example. In this case, the POD basis used for the predictive zonal POD
simulations must be defined also in the external region (Ω ⊃ ΩLF ⊃ ΩHF ).

5 An unsteady laminar problem: interaction between a NACA0012
airfoil and a vortex

In this Section the unsteady interaction between a NACA0012 airfoil and a vortex is studied. The vortex
can be seen as a simplified model of gust. This example is used to test the ability of the zonal POD
approach to perform low cost predictive simulations. In particular, some high-fidelity simulations are
performed for different gust configurations and then the results are used to perform low cost predictions
for new gust configurations.

The chosen working conditions are characterised by a Reynolds number based on the chord length
equal to Re = 1000 and an angle of attack α = 5◦. In this configuration, the flow field is laminar and
steady. All the lengths and velocities which will appear in the following will be considered dimensionless
and normalised with respect to the airfoil chord (c) and the far field velocity magnitude (U∞). The initial
velocity field is given by the steady solution perturbed by the introduction of a vortex whose center is in
(−3, 0). The magnitude of the velocity perturbation induced by the vortex is described by the following
equation:

q =

{
U0

r
R if r < R

U0
R2

r2 if r ≥ R
(24)

where q, r, R and U0 are the magnitude of the induced velocity, the distance from the vortex center,
the vortex characteristic radius and the vortex characteristic speed, respectively. The initial velocity
magnitude field is reported in Figure 2.
The interaction between the vortex and the airfoil leads to a strong increase in the lift coefficient (Cl)
of the airfoil which is a key quantity in the design of a wing because it defines the load applied to the
structures.

The high-fidelity simulations used to build the database are performed with the following setup. The
computational domain Ω is chosen sufficiently large (−8 < x < 8,−4 < y < 4) to include the vortex into
the initial solution. The projection scheme described in Section 2.1 is used for the discretisation of the
Navier-Stokes equations. As far as boundary conditions are concerned, the following choices are done
for the velocity variable: Dirichlet boundary conditions are used for the inlet on the left side; symmetric
boundary conditions are used on the lateral boundaries; non-reflecting boundary conditions [29] are used
for the outlet on the right side. Homogeneus Neumann boundary conditions are imposed for pressure on
all the boundaries.
A uniform cartesian mesh with 1600 × 800 points is used for the discretisation of Ω. The mesh size
is ∆x = ∆y = 0.01 so there are 100 points on the chord of the airfoil. The lift coefficient for the
undisturbed airfoil computed with the chosen mesh resolution (Cl = 0.25) is in good agreement with the
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results available in the literature (Cl = 0.25 according to [32]).

Figure 2: Initial condition for the NACA0012-vortex test case (velocity magnitude field).

5.1 Forcing terms for zonal POD simulations with time-dependent BCs

The procedure described in Section 3.2 makes it possible to update automatically the boundary conditions
of the zonal POD simulation according to what is happening inside ΩHF . However, particular care should
be taken in the definition of the forcing terms (fu, fp) which appear in Eq.12 when dealing with problems
characterised by time-dependent BCs.
Consider a body which is subjected to a time dependent perturbation in the incoming velocity, for
example a gust or a vortex which interacts with the body. At the beginning of the simulation the gust
is far from the body. The purpose of the zonal POD approach is to reduce the cost of the simulation
by reducing ΩHF to a region close to the body. However, this means that ΩHF could not include the
gust at the initial time step. According to Eqs. 17 and 18, the POD coefficients are computed by using
the information which is present inside ΩHF : if the gust is not inside ΩHF (and so it is not inside ΩO),
the coupling procedure will never activate the modes related to the gust and so the gust will never enter
inside ΩHF .
In order to avoid this shortcoming, it is possible to augment the forcing terms with functions (ug and
pg) which approximately describe the translation of the gust:

fu(x, t) = ū( x) + ug(x, t),

fp(x, t) = p̄(x) + pg(x, t),
(25)

where the quantities ū(x) and p̄(x) represent the time averaged velocity and pressure fields obtained
from a high-fidelity simulation without the gust.
The terms ug and pg represent just a pure convection of the initial perturbation. They do not include
any dissipative effect and they do not take into account the interaction between the gust and the body:
these corrections will be introduced by the POD modes.
In other words, the POD modes will now be used to describe the difference between the real solution
and an artificial solution in which the interaction between the gust and the body is neglected.
Thanks to this approach, it is possible to perform a zonal POD simulation even if the gust is not inside
ΩHF at the initial time: the time dependent forcing terms will automatically update the boundary
conditions of the high-fidelity solver in order to force the gust to enter into ΩHF .
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Table 1: Convergence of the POD pressure modes w.r.t. the number of snapshots

Mode i ∆40
20(Ψi) ∆80

40(Ψi) ∆160
80 (Ψi)

1 1.11e-02 6.59e-04 1.03e-04
2 3.41e-02 4.23e-03 3.00e-03
3 1.61e-01 1.19e-02 7.29e-03
4 2.00e-01 1.65e-02 8.46e-03
5 1.65e-01 1.05e-02 3.82e-03
6 1.43e-01 5.86e-03 2.12e-03
7 1.75e-01 4.29e-03 1.50e-03
8 2.47e-01 4.98e-03 2.76e-03
9 2.06e-01 6.69e-03 4.02e-03
10 4.21e-01 8.60e-03 2.20e-03
11 4.08e-01 9.06e-03 6.19e-03
12 5.74e-01 1.09e-02 3.07e-03

5.2 Number of modes and number of snapshots

First of all, a study on the convergence of the POD modes is performed in order to understand how
many modes and how many snapshots are required. The attention is focused on a single simulation for
a given vortex configuration and the flow field is uniformly sampled in time in order to have 20, 40, 80
and 160 snapshots. The snapshots are used to build POD bases defined on the full domain Ω, so here we
set Ω = ΩLF . The eigenvalue analysis performed on the POD bases obtained with 20 and 160 snapshots
shows that 12 modes are enough to describe 99% of the RIC for both pressure and velocity (see Eq.16).
In order to understand how many snapshots are required to assure the convergence of the first 12 POD
modes the analysis presented in Table 1 is performed. In particular, four POD bases are built using
20, 40, 80 and 160 snapshots respectively. The quantity reported in the Table 1 represents the relative
variation of the pressure mode (Ψi) defined as

∆m
n (Ψi) =

√
(Ψn

i −Ψm
i ,Ψ

n
i −Ψm

i )ΩLF

||Ψn
i ||ΩLF

=
√

(Ψn
i −Ψm

i ,Ψ
n
i −Ψm

i )ΩLF
, (26)

where n and m are the number of snapshots used to build the POD bases and the denominator was sim-
plified thanks to the fact that all the modes have unit norm by definition. The data show that when the
number of snapshots is increased the modes converge quickly. Similar results are obtained by checking
the convergence of the velocity modes. According to these results, the following study will be performed
by taking 130 snapshots from each simulation, i.e. Nk

s = 130, 1 ≤ k ≤ Nsp. The first four modes for the
velocity magnitude field are shown in Figure 3.

5.3 Analysis of the database: choice of the zonal setup

Three different databases of high-fidelity simulations (with Nsp = 4, 9, 25 in turn) are created by consid-
ering several values of vortex intensity and characteristic radius. In particular, a uniform sampling of the
space of the parameters is chosen in the range 0.2 ≤ U0 ≤ 0.3 and 0.2 ≤ R ≤ 0.4. More efficient sampling
techniques (see Section 3) could be used when the dimension of the parameter space is increased but the
uniform sampling is sufficient for the purpose of this work. The sampling points belonging to the 2× 2,
3× 3 and 5× 5 databases are shown in Figure 4.
The time evolution of the lift coefficient for the high-fidelity simulations included in the 3×3 database is

reported in Figure 5 showing its strong dependency on the chosen parameters. The time variable which
appears in this plot and in the following ones is normalised with respect to the convection reference time
obtained from the chord length and the far field velocity magnitude.
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The study presented in Section 5.2 showed that 130 snapshots contain enough information to properly
describe the unsteady flow structures which characterise a single simulation. For this reason, in the
following analysis 130 snapshots will be collected from each sampling point in the parameter space, i.e.
Nk
s = 130, 1 ≤ k ≤ Nsp. The snapshots are pre-processed by removing the undisturbed steady field and

the artificial forcing terms related to the considered gust configuration. The analysis of the RIC (see Eq.
16) shows that 45 POD modes are sufficient to get 99% of the information in the database, for all the
three considered databases. For this reason, in all the following simulations the size of the POD basis
will be fixed to N = 45.

The databases are analysed according to the leave-one-out strategy described in Section 4.2. The
results are presented in Figure 6 which shows the prediction error indicator map for the velocity magni-
tude. The larger error values are localised close to the body (whose center is in (0, 0)). The error map
is defined everywhere, also inside the solid body, because the high-fidelity solver is based on a penalised
immersed boundary approach in which the numerical solution is defined also inside the body. The results
in Figure 6 show that when the database is enriched the maximum reconstruction error is reduced and
the region where the error indicator is significant becomes smaller.
This last effect is also put in evidence in Figure 7 where the required number of mesh points in ΩHF is
reported as a function of σR. In particular, for each value of σR, the plot shows the number of mesh
points required by the smallest rectangle which includes the region Ω̃HF (see Eq.23). The number of
mesh points is normalised with respect to the number of mesh points in Ω to give a direct evaluation
of the reduction of the number of degrees of freedom. The plot shows that, for a given database, the
size of ΩHF must be increased if σR is reduced. Furthermore, for a given threshold σR, the size of ΩHF
decreases when the database is improved. This last effect is particularly evidend for σR > 0.1. For
smaller values of σR, the gain obtained by increase the number of sampling points in the database from
3× 3 to 5× 5 is not particularly strong. The 3x3 and 5x5 databases will be considered for the following
analysis and for the predictive simulations.

The domain ΩHF for the zonal POD simulations is chosen by defining a threshold on the reconstruc-
tion error (σR = 15%U∞) and by choosing a rectangular box sufficiently large to contains all the points
characterised by an error larger than this threshold, for both the 3x3 and 5x5 databases:

ΩHF =
{
x = {x, y}T : −1 < x < 3,−0.5 < y < 0.5

}
⊃ {x ∈ Ω : e(x) > 0.15U∞} . (27)

In the following study the extension of ΩHF will be kept constant while different databases will be used
to build the POD basis required by the predictive zonal simulations: this makes it possible to verify the
convergence of the zonal approach when the database is enriched.

The mesh resolution in the predictive zonal simulations is equal to the mesh resolution of the high-
fidelity simulations (100 points on the chord of the airfoil) and so there are 400 × 100 mesh points in
ΩHF . The high-fidelity solver used for these simulations requires the imposition of boundary conditions
for the variable u∗ and the pressure at the end of the time step. For this reason, the POD velocity modes
are built from snapshots of the variable u∗ and also the coupling projection (Eq. 17) is performed with
reference to this variable. Dirichlet boundary conditions are used in the zonal POD simulation for both
velocity and pressure.
The measured computational time of the zonal POD simulation is approximately 60 times smaller then
a corresponding high-fidelity simulation performed on Ω in the considered setup. This large speed-up
is related to the fact that uniform cartesian meshes are adopted in this test case. The use of adaptive
non-uniform meshes would reduce the cost of an high-fidelity simulation in Ω and the benefits of the
zonal POD approach. However, the need to accurately describe the translation of the gust from its initial
position to the airfoil would require a significant number of degrees of freedom in the far field even in the
presence of adaptive non-uniform meshes [31]. For this reason, the zonal POD approach can be useful
in this kind of problems even when using non-uniform meshes.

The overlapping region is chosen according to the procedure reported in Section 4.3 and applied to
the velocity magnitude error indicator. The overlapping region obtained by this study is used to perform
the projection for both velocity and pressure in the zonal POD simulation. In particular, ten values of the
threshold σO are tested by uniformly increasing σO from 1% to 10% of the far field velocity magnitude.
When the 3 × 3 and 5 × 5 databases are considered, there are 9 and 25 sampling points, respectively.
Therefore 90 and 250 zonal POD simulations are performed offline during this preliminary study. The
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Table 2: Threshold σO and percentage number of points in the overlapping region (NΩO
/NΩHF

)

σO/U∞ 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
NΩO

/NΩHF
1.1% 4.1% 6.9% 12% 18% 29% 39% 47% 55% 63%

computational cost related to this analysis is affordable because a zonal POD simulation is 60 times faster
than a high-fidelity simulation in the considered setup and so the cost of this analysis is comparable to
the cost of a few high-fidelity simulations.
The percentage of mesh points in ΩO with respect to the total number of mesh points in ΩHF is reported

in Table 2 as a function of the threshold σO for the analysis performed on the 3× 3 database. A similar
behaviour is obtained for the 5× 5 database.

The results of the study of the choice of ΩO for the database 3x3 are reported in Figures 8 and
9 which refer to different criteria for the evaluation of the quality of the zonal POD simulations. In
Figure 8 the error on the predicted maximum lift coefficient (Cmaxl ) is reported as a function of σO.
This error represents a key parameter because the maximum lift coefficient is a fundamental quantity
required during the design of the structure. The plot shows that, in the considered example, the best
choice for the overlapping region can be obtained by setting the threshold on the reconstruction error
between σO = 6% and σO = 7% of U∞. This optimum choice corresponds to include between 29% and
39% of the points of ΩHF into ΩO, according to Table 2.
An alternative criterium can be defined by computing the L2-norm of the lift coefficient in the simulated
time interval. The plot of this error as a function of σO is reported in Figure 9. In this case the error
reduces very slowly for σ0 ≥ 7% of U∞.

Both the considered criteria show that, in the considered test case, the prediction error grows when
the threshold is chosen too small. This could be explained by observing that the choice of a small
threshold will leave only a few points in the overlapping regions. In particular, the selected points are
characterised by the lowest reconstruction error: usually this corresponds to choose the points in which
all the snapshots are almost identical and the modes are almost zero. In this configuration, the least
square minimisation used for the coupling (Eqs. 17 and 18) can lead to inaccurate results.

When the threshold is increased the two considered criteria show a different behaviour. The prediction
error on the maximum lift coefficient has a mimimum and then tends to increase. The effect could be
explained by the fact that when the threshold is too large then the overlapping region includes points
in which the POD basis is not able to properly predict the new high-fidelity solution: the attempt to
minimise the distance between the two solutions in these regions could deteriorate the reconstruction in
the other regions.
In contrast, the L2-norm error on the lift coefficient evaluated during the simulated time interval shows
a monotone decreasing behaviour when σO is increased for almost all the configurations. This simple
comparison shows that the choice of the overlapping region should be always related to the chosen goal
function.

In the considered example all the configurations in the database give the minimum error for almost
the same choice of the parameter σO. However, it is possible to get a more general behaviour in which
different optimum values are obtained when exploring the space of parameters. In this case, a possible
approach is to set σO in a predictive zonal simulation equal to the optimal value obtained on the closest
database sampling point during the offline analysis. This last general strategy will be adopted in the
predictive simulations reported in the following.

5.4 Predictive zonal POD simulations

The zonal POD setup obtained by the analysis of the database is now used to perform some predictive
simulations in order to test the ability of the method to predict the behaviour of the system for config-
urations which are not present in the database.
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First of all, a check is performed in order to quantify the contribution given by the POD modes to
the definition of the boundary conditions in the zonal simulation. The results of this test are reported
in Figure 10. The plot shows the evolution of the lift coefficient for a reference high-fidelity simulation
performed on the large domain Ω and some predictive simulations performed on the small domain ΩHF
with different approaches.
A first prediction is done by using the high-fidelity solver on the small domain ΩHF and by setting the
same kind of boundary conditions used for the high-fidelity simulation in Ω. Since the boundaries of
the domain are now very close to the body, the flow field is strongly affected by the proximity of the
boundary and so the solution is completely altered. Even the steady lift coefficient is very far from the
reference value.
A better prediction can be performed by using the boundary conditions given by Eq. 12 with N = 0 POD
modes. This means that the boundary condition will be equal to the undisturbed steady field (computed
on Ω) plus the forcing terms which describe the advection of the vortex. This approach improves
significantly the quality of the results and can be considered as an improved boundary condition with a
correction term defined a priori. However, this approach misses the interaction between the vortex and
the body.
Finally, a zonal POD simulation (with N = 45 POD modes built from the 3× 3 database) is performed
in order to show how the introduction of the POD modes improves the boundary conditions.

A second test is performed to verify that effects of the choice of the overlapping region on the quality
of a predictive zonal simulation. Figure 11 shows the history of the lift coefficient for a test configuration
not-included in the database. The plot shows a comparison between the predictions obtained by the
zonal POD approach for three different choices of the overlapping region (σO = 5%, 7% and 9% of U∞)
and the reference values obtained by a high-fidelity simulation. The POD basis is obtained from the 3×3
database. The effects of the choice of the overlapping region are clearly visible in the Figure 11. The
results obtained by setting the tolerance σO = 7% of U∞ show a good prediction of the maximum lift
coefficient. However, larger errors can be seen after the first oscillation (see for example at the dimen-
sionless time = 4). In contrast, the result obtained by setting σO = 9% of U∞ show a smaller averaged
distance from the reference solution but they are characterised by a larger error on the maximum lift
coefficient. The plot shows also the results obtained by setting σO = 5% which are characterised by
larger errors with respect to both the previous optimal choices.

Finally, the ability of the zonal approach to predict new configurations is investigated in 25 test
configurations generated by using the pseudo-random Sobol sequence. Their position in the parameter
space is reported in Figure 4. In each zonal simulation the parameter σO is chosen equal to the optimal
value related to the closest database configuration in the space of the parameters, following the results
of the offline analysis reported in Section 5.3. In order to evaluate the error of the predictions, 25 high-
fidelity simulations are performed on Ω and used as a reference. The results are reported in Figures 12
and 13, for the percentage error on Cmaxl and the L2-norm error on the Cl, respectively.Both figures show
in the top that the prediction error becomes very large when the POD reconstruction is not included in
the definition of the boundary conditions (which means setting N = 0 in Eq. 12). However, when 45
modes of the POD basis obtained from the 3 × 3 database (middle) and 5 × 5 database (bottom) are
included, the error is significantly reduced.
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Figure 3: First four POD modes for the velocity magnitude field (energy decreasing from top to bottom).
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Figure 5: Lift coefficient history (High-fidelity simulations included in the 3× 3 database).
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Figure 6: Prediction error indicator on the velocity magnitude (normalised w.r.t. U∞) for 2 × 2 (top),
3× 3 (middle) and 5× 5 (bottom) databases
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Figure 12: Percentage error on the Cmaxl for predictive zonal simulation with N = 0 (top), N = 45 from
database 3× 3 (middle) and N = 45 from database 5× 5 (bottom)
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Figure 13: L2-norm error on the Cl for predictive zonal simulation with N = 0 (top), N = 45 from
database 3× 3 (middle) and N = 45 from database 5× 5 (bottom)

6 A steady turbulent problem: aerodynamic shape optimiza-
tion of a car section

In this Section, the zonal POD approach is used to speed-up the simulations required by an aerodynamic
shape optimization problem, i.e. the shape optimization of the front bumper of a 2D car section, aimed
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Figure 14: Mesh morphing: baseline configuration (red control points) and deformed configuration (blue
control points).

at minimising the overall drag coefficient (Cd).
Evolutionary algorithms typically require a large number of high-fidelity functional evaluations in order
to find the global optimum. Therefore the computational cost of the optimization process is often
prohibitive for large-scale aerodynamics problems. Here the zonal POD approach is used to provide
low-cost function evaluations during the optimisation process.

A database of high-fidelity simulations is obtained by varying the bumper geometry and solving the
RANS equations in the corresponding domain, using the method described in Section 2.2. All the sim-
ulations are performed at a Reynolds number equal to Re = 4.87 · 106, employing the Spalart-Allmaras
turbulence model [51] and wall functions for near-wall treatment.

The computational domain Ω is discretized by a hex-dominant polyhedral mesh of 93388 cells, gen-
erated for the baseline configuration by means of snappyHexMesh, the mesh generation utility supplied
with OpenFOAM. This mesh is then deformed through a Free-Form Deformation (FFD) technique [48]
in order to obtain the meshes corresponding to other bumper configurations. For this application we use
the PyGeM python library [1]. The parametrization is localized in the front area and the deformation is
controlled by a lattice of 4 × 6 control points. Most of the points are fixed in order to assure a smooth
transition between the deformed and the fixed region of the domain: only the three points highlighted in
Figure 14 are allowed to move in the x− y plane. The same displacement is applied to the three control
points, resulting in only two design parameters for the optimization process (xcp and zcp displacements).

The proposed methodology has been integrated into the OpenFOAM toolbox, in order to enable the
analysis of complex geometries and different physical models.

6.1 Analysis of the database: choice of the zonal setup

The database is created considering different values of the parameters in the range −0.18 ≤ xcp ≤ 0.18
and −0.30 ≤ zcp ≤ 0.30. As in Section 5.3, the sampling is uniform and three different databases with
2 × 2, 3 × 3 and 5 × 5 points are considered (see Figure 15). Since steady RANS simulations are per-
formed, only one snapshot is obtained for each sampling point (Nk

s = 1 and Ns = Nsp.

A separate POD basis is then computed for each physical quantity (i.e. u, p and Spalart-Allmaras
variable ν̃ ), after pre-processing the fields by choosing the forcing terms of Eq. 12 as the average fields
among the snapshots. As a consequence, the maximum size of the POD basis will be equal to Ns − 1.
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Figure 16: Magnitude of the mean velocity field (top right) and of the first three velocity POD modes
(energy decreasing from top to bottom and left to right).

The velocity mean field and first three modes are shown in Figure 16.
Using the leave-one-out strategy described in Section 4.2, it is possible to compute the prediction

error indicator map for all the physical quantities. The larger error values are localised close to the
front bumper and in the turbulent wakes. Figure 17 shows the reduction of the maximum error on the
velocity magnitude obtained by enriching the initial database. For this application, the initial database
of 9 snapshots shows sufficiently small errors and therefore it will be used in the following analysis and
during the optimization. The RIC analysis described in Section 3.1 showed that in this test case all the
snaphots introduce relevant information and so we set the size of the POD basis equal to N = Ns−1 = 8.

ΩHF , i.e. the domain used for the zonal POD simulations, is a quasi-rectangular box containing the
deformable part of the geometry and all the cells characterized by a prediction error σR larger than a
certain percentage of the far field velocity magnitude U∞. The mesh in ΩHF is a subset of the original
mesh in Ω, and therefore it maintains the same resolution and topology. Figure 18 shows how the size of
ΩHF for a given σR can be reduced by enriching the initial database of solutions. We choose to include
in ΩHF all the cells where σR > 0.01U∞: such domain contains 9551 cells, resulting in a reduction of
the problem size by a factor 10.
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Figure 17: Prediction error indicator on the velocity magnitude (normalised w.r.t. U∞) for 2× 2 (top),
3× 3 (centre) and 5× 5 (bottom) database.

The boundary conditions are updated at every solver iteration solving the minimisation problem
described in Section 3.2. Dirichlet or Neumann conditions are imposed depending on the sign of the
flux. For inflow boundaries, we use the POD modes to recover u and ν̃ and the gradient of p, whereas
for outflow boundaries we prescribe p and the gradients of u and ν̃ normal to the boundary. In order
to obtain the global Cd of the car, the converged solution is prolonged outside ΩHF , reconstructing the
outer fields as a combination of the POD modes.

The relative importance of the two regions, i.e. ΩHF and Ω \ ΩHF , for the evaluation of the global
aerodynamic coefficients is shown in Table 3 for a high-fidelity simulation not included in the database:
the flow solution in ΩHF accounts for approximately 31% of Cd and 69% of Cl. Table 3 shows also the
effectiveness of the zonal POD approach. In particular, we perform different zonal POD simulations,
using Nsp = 9 and Nsp = 4: as expected, the richer database guarantees a better approximation of the
solution.
In order to evaluate the contribution given by the POD reconstruction to the definition of the BCs of
the zonal simulation, we performed also a zonal simulation with N = 0 POD modes (i.e. BCs derived
only from the average field). The results reported in Table 3 show that the introduction of the POD
modes reduces the percentage error on Cd from 8.4% (when N = 0) to 0.5% (when N = 8). The same
trend can be observed in Figure 19, where we report the distribution of the pressure coefficient Cp on
the vehicle underbody surface in both ΩHF (solid lines) and Ω \ ΩHF (dotted lines).

The overlapping region is chosen by testing the configurations in the database (see Figure 15) for
different values of the threshold σO, logarithmically spaced between 0.1% and 10% of U∞. Figure 20
shows the results obtained by the application of the leave-one-out method to the configurations belonging
to the database 3 × 3. Here the quality of the choice of ΩO is evaluated by checking the error of the
reconstructed boundary conditions on ∂ΩHF . For this purpose, the error indicator εO is chosen as the
L2-norm of the difference between the exact value of u evaluated on ∂ΩHF and its POD reconstruction
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Figure 18: Number of cells in ΩHF normalized with respect to the number of cells in Ω as a function of
the prediction error threshold σR.

Table 3: Contribution of the flow solution in ΩHF to the global aerodynamic coefficients for a predictive
simulation (xcp = 0.13568, zcp = 0.08935).

Simulation type
Cd Cl

in Ω in ΩHF in Ω in ΩHF
High-Fidelity 0.015075 0.004716 -0.143092 -0.099199
Zonal POD with Ns = 9 and N = 0 0.016346 0.006969 -0,120436 -0.096443
Zonal POD with Ns = 4 and N = 3 0.015271 0.004795 -0.146132 -0.100173
Zonal POD with Ns = 9 and N = 8 0.015153 0.004791 -0.142726 -0.098935

calculated during the zonal simulation, normalised with the L2-norm of the exact velocity on ∂ΩHF .
In the considered sample, the approximation of the boundary conditions can be considered good

for most of the thresholds: there is little variation with σO, meaning that it would be possible to take
the whole ΩHF as overlapping region. The best results for in-sample configurations are obtained for
σO = 1.0% and σO = 1.7% of U∞. For the following optimization, we choose σO = 0.017U∞, with ΩO
including the 62.9% of the cells in ΩHF , as shown in Table 4.

6.2 Predictive zonal POD simulations

The ability of the zonal approach to perform predictive simulations is investigated also for this applica-
tion. As in Section 5.4, we test 25 configurations not included in the database and generated through
a pseudo-random Sobol sequence (see Figure 15 for the distribution of the new points in the parameter
space). The results are shown in Figure 21, where we report the percentage error on the overall Cd
with respect to the high-fidelity simulation. In particular, two different approaches are compared: in
Figure 21(left) we set Ns = 9 and N = 0 (i.e. no POD reconstruction of the boundary conditions),
whereas in Figure 21(right) Ns = 9 and N = 8. The zonal POD approach with N = 8 behaves well on
the parameter space, with an average error of 0.93% (maximum error 3.01%) compared to the 7.00%
(maximum error 14.83%) obtained with N = 0. The overlapping regions for the predictive simulations
is fixed and chosen as described in Section 6.1. In Figure 22 we report the error of the reconstructed
boundary conditions for different thresholds of σO for two of the 25 predictive simulations: as expected,
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Table 4: Threshold σO and percentual number of points in the overlapping region (NO/NHF ).

σO/U∞ 0.6% 1.0% 1.7% 2.9% 4.8% 8.1% 13.5% 22.5% 37.5% 62.5%
NO/NHF 40.7% 51.0% 62.9% 73.0% 88.7% 95.5% 98.2 % 99.3% 99.9% 100%

the trend is similar to the one observed in Figure 20.

6.3 Optimisation framework

The optimisation procedure is driven by an Efficient Global Optimization (EGO) algorithm [30], provided
by the Dakota toolkit [2]. Starting from a sample of true simulations, a Gaussian Process approxima-
tion (kriging) of the objective function is build during each EGO iteration. Such true simulations are
constituted by a limited number of high-fidelity simulations in Ω plus several zonal POD simulations.
In particular, 9 high-fidelity simulations are performed in Ω using the simpleFoam solver for turbulent,
incompressible flow, in order to generate the initial database of snapshots and build the corresponding
POD basis. When the algorithm requires a new function evaluation to improve the kriging approximation
of the response surface, a zonal POD is performed. The new point in the parameter space is chosen by
maximising an Expected Improvement Function [2], providing balance between exploiting regions with
good solutions and exploring regions where the prediction uncertainty is high. The zonal POD simula-
tions are performed in a small subset of the original mesh, close to the deformed zone. Figure 23 shows
a comparison between the extension of the computational domain used by the full-order simulations, Ω,
and the domain of the zonal POD simulations, ΩHF .

The overall drag coefficient of the car, i.e. the goal function of the optimization, is computed by
summing the contribution obtained through the high-fidelity solver in ΩHF and the one given by the
POD reconstruction on Ω \ ΩHF .

6.4 Results

The optimisation process is stopped when the Expected Improvement Function becomes smaller than
a given threshold [2]. The optimum is found after 23 zonal POD functional evaluations. In terms of
computational costs, the zonal approach allows to significantly reduce the total cost of the optimization
process compared to a strategy based on high-fidelity simulations performed on Ω. The computational
time required by a high-fidelity simulation in Ω is approximately equal to 4000 s, whereas a zonal POD
simulation needs roughly 400 s. As a result, if we consider the overall cost of the optimization, given by
taking into account the 23 zonal simulations plus the 9 high-fidelity simulations in Ω required to build
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3× 3)

the initial database, and compared it with the cost of an analogous optimization performed using only
the full model, we save around the 65% of the computational time.

The response surface of the problem is reported in Figure 24 (left) where the drag coefficient is
plotted as a function of the two design parameters. In Figure 24 (right), instead, it can be observed the
variation of the relative error on Cd between the reference high-fidelity solution and the zonal solution.
With respect to the baseline configuration (Cd = 0.01527), the optimum configuration (Cd = 0.01456),
evaluated with the zonal POD model, shows a reduction of the 4.6% with an error on the accuracy of
the prediction smaller than 1.0%. This trend is confirmed by the high-fidelity simulations performed
a-posteriori.

7 Conclusions

A technique to perform zonal Galerkin-free POD simulations is presented. The approach requires an
offline training for the definition of a POD basis obtained by some preliminary high-fidelity simulations.
The POD basis is then exploited for predictive low cost zonal simulations. In particular, the computa-
tional domain in the zonal simulation is split between a low-fidelity and a high-fidelity region. The POD
basis is used for the description of the external solution in the low-fidelity region while the high-fidelity
solver is applied only in the regions where the flow field depends strongly on the choice of the design
parameters. This makes the method suitable to perform predictive low cost simulations in the framework
of an optimisation procedure.

In order to apply the zonal approach to the simulation of general flow fields it is necessary to clarify
how to split the computational domain between the high-fidelity and the low-fidelity regions and how to
couple the two solutions. Some possible techniques to address these problems during the offline training
are proposed in this work.
A prediction error indicator based on a leave-one-out strategy is used to define an error map which allows
to identify the regions where the POD basis cannot properly predict new configurations: these regions
will be described by the high-fidelity solver during the zonal simulation.
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Figure 21: Percentage error on the overall Cd predictive zonal simulationswith N = 0 (left) and N = 8
(right) using the 3× 3 database

The leave-one-out strategy is also used to perform a preliminary study which allows to perform an opti-
mal coupling between the high and low-fidelity solutions. In particular, the technique allows to identify
an optimal overlapping zone which minimises the prediction error on a certain goal function.

The zonal approach is applied in this work to two different test cases: the simulation of the effects of
a gust on an airfoil and the aerodynamic shape optimisation of a car section.
The first problem is studied by the introduction of some forcing terms in the ROM reconstruction which
allows to generalise the zonal approach to problems with time-dependent far field boundary conditions.
The obtained results show that the proposed approach can be used to perform predictive simulations.
The second test case shows a possible application of the zonal approach as a low cost predictive tool in
the framework of shape optimisation procedures. In particular, the approach appears to be particularly
convenient for problems in which only local perturbations of the geometry are considered. Similar ben-
efits can be expected in multi-body configurations when the optimisation is focused on the shape of a
single body.

An advantage of the zonal approach is that it can be easily implemented in an existing high-fidelity
solver with respect to other acceleration techniques: it is just necessary to introduce a function for the
projection of the solution onto the POD basis and the evaluation of the boundary conditions.

In conclusion, the zonal approach has been successfully applied to the unsteady laminar Navier-Stokes
equations and to the steady RANS equations. The application of the method to the unsteady RANS
equations should not introduce additional problems and should follow what is done for the unsteady
laminar Navier-Stokes equations. However, the extension to the study of turbulent flows by means of
Direct Numerical Simulations or Large Eddy Simulations is much more challenging because of the wide
range of scales which appear in the solution and which require a very large POD basis.
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