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Abstract
The distribution of linguistic structures  in the world is  the joint product 
of universal principles, inheritance from ancestor languages, language 
contact, social structures, and random fluctuation. This paper proposes 
a method for evaluating the relative significance of each factor — and 
in particular, of universal principles — via regression modeling: statis-
tical evidence for universal principles is found if the odds for families 
to have skewed responses  (e.g. all or most members have postnomi-
nal relative clauses) as opposed to having an opposite response skew-
ing or no skewing at all, is significantly higher for some condition (e.g. 
VO order) than for another condition, independently of other factors. 
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1. Introduction

Over the past few years, typologists  have increasingly addressed problems 
in the statistical evaluation of proposed universals (e.g. Dryer 2000; 
Maslova 2000; Cysouw 2003; Janssen et al. 2006; Maddieson 2006; Wid-
mann &  Bakker 2006). However, there is  still no established methodology 
in the field, and, somewhat curiously, none of the approaches in current 
use links  up with standard frameworks of statistical analysis  that are regu-
larly used in other disciplines. Most surprisingly absent is  the family of 
techniques known as  regression modeling, arguably one of the most pow-
erful, and certainly the most successful kind of statistical analysis (e.g. 
Agresti 2002; for linguistics outside typology, cf. Baayen in press; Johnson 
in press). In this  paper, I propose a way of adapting regression modeling to 
typological data that solves some of the key problems  of statistical typol-
ogy that have been noted in the past.
! The starting point of my proposal is  the well-established insight that 
universals are fundamentally diachronic in nature (Greenberg 1978; Bybee 
1988; Hall 1988; Greenberg 1995; Haspelmath 1999; Nichols 2003; Blev-
ins 2004, among many others), and the proposed method is therefore 
similar to other approaches sharing this  starting point, e.g. the approach 
of Maslova (2000) and Maslova & Nikitina (2007). However, I will argue for 
a fundamentally different implementation of the insight, one that allows 
testing hypotheses with multiple factors in competition (a.k.a. ‘competing 
motivations’) and also makes less specific assumptions about the nature 
of diachronic change — crucially, it does  not assume constant transition 
probabilities for typological states.
! In the following, I first address  the two key challenges to testing uni-
versals that have been noted in the past (Section 2): (i) the fact that we 
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have only ever access to an extremely small and non-random sample of 
languages from which we would like to extrapolate to distributional skew-
ings in the entire set of languages that our species has ever produced or 
will ever produce; and (ii) the fact that synchronic distributions are the 
combined product of multiple diachronic factors, ranging from general 
inertia/conservativeness to language contact, social factors  and universal 
preferences. In Section 3, I develop a general method for solving these 
problems  by applying multiple regression models to family-level survey 
data and in Section 4, I discuss technical issues in the implementation of 
this method. Section 5 illustrates the method by way of a case study on 
long-standing hypotheses on the distribution of case over word order 
types  (Greenberg 1963; Nichols 1992; Siewierska 1996; Dryer 2002; Hawk-
ins 2004, among others). Section 6 compares  the proposed method to al-
ternatives  that have been proposed in the literature, and Section 7 sum-
marizes the major components and advantages of the method. 

2. Problems of statistical typology

Empirical universals state preferences  in the languages of our species that 
are, by hypothesis, caused by general principles  underlying language and 
language change, ranging from processing principles to principles  of 
communication and principles of self-organization in symbolic systems. An 
example of an empirical universal is  the universal association between 
verb-object order and postnominal relative clauses, and its  hypothesized 
causes in facilitating processing (Hawkins 2004). Empirical universals  dif-
fer from absolute universals, which are statements that follow by necessity 
from the metalanguage (‘theoretical framework’) employed to analyze 
languages. An example of an absolute universal is  that all languages have 
distinctive features, or, if one happens to adopt a metalanguage that rep-
resents  objects  as  left-hand sisters  of verbs, that all languages  have an 
underlying object-verb order. 
! While absolute universals can be evaluated by applying criteria like 
descriptive adequacy and coverage, replicability, and logical consistency, 
empirical universals need statistical evaluation. But any such evaluation is 
immediately confronted with two key problems:

1.! THE INFERENCE PROBLEM: A universal defines preferences for any given 
language, i.e. for the entire set of languages  that our species  has 
ever produced in the past or will ever produce in the future (or at 
least the set for which one would want to say that it includes human 
languages the way we know them). The problem is  that we cannot 
take random samples from this set because we have access to only 
the tiny fraction of languages  that happen to be documented right 
now. If we cannot take random samples, we cannot conduct classi-
cal statistical inferences from a sample to the population. How else 
can we make claims about the entire population?
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2.! THE DIACHRONY PROBLEM: The distribution of structures that we can 
observe is the joint product of structural pressure1 (‘two languages 
have both postpositions because they had OV order and then proc-
essing became easier with adpositions  being postpositional), ‘blind’ 
inheritance (‘two languages  have both postpositions because they 
descend from a language with postpositions, and the postpositions 
were blindly transmitted, with no regard for anything else’), lan-
guage contact (‘two languages have both postpositions because 
they were spoken by the same people, and people generally prefer 
a single structure of PPs’), and some degree of random fluctuation 
(cf. Nichols 2003 for a similar decomposition of the relevant fac-
tors). How can we separate these different factors, and, most criti-
cally for current purposes, how can we distinguish structural pres-
sure from all other factors?

! A solution to the Inference Problem can be found if one can solve the 
Diachrony Problem: if we know that certain diachronic changes are due to 
structural pressure and nothing else, then we can legitimately extrapolate 
beyond the currently observable data, because then universals  have a 
time structure that links the past and the future to the observable. If we 
know, for example, that the observed distribution of postpositions  is  driven 
by preferred pathways  of diachronic change (and not, say, the contingen-
cies  of language contact), then we can legitimately expect that these 
preferences  were the same in the past; if they weren’t, they wouldn’t have 
led to the distributions that we observe. And it is  reasonable to expect that 
universals of change will be the same in the future, ceteris paribus. 
! Therefore, the key problem to be solved is the Diachrony Problem: how 
can we distinguish universal pressure on change from all other diachronic 
processes? It helps to decompose this problem into three more specific 
and better solvable sub-problems: 

1.! THE AREALITY PROBLEM: how can we identify language contact effects?
2.! THE RESIDUALS PROBLEM: how can we identify random fluctuation and 

fluctuation caused by unknown factors?
3.! THE INHERITANCE PROBLEM: how can we identify blind inheritance ef-

fects?

In the following, I first address the Areality and the Residuals  Problem, and 
then the Inheritance Problem.

1  Other appropriate terms are ‘selection’, ‘functional pressure’, ‘preferred path-
ways of change’, ‘linguistic principles’. I am not concerned here where exactly any 
such pressure is grounded: perhaps it is hard-wired in the brain, perhaps it results 
from communicative and social principles. Also, I am not concerned with the ques-
tion whether structural pressure affects typological distributions by selecting pre-
ferred outcomes of random change or by pre-defining pathways of change. For 
various positions on these issues, see in particular, Haspelmath 1999; Kirby 1999; 
Croft 2000; Blevins 2004; 
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2.1 The Areality and Residuals Problems

The Areality and Residuals  Problems are statistically relatively trivial as 
soon as we reformulate linguistic universals  as proper statistical hypothe-
sis. The standard way of doing this  in other disciplines is by means of mul-
tiple regression models, and there is  no reason not to do this in typology 
as  well. Multiple regression models allow the identification of the effect of 
areality as opposed to structural pressure, and at the same time an identi-
fication of that part of the distribution that cannot be explained by a hy-
pothesized factor because it is due to random fluctuation and unknown 
factors. 
! Multiple regression has a generalized form that is  applicable to any 
kind of variable, including the kind of binary and multinomial variables 
that are common in typology. The first step in transforming universals  of 
the classical form ‘p → q’ (e.g. ‘VO word order implies  an increased likeli-
hood of postnominal relative clauses’) into a regression model is to think 
about q in terms  of E(q), i.e. the mean value one expects it to have, given 
certain values of p (the hypothesized predictor, or series of predictors). 
With continuous  responses, E(q) can (mostly) be directly linked to the pre-
dictors, but because of their specific distributional properties, the ex-
pected values  of categorical and count variables  are usually first trans-
formed by what is  called a link function. The most commonly used link 
function for binary categorical responses is the natural logarithm of the 

odds  of the expected response, i.e. 
    

€ 

log( π(q = A)
1− π(q ≠  A)

) , where the expected 

response is the mean (proportion) of q to have value A (e.g. ‘VO oder’). 
This  is called 'logistic regression' and also extends  to multinomial cate-
gorical responses  which can be decomposed into sets  of binary ones. For 
count (frequency) responses, one usually takes the logarithm of the ex-
pected mean count, log(E(q)), a transformation leading to what is called 
'loglinear analysis'.2  Representing the link function by g, and assuming 
that one expects no error, the generalized linear model is:

(1)! ! g(E(q)) = α + β1⋅p1 + β2⋅p2 + … + βk⋅pk 

In (1), α (known as  the intercept) represents the baseline estimate of q if 
all β1…k=0, while the coefficients β1…βk estimate the relative effect of a 
series  of predictor variables p1…pk, including their interactions (and possi-
bly some nonlinear transformation of some predictors or their interac-
tions). What is  left unaccounted for by p1…pk is then due to random fluc-
tuation and unknown predictors. This amount can be estimated by a con-
ventional statistic of predictive strength (e.g. R2 and its variants).

2 In the following I mostly use logistic regression because it offers an easier inter-
pretation for universals and area affects, and because most hypotheses on record 
involve only few and mostly binary variables, but nothing that follows depends on 
this choice. Since categorical variables define cell counts in contingency tables, 
loglinear analysis is another option. It was used once in typology by Justeson & 
Stephens (1990), but these authors did not attempt to solve the areality problem 
with this (but see Perkins 2001 for cursory suggestions). Note that all I say here 
about regression models is textbook wisdom; for good expositions targeted at a 
linguistics (though not typology) audience, see Baayen (in press) and Johnson (in 
press).



5

! The predictor variables p can include various factors suspected to 
compete in how they influence the response q. These can be various 
structural variables, e.g. word order or the number of relevant distinctive 
features  in phonology — or just as well some social factor like population 
size or marriage systems hypothesized to affect the distribution of linguis-
tic structures. Crucially for current purposes, one of the predictor variables 
can be a linguistic area. To illustrate, (2) is the multiple regression version 
of the universal ‘if a language has VO instead of OV order, it is  far more 
likely to have postnominal than prenominal relative clauses’, factoring in 
the possibly confounding effect of some area distinction, e.g. languages in 
Eurasia vs. languages  outside Eurasia. Here, E(q) are the odds  for having 
postnominal relative clauses (‘NRel’) as  opposed to prenominal relative 
clauses (‘RelN’), and g is the logarithmic function:

(2) 
  

€ 

log(π(NRel)
π(RelN)

) =α + β1 ⋅ VO + β2 ⋅ AREAS + β3 ⋅ VO ⋅ AREAS

Once a universal is  formulated in this way, the problem is  to estimate 
whether β1...βk are different from zero to a statistically significant degree 
— a problem that we cannot solve until we have also addressed the Inheri-
tance Problem. Before proceeding to this  discussion, a few more clarifica-
tions about (1) and (2) are in order.
! First, categorical predictors  in regression models  are often binary, e.g. 
‘VO vs. OV order’ or ‘Eurasian vs. other languages’, and are mathemati-
cally entered into models  with values 1 vs. 0, arbitrarily chosing one cate-
gory as the baseline (0) against which the effect of the other (1) is com-
pared. Multinomial predictors with k levels can be reformulated as k-1 bi-
nary parameters, again choosing one level as  the baseline: for example, if 
we wish to model the impact of four macroareas like Africa, Eurasia, Aus-
tralasia and Americas, this  can be formulated as binary parameters like 
[Eurasia vs. Africa], [Australasia vs. Africa] and [Americas vs Africa], with 
Africa as the arbitrary baseline. The impact of the macro-area factor is 
then represented by a vector of individual parameter coefficients  (e.g. 
β2,1[Eurasia vs. Africa], β2,2[Australasia vs. Africa], β2,3[Americas vs Af-
rica]), instead of one single coefficient.  
! Second, the product of predictors, here VO ⋅ AREAS, is their interaction 
and its coefficient (β3) represents the differences in effect of one predictor 
across  the levels of the other predictor. This can be interpreted either as 
the difference in effects  of VO in Eurasia vs. outside Eurasia (since β1VO
+β3VO⋅AREAS = (β1+β3AREAS)⋅VO), or of Eurasia among VO order vs. 
other orders (since β2AREAS+β3VO⋅AREAS = (β2+β3VO)⋅AREAS). The two 
options  can be examined by a follow-up analysis  (‘factorial analysis’) of 
each equation separately (see Section 5 for an example). With multinomial 
predictors, interactions are again represented by vectors  of binary pa-
rameters, one for each difference in effects  of one predictor across  the 
levels of another predictor. For example, with four macro-areas and one 
binary word order factor, this defines (4 – 1) ⋅ (2 – 1) interactions, inter-
pretable for example as  [VO in the Americas vs. in Africa], [VO in Eurasia 
vs. in Africa], and [VO in Australasia vs. in Africa]. If it turns  out that the 
resulting interaction coefficients β3,1… β3,3 are simultaneously different 
from zero, VO order will not have a uniform impact on the odds for post-
nominal relative clauses, and one will reject the hypothesis of a principle 
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that holds universally, i.e. independent of the location of languages and 
their contact histories.
! While the Areality Problem is statistically trivial because it can be re-
formulated as  a standard regression problem, the Areality Problem is of 
course linguistically anything but trivial — indeed, it is  arguably one of the 
most pressing research questions in modern typology. The crucial chal-
lenge is to identify the kind of area that can plausibly affect the distribu-
tions of interest. This challenge is not specific to research on universals, 
and it is  orthogonal to the problem of how we can statistically evaluate 
empirical universals. However, one issue is  worth noting for current pur-
poses:
! Linguistic areas are traditionally defined by sets of structural iso-
glosses. Yet the conclusiveness of these isoglosses  rests  on the assump-
tion that they are not universally correlated (e.g. Masica 2001). This  leads 
to circularity: we need to know universals  before we can test area hy-
potheses, and we need to know areas  before we can test universal hy-
potheses. A response to this is proposed by Bickel &  Nichols’s  (2006) ‘Pre-
dictive Areality Theory’. In this approach, areal hypotheses are grounded 
outside linguistic structure, in population history. For example, we know 
that Eurasia has seen repeated spreads  of objects, ideas, and languages, 
often carried by male-dominated military and commercial expansions (e.g. 
Nichols 1998; Nasidze et al. 2003; Chaubey et al. 2006; Rootsi et al. 2007; 
and the archeology of the Silk Road). It is  plausible that this  has  led to a 
large number of language contact events, and this  can be formulated as  a 
testable hypothesis of Eurasia as an area which can be directly entered 
into a regression model.
! Instead of actual areas, one can of course also model the impact of 
specific contact scenarios, e.g. language shift vs. borrowing (Thomason & 
Kaufman 1988), or different socio-geographical profiles like spread zones 
vs. accretion zones (Nichols 1997). The model itself is  neutral as  to what 
factors are considered.

2.2 The Inheritance Problem

Given the way areality can be modeled through multiple regression, one is 
tempted to try and model inheritance in the same way: if there is  faithful 
inheritance within families, then membership in families will be a good 
predictor of current distributions. 
! In some research designs, family membership can indeed be success-
fully built into a regression model. In a study of the mean size of phonol-
ogical word domains, Bickel et al. (in press) model the impact of blind in-
heritance, represented as  family membership, along with the impacts of 
areality and a structural factor:

(3)! E(c) = α + β1STRESS + β2AREAS + β3FAMILIES

Here, c is  an approximately continuous variable representing the ratio of 
morphemes included in a phonological domain divided by the possible 
maximum in a given language (e.g. c=1 means that the phonological do-
main spans the entire grammatical word, c=.5 that it only includes  half of 
it; ‘c’ is  mnemonic for ‘coherence’). The factor STRESS classifies phonologi-
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cal patterns  as  to whether they are defined by stress  vs. something else. 
The factor AREAS is defined by two binary parameters Europe vs. South 
Asia and Southeast Asia vs. South Asia. The factor FAMILIES is  defined by 
two binary parameters Indo-European vs. Austroasiatic and Sino-Tibetan 
vs. Austroasiatic. Because the sample is not a random sample, we cannot 
apply classical sampling theory to test factors for statistical significance. 
But we can subject (3) to Monte-Carlo (i.e. randomized) permutation test-
ing, in order to estimate the probabilities of finding the observed coeffi-
cients and, for the multinomial factors, observed vectors of coefficients, 
under the null hypothesis of independence (Janssen et al. 2006; Bickel et 
al. in press).
!  This test procedure revealed a significant main effect of family and a 
significant main effect for STRESS, but no effect for area and no effect for 
any interaction (which are therefore left out from the formula above). Such 
a finding entails  that the within-family variance is  smaller than the 
between-family variance, and a plausible interpretation of this is that lan-
guages of the same family have fairly faithfully inherited their c-values, 
with only little fluctuation. 
! This  approach allows  one to factor out the relative impact of inheri-
tance and structural pressure on the development of the current distribu-
tion of c: the development must have been affected by both inheritance of 
a fairly uniform c-value per family, and at the same time by structural 
pressure to develop or retain c-values that systematically differ between 
stress-related and other sound patterns. Crucially, the two factors do not 
interact, and the hypothesized pressure therefore holds  independently of 
family membership.
! This  way of assessing the relative impact of inheritance and structural 
pressure has a severe limitation though: it only works  if one limits the da-
taset to a carefully selected sample with a handful of families, each con-
taining a comparable number of languages or relevant structures. There is 
no way of knowing whether some suspected structural pressure is in fact 
limited to the few families studied and may perhaps  have no effect in 
other families. If we find the effect in many different families  we can have 
some confidence that it reflects  a genuine universal — at least to the de-
gree that there is  no plausible alternative interpretation for why STRESS 
has the same effect across unrelated families and independent of areas.
! However, simply adding more families to a model like (3) is not a solu-
tion because k families need k-1 binary parameters for regression model-
ing. The result would be an uninformative model in which the number of 
parameters approaches the number of datapoints. (In fact, for all single-
member families, the number of parameters  is  identical to the number of 
datapoints.) To avoid this problem, we need an entirely different approach.
! As  many typologists have noted, and as I have tacitly assumed in the 
preceding discussion, universals are best understood as  systematic pres-
sures  on how languages  change over time to form new languages  (e.g., 
Greenberg 1978; Bybee 1988; Hall 1988; Greenberg 1995; Haspelmath 
1999; Maslova 2000; Nichols 2003; Blevins  2004). The core idea is that, if 
there is  a universal principle at work, dispreferred distributions will be re-
moved during these processes of change, e.g. after sufficient time, most 
VO language with prenominal relative clauses  will change into languages 
with postnominal relative clauses. 
! In order to transform this idea into a statistical modeling procedure, 
one can rely on the notion of a family as  defined for the Comparative 
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Method, i.e. as  sets of diachronic innovations. Each of these innovations 
can be affected by universal principles, either by favoring a certain inno-
vation (e.g. from VO to OV order) or by mitigating against it. If many inno-
vations in many families are affected in this way by universal principles, 
this will lead to what I call here 'family skewing': there will be more fami-
lies  that have innovated structure in such a way as to end up skewed in 
the way predicted by the universal and less families that end up not being 
skewed (i.e. internally diverse) in this way or being kewed in the opposite 
way (cf. Nichols 2003; Maslova &  Nikitina 2007): within each family, lan-
guages will either develop from a dispreferred state into the preferred one, 
or, if they already are in the preferred state, they will keep that state. In 
the case of VP order and relative clauses, this  would mean that families 
with VO order will end up skewed towards  postnominal relative clauses; 
whereas  families with OV order will be diverse or skewed in either direc-
tion. (Families with both orders pose a special problem that will be dis-
cussed in Section 4.1 below.)
! If !no universal is  at work, there can be either of two outcomes: (i) 
Structures may be inherited faithfully from the parent to the daughter lan-
guages, regardless  of any conditions — e.g. languages may keep pre-
nominal relative clauses regardless  of whether the parent language had 
VO or OV order. If structures are inherited in this  way, there is  no innova-
tion, and families end up skewed in whatever way the proto-language 
happened to be skewed. To the degree that this  is  the case, families will be 
equally skewed in any direction, i.e. we expect as  many VO families 
skewed towards prenominal as towards  postnominal relative clauses 
(which evidently is not the case, since only one family — Sinitic — is 
known to have VO order and to be skewed towards prenominal relative 
clauses). (ii) Another possible outcome in the absence of a universal prin-
ciple is  that there is  some innovation in the relevant structure when a par-
ent language splits up, but this  innovation shows  no particular preference: 
given a VO parent language, daughter languages would then just as  likely 
develop prenominal as they would develop postnominal relative clauses. 
The choice may be random or a result of unknown (perhaps areal) factors. 
In either case, the family would end up diverse (as is  the case with relative 
clause positions in Formosan, apparently as a result of varying degrees of 
contact with Sinitic).
! In summary, if one finds  that nearly all families in a survey show the 
same skewing under specific conditions (e.g. nearly all VO families are 
skewed towards  prenominal relative clauses), this  can be interpreted as 
evidence for universal pressure. If this is not what one finds, but families 
are skewed in diverse ways even under the same conditions  (e.g. some VO 
families are skewed towards prenominal, some towards postnominal rela-
tive clauses), or if they are mostly diverse, then there is no evidence for 
universal pressure. I call this mode of inferencing ‘the Skewed Family 
Method’.
! To what extent is this inference method valid? Suppose we find the 
same skewing in virtually all families worldwide — e.g. almost all VO fami-
lies  are skewed towards postnominal relative clauses (as is indeed the 
case) —, and we interpret this finding not as a reflex of universal pressure, 
but instead as  due to blind inheritance, i.e. in each family, it just happens 
that the proto-language had VO order and postnominal relative clauses, 
and this  was simply kept by all or most daughter languages. It follows that 
the current skewing can then only have arisen if the proto-languages had 
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a similar worldwide skewing as  what we find now. But then, how did the 
generation of proto-languages arise? If again by blind inheritance, the 
proto-proto-generation would have again had shown a similar worldwide 
skewing; if it hadn’t, there must have been universal pressure to change 
the distribution in a systematic way. Now, it is  logically possible that the 
proto-proto-generation, indeed that all earlier generations in the set of 
what we call human languages, had similar distribution as  the current one. 
If that was  the case, then the overall probability of random, non-directed 
change must be exceedingly small. As a result of this low probability of 
change, we then expect not to be able to observe changes  within the rela-
tively short time interval covered by the Comparative Method and almost 
all reconstructible families will show absolute uniformity in the variable of 
interest (e.g. relative clause position). Yet in many cases we do find that 
families evidence changes with regard to structural variables  (i.e. one or 
more languages  deviating from the proto-language), and the more we find 
evidence for change within families, the less is it likely that a worldwide 
skewing trend across  families results  from blind inheritance over many 
generations.
! It is  instructive to estimate the probabilities of random change pr that 
would need to be assumed if a systematic worldwide skewing is  inter-
preted as  the reflex of blind inheritance so that cases of change can still 
be detected. There is a lower and an upper boundary condition on pr:

1.! The probability pr must be high enough so that we can expect to ob-
serve changes  in the known set of reconstructed families. In large 
databases, the size of this  set can go up to about 130 families; often 
it is  less  than 50. (For example, applying the AUTOTYP taxonomy of 
reconstructible families to Dryer’s  (2005) large word order data-
base, reveals 131 highest-level taxa).

2.! The probability pr must be low enough so that an initial skewing is  
still detectable after a number of random changes that approxi-
mates  the age of human language. This number is  unknown, but it 
has  a plausible minimum of 100, on the account that human lan-
guage is at least 100Ky old (probably much older in fact) and that 
structural change (of, say, word order) happens no more often than 
every 1Ky or so.

The lower boundary of pr (as  per Condition 1) can be determined by as-
sessing how many cases  of change we can expect to find in 130 families 
by chance alone: if pr=.01, for example, we can expect to find at most 3 
cases, or with pr=.10, at most 18 cases. In a set of 50 families, pr=.01 
leads  one to expect at most 2 cases, pr = .10 at most 9 cases. For each of 
these pr-value and sample sizes, finding any more cases  would be unex-
pected, i.e. significant under a binomial test. Thus, if we find more than 9 
cases of change in 50 families, we can infer that pr cannot be smaller than 
.10. Two real-world examples: in Dryer’s  database on relative clause posi-
tion (Dryer 2005a) 11 out of 51 families  show evidence of change (i.e. at 
least one family member differs  from all others). For this to be expected, 
pr must be at least .13. In a combined dataset on the relative order of A 
(transitive agent) and O (object) (AUTOTYP and Dryer 2005b), there are 
130 families  with more than one member. Of these, 55 show evidence of 
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change. For this  to be observable by chance, pr must be at least .35. This 
suggest that for most variables, a reasonable lower boundary is pr≥.10
! For estimating the upper bounds of pr (as per Condition 1 above), I 
performed computer simulations. Each simulation starts with a dataset of 
the same magnitude as  the largest available databases (about 1300 lan-
guages) and assumes an initial skewing that is  statistically detectable by a 
χ2-test, e.g. a 30% vs. 70% distribution of values. This dataset is  then sent 
through 100 ‘generations’, where at each generation, a random proportion 
of languages equal or smaller than pr is  changed (thus acknowledging the 
fact that the rate of language change is  not constant over time). For ex-
ample, given pr=.01, one generation may change the maximum of 
.01*1300=130 languages, but the next generation may affect only 20 (or 
perhaps  none) of them.3  Changes from one to another value are equi-
probable in the simulation, because any difference in probabilities would 
presuppose the force of some universal principle, i.e. the exact opposite of 
what the simulation aims to model. The simulation program then deter-
mines  how likely it is  that the initial skewing is  still detectable by a χ2-test 
after 100 generations. This  likelihood is  computed by counting how often 
the skewing was detectable in a large sample of simulations (N=1000).
! Running these simulation sets  with various  values  for pr and various 
initial distributions shows that at pr=.01, the initial skewing is almost al-
ways still detectable after 100 generations. But at pr-levels  closer to what 
one usually observes  in available databases, e.g. pr=.10, the likelihood 
that an initial skewing is  still detectable after 100 generations falls below 
the conventional .05 threshhold of random success, and this  holds regard-
less  of how strong the initial skewing was (ranging in the simulations  from 
0%:100% to 40%:60%). This  demonstrates that interpreting a worldwide 
uniform skewing across families  as the result of blind inheritance requires 
assumed probabilities  of language change that are by order of magnitude 
below what one normally observes. This excludes blind inheritance as a 
realistic avenue of explanation. To the extent that worldwide uniform 
skewing across  families is  statistically significant, we can also exclude 
random fluctuation as an explanation. Such family skewing patterns are 
therefore best explained as  the result of structural pressure, i.e. genuine 
universals of language. What is still missing in this, however, is  a control 
for areal confounding factors. How this  control can be built into the 
method is the topic of the following.

3. A general model of universals

The preceding discussion suggests that distributional skewings in families 
reflect signals of structural pressure. This  can be directly formulated as a 
statistical hypothesis: structural pressure is statistically evidenced to the 
degree that families  are skewed in the proposed direction under a hy-
pothesized structural condition (e.g. skewed towards postnominal relative 
clauses only under the VO word order condition). Possible competition 
from language contact, social structures and other patterns can be directly 
built into the hypothesis  if we formalize it as a regression equation of the 

3 The program was written in R (R Development Core Team 2008) and relies on R’s 
built-in pseudo-random number generator.
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following kind (where L represents  a linguistic structural factor and A a 
language contact area or some other confounding factor): 

(4)!
  

€ 

log(π(proposed skewing)
π(opposite | diverse)

) = α + β1 ⋅L + β2 ⋅ A + β3 ⋅L ⋅ A

Here, datapoints are not languages but entire families (with more than one 
member each), classified as  to whether or not the distribution of the re-
sponse variable of interest (e.g. relative clause position) is skewed condi-
tional on L and/or A. For a hypothesized universal to get statistical sup-
port, (4) must have a coefficient β1 (or, with multinomial factors, a vector 
of parameter coefficients β1,i…β1,k) that is significantly different from zero 
and must not have an interaction coefficient β3 (or vector of interaction 
coefficients β3,i…β3,k) that is  significantly different from zero, i.e. we expect 
L to skew families independently of A (across  different areas, or social 
structures, or whatever is modeled by A). In Section 4, I propose an algo-
rithm for measuring the skewing across families, and I discuss statistical 
problems  associated with finding and testing the coefficients  in (4). Before 
going into these more technical issues, however, I wish to clarify the na-
ture of hypothesis formulation that (4) is meant to capture.
! The model in (4) is  suitable for both unidirectional (‘p → q’) and bidi-
rectional (‘p ↔ q’) hypotheses. These two types of universals  differ in the 
expectations about the odds ratio: For a unidirectional hypothesis, it is 
sufficient that the odds  for the proposed skewing is higher for one level of 
the predictor than for the other (as directly reflected by a positive value of 
β1, hence a large odds  ratio θ=eβ1), e.g. higher for VO than for OV families. 
Crucially, the hypothesis  is compatible with a scenario in which the odds 
under one of the predictor levels  (e.g. OV) is  1:1 (which seems to be the 
case with relative clause positions: the odds  for RelN and NRel skewings 
seem to be roughly the same for OV families). This  is  different for bidirec-
tional universals. Consider the universal: ‘if a family is  consistently VO 
rather than OV, this increases the odds for a skewing towards  prepositions; 
and, if a family is consistently OV rather than VO, this increases the odds 
for a skewing towards  postpositions’. Here, we expect that the odds for a 
preposition vs. postposition skewing do not approach 1:1 under either 
level of the predictor; instead, we expect that the odds  for preposition as 
opposed to postposition skewing are many:1 under VO and 1:many under 
OV.
! The model in (4) also subsumes  univariate universals  as  a special 
case. Univariate universals, e.g. Greenberg’s Universal Nr. 1 predicting a 
universal preference for Agent-before-Object order (Greenberg 1963), con-
tain no linguistic structural predictor but only a baseline frequency distri-
bution α and some areal predictors  whose possibly confounding influence 
we wish to test. A univariate universal is statistically supported if the best-
fitting model only includes α. Whether α is skewed itself can then be as-
sessed by a χ2–test against what is expected under the null hypothesis 
(e.g. a 1:1 distribution).
! If there is statistical evidence for a hypothesis modeled as in (4), we 
have good reasons to assume that there is universal structural pressure at 
work, and we can even estimate the time interval in which the universal 
exerts its  pressure on language change: this  time interval is  always  the 
same as the interval captured by the genealogical taxonomy used. If this 
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is Dryer’s  (1989) genus level, then the universal must have exerted its 
pressure within some 2,000 years; if the model is applied to a taxonomy of 
stocks in Nichols’ (1997) sense, i.e. the deepest reconstructible taxa, then 
a found universal must have exerted its pressure over a time depth in the 
magnitude of stock ages, i.e. up to about 6,000 years. In other words, if 
we find systematic skewings of stocks, we can conclude that a universal 
has  skewed a sufficient number of families within less than about 6,000 
years.
! However, there could also be universal structural pressure that has 
slower effects  than this, i.e. the pressure might skew diachronic change 
only over the time course of many more generations  of languages than 
what the Comparative Method allows one to reconstruct. In such a case, 
(4) will fail to show a significant effect of a the structural effect L that is 
tested in the model. Instead, the distribution of structures  within families 
will be determined by one of the following events: (i) Within the time-
frame of the assumed taxonomy, daughter languages blindly inherit what-
ever happens to characterize the proto-language, regardless of any struc-
tural conditions; this  will approximate a 1:1 odds for the proposed vs. the 
opposite skewing, leaving almost no room for diverse families. An example 
that comes close to this  is  the distribution of gender (Nichols  2003 and the 
data in Corbett 2005): families  are likely to be skewed towards having 
gender or towards not having gender; freely 'mixed' families are relatively 
rare. (ii) Daughter languages diversify in response to unknown factors and/
or by random fluctuation; this will approximate a 1:1 odds for the pro-
posed skewing vs. diversity within families, leaving almost no room for 
families with the opposite skewing. (iii) There is  a mix of both unknown 
factors and faithful inheritance, yielding roughly uniform frequencies of 
families with the proposed, those with the opposite and those without any 
skewing.  
! If what we observe is close to (i), we are confronted with exactly the 
situation that prompted Dryer (1989; 2000) to develop a principled 
method of genealogical sampling, i.e. one that controls for the multiplica-
tion of features (variable values) that can happen to families  as a result of 
inheritance within the time depth of the taxonomy. In such a case, we 
need to reduce our sample in such a way that each stock that is  skewed as 
a result of inheritance is  represented only once. An algorithm achieving 
precisely this is developed in Bickel (in press), elaborating on Dryer’s 
(1989) proposal. If we are willing to assume that the inheritance pattern 
found among non-singleton families  can be generalized to the prehistory 
of isolates, isolates can also be included in the dataset (as is  usually 
done). The resulting sample can then be evaluated again by standard re-
gression modeling, but now with sample languages  rather than families as 
datapoints.
! If such a model has coefficients significantly different from zero, and 
there is  no evidence for an interaction with areas, this  is  a possible pointer 
to a deep time universal that exerts pressure on diachronic change within 
larger intervals than what is covered by the assumed genealogical 
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taxonomy.4 However, in this case, we can have only much less confidence 
in the finding, because the stock representatives and isolates  in the data-
set may happen to be the sole survivors of what were unskewed (diverse) 
stocks before, or, worse, deviating survivors of stocks skewed in the oppo-
site direction. I will return to the issue of how the proposed method in (4) 
compares to genealogical sampling in Section 6.
! The other scenarios mentioned above (a skewing in the opposite way 
than what the model predicts, or mixed results) do not open avenues  of 
research for deep time universals. Rather, they suggest that the tested 
model does  not suit the data. Under Scenario (iii) (mixed results), one is 
well-advised to entertain entirely different models. But Scenario (ii) sug-
gests  that the model is on the right track, and only makes  predictions in 
the wrong way: there appears a systematic dispreference for families to be 
skewed in the way coded as 'opposite'. An example of this  is what one ob-
serves with the distribution of accusative vs. ergative alignment in case 
systems (cf. Nichols  1993, 2003, Maslova &  Nikitina 2007). In general, the 
odds  for families to be skewed towards accusative alignment is roughly 
equal to the odds for families to be diverse or to be skewed towards erga-
tive alignment. Thus, if one takes 'accusative alignment' as the 'proposed' 
value in a model of the kind given in (4), there won't be a significant ef-
fect. However, the odds for families to be skewed towards ergative align-
ment are extremely low, and at any rate much lower than the odds  to be 
skewed towards the opposite (accusative alignment) or to be diverse. This 
suggests a universal principle disfavoring ergative alignment. (These find-
ings are tentatively corroborated by a survey of AUTOTYP data on 25 fami-
lies, but further research is needed, on databases covering more families.)

4. Implementation of the method

In order to develop a statistical method for testing the equation in (4), we 
need two ingredients: (i) an algorithm that estimates which families are 
skewed in which direction, (ii) tools for assessing the probability of nonzero 
coefficients without making random-sampling assumptions. I take up these 
issues in turn.

4.1 Estimating family skewing

In some cases, distributional skewings within families can be determined 
in a straightforward way. The skewing may be absolute, e.g. all members 
may have prenominal relative clauses; or all member may have the same 

4  This by and large resolves the debate between Maslova (2000) and Dryer 
(2000): on the one hand, there is good justification for Dryer’s concern that blind 
inheritance can lead to artificially skewed distributions if a sample contains large 
families, but this concern is only relevant if inheritance is blind to universal pres-
sures within the time depth of families (i.e. if families are skewed in diverse ways). 
On the other hand, there is good justification for Maslova’s concern that Dryer’s 
sampling strategy throws away critical data for detecting universals, but this con-
cern is only relevant if universals exert their pressure within the time depth of 
known families.
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degree of synthesis. When there is diversity, skewing can be determined 
by a statistical criterion. For categorical responses, a suitable criterion is  a 
permutation test based on χ2-deviations from what is  expected under the 
null hypothesis (e.g., equal probability, or probabilities  predefined by the 
definition of the variables involved); in the case of continuous  response 
variables, a possible criterion is  to test how often the observed variance is 
below the variance obtainable in bootstrap samples (samples with re-
placements) from the full range of possible values. 
! Determining family skewing becomes more difficult when families  are 
not uniform with regard to the predictors  in the regression model, as 
when, for example, Sino-Tibetan has both VO and OV orders  and straddles 
two linguistic areas of interest (Southeast Asia and South Asia). How can 
family skewing be determined in such cases? The Skewed Family Method 
can detect structural pressure at any given time depth because it is neu-
tral as to the taxonomy on which it is applied. If the method detects a sta-
tistical signal from structural pressure within shallow families, this  sug-
gests  that the relevant pressure has  effects  at a relatively quick pace of 
diachronic development. If the method detects a signal only at higher-level 
taxa, this  suggests  that the pressure affects  distributions  at a slower pace. 
Either case is  evidence for structural pressure as  a universal principle. In-
deed, any taxonomic level is just as good a probe for the method as  an-
other. Therefore, when a family is  split across predictors levels at the 
highest taxonomic level, it is  methodologically legitimate to assess skew-
ing at a lower level, which may not be split. This  is  so in the Sino-Tibetan 
example with regard to word order: there are two major branches that are 
uniformly VO (Karenic and Sinitic), but all other major branches are uni-
formly OV. The same logic applies to splits by areas: some major branches 
are in one area, some in another area.
! However, given the often sketchy knowledge that is  available on sub-
grouping it is  often impossible to find plausible subgroups; or, even though 
the taxonomy may be well established, subgroups  may be diverse with re-
gard to some predictor of interest. In these  cases, I propose to posit 
pseudo-groups based on the difference in predictor values, e.g. a VO 
pseudo-group  vs. an OV pseudo-group. Importantly, these pseudo-groups 
are posited solely for the purposes of testing whether differences  in the 
predictor have an effect on the distribution of some response variable 
within each group. They clearly are not evidence for real subgroups. How-
ever, since some change must have split the family, it is a legitimate iso-
gloss for testing purposes: the key question is  only whether the isogloss  is 
associated with different responses  to such an extent that the pseudo-
groups are now skewed.5 
! Another problem arises when predictors are continuous, e.g. when tak-
ing degree of synthesis, or number of consonants  as a predictor for some 
structural distribution. For this, the only available solution is  to slice the 
predictor into broader categories (e.g. low vs. mid vs. high synthesis  de-
gree) and then determine response skewing within each genealogical unit 
that receives a uniform category assignment.

5 An algorithm that determines skewing with families, with any number of predic-
tors, is available as an R function ‘families()’ in www.uni-leipzig.de/~autotyp/ 
gsample3.r. I thank Taras Zakharko for implementing the algorithm.
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4.2 Estimating and testing regression coefficients

As  argued in Janssen et al. (2006) and noted in Section 2.2 above, a fun-
damental problem for any statistical method in typology is  that datasets 
are not random samples from an underlying population. Instead of classi-
cal random-sample inference, the only possible type of inference that can 
be applied in such cases  involves permutation methods: the significance 
of an observed distribution is determined by comparison to random per-
mutations  of the observed data itself. In other words, the null hypothesis  is 
that the observed distribution is just as likely as the distribution under any 
re-shuffling of values in the data.6

! Permutation tests can be applied to any statistic. In the case of regres-
sion models, one method is to randomly permutate the response, i.e. the 
relative frequencies of families with the proposed skewings as  opposed to 
those with the opposite skewing and those with no skewing. For the ob-
served dataset and for each permutation of it, one then computes the like-
lihood ratios LR of nested models,7  in which the best fitting coefficients 
(i.e. the values of α and βi…k in 4 that best predict the data) are estimated 
via standard Maximum Likelihood estimation (e.g., Agresti 2002). The LR 
statistic (also known as ‘deviance’ or ‘G2’) measures  the difference in data 
fit between two nested models and is  defined as  the difference between 
2logΛ1 and -2logΛ2, where Λ1 and Λ2 are the maximum likelihoods of the 
two models.8 A common case of interest would be the likelihood ratios  be-
tween a model including an interaction between a structural and an areal 
factor and a model without such an interaction. The statistical significance 
of the LR of the models — in our example, the difference between the 
more complex model including the interaction (with β3≠0 in 4) and the 
less  complex model excluding the interaction (with β3=0 in 4) — is then 
given by the number of cases in which the LR statistic in the permutated 
datasets  is at least as high as the LR statistic obtained in the observed da-
taset. If that is the case in more than, say, 5% of a large number of permu-
tated datasets  (e.g. 10,000), the LR statistic is  not significant. In our ex-
ample, higher LR statistics  will arise with those permutated datasets that 
are better fitted by a model with interactions than by one without.!
! If the LR between two models of the observed dataset is often 
matched or surpassed by the LR between the same two models  of random 
permutations, this suggests  that the likelihood difference could have 

6 Alternative terms focus on various aspects of the same method: ‘conditional in-
ference’ focuses on the fact that all inference is conditional on the observed data-
set, ‘exact test’ focuses on the fact that p-values are determined in comparison to 
all possible alternative datasets (‘approximatively exact’, if the comparison in-
volves only a random subset of these alternatives), ‘re-sampling’ focuses on the 
fact that many samples are drawn from the same dataset, and ‘randomization’ on 
the fact that permutations are random. See Everitt & Hothorn 2006; Good 2006; 
Manly 2007, among others.
7 Models are nested iff the less complex model is a subset of the more complex 
model and contains all terms presupposed by the interaction terms in the more 
complex model. 
8 For sparse datasets with many predictors, maximum likelihood estimation may 
not work well and should be replaced by conditional likelihood estimation, see 
Agresti (2002: Chapter 6.7), Forster et al. 2003, and Zamar et al. 2007 for solu-
tions. A convenience function for performing permutation tests based on likeli-
hood ratios is available for R in www.uni-leipzig.de/~autotyp/rnd.lr.test.r. The func-
tion is compatible with any kind of regression model and any kind of variables.
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arisen by chance alone and that the two models fit equally well (or equally 
badly!). Applying Occham’s  razor, the less complex model is  then pre-
ferred; in our example, there is  then no evidence for an interaction be-
tween area and structure, i.e. β3 is  not significantly different from zero in 
(4).  
! To determine the significance of each individual factor of a regression 
model and each interaction in it, one can perform such a test of signifi-
cance for the LR statistic comparing a model with the term of interest and 
one without. Testing of successively smaller models then leads  to the most 
parsimonious model compatible with the data. Once one finds this model, 
one will also want to assess its  over-all fit by comparing it to what is 
known as  the ‘saturated’ model, i.e. one which contains as  many predic-
tors  as  it has data and therefore fits  perfectly and trivially (e.g. each lan-
guage predicts  its own response). If our most parsimonious model fits as 
well as the saturated model (so that the LR between the two models is  not 
significant under a permutation test), it is  a good description of the data. 
‘Good’ here can of course only be understood relative to the hypothesis 
under investigation. An entirely different set of predictors, i.e. a different 
theory, may always be a superior description!

5.  A case study

Many typologists  have hypothesized that verb-final order favors what I call 
here ‘A≠O marking’, i.e. case or adposition marking distinguishing A (‘sub-
jects’, transitive agent-like arguments) from O (‘objects’) (e.g. Greenberg 
1963: Universal Nr. 41; Nichols 1992; Siewierska 1996; Dryer 2002; Rijk-
hoff 2002; also cf. Konstanz Universals Archive Nr. 447). Hawkins (2004) 
discusses explanations for this in terms  of increased efficiency of incre-
mental processing when arguments are overtly distinguished before the 
verb is processed.
! However, typologists have also noticed that the worldwide distribution 
of both case/adposition marking and of word order is  heavily influenced by 
language contact, resulting in strong areal patterns  (Dryer 1989; Siewier-
ska 1996; Dryer 2000, 2005b; Bickel &  Nichols  2006, in press, among oth-
ers). For example, Eurasia is known to favor case whereas  Africa is known 
to disfavor it. Southeast Asia and Europe are known to favor VO order 
while the rest of Eurasia is known to favor OV order. 
! The critical question then is whether the distribution of A≠O marking is  
driven by word order (specifically, the difference between verb-final vs. 
other orders), independently of both areas  and blind inheritance within 
families. Assuming the method developed above, the issue can be formu-
lated as a regression model (VF = ‘verb-final vs. non-verb-final’, A= ‘ar-
eas’)

(5)!
  

€ 

log( π(skewed towards A ≠O)
π(skewed towards A = O | diverse)

) = α + β1 ⋅ VF + β2 ⋅ A + β3 ⋅ VF ⋅ A!

The hypothesis then is that β1 is significantly different from zero —perhaps 
along with β2 — but that β3 is not significantly different from zero, i.e. that 
an interaction between word order and area does not improve the fit of 
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the model and can therefore be neglected. If this  is so, there is  evidence 
that the factor VF affects language change in such a way that families 
tend to be skewed towards distinguishing A and O by case or adposition 
marking.

5.1 Data and Coding

The data for testing (5) come from merging the datasets from AUTOTYP 
(Bickel &  Nichols 1996ff) and the World Atlas of Language Structures (spe-
cifically, Comrie 2005; Dryer 2005b), classified into linguistic areas  at vari-
ous  levels of resolutions and into a genealogical taxonomy contained in 
AUTOTYP (cf. above).9 Merging seems legitimate since the databases con-
verge in the coding of those languages covered by both. For word order 
(final vs. non-final order, excluding variable and free orders), the coding 
converged in all 207 such cases; for argument marking (A=O vs. A≠O), 
the coding converged in all but one of 100 such cases.10 The resulting set 
covers  330 languages, with 51 families containing more than one member. 
This is not much, but will do for illustrating the method.
! Given what is known from the literature about the geography of case 
and word order, it is not self-evident what level of areal resolution is plau-
sible. In response to this, I tested the impact of A at three levels of resolu-
tion: I first examined a breakdown of the world in 24 traditionally-sized lin-
guistic areas  (e.g. Southeast Asia, Europe, California) and deviating rem-
nant regions (e.g. Caucasus, North Australia) (Test 1). These are the kinds 
of areas which have often been noted to affect the distribution of word or-
der. Second, I tested a 4-way breakdown of the world into ‘macroconti-
nents’ in the spirit of Dryer (1989) and Nichols  (1992) (Test 2). Third, since 
the distribution of case is particularly affected by the Eurasian macro-area 
(Jakobson 1931, Bickel & Nichols, in press, and Section 2.1 above), I exam-
ined a two-way distinctions between languages in Eurasia vs. others (Test 
3). (Following Bickel &  Nichols  2003, I excluded the Caucasus  and the Hi-
malayas  from the Eurasian spread area.) Maps 1-3 identify these geo-
graphical breakdowns.

INSERT MAP 1 ABOUT HERE

Map 1: Areas assumed for testing purposes in Test 1 (A  =  Alaska-
Oregon, B  =  Andean, C  =  Basin and Plains, D  =  California, E  =  
Caucasus-Mesopotamia, F  =  Eastern North America, G  =  Ethiopian 
Plateau, H  =  Europe, I  =  Indic, J  =  Inner Asia, K  =  Interior New 
Guinea, L  =  Mesoamerica, M  =  N Africa, N  =  N Australia, O  =  
North Coast Asia, P  =  North Coast New Guinea, Q  =  North Savan-
nah, R  =  Northeastern South America, S  =  Oceania, T  =  Southern 

9 The data and all codings are available at www.uni-leipzig.de/~autotyp.
10  The one mismatch concerns the African language Fur (ISO 639-3: fvr), where 
accusative case distinct from the nominative (the so-called ‘compound accusa-
tive’) is limited to some verbs (Beaton 1968). The merged dataset represents Fur 
as a language with A=O marking, but this decision has no impact on the results.
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Africa, U  = Southern Australia, V  = Southern New Guinea, W  = 
Southeastern South America, X  =  Southeast Asia)

INSERT MAP 2 ABOUT HERE

Map 2: Macrocontinents in Test 2 (stars = Africa, squares= Americas, 
dots = Eurasia, triangles = New Guinea and Australia)

INSERT MAP 3 ABOUT HERE

Map 3: Eurasia in Test 3 (black dots; without the Caucasus and the Hi-
malayas)

5.2 Results

I first tested a model with the 24-way areal breakdown (Map 1). Determin-
ing family skewings necessitates  pseudo-groups in 59% of cases in order 
to derive families with uniform predictor values, N = 94. In total, 78% are 
on the highest taxonomic level, the others  on lower levels. The skewing 
distribution is plotted in Figure 1. 

INSERT FIGURE 1 ABOUT HERE

Figure 1: Distribution of family skewing per area (Test 1, same labels as  
in Map 1). The width of each area-labeling box is proportional to the 
sample size of the area. Within each area, the bars to the left display 
non-verb-final, the bars to the right verb-final order. The width of the 
bars is proportional to the number of families under each condition 
(zero is represented by a line with a round circle). Within each bar, the 
black part represents families skewed towards A≠O; the grey part rep-
resents families that are skewed in the opposite way or diverse (i.e. 
unskewed) families.

As  shown by Figure 1, some interactions  of area and word order are unde-
fined because only a single word order is  found in the area. Data from 
these areas need to be removed before it is  reasonable to fit a model with 
interactions. This results  in 14 instead of 23 degrees  of freedom for testing 
the significance of the interaction coefficients.11 There is no evidence for 
an interaction term (LR=13.98, df=14, p=.89), but there are significant 
main effects for both the word order factor (LR=17.83, df=1, p<.001) and 

11  An additional problem is that the relative large number of parameter 
coefficients (N = (2-1)+(15-1)+(2-1)⋅(15-1) = 29) and partial collinearity between 
them can lead, and with the given data, does lead to computational problems in 
Maximum Likelihood Estimation. In order to avoid this, I followed standard 
recommendations (cf. e.g. Harrell 2001 or Baayen, in press), and built a penalizing 
factor into the model fitting algorithm before performing tests on the obtained 
likelihoods. The best-matching factor was empirically determined to be 3.
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the area factor (LR=52.92, df=23, p<.003). The best-fitting model there-
fore includes  both these factors  but without interactions; comparing this 
additive model to a saturated one suggests a good over-all fit (LR=55.16, 
df=69, p=.99). The odds ratios  of the word order factor is  θ=35.47, i.e. 
under this model, verb-final families  are about 35 times  more likely to be 
skewed towards A≠O marking than other families.
! Results are similar for the 4-way macrocontinent breakdown (Test 2, 
Map 2). Here, determining family skewing necessitates pseudo-groups in 
31%, N=77. In total, 62% are on the highest taxonomic levels  and 23% on 
the next-to-highest level. Figure 2 shows the skewing in families  across  the 
four macrocontinents. 

INSERT FIGURE 2 ABOUT HERE

Figure 2: Distribution of family skewing per macrocontinent (Test 2, 
same plotting conventions as in Figure 1)

There is no evidence for an interaction term (LR=2.72, df=3, p=.53), but 
there is  a significant main effects for word order (LR=13.20, df=1, p<.001) 
and a marginal effect for the macrocontinents  (LR=7.32, df=3, p=.07). 
The overall-fit of an additive model is good (LR=82.45, df=72, p=.98). The 
odds  ratio of the word order factor in this  model is θ=6.93, i.e. under this 
model, verb-final families are almost 7 times  more likely to develop a 
skewing towards A≠O marking than other families.
! Figure 2 suggests that the word order effect is strongest in Eurasia. 
This  observation can be further examined by building the difference be-
tween Eurasia and the rest of the world into the model, but now defining 
Eurasia as a spread zone, without the Caucasus  and the Himalayas  (Test 3, 
Map 3). For such a model, determining family skewings requires 33% 
pseudo-groups, N=79. In total, 58% are on the highest taxonomic level, 
41% on the next lower level. Figure 3 displays the observed distribution.

INSERT FIGURE 3 ABOUT HERE

Figure 3: Distribution of family skewing per macrocontinent (Test 3, 
same plotting conventions as in Figure 1)

The difference in the strength of the word order effect is  confirmed by a 
borderline significant interaction (LR=4.15, df=1, p=.054). Factorial analy-
sis  of the word order effect inside and outside Eurasia suggests  that the 
skewing has the same direction and is  significant in both (Fisher Exact 
test, Eurasia p=.002, Other p=.003). This  suggests  that an additive model 
might fit just as well as one with an interaction. Such a model fits  the data 
reasonably well (LR=88.04, df=76, p=.99).
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5.3 Summary

In all three tests, areal factors make a significant contribution to the skew-
ing of families towards A≠O marking. However, while the strength of this 
effect varies, it does  not interact with the hypothesized word order effect 
in such a way that it would reverse it. In other words, the word order effect 
always has the same direction. The effect is  statistically significant in all 
models, and this lends evidence to the hypothesis that the development 
or maintainance of A≠O marking within families is  indeed correlated with 
verb-final order. This points to universal structural pressure in the way 
families have developed over time.

6. Discussion

How does the proposed method compare to alternatives that are available 
in the literature? There are two dimensions in which my proposal differs 
from previous ones: (i) it employs regression modeling in order to control 
for areal and other factors; (ii) it controls  for inheritance effects  by deter-
mining distributional skewings  within families. I take these issues up in 
turn.
! The classical alternative to regression modeling is to separately exam-
ine individual areas (Dryer 1989). This  is  the same procedure that is stan-
dardly applied in factorial analysis  when there is evidence for an interac-
tion (as  was  the case in Test 3 above). A well-known problem of this  pro-
cedure, however, is that the individual sub-samples may be too small for 
revealing any association between variables (also cf. Cysouw 2005). For 
example, if instead of modeling regressions, I had performed four separate 
Fisher Exact tests  on each macrocontinent in Test 2, the results would 
have suggested that it is only in Eurasia that word order has a significant 
effect on A≠O marking (p=.002); in all other areas, the effect is not (Af-
rica, New Guinea-Australia) or borderline (Americas, p=.06) statistically 
significant. A natural conclusion from this  would be that the word order ef-
fect is  not universal since in some areas it can be predicted from the mar-
gin totals (i.e. the total proportion of verb-final and of A≠O marking fami-
lies). However, the results  of these individual tests  are a side-effect of the 
considerably different sample sizes, as visually represented in Figure 2 by 
the length of the area-denoting boxes under each plot. When area is con-
trolled for in regression modeling, word order has a significant impact on 
A≠O marking, with an appreciable odds ratio of around 7.
! The classical alternative to examining family skewing is genealogically 
balanced sampling, where the data are reduced in such a way that each 
genealogical unit is  represented by the sole or predominant value of some 
variable of interest (Dryer 1989, 2000; Bickel in press). The problem of this 
method is  that it assumes  that all skewings or uniformities within families 
are the result of blind inheritance from their respective proto-languages. 
As  argued in Section 3, this  is  only the case if (a) skewings go in different 
directions, independently of structural factors, and (b) together outrank 
family-internal diversity. If the skewings  depend on structural factors or do 
not outrank family-internal diversity, the distributions within families are 
the best data we have for assessing the significance of these factors. Re-
ducing the sample then means to throw away all critical data. In return, if 
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a response variable is  skewed within families independently of structural 
or areal factors, the variable is  extremely stable, and genealogically bal-
anced sampling is an excellent method to control for this stability.
! There is  one situation, however where genealogically balanced sam-
pling is the only option available: the method proposed here requires  that 
each family be represented by more than one language. This entails that 
isolates can never enter the analysis. For some factors  of interest — e.g. 
A≠O marking and word order — this  is  not a problem. But it quickly turns 
into a problem when the variables  of interest happen to be best repre-
sented in isolates. For such research questions, genealogically-balanced 
sampling is the only possibility. Also, genealogically-balanced sampling 
obviously has  a very practical advantage because it can also be performed 
before collecting data, thereby reducing the workload in creating a data-
base (see Bickel in press  for some discussion of this  kind of 'a-priori' sam-
pling).
! In summary, genealogically-balanced sampling still deserves an impor-
tant place in quantitative typology (pace Maslova 2000). When it is  ap-
plied, it is  important, however, to note the limitations of the method. The 
most severe limitation is that the method offers no ‘dynamic’ interpreta-
tion of universals: while the Skewed Family method proposed here gives 
direct evidence for universals  as principles of diachronic change, the ge-
nealogical sampling method only takes  synchronic snapshots, as  it were. 
From these, we cannot infer principles  that drive the development of ty-
pological distributions over time. They may be indicative of such develop-
ments, but there is no guarantee.

7. Conclusions

This  paper makes  a new proposal on how to assess  whether an empirical 
universal holds  independently of other factors known to influence the de-
velopment of typological distributions: the impact of blind inheritance of 
whatever type the parent languages had (e.g. the position of relative 
clauses) can be assessed by determining the directions  in which families 
are skewed, possibly under other factors of interest (e.g. VP order or ar-
eas). The impact of areas  can be factored out through regression model-
ing, i.e. a statistical method that is standard in other disciples, including 
close neighbors like psycholinguistics and sociolinguistics.12 
! The statistical problem that the data are not random samples can be 
solved by applying permutation methods and conducting conditional infer-
ence limited to the data. Since the data represent diachronic change prob-
abilities (skewing towards certain features under given conditions), statis-
tical significance of a factor directly attests to its  diachronic relevance. If a 
factor does indeed play a universal role in diachrony, it is plausible to as-
sume that it projects into the past and the future. Under this  assumption it 
is in turn possible to infer principles  that are truly universal, i.e. independ-

12  For historical reasons, regression modeling is known as VARBRUL in sociolin-
guistics. In psycholingustics, regression modeling is typically restricted to con-
tinuous response and categorical predictor variables and the term ANOVA is used 
as shortcut for models with just this kind of design. See Johnson (in press) for dis-
cussion.
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ent of time and space, and  this overcomes the inference limitations of 
permutation methods.
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