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Abstract

This paper deals with the dynamic modeling and simulation of cell damage heterogeneity and associated

mutant cell phenotypes in the therapeutic responses of cancer cell populations submitted to a radiotherapy

session during in vitro assays. Each cell is described by a finite number of phenotypic states with possible

transitions between them. The population dynamics is then given by an age-dependent multi-type branching

process. From this representation, we obtain formulas for the average size of the global survival population

as well as the one of subpopulations associated with 10 mutation phenotypes. The proposed model has been

implemented into Matlab c� and the numerical results corroborate the ability of the model to reproduce four

major types of cell responses: delayed growth, anti-proliferative, cytostatic and cytotoxic.

Keywords: Branching process, cancer cells, heterogeneity, radiotherapy

1. Introduction

Due to the complexity of cancer, integrative biology has taken an important place in oncology research

since the beginning of 2000’s [2]. Indeed, cancer is the result of inter-dependent multi-scale phenomena. This

is why the understanding of its spread is still an unsolved problem. One main question is to better understand

the cause and consequences of heterogeneity in cancer [42, 33]. Four facets of heterogeneity are generally

described: statistical or distributional heterogeneity, epigenetic or environmental heterogeneity, emergence

of intrinsic or clonal heterogeneity and the development of clonal subpopulations in a heterogeneous micro-

environment [34, 22]. The main issue addressed here is to describe and simulate the influence of cell damage

heterogeneity and associated mutant cell phenotypes in the therapeutic responses of cancer cell populations

submitted to a radiotherapy session during in vitro assays. To help biologists and clinicians to answer such

a question, mathematical models play a central role through numerical simulations and statistical analyses.
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To this aim, four main classes of cancer cell models may be considered.

Ballistic models, e.g. the linear-quadratic model, is a first class of mathematical models commonly

implemented into clinical treatment planning systems to guide radiotherapeutists to choose the optimum

radiation dose to be delivered [50, 14, 21]. Unfortunately, they only compute average doses and do not

account for cell heterogeneity.

A second class deals with the kinetics of cancer cell populations. It has a very long history, dating back to

the equation of exponential growth, which is based on a small number of di↵erential equations [26, 40]. The

Verhulst-Pearl-Reed’s logistic curve [38, 39], the Gompertz’s function [32, 43], the Bertalan↵y’s equation [47]

and the Fischer’s model [18] also belong to this model category. Their main drawback is their lack of

biological basis and their implicit assumption that the tumor is an homogeneous set of cancer cells.

A third class of tumor growth models accounts for the biological cell cycle into the mathematical ex-

pression. Models proposed by Cox-Woodburry-Myers in [12] and Burns-Tannock in [9] belong to this group.

They consider the existence of at least three main cell populations in a tumor: proliferating, quiescent and

necrotic cells. Subsequently, the associated representations often rely on compartmental models in which

each compartment is associated with each type of cell [46]. For each cell cycle phase, the biological behavior

of the cell is described either by di↵erential equations [20, 45] or by Mc Kendrick-von Foerster equations

taking the age distribution of the cell population into consideration. Unfortunately, this model class does

not consider spatial variability in the tumor.

Another class of models aims at accounting interactions between living subpopulations, such as birth-

death processes describing the dynamics of the number of cells of di↵erent types, with interactions (for

example competitive of Lotka-Volterra interactions in [6]), or di↵usion processes describing population den-

sities or biomasses of each populations with interactions in [44].

A fifth model class examines the spatial evolutions of the tumor growth. Bresch et al. in [8] have

used di↵usion processes and partial derivative equations to describe a viscoelastic mechanical behavior able

to account for cellular adhesion. However, a tumor is not a continuous biological medium but rather an

aggregate of cells in an extracellular matrix. Subsequently, the multi-agent paradigm seems more suited

than partial derivative models [48, 49]. In this modeling approach, each agent is an autonomous entity

associated with each biological cell of the tumor, whose behavior depends both on its current state and its

local environment. In [15, 19], the agent-based modeling paradigm were used to describe the spatial-temporal

organization of tissues in multi-cellular systems such as tumors. In [17], nine in silico axioms were proposed

to represent the operating principles realized during characteristic growth of EMT6/Ro mouse mammary

tumor spheroids in culture.

A last and important factor of tumor growth modeling deals with the ability to account for cell heterogene-

ity. In [4, 3, 51, 52], a 3D multi-scale agent-based model is developed to simulate cancer heterogeneity brain
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tumors. Unfortunately, the associated computational cost is heavy. Several stochastic modeling paradigms

have been proposed to describe heterogeneity in tumors such as Markov chains [23, 28, 29, 36], branching

processes [25, 35, 10, 16, 37, 41, 13, 31] and even stochastic di↵erential equations [11, 7, 1], but they were

all focused on the steady-state responses of cell populations.

In this stochastic modeling context, we investigate the evolutionary dynamics of mutation heterogeneity

in the dynamic responses of cell populations. We consider that the survival response of an in vitro cancer

cell culture treated by radiotherapy is a superposition of independent dynamics. Each cell is represented

by a finite number of phenotypic states with possible transitions between them. The population dynamics

is then given by an age-dependent multi-type branching process. From this representation, we formulate

the average size of the global survival population as well as the one of subpopulations associated with 10

mutation phenotypes. Our model has been implemented into Matlab c� to carry out numerical experiments

and to test its ability to reproduce four main types of treatment responses: delayed growth, anti-proliferative,

cytostatic and cytotoxic.

This paper is organized as follows. We start by presenting the construction of the model. As mentioned

before, we first describe the behaviour of a clone cell. The population model is presented in Section 3, while

its implementation and its simulation results are presented and discussed in Section 4.

2. The cell model

We suppose that the initial population is composed of clone cells, obtained by replications of one cancer

cell with a given phenotype. The latter may change for each cell after individual damages caused by a single

radiotherapy session. We assume independence between cells and therefore focus on only one cell. The

treatment e↵ect on one cell is decomposed into two phases :

• Direct e↵ects. If a cell is damaged during the radiotherapy session, its characteristics are modified

and its new mutation phenotypic state arises during a period of time ⌧
d

after the treatment application.

• Indirect E↵ects. As a consequence of the direct e↵ects, di↵erent mutations states may appear and

lead to the cell death more or less shortly.

The model of the cell lineage system is mathematically represented herein by a branching process (see

e.g. [24, 5, 27, 30]). In such a model it is assumed that, the evolution of a cell only depends on its birth

phenotypic state. Its dynamic evolution is represented by two factors: its progeny and its life span. Both

follow probabilistic laws, commonly referred to as o↵spring distribution and life span distribution. In this

study, we have chosen an age-dependent multi-type branching process:

• ”multi-type”, because we consider 10 di↵erent possible states or ”types” for a living cell;
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• ”age-dependent”, since the branching time and the new state are correlated.

Let us briefly recall the dynamic of such processes. All the cells behave independently. Let us consider a

cell of type i born at time 0. At the life span T

i

, it gives birth to the o↵spring Z

i = (Zi

1

, · · · , Zi

10

), where

Z

i

j

is the number of new cells of type j. The pair (T
i

, Z

i) is random. The model being age-dependent,

then the life span and the progeny can be dependent. However in our model T
i

belongs to the finite set of

integers {1, ⌧
1

, ⌧

2

, ⌧

m

, ⌧

b

}. One should notice that such a process is not Markovian since life spans do not

follow exponential laws. That leads to additional di�culties to study such dynamics. Let us examine the

biological interpretation for each phenotypic state.

2.1. Phenotypic state coding

The label of a cell is either equal to 2 (undamaged cell) or a triplet abc of integers, where :

• a 2 {0, 1, 2} refers to the cell level of proliferation;

• b 2 {0, 1} expresses the repair capacity;

• c 2 {0, 1} is the genomic instability.

Here, 10 states of living cells are considered : 2, 210, 211, 201, 200, 111, 110, 101, 100, 011 and 000 for the

dead cells. The missing encodings, 010 and 001 are not considered because of lack of biological interpretation.

For instance, the coding 001 would mean that the cell cannot proliferate, nor mutate. Its capacity to be

repaired cannot be used, so that 001 is a redundancy of the death state 000. We now explain the real

significance of the parameters a, b, c.

Proliferation level. In level a = 0, the cell cycle is blocked while in the other cases the cell cycle length takes

two values: ⌧
1

if a = 1 (extended cell cycle) and ⌧

2

otherwise (normal cell cycle). Initially, for a normal cell,

a = 2.

Repair capacity. The element b is equal to 1 if the cell is able to be repaired and 0 otherwise. The change of

this repair capacity is a potential consequence of the therapy. The reparation process allows a damaged cell

to potentially recover its proliferation level; it is an innate capacity that can be transmitted to the lineage.

Genomic instability. The element c is equal to 1 if the cell is able to stop its cycle and to mutate, and null

otherwise.

2.2. Therapy e↵ects modeling

We assume that initial cells can be either in state 210 or 200.
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Initial state Possible evolutions New state

210

the cell has not been hit or repaired faithfully the lesions 2

the cell has been hit and repaired unfaithfully the lesions 110 or 100

the cell is blocked 011

the cell has been destroyed (necrosis) or su↵ered from too many
lesions (apoptosis)

000

200
the cell has not been hit or repaired faithfully the lesions 2

the cell has been hit and repaired unfaithfully the lesions 100

the cell has been destroyed (necrosis) or su↵ered from too many
lesions (apoptosis)

000

Table 1: Direct e↵ects: first possible phenotypic states after treatment

2.2.1. Direct e↵ects

After treatment, a cell has five possible states, as illustrated in Table 1:

• state 2: the cell is not a↵ected by the treatment, proliferates and gives birth to two daughter cells of

the same type after a period of time T . Due to the lack of synchronicity between cells, T is a random

variable with an uniform law on [0, ⌧
2

), where ⌧

2

denotes the usual cell cycle length;

• states 110 or 100: the cell survives but its state is changed after a time T with a loss of proliferation

level. It is assumed that T is random and takes its value in [0, ⌧
d

), where ⌧

d

is given;

• state 011: the cell is still alive but begins a quiescence cycle at time T ;

• state 000: the cell is killed.

2.2.2. Indirect e↵ects: disturbed lineage of a damaged cell

The treated population becomes more heterogeneous, as described in Table 1. The second and indirect

e↵ects stand in the lack of stability of the lineage due to random mutations. Only the cells of type ab1 may

stop their cycle and mutate. The following rules allow to describe the possible issues for each type.

Rule 1 (Proliferation rule). A cell of type abc can proliferate if and only if a 6= 0. In that case, an abc-cell

gives rise to two daughter cells of the same phenotype ab1 (symmetric proliferation), at time ⌧

2

if a = 2

and ⌧

1

if a = 1. The new cells inherit the same values for a and b but they are assumed to be unstable

independently of the mother’s c-state.

Rule 2 (Stable cells behavior). A stable cell ab0 always ends its cycle of period ⌧

a

and then gives birth to

two cells of phenotype ab1. The evolutions of all the concerned states, 210, 200, 110 and 100, are presented

in Table 2.
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Initial state Possible evolutions States of daughters

210 Faithful replication ⌧

2

later 211 211

200 Faithful replication ⌧

2

later 201 201

100 Faithful replication ⌧

1

later 101 101

110 Faithful replication ⌧

1

later 111 111

Table 2: Indirect e↵ects: replication of ab0 phenotypes with a = 1, 2 after damage

Rule 3 (Unstable cells behavior). An unstable cell ab1, except in state 011, can either proliferate or mutate

or die. In the first case, it follows Rule 1. In the second case the mutation arises at time ⌧

m

after its birth

and the new state is either of the form a

0
b

00 or 011. All the concerned states and their evolutions are given

in Table 3.

Birth state Possible evolutions New state or daughters states

211

Faithful proliferation ⌧

2

later 211 211

Degradation ⌧

m

later 200 or 110 or 100

Pause ⌧

m

later 011

Death ⌧

m

later 000

201

Faithful proliferation ⌧

2

later 201 201

Degradation ⌧

m

later 100

Death ⌧

m

later 000

111

Faithful proliferation ⌧

1

later 111 111

Restoration ⌧

m

later 210

Degradation ⌧

m

later 100

Pause ⌧

m

later 011

Death ⌧

m

later 000

101
Faithful proliferation ⌧

1

later 101 101

Death ⌧

m

later 000

Table 3: Indirect e↵ects: possible evolutions of a ab1 phenotype (unstable states) with a = 1, 2

Rule 4 (Special case of the 011-type cell). As mentioned before, this state represents a long break in the cell

cycle. After a long pause ⌧

b

, the cell can proliferate or die, and the new state is stable, i.e. of type ab0, see

Table 4.
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Rule 5 (Role of the repair capacity). The repair capacity c = 1 is inherited by proliferation and can be lost

by mutation.

All the possibilities are presented in the graphs depicted in Figure 1 and one example of lineage evolutions

is given, see Figure 2.

Initial state Possible evolutions ⌧
b

later New state

011
Back to a proliferative state 210 or 110

Cell death 000

Table 4: Indirect e↵ects: possible evolutions of a 011 phenotype (pause state)

3. The cell population model

3.1. Quantitative results

Symb. Definition Domain

n0 Initial number of 200-type cells N
n1 Initial number of 210-type cells N
k Discrete time variable N
y(k) Mean number of living cells R+

yd(k) Mean number of cells damaged by the radiation R+

yu(k) Mean number of undamaged cells R+

State variables

x

110
⇤ (k) Mean number of cells initially in state 110 & in state ⇤ 6= 000 at time k R+

x

100
⇤ (k) Mean number of cells initially in state 100 & in state ⇤ 6= 000 at time k R+

x

011
⇤ (k) Mean number of cells initially in state 011 & in state ⇤ 6= 000 at time k R+

Time constants

⌧d = 1 Mean response time (hour) of the first damages due to the direct treatment e↵ects N
⌧1 = 36 Mean length (hour) of the extended cell cycle N
⌧2 = 24 Mean cell cycle length (hour) N
⌧m = 1 Mutation period (hour) N
⌧b = 75 Long break in the cell cycle(hour) N

Probabilities parameters for undamaged cells

p

↵
! Probability of state transition from ↵ to ! [0; 1]

↵: initial state {200; 210}
!: final state {000; 011; 100; 110; 2}
Probabilities parameters for direct & indirect treatment e↵ects

p

↵0
!0 Probability of state transition from ↵

0
to !

0
[0; 1]

↵

0
: initial state {011; 101; 111; 201; 211}

!

0
: final state {000; 011; 100; 101; 110; 111; 201; 210; 211}

Table 5: Table of Notations

We suppose there are n

0

cells in state 200 and n

1

cells in state 210 just before the treatment. All the cells

behave independently from each other and each cell evolves as a multitype branching process described in

the previous section. We calculate the number of living cells at times k = 0, · · · , n� 1 where n denotes the

time range of the experiment. We recall that k = 0 denotes the end of the treatment session. The average

cell population is split up into two parts:

y(k) = y

u

(k) + y

d

(k) (3.1)
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where y

u

(k) and y

d

(k) are the average number of undamaged and damaged cells respectively.

We begin with the size of the undamaged cell population. Let p

210

2

(resp. p

200

2

) denote the transition

probability from state 210 (resp. 200) to 2.

Proposition 3.1.

y

u

(k) =
�
n

1

p

210

2

+ n

0

p

200

2

�✓
(1� k/⌧

2

)
+

+ 2_1

✓
k

⌧

2

� (� 1)
+

◆◆
(3.2)

where w

+

is the positive part of w (w

+

= w if w � 0 and 0 otherwise),  _ 1 = sup(, 1),  = bk/⌧
2

c is the

cell cycle number and bxc denotes the integer part of x.

We now deal with the size y

d

(k) of the damaged population. Let us introduce few notations related to our

branching process modeling the direct and the indirect e↵ects of the radiotherapy. The real number p

abc

↵��

stands for the transition probability from state abc to ↵��. The composition of the population of cells is

given by the family of stochastic processes
�
x

abc

↵��

(k)
�
k�0

where x

abc

↵��

(k) is the number of cells of type ↵��

at time k, when the branching process starts with a unique cell in state abc. We mainly focus on the average

x

abc

↵��

(k) of xabc

↵��

(k), i.e. xabc

↵��

(k) := E
�
x

abc

↵��

(k)
�
.

Our quantitative analysis allows us to calculate the mean number xabc

⇤ (k) of cells still alive at time k, when

the unique ancestor cell is in state abc. Then, according to the previous notations,

x

abc

⇤ (k) =
X

↵�� 6=000

x

abc

↵��

(k), x

abc

⇤ (k) =
X

↵�� 6=000

x

abc

↵��

(k).

We express y
d

(k) as a linear combination of x110

⇤ (k � 1), x100

⇤ (k � 1) and x

011

⇤ (k � 1).

Proposition 3.2.

y

d

(k) = n

1

p

210

110

x

110

⇤ (k � 1) + (n
1

p

210

100

+ n

0

p

200

100

)x100

⇤ (k � 1) + n

1

p

210

011

x

011

⇤ (k � 1) (3.3)

Note that (3.3) results from the direct e↵ect of the therapy. Proposition 3.2 obviously implies that we have

to calculate x

110

⇤ (k � 1), x100

⇤ (k � 1) and x

011

⇤ (k � 1) to get y

d

(k). Their calculations use intensively the

mechanism of branching associated with the indirect e↵ects of the therapy. We introduce linear operators

acting on sequences
�
x(k)

�
k�0

. In particular, I
d

stands for the identity operator and q

�1 is the back shift

(delay) operator:

q

�1

x(k) = x(k � 1), 8k � 1, q

�1

x(0) := 0. (3.4)

The families of all needed operators (�
i

)
1i7

and specific functions (z
i

)
1i15

are defined in Section 3.2.
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Proposition 3.3. The quantities x

011

⇤ (k), x100

⇤ (k) and x

110

⇤ (k) are given by:

x

011

⇤ (k) = G

011

(q)z
12

(k) (3.5)

x

100

⇤ (k) = 1
[0;⌧1[

(k) +G

100

(q)z
0

(k) (3.6)

x

110

⇤ (k) = G

110

(q)z
15

(k) (3.7)

where the transfer operators G

011

(q), G
100

(q) and G

110

(q) are defined as follows:

G

011

(q) := (I
d

� �
5

(q))�1

, G

110

(q) := (I
d

� �
7

(q))�1 (3.8)

G

100

(q) := 2
X

i�1

(2p101
101

)i�1

q

�i⌧1
. (3.9)

Our approach generates more results than the ones given in Proposition 3.3, since we are able to calculate

all the x

abc

⇤ .

Proposition 3.4. The others x

abc

⇤ (k) are given by:

x

211

⇤ =
�
I

d

� �
6

(q)
��1

z

13

, x

210

⇤ = 1
[0;⌧2[

+ 2q�⌧2
�
I

d

� �
6

(q)
��1

z

13

, x

201

⇤ = z

7

, x

200

⇤ = z

8

. (3.10)

x

111

⇤ =
�
I

d

� �
7

(q)
��1

z

14

, x

101

⇤ =
X

k�0

�
2p101

101

�
k

q

�k⌧1
z

0

(3.11)

3.2. Definition of operators �• and functions z•

We begin with the family of operators (�
i

)
1i7

.

�
1

(q) = 2p111
111

q

�⌧1 + 2p011
110

p

111

011

q

�(⌧1+⌧b+⌧m) (3.12)

�
2

(q) = 2p111
210

q

�(⌧m+⌧2) + 2p011
210

p

111

011

q

�(⌧2+⌧b+⌧m) (3.13)

�
3

(q) = 2p011
110

q

�(⌧1+⌧b)�
2

(q) + 2p011
210

q

�(⌧2+⌧b)(I
d

� �
1

(q)) (3.14)

�
4

(q) = �
1

(q) + 2p211
211

q

�⌧2 � 2p211
211

q

�⌧2�
1

(q) + 2p211
110

q

�(⌧m+⌧1)�
2

(q) (3.15)

�
5

(q) = �
4

(q) + �
1

(q)� �
1

(q)�
4

(q) + p

211

011

�
3

(q)
�
1� �

1

(q)
�
q

�⌧m (3.16)

�
6

(q) = �
4

(q) + �
5

(q)� �
4

(q)�
5

(q) (3.17)

�
7

(q) = �
6

(q) + �
1

(q)� �
1

(q)�
6

(q) (3.18)

Write 1
[a;b[

(k) the rectangular function that is equal to 1 if k 2 [a; b[ and 0 otherwise. Let us define the
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functions z•(k).

z

0

(k) = 1
[0;⌧m[

(k) + p

101

101

1
[⌧m;⌧1[

(k) (3.19)

z

1

(k) = 1
[0;⌧b[

(k) + p

011

110

1
[⌧b;⌧b+⌧1[

(k) (3.20)

z

2

(k) = z

1

(k) + p

011

210

1
[⌧b;⌧b+⌧2[

(k) (3.21)

z

3

(k) = 1
[0;⌧m[

(k) + p

111

111

1
[⌧m;⌧1[

(k) + p

111

210

1
[⌧m;⌧m+⌧2[

(k) + p

111

011

q

�⌧m
z

2

+ p

111

100

q

�⌧m
z

4

(3.22)

z

4

(k) = 1
[0;⌧1[

(k) + 2
X

i�1

(2p101
101

)i�1

q

�i⌧1
z

0

(k) (3.23)

z

5

(k) = 2p011
110

q

�(⌧b+⌧1)
z

3

(k) + (I
d

� �
1

(q)) z
2

(k) (3.24)

z

6

(k) = 1
[0;⌧m[

(k) + p

201

201

1
[⌧m;⌧2[

(k) + p

201

100

q

�⌧m
z

4

(k) (3.25)

z

7

(k) =
�
I

d

� 2p201
201

q

�⌧2
��1

z

6

(k) (3.26)

z

8

(k) = 1
[0;⌧2[

(k) + 2q�⌧2
z

7

(k) (3.27)

z

9

(k) = 1
[0;⌧m[

(k) + p

211

200

q

�⌧m
z

8

(k) + p

211

100

q

�⌧m
z

4

(k) + p

211

211

1
[⌧m;⌧2[

(k) (3.28)

z

10

(k) = z

9

(k) + p

211

110

1
[⌧m;⌧1+⌧m[

(k) (3.29)

z

11

(k) = 2p211
110

q

�(⌧m+⌧1)
z

3

(k) + (1� �
1

(q)) z
10

(k) (3.30)

z

12

(k) = (1� �
4

(q)) z
5

(k) + �
3

(q)z
11

(k) (3.31)

z

13

(k) = p

211

011

(1� �
1

(q)) q�⌧m
z

12

(k) + (1� �
5

(q)) z
11

(k) (3.32)

z

14

(k) = �
2

(q)z
13

(k) + (1� �
6

(q)) z
3

(k) (3.33)

z

15

(k) = 2q�⌧1
z

14

(k) + (1� �
7

(q))1
[0;⌧1[

(k) (3.34)

3.3. Additional notations and assumptions

All the parameters are listed in Tables 5. We suppose that the time parameters are integers and partially

ranked as follows:

⌧

m

< ⌧

2

, ⌧

d

= 1 < ⌧

2

< ⌧

1

< ⌧

b

. (3.35)

This technical assumption will play an important role, see Section 6.2. The model is finally composed of 31

parameters that are sum up and defined in Table 5. Some of the transition probabilities defined in Table 5
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are correlated to each other, according to:

p

210

2

+ p

210

110

+ p

210

100

+ p

210

011

+ p

210

000

= 1 (3.36)

p

200

2

+ p

200

100

+ p

200

000

= 1 (3.37)

p

211

211

+ p

211

200

+ p

211

110

+ p

211

100

+ p

211

011

+ p

211

000

= 1 (3.38)

p

201

201

+ p

201

100

+ p

201

000

= 1 (3.39)

p

111

111

+ p

111

210

+ p

111

100

+ p

111

011

+ p

111

000

= 1 (3.40)

p

101

101

+ p

101

000

= 1 (3.41)

p

011

210

+ p

011

110

+ p

011

000

= 1. (3.42)

We have finally 20 free transition probabilities. In practice, we replace p

abc

000

by 1�
X

↵�� 6=000

p

abc

↵��

.

4. Simulation Results

The model presented in the previous section has been implemented in Matlab c�. The constants ⌧
d

, ⌧

1

, ⌧

2

, ⌧

m

, ⌧

b

are supposed as identical for all the cells but those simplifying assumptions can lead to abrupt variations in

the output variables with the presence of steps and peaks. A moving average filter has thus been added to

soften the simulated curves. The values of the model parameters are given in Table 6. Initially, we suppose

there are n

0

= 5 · 103 cells in state 200 and n

1

= 5 · 103 cells in state 210 just before the treatment. Those

quantities are fully compatible with the number of cells generally used in in vitro assays carried out in P96

microplates.

The complete simulation run takes a few seconds on Matlab. Figure 3 shows the ability of the proposed

model to reproduce four main types of biological responses of cell cultures: cytotoxic, cytostatic, anti-

proliferative and delayed growth. Those four mean responses have been obtained with four di↵erent sets of

parameter values given in Table 6.

The anti-proliferative profile, described in Figure 3 by a purple plot, is a mean response in which the

final growth is lower than a normal growth pattern (black). It is obtained from the delayed growth response

by changing 12 model parameters. We firstly increase the probabilities of damage: p011
111

(cell cycle blocking),

p

100

111

(lack of repair capacity) and the probability of mortality: p

000

201

. To compensate a part of the previous

damages and mortalities, we slightly increase the probabilities of proliferation: p

211

211

and p

200

211

to maintain

a growth trend. By comparing the responses of the states: 110, 111, 201 and 211 in Figure 4, we observe

a significant reduction of the proliferation rates in the anti-proliferative case compared with the delayed

growth context.

From the anti-proliferative pattern, only 5 model parameters: p•
211

have been changed to get the cytostatic

12



profile. For those five probabilities, we have used the same values than the delayed growth case. In comparison

with the anti-proliferative situation, it comes to reduce the proliferation ability of the cells and finally leads

to an equilibrium state. Figure 4 presents the responses of the nine state variables in the cytostatic case. It

confirms that the kinetics of 110, 111, 201 and 211 reach a quasi-constant value.

Finally, the cytotoxic response profile is obtained by increasing all the probabilities of mortality when

the damage state of the cells reaches the levels 011, 101, 111, 201 after indirect e↵ects. As a consequence,

Figure 4 shows that all the state variables converge to zero, i.e. complete mortality.

As previously emphasized, the number of parameters involved in this model allows to reproduce a large

spectrum of response profiles. Another important feature of our model is the possibility to analyze in depth

the fluctuations of the population size by comparing and identifying the cell states that cause those transient

changes.

5. Conclusion

This article deals with the modeling and simulation of cell culture responses after radiotherapy. We

particularly address the issues of cell mutation heterogeneity and its e↵ect on the survival dynamics of

the treated populations. Ten mutation phenotypes have been considered and the population dynamics is

described by an age-dependent multi-type branching process in which each cell is represented by a finite

number of mutation states with possible transitions between them. The proposed model relies on five

biological rules describing the disturbing e↵ects of radiation on the cell lineage. From this representation, we

have formulated the average size of the global survival population as well as the one of the 10 subpopulations.

However, it has been intractable to determine the explicit formulas of variances. Our model has been

implemented into Matlab c� to carry out numerical experiments for di↵erent sets of model parameters.

This approach to take the cell heterogeneity into account has several advantages. Firstly, it includes some

biological knowledge in terms of proliferation, damage repair capacity and instability. This prior knowledge

is represented by five basic rules that are meaningful for biologists. The proposed model is based on two

scales: the individual cell level and the population stage. By accounting for the heterogeneity of mutations in

each cell, the resulting model becomes more appropriate than lumped parameter models, such as stochastic

di↵erential equations, to describe and assess its consequences on the treatment outcome. Moreover, its

computation cost remains very low compared with Monte-Carlo simulation techniques requiring several

thousands of runs. Another advantage is to estimate the impact and role of each mutation subpopulation.

This possibility allows the researcher to test several working assumptions and so explain the impact of some

specific intermediate damages on the global survival response. This new model could be applied to other

problems in which cell heterogeneity plays a crucial role.

One of the main perspective issue is now to study the parameter identifiability and then to propose a

13



Models
Param. Cytotoxic Cytostatic Anti-Proliferative Delayed Growth

⌧

d

1 1 1 1
⌧

1

36 36 36 36
⌧

2

24 24 24 24
⌧

m

1 1 1 1
⌧

b

75 75 75 75
p

200

2

2 2 2 2
p

200

100

0.6 0.6 0.6 0.6
p

200

000

0.4 0.4 0.4 0.4
p

210

2

0 0 0 0
p

210

110

0.25 0.25 0.25 0.25
p

210

100

0.25 0.25 0.25 0.25
p

210

011

0.25 0.25 0.25 0.25
p

210

000

0.25 0.25 0.25 0.25
p

011

000

0.5 0.34 0.34 0.34
p

011

110

0.25 0.33 0.33 0.33
p

011

210

0.25 0.33 0.33 0.33
p

101

101

0.1 0.4 0.4 0.4
p

101

000

0.9 0.6 0.6 0.6
p

111

000

0.6 0.2 0.2 0.2
p

111

011

0.2 0.2 0.2 0.1
p

111

100

0.2 0.2 0.2 0.1
p

111

111

0 0.2 0.2 0.4
p

111

210

0 0.2 0.2 0.2
p

201

000

0.7 0.4 0.4 0
p

201

201

0 0.2 0.2 0.5
p

201

100

0.3 0.4 0.4 0.5
p

211

000

0.6 0 0 0
p

211

011

0.1 0.2 0.1 0.2
p

211

100

0.1 0.2 0.1 0.2
p

211

110

0.1 0.2 0.1 0.2
p

211

200

0.1 0.2 0.3 0.2
p

211

211

0 0.2 0.4 0.2

Table 6: Values of the model parameters for the four types of response.

parameter estimation method from real in vitro data provided by realtime assays such as the cell impedance

measurement technology.

6. Proofs

6.1. Proof of Proposition 3.1

Consider a cell of type either 210 or 200 which is not damaged by the treatment and therefore begins to

proliferate at time T . This cell gives birth to two new cells at each time T + m⌧

2

, where m � 0 is an

integer. Then, the number ✓

0

(k) of all the descendants at time k is constant over any interval of the type

14



]T +m⌧

2

, T + (m+ 1)⌧
2

[ and

✓

0

(k) = 1{k<T} + 2 2b
k�T
⌧2

c1{k�T}

since:

T +m⌧

2

 k < T + (m+ 1)⌧
2

, m  k � T

⌧

2

< m+ 1 , m = bk � T

⌧

2

c.

Recall that T is a random variable with uniform distribution over [0, ⌧
2

], consequently

E

�
✓

0

(k)
�
=

⇣
1� k

⌧

2

⌘

+

+ I(k)

where I(k) :=
2

⌧

2

Z
⌧2^k

0

2b
k�u
⌧2

c
du.

Setting v = (k�u)/⌧
2

we get I(k) = 2

Z
k/⌧2

(

k
⌧2

�1)+

2bvcdv. If k/⌧
2

< 1, then I(k) = 2(k/⌧
2

). Otherwise, setting

 := bk/⌧
2

c we obtain:

I(k) = 2
⇣Z



k
⌧2

�1

2�1

dv +

Z
k/⌧2



2dv
⌘
= 2

�
k

⌧

2

� + 1
�
.

Finally, I(k) = 2_1

�
k

⌧

2

� (� 1)
+

�
. Identity (3.2) follows directly. 2

6.2. Proof of Proposition 3.2

It is very convenient to adopt the following convention:

any sequence
�
x(k)

�
k�0

is prolonged to negative index, setting: x(k) = 0, k = �1,�2, · · · . (6.43)

Let us consider a cell of type 210 which either mutates or dies. At time T , if it does not dy, according to

Table 1, the new state is either 110, or 100 or 011. Therefore the mean number of cells alive at time k is:

A := p

210

110

E

�
x

110

⇤ (k � T )
�
+ p

210

100

E

�
x

100

⇤ (k � T )
�
++p

210

011

E

�
x

011

⇤ (k � T )
�
.

Recall that T takes its values in [0, ⌧
d

] with ⌧

d

= 1, then k � 1 < k � T < k almost surely. Since k is an

integer, property (3.35) implies that xabc

↵��

(t) = x

abc

↵��

(k � 1) for any t 2 [k � 1, k[, k 2 N. Consequently:

x

abc

⇤ (t) = x

abc

⇤ (k � 1), 8 t 2 [k � 1, k[, k 2 N. (6.44)

Consequently, A = p

210

110

x

110

⇤ (k � 1) + p

210

100

x

100

⇤ (k � 1) + p

210

011

x

011

⇤ (k � 1).

Similarly, if the cell is initially in state 200, the mean number of cells alive at time k equals p200
100

x

100

⇤ (k� 1).

2
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6.3. Proof of Propositions 3.3 and 3.4

We will use intensively the following result.

Lemma 6.1. Let

�
'(k)

�
n�0

be a sequence of real numbers, � 2 R and a 2 N. Then, the unique solution '

of the equation:

' = '

0

+ �q

�a

' (6.45)

is ' =
�
I

d

� �q

�a

��1

'

0

=
X

k�0

�

k

q

�ka

'

0

.

Note that according to our convention (6.43), the above sum is actually finite. Identity (6.45) follows from

standard analysis.

The first term which is easy to calculate is x100

⇤ . By Table 3 and Lemma 6.1, we get:

x

101

⇤ = p

101

101

�
1
[0;⌧1[

+ 2q�⌧1
x

101

⇤
�
+ (1� p

101

101

)1
[0;⌧m[

= z

0

+ 2p101
101

q

�⌧1
x

101

⇤

and

x

101

⇤ =
X

k�0

�
2p101

101

�
k

q

�k⌧1
z

0

. (6.46)

Using Table 2 we have: :

x

100

⇤ = 1
[0;⌧1[

+ 2q�⌧1
x

101

⇤ = 1
[0;⌧1[

+ 2
X

k�0

�
2p101

101

�
k

q

�(k+1)⌧1
z

0

= z

4

.

2

It remains to calculate x

110

⇤ and x

011

⇤ . We begin with x

011

⇤ .

Lemma 6.2. We have:

x

011

⇤ = z

2

+ 2p011
210

q

�⌧2�⌧b
x

211

⇤ + 2p011
110

q

�⌧1�⌧b
x

111

⇤ . (6.47)

Proof

According to Table 4:

x

011

⇤ = p

011

210

�
1
[0;⌧b[

+ q

�⌧b
x

210

⇤
�
+ p

011

110

�
1
[0;⌧b[

+ q

�⌧b
x

110

⇤
�
+
�
1� p

011

210

� p

011

110

�
1
[0;⌧b[

= 1
[0;⌧b[

+ p

011

210

q

�⌧b
x

210

⇤ + p

011

110

q

�⌧b
x

110

⇤ . (6.48)
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Using Table 2, we get:

x

110

⇤ = 1
[0;⌧1[

+ 2q�⌧1
x

111

⇤ . (6.49)

Then,

x

011

⇤ = z

1

+ p

011

210

q

�⌧b
x

210

⇤ + 2p011
110

q

�⌧1�⌧b
x

111

⇤ . (6.50)

From Table 2, we deduce:

x

210

⇤ = 1
[0;⌧2[

+ 2q�⌧2
x

211

⇤ . (6.51)

Then, (6.47) follows from (6.50) and the above identity. Note that (6.51) implies the second identity in

(3.10).

2

Unfortunately, (6.47) is not a closed form. We express x111

⇤ in terms of x211

⇤ in Lemma 6.3 below and we will

go back to x

011

⇤ in Lemma 6.4.

Lemma 6.3. We have:

�
I

d

� �
1

(q)
�
x

111

⇤ = z

3

+ �
2

(q)x211

⇤ . (6.52)

Proof

According to Table 3, we have:

x

111

⇤ = 1
[0;⌧m[

+ p

111

111

�
1
[⌧m;⌧1[

+ 2q�⌧1
x

111

⇤
�
+ p

111

210

q

�⌧m
x

210

⇤ + p

111

100

q

�⌧m
x

100

⇤ + p

111

011

q

�⌧m
x

011

⇤ .

We replace x

210

⇤ using (6.51), we get:

x

111

⇤ = 1
[0;⌧m[

+ p

111

111

1
[⌧m;⌧1[

+ 2p111
111

q

�⌧1
x

111

⇤ + p

111

210

1
[⌧m;⌧m+⌧2[

+ 2p111
210

q

�⌧m�⌧2
x

211

⇤

+p

111

100

q

�⌧m
x

100

⇤ + p

111

011

q

�⌧m
x

011

⇤ .

Using (6.47), we get:

x

111

⇤ = 1
[0;⌧m[

+ p

111

111

1
[⌧m;⌧1[

+ 2p111
111

q

�⌧1
x

111

⇤ + p

111

210

1
[⌧m;⌧m+⌧2[

+ 2p111
210

q

�⌧m�⌧2
x

211

⇤

+p

111

100

q

�⌧m
x

100

⇤ + p

111

011

q

�⌧m
�
z

2

+ 2p011
210

q

�⌧2�⌧b
x

211

⇤ + 2p011
110

q

�⌧1�⌧b
x

111

⇤
�

x

111

⇤ = z

3

+
�
2p111

111

q

�⌧1 + 2p011
110

p

111

011

q

�⌧1�⌧b�⌧m
�
x

111

⇤ + 2
�
p

111

210

q

�⌧m�⌧2 + p

111

011

p

011

210

q

�⌧2�⌧b�⌧m
�
x

211

⇤ .

2
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Lemma 6.4. We have:

�
I

d

� �
1

(q)
�
x

011

⇤ = z

5

+ �
3

(q)x211

⇤ . (6.53)

Proof

We eliminate x

111

⇤ with (6.52) and (6.47), namely we apply : 2p011
110

q

�⌧1�⌧b ⇥ (6.52) +
�
I

d

� �
1

(q)
�
⇥ (6.47).

After simplifications, we get:

�
I

d

� �
1

(q)
�
x

011

⇤ = 2p011
110

q

�⌧1�⌧b
�
z

3

+ �
2

(q)x211

⇤
�
+
�
I

d

� �
1

(q)
��
z

2

+ 2p011
210

q

�⌧2�⌧b
x

211

⇤
�
.

2

Lemma 6.5. We have:

�
I

d

� �
4

(q)
�
x

211

⇤ = z

11

+ p

211

011

q

�⌧m
�
I

d

� �
1

(q)
�
x

011

⇤ . (6.54)

Proof

Using the branching properties induced by Table 3, we get:

x

211

⇤ = 1
[0;⌧m[

+ p

211

200

q

�⌧m
x

200

⇤ + p

211

110

q

�⌧m
x

110

⇤ + p

211

100

q

�⌧m
x

100

⇤ + p

211

011

q

�⌧m
x

011

⇤

+p

211

211

�
1
[⌧m;⌧2[

+ 2q�⌧2
x

211

⇤
� (6.55)

x

201

⇤ = 1
[0;⌧m[

+ p

201

100

q

�⌧m
x

100

⇤ + p

201

201

�
1
[⌧m;⌧2[

+ 2q�⌧2
x

201

⇤
�
. (6.56)

By Table 2, we have:

x

200

⇤ = 1
[0;⌧2[

+ 2q�⌧2
x

201

⇤ (6.57)

It is clear that relation (6.56) is equivalent to:

�
I

d

� 2p201
201

q

�⌧2
�
x

201

⇤ = z

6

or

x

201

⇤ = z

7

. (6.58)

Using (6.57), we get:

x

200

⇤ = 1
[0;⌧2[

+ 2q�⌧2
z

7

= z

8

. (6.59)
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Note that (6.58) and (6.59) give the two last identities in (3.10). We modify (6.55) using (6.59):

x

211

⇤ = 1
[0;⌧m[

+ p

211

200

q

�⌧m
z

8

+ p

211

110

q

�⌧m
x

110

⇤ + p

211

100

q

�⌧m
z

4

+p

211

011

q

�⌧m
x

011

⇤ + p

211

211

1
]⌧m;⌧2[

+ 2p211
211

q

�⌧2
x

211

⇤

= z

9

+ p

211

110

q

�⌧m
x

110

⇤ + p

211

011

q

�⌧m
x

011

⇤ + 2p211
211

q

�⌧2
x

211

⇤ .

By (6.49) we get:

x

211

⇤ = z

9

+ p

211

110

1
[⌧m;⌧1+⌧m[

+ 2p211
110

q

�⌧m�⌧1
x

111

⇤ + p

211

011

q

�⌧m
x

011

⇤ + 2p211
211

q

�⌧2
x

211

⇤ .

Relation which is equivalent to:

�
I

d

� 2p211
211

q

�⌧2
�
x

211

⇤ = z

10

+ 2p211
110

q

�⌧m�⌧1
x

111

⇤ + p

211

011

q

�⌧m
x

011

⇤ . (6.60)

We eliminate x

111

⇤ doing:
�
I

d

� �
1

(q)
�
⇥ (6.60) + 2p211

110

q

�⌧m�⌧1 ⇥ (6.52) and we simplify:
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We are now able to prove (3.5) and (3.7).

Lemma 6.6. We have:
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. (6.61)

Proof

We sum :
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�
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(q)⇥ (6.54) and we simplify, we get:
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We easily deduce the first relation in (6.61). As for the second identity, the formal operation :
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This relation is equivalent to:
�
I
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. (6.62)

Using ”
�
I

d

� �
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(q)
�
⇥ (6.52) + �

2

(q)⇥ (6.62)” we obtain:
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or equivalently:
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Simplifying
�
I

d

� �
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(q)
�
⇥ (6.49) + 2q�⌧1 ⇥ (6.63) leads to:
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It is clear that (6.62) (resp. (6.63)) implies the first identity in (3.10) (resp. (3.11)).
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Figure 1: Graphs giving all possibilities of evolutions of damaged cells (indirect e↵ects). On the left-hand side, the graphs
expresses the possible state changes. On the right-hand side, an arrow means: ”this state may give birth to two cells of type”.
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Figure 2: In this example, a 210 type cell is attained by the therapy. It becomes a less aggressive cell 110 that proliferates to
give two 111 type cells. One of those dies, while the second one restores. From its new states it gives birth to two 211 type cells.
The first one changes to a 100 state that gives birth to two daughters of type 101. The second one proliferates faithfully. . .
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Figure 3: Simulation results of living cell populations. Four main types of biological responses are reproduced, corresponding
each to four di↵erent sets of parameter values
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Figure 4: Mutation states for Delayed Growth (black), Anti-proliferative Responses (magenta), Cytostatic (red) and Cytotoxic
Responses (blue). Each branching process starts with one cell at time 0.
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