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Optimal Control of Storage under Time Varying
Electricity Prices

Md Umar Hashmi1, Arpan Mukhopadhyay2, Ana Bušić1, and Jocelyne Elias3

Abstract—End users equipped with storage may exploit time
variations in electricity prices to earn profit by doing energy
arbitrage, i.e., buying energy when it is cheap and selling it when
it is expensive. We propose an algorithm to find an optimal so-
lution of the energy arbitrage problem under given time varying
electricity prices. Our algorithm is based on discretization of
optimal Lagrange multipliers of a convex problem and has a
structure in which the optimal control decisions are independent
of past or future prices beyond a certain time horizon. The
proposed algorithm has a run time complexity of O(N2) in
the worst case, where N denotes the time horizon. To show
the efficacy of the proposed algorithm, we compare its run-
time performance with other algorithms used in MATLAB’s
constrained optimization solvers. Our algorithm is found to be
at least ten times faster, and hence has the potential to be used
for in real-time. Using the proposed algorithm, we also evaluate
the benefits of doing energy arbitrage over an extended period
of time for which price signals are available from some ISO’s in
USA and Europe.

I. INTRODUCTION

Dynamic pricing of electricity in wholesale electricity mar-

kets has the potential to reduce peak demand [1]. An end

user operating under such pricing has to alter its consumption

pattern to reduce cost of operation by shifting its peak demand

to hours of low price. However, it has been observed that

consumption patterns of users do not change significantly

with real time electricity price variations and hence consumers

end-up paying more in their electricity bill [2]. Installing

energy storage by an end user allows them to perform energy

arbitrage, i.e., to buy energy when prices are low and sell it

when it is expensive. The energy bought can be stored in the

battery for later use when the demand arises. Hence, using the

battery allows the user to keep the same consumption pattern

without increasing their electricity bills under time-varying

electricity prices [3]. Additionally, if the user is equipped with

a renewable generation unit, then a battery also allows the user

to reduce energy uncertainty by storing excess generations.

The real time optimal storage arbitrage requires an optimal

control algorithm and accurate information about present and

future states. Collectively these two requirements affect the

end user arbitrage gains. In the present work we focus on the

development of optimal energy arbitrage algorithm which al-

low users to perform energy arbitrage optimally and efficiently
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under time varying electricity prices. We consider the optimal

energy arbitrage problem for an end user as a convex problem

and propose a solution based on finding the optimal Lagrange

multipliers. The key contributions and insights in the paper

are the following:

• Tuning Lagrange multipliers: Exploiting the piecewise linear

cost structure of the arbitrage problem we find that the optimal

Lagrange multipliers can only take a discrete set of values

corresponding to buying and selling prices of electricity. This

transforms the continuous optimization problem into a discrete

optimization problem. We indicate how to tune the Lagrange

multiplier variables to these prices to find their optimal values.

• Complexity: Using the discrete nature of the optimization, we

explicitly characterize the worst case running time complexity

of the proposed arbitrage algorithm. The worst case run-time

complexity is found to be quadratic in the number of instants

for which price values are available. Numerical simulations

show that our algorithm computes the optimal solution at least

ten times faster than standard MATLAB optimization solvers.

• Sub-horizon: From the structure of solution obtained using

Lagrangian dual, we observe that to find optimal control

decisions in a certain period within the total period it is

sufficient to consider prices only within a sub-horizon much

smaller than the whole duration. In the proposed algorithm,

we show how to calculate these sub-horizons.

• Arbitrage: Using the proposed algorithm, we evaluate the

benefits of performing energy arbitrage for an extended du-

ration of operation (e.g. 5 years). We use real price data and

also incorporate realistic losses in the battery.

The problem of optimal energy arbitrage using storage has

been the subject of many recent works e.g., [4], [5], [6],

[7], [3], [8], [9], [10], [11]. In [4], the demand and price

of electricity are assumed to be correlated and stochastic.

However, in this setting the user is not allowed to sell energy

to the grid. In [5], a closed form solution based on stochastic

dynamic programming has been found for the arbitrage prob-

lem without considering the ramp constraints of the battery.

The objective in [6] is to reduce operational cost of the grid,

where demands arrive randomly in time. The work closest to

the current paper is [7], where the energy arbitrage problem

has been considered for a single battery user incorporating

ramp and capacity constraints of the battery. However, in [7]

no special property of the cost function other than its convexity

is assumed. As a result, characterization of the complexity for

the optimal arbitrage algorithm was not possible. In the current

paper, we consider a special case where the cost function

is piecewise-linear which allows us to discretize the optimal





Hence, the Lagrangian dual of (P) is given by

(LD) max φ(α, β)

subject to, αi, βi ≥ 0 ∀i

where φ(α, β) = inf
xi∈[Xmin

i
,Xmax

i
]
L (x, α, β)

Theorem III.1. There exists a pair (x∗, µ∗) with µ∗ =
(µ∗

1, . . . , µ
∗

N ) such that:

(1.) x∗ = (x∗

1, ..., x
∗

N ) is a feasible solution of optimal

arbitrage problem (P) implying x∗

i ∈ [Xmin
i , Xmax

i ] and

b∗i = b0 +
∑i

j=1 x
∗

j ∈ [bmin, bmax] for all i.

(2.) For each i, x∗

i minimizes C
(i)
storage(x) − µ∗

i x. Here, µ∗

i is

called the optimal accumulated Lagrange multiplier for time

instant i and is related to the dual optimal solution (α∗, β∗)
as follows µ∗

i =
∑N

j=i(α
∗

j − β∗

j ).
(3.) Optimal accumulated Lagrange multiplier, µ∗

i , at any time

instant i satisfies the following recursive conditions:

• µ∗

i+1 = µ∗

i , if bmin < b∗i < bmax

• µ∗

i+1 ≤ µ∗

i , if b∗i = bmin

• µ∗

i+1 ≥ µ∗

i , if b∗i = bmax

where b∗i = b0 +
∑i

j=1 x
∗

j

(4.) Additionally, the optimal accumulated Lagrange multiplier

µN at the last instant N satisfies

• µ∗

N = 0, if bmin < b∗N < bmax

• µ∗

N ≥ 0, if b∗N = bmin

For any pair (x∗, µ∗) satisfying the above conditions, x∗

solves the optimal arbitrage problem (P).

The proof of Therorem III.1 is provided in Appendix A.

We note that the optimality conditions stated in Theorem III.1

do not depend on the particular structure of the cost function

and are valid as long as C
(i)
storage(xi) is a convex function

with respect to xi for each i. Next, we characterize, for each

instant i, the relationship between the optimal decision x∗

i

and the optimal accumulated Lagrange multiplier µ∗

i using the

particular nature of the cost function C
(i)
storage(xi). This will be

useful in formulating the optimal arbitrage algorithm.

Remark 1. From condition (2) of Theorem III.1 we have that

the optimal control decision x∗

i in the ith instant minimizes

the function C
(i)
storage(x) − µ∗

i x for x ∈
[

Xmin
i , Xmax

i

]

. Now

from (3) we obtain that for a given µ∗

i = µ the optimal

decision x∗

i (µ) is given by

x∗

i (µ) =































[

Xmin
i , Xmin

i

]

, if µ < pdis(i),
[

Xmin
i , 0

]

, if µ = pdis(i),

[0, 0] , if pch(i) > µ > pdis(i),

[0, Xmax
i ] , if µ = pch(i),

[Xmax
i , Xmax

i ] , if µ > pch(i),

(5)

where pch(i) = pi/ηch and pdis(i) = piηdis. Note that x∗

i (µ)
is a set-valued function in µ: for µ = pch(i) or µ = pdis(i),
x∗

i (µ) takes an envelope of values and for any other value of

µ it is a singleton set. It is also important to note from (5)

that if µ1 ≤ µ2 then x∗

i (µ1) � x∗

i (µ2), where for two sets A

and B we say A � B (resp, A ≺ B) if a ≤ b (resp a < b)
for all a ∈ A and for all b ∈ B. The above monotonicity

property also holds for the sets b∗i (µ), defined recursively as

b∗i (µ) = b∗i−1(µ) + x∗

i (µ) for i ≥ 1 and b∗0(µ) = b0. Here,

addition of two intervals [a, b] and [c, d] denotes the interval

[a+ c, b+ d].

A. Proposed Algorithm

We now propose an algorithm which finds a pair (x∗, µ∗)
that satisfies all the conditions in Theorem III.1 and therefore

solves (P). The pseudo code of the proposed algorithm is

shown as Algorithm 1 below. Note from Theorem III.1 con-

dition (3) that µ∗

i+1 may differ from µ∗

i only when b∗i = bmax

or b∗i = bmin. Hence, if the battery level at the end of a time

instant lies strictly within the battery capacity limits, then

there is no change in the value of the optimal accumulated

Lagrange multiplier. Using this key idea, in the proposed

algorithm, we divide the total duration T into groups, indexed

as {1, 2, . . . ,M}, of consecutive time instants such that for all

instants i belonging to the same group K ∈ {1, 2, . . . ,M} the

value of the accumulated Lagrange multiplier µ∗

i is the same,

denoted as µK . We call each such group as a sub-horizon. At

the end of each sub-horizon, the battery energy level touches

either bmax or bmin. The number M of sub-horizons, the start

and end instants of each sub-horizon K, and the value of µK

and optimal actions in each sub-horizon K depend on the

problem instance and are determined recursively as described

below.

Suppose we have identified the first K − 1 (K ≥ 1) sub-

horizons and the optimal actions in all instants belonging to

these sub-horizons. Call the last instant identified to be in

the (K − 1)th sub-horizon as iK−1. If iK−1 = N , then we

have already covered whole period T . If iK−1 < N , then we

proceed to identify the next sub-horizon K, i.e., the values

of iK , µK , and the optimal decisions for the time instants

i ∈ [iK−1 + 1, iK ]. To identify the sub-horizon K, we start

with instant iK−1 + 1 and a guess value of µK ≥ 0 for that

sub-horizon.1 Now, for the chosen value of µK , the values of

x∗

i (µK) and b∗i (µK) are computed as described in Remark 1

for all consecutive time instants i > iK−1 until we reach a time

instant i = ibreak for which one of the following conditions is

satisfied (we call these as the violation conditions):

C1: b∗ibreak
(µK) ≺ {bmin}.

C2: {bmax} ≺ b∗ibreak
(µK).

C3: ibreak = N, bmin /∈ b∗N (µK), µK > 0.

If no such i is found even after reaching i = N , then K is

identified as the last sub-horizon and we set iK = N (and

lines 24–30 of the pseudo code are executed). If µK > 0,

then b∗N = bmin; else b∗N is taken to be some value in the

set [bmin, bmax) ∩ b∗N (µK) to satisfy condition (4) of Theo-

rem III.1. The optimal decisions x∗

i and b∗i for i ∈ [iK−1 +

1For the first sub-horizon K = 1 (that includes the first time instant) the
starting guess value of µ1 is taken to be 0 and for every other sub-horizon
K > 1, the starting guess value of µK is taken to be equal to µK−1. Note
that these choices are arbitrary and the algorithm does not depend on these
choices.



1, N ] are then found by using the algorithm BackwardStep,

shown as in Algorithm 2 below. The proposed algorithm then

terminates. The algorithm BackwardStep will be discussed

in more detail later.

If condition C1 above is satisfied, then for the cho-

sen value of µK , the battery capacity limit is vio-

lated at the instant ibreak since the set bibreak
(µ) lies

strictly below bmin. The value of µK is then increased

to min {p > µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)}. Oth-

erwise, if C2 or C3 above is satisfied, then µK is decreased

to max {p < µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)}. With

the updated value of µK we again repeat the same process as

discussed above to obtain a new value of ibreak. Since x∗

i (µK)
and b∗i (µK) are monotonically non-decreasing functions in

µK , the potential effect of the update of µK is that ibreak is

pushed to a later instant. The update of µK is repeated so long

as ibreak increases (or remains the same) as compared to its old

value (stored in imemory). If the value of ibreak decreases with an

updated value of µK , then for the previous value µmemory of µK

there must have been an instant i ∈ [iK−1+1, imemory], where

bmax ∈ b∗i (µK) (if the violation occurred due to C1) or bmin ∈
b∗i (µK) (if violation occurred due to C2 or C3). This is because

both µmemory and µK always lie in the range [pdis(i), pch(i)]
for all i > iK−1. Since b∗i (pdis(i))∩ b∗i (pdis(i)) 6= ∅ an update

of µK cannot cause b∗i (µK) to completely go above bmax or

below bmin if {bmin} ≺ b∗i (µmemory) ≺ {bmax}.

At this point in the algorithm, µK and ibreak are switched

back to their previous values stored in µmemory and imemory,

respectively. This value of µK is identified to be the final

value of the optimal accumulated Lagrange multiplier in the

sub-horizon K. We set iK to be the latest time instant i ∈
[iK−1+1, ibreak] for which bmin ∈ b∗i (µK) or bmax ∈ b∗i (µK).
The value of b∗iK is chosen to be bmin in the former case and

bmax in the later case.

Finally, for each i in the range iK−1 + 1 ≤ i < iK ,

the optimal battery level b∗i is found from b∗i+1 through the

function BackwardStep which uses the backward recursion

b∗i = (b∗i+1 −x∗

i+1(µK))∩ b∗i (µK)∩ [bmin, bmax]. If the above

backward recursion returns a set, then any arbitrary value in

the set is chosen to be the optimal battery level. We note here

that the optimal solution to (P) need not be unique since its

objective function is not strictly convex.

Complexity Analysis: In order to derive the worst case

time-complexity of the proposed algorithm, we consider the

computation of x∗

i (µ) for a given value of µ, in a given time

step i ∈ {1, 2, . . . , N} as the basic operation. Let the length of

the K th sub-horizon be denoted by WK , K ∈ {1, 2, . . . ,M}.

Clearly, in sub-horizon K we may have to update the value

of µK at most 2WK times (for each instant i in the sub-

horizon two possible values {pch(i), pdis(i)} may be checked)

to obtain the optimal Lagrange multiplier value µ∗

K . For each

update of µK , the optimal decisions x∗

i (µK) need to be

calculated at most for all instants i in the sub-horizon K.

Hence, the total number of basic operations in the forward

step is W 2
K . Finally, for the BackwardStep the value of

x∗

i (µ
∗

K) has to be computed for all i in the sub-horizon K.

Hence, the total number of operations in sub-horizon K is

O(W 2
K). Therefore, the total time-complexity of the algorithm

is O(
∑M

K=1 W
2
K) = O(N2) since

∑M

K=1 WK = N .

Algorithm 1 Proposed optimal arbitrage algorithm

Inputs: N , T , h = (h1, h2, . . . , hN ), p = (p1, p2, . . . , pN ), b0
Parameters: bmax, bmin, δmax, δmin

Outputs: x∗ = (x∗

1, x
∗

2, . . . , x
∗

N ), b∗ = (b∗1, b
∗

2, . . . , b
∗

N ), µ∗ =
(µ∗

1, µ
∗

2, . . . , µ
∗

K)
Initialize: K = 1; µK = µmemory = 0; iK−1 = iK = imemory = 0;
BreakFlag = 0

1: while iK < N do
2: for i = iK−1 + 1 to N do
3: Compute x∗

i (µK) and b∗i (µK)
4: if C1 or C2 or C3 holds then
5: BreakFlag← 1; ibreak ← i
6: Break
7: end if
8: end for
9: if BreakFlag = 1 and ibreak ≥ imemory then

10: BreakFlag← 0; imemory ← ibreak; µmemory ← µK

11: if b∗i (µK) ≺ {bmin} then
12: µK ← min {p > µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)}
13: else
14: µK ← max {p < µ : p ∈ (pch(i), pdis(i); iK−1 < i ≤ ibreak)}
15: end if
16: else if BreakFlag = 1 and ibreak < imemory then
17: if C1 is True then
18: iK ← max {i ∈ [iK−1 + 1, imemory] : bmax ∈ b∗i (µmemory)}
19: b∗iK = bmax

20: else if C2 or C3 is True then
21: iK ← max {i ∈ [iK−1 + 1, imemory] : bmin ∈ b∗i (µmemory)}
22: b∗iK = bmin

23: end if
24: µK ← µmemory; BreakFlag← 0; ibreak ← imemory

25: imemory ← iK
26: BackwardStep(µK , iK−1, iK , b∗, x∗, µ∗)
27: µK+1 ← µK ; K ← K + 1
28: else
29: iK ← N ;
30: if µK > 0 then
31: b∗N ← bmin

32: else
33: b∗N ← [bmin, bmax) ∩ b∗N (µK)
34: end if
35: BackwardStep(µK , iK−1, iK , b∗, x∗, µ∗)
36: end if
37: end while

Algorithm 2 BackwardStep(µK , iK−1, iK , b∗, x∗, µ∗)

Inputs: µK , iK−1, iK , b∗, x∗, µ∗

Function: Computes components of the optimal vectors b∗, x∗ in the
range [iK−1 + 1, iK − 1] using backward recursion
Initialize: i← iK − 1

1: while i ≥ iK−1 + 1 do
2: b∗i ← (b∗i+1 − x∗

i+1(µK)) ∩ b∗i (µK) ∩ [bmin, bmax]
3: xi+1∗ ← b∗i+1 − b∗i
4: µ∗

i ← µK

5: end while

IV. NUMERICAL EVALUATION

We solve the optimal arbitrage problem using the proposed

algorithm decribed in Section III. The performance of the



proposed algorithm is compared with Linear Programming

(LP) and Matlab’s Fmincon based constrained minimization

(function evaluations set to 9600), in terms of run time and

energy arbitrage gains. However, LP can only be evaluted for

lossless battery as the objective function of (P) is linear in the

lossless case.
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Fig. 2: Comparison for Lossless battery

The battery parameters used for numerical evaluation are:

bmax = 1 kWh, bmin = 0.1 kWh, δmax= 0.26 kW, δmin=−0.52
kW. Real-Time locational marginal pricing data for 21st De-

cember 2016 from NYISO [16] is used to calculate optimal

ramping trajectory. The sampling time of price signal is

h = 0.25 hours. Simulations are conducted using a laptop

PC with Intel Core i5-4200M, 2.50GHz processor and 8 GB

RAM.

Fig 2 shows the results for lossless battery, i.e. ηch =
1, ηdis = 1. The first plot of Fig 2b shows the electricity

price for a day [16], and the other plots show the optimal

trajectory of battery level and the value of µ with time. It can

be observed from Fig 2a and 2c that the proposed algorithm

has not violated the constraints for the battery and the results

are using proposed algorithm and Matlab’s Fmincon are very

similar. However, the run time of the proposed algorithm is

significantly lower than other methods as shown in Table I.

TABLE I: Comparison of performance for lossless battery

Algorithm Type Run Time (sec) Profit ($)

Proposed Algo 0.1967 0.1403245
Linear Program 1.4873 0.1403245

Matlab’s Fmincon 23.0526 0.14027568

Fig 3 shows the results of the proposed algorithm for a

lossy battery, i.e. ηch = 0.95, ηdis = 0.95. From numerical

TABLE II: Comparison of performance for lossy battery

Algorithm Type Run Time (sec) Profit ($)

Proposed Algo 0.164189 0.1193289
Matlab’s Fmincon 23.41217 0.11923956
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Fig. 3: Comparison for lossy battery

evaluation it is observed that the proposed algorithm signif-

icantly reduces the run time compared to Matlab’s Fmincon

with resasonable number of evaluations, 9600 in this case.

Table II provides a comparison of results for a lossy battery.



V. FEASIBILITY OF ENERGY STORAGE ARBITRAGE

Energy storage will act as energy buffers for future power-

grid. However, energy storage being expensive its financially

feasibility analysis is essential. We present an approximate

methodology to consider the net average capacity of the battery

over its entire life. Using this average available capacity, we

calculate energy arbitrage gains in a deterministic setting for

a 1 kWh rated capacity battery with 1 day as optimization

horizon.

A. Net Average Available Capacity of Battery

The average battery capacity available over its entire life to

the user will be close to 50 to 70 % of the original storage

capacity when the battery is new. Oversizing is a crucial factor

jeoparadizing the financial viability of energy storage. We

consider following sources of discounting:

(1.) Efficiency of Cycling : The losses incurred during cycles

of charging and discharging (≈ 70 to 95%)

(2.) Efficiency of Converter : AC to DC and DC to AC

conversion incurs losses (≈ 90 to 98 %)

(3.) Performance Degradation: Battery reaches End-of-Life

(EOL) if the maximum battery capacity reduces to 80 % of the

rated battery capacity. Life of a battery in years ranges from

5-20 years and in cycles from 1000 to 20000 cycles depending

on type of battery, whatever is achieved first marks EOL.

(4.) Optimal SoC Band: overcharging or overdischarging a

battery significanly affect its life.

The discount factors assumed are: (1.) ηch = 0.95, ηdis =
0.95, thus the roundtrip battery efficiency equals 0.9025,

(2.) Converter Efficiency = 0.95, (3.) Average Capacity

due to Degradation = 0.9, (4.) [Bmax −Bmin]/Capacity =

[0.98− 0.1]/1 = 0.88. Therefore Net Available Capacity =

0.679. This implies that the earnings of 0.679 kWh available

capacity in 5 years should match price paid by end user in

buying 1 kWh, for achieving 5 yrs. simple payback period.

Discount factors due to maintenance cost and self-discharge

will further reduce the net average capacity of the battery.

B. Evaluation

The present battery cost is around $ 350 - 500 per kWh.

One year (2016) simulations for real time electricity prices

of Nord Pool, PJM, ISONE, MISO, NYISO, ERCOT, CAISO

and PG&E’s TOU prices are done to calculate the value of

energy storage. The discounted returns calculated for Battery

TABLE III: The price signals evaluated are listed below

Region/ISO Pricing Sample
NordPool [17] Real Time 1 hour

PG&E [18] ToU -
CAISO (Average Price) [19] Real Time 5 min

PJM (Zone AEP) [19] Real Time 1 hour
ERCOT (Zone LZ-Huston) [19] Real Time 1 hour
ISONE (Zone .Z.SEMASS) [19] Real Time 1 hour
MISO(Zone Michigan Hub) [19] Real Time 1 hour

NYISO (Zone N.Y.C.) [19] Real Time 1 hour

model 1, 2, 3 listed in Table IV, V and VI. The results take

TABLE IV: Battery 1: δmax=0.26 kW, δmin=-0.52 kW

Region Cumulative Operational Discounted
or ISO Gains in 2016 Cycles in 2016 Gains in 5 yrs

NordPool e0.991 1748 e4.3
PG&E $ 4.38 184 $ 18.7
CAISO $ 37.9 914 $ 162.0

PJM $ 11.2 573 $ 47.9
ERCOT $ 18.6 430 $ 79.5
ISONE $ 15.3 687 $ 65.4
MISO $ 10.5 595 $ 44.9

NYISO $ 23.3 700 $ 99.6

TABLE V: Battery 2: δmax = 1kW , δmin = −1kW

Region Cumulative Operational Discounted
or ISO Gains in 2016 Cycles in 2016 Gains in 5 yrs

NordPool e1.09 2836 e4.7
PG&E $ 4.38 184 $ 18.7
CAISO $ 73.2 2008 $ 312.9

PJM $ 16.1 825 $ 68.8
ERCOT $ 25.02 534 $ 107.0
ISONE $ 23.51 1082 $ 100.5
MISO $ 15.52 860 $ 66.34

NYISO $ 36.32 1225 $ 155.3

TABLE VI: Battery 3: δmax = 2kW , δmin = −2kW

Region Cumulative Operational Discounted
or ISO Gains in 2016 Cycles in 2016 Gains in 5 yrs
CAISO $ 125.03 3240 $ 534.4

into account the net average battery capacity calculated in

section V-A. The discounted returns are significantly lower

than the present cost of battery. CAISO, NYISO and ERCOT

is relatively more profitable but still lower than the initial

inverstment made by end user. For small price variations

arbitrage could still be profitable if (Selling Price) > (Buying

Price)/(Roundtrip Efficiency), but the revenue generated with

per cycle of operation of the battery will be small. It is evident

from Table IV, V that the arbitrage gains are lower than the

cost of battery, therefore subsides would be required for end

user participation. For battery model 3, energy arbitrage using

CAISO prices tend to over use the battery, which is evident

from the cycles of operation shown in Table VI. Note that for

other ISOs the gains remain as in Table V, due to the one hour

sampling time. Energy storage arbitrage could become more

profitable if the price of energy storage decreases drastically

or/and the price of electricity becomes more volatile or/and

cycle life of batteries increase significantly.

VI. CONCLUSION

We formulate the the optimal arbitrage algorithm for storage

operation and propose an efficient algorithm to find an opti-

mal solution. The method transforms a continuous, convex

optimization problem into a discrete one by exploiting the

piecewise linear structure of the cost function. We show that

optimal storage control decisions do not depend on prices

beyond a certain sub-horizon. In the proposed algorithm, we



indicate a method to calculate these sub-horizons and finding

the optimal solution in the sub-horizon using backward step

algorithm. The worst case run-time complexity of the proposed

algorithm is found to be quadratic in terms of number of time

instants for which price values are available.

Using the proposed algorithm, we conducted extended sim-

ulations for real price data from several ISOs in USA and

Europe for the year 2016. We extrapolate the arbitrage gains

for an end user for a five year period, considering detailed

losses in the battery. The numerical evaluation suggests that

only arbitrage cannot create positive net present value for

storage, thus subsidies are required to incentivize investment.
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APPENDIX A

PROOF OF THEOREM III.1

We first prove existence of (x∗, α∗, β∗) such that:

1) x∗ is the primal optimal solution,

2) (α∗, β∗) is the dual optimal solution, and

3) the optimality gap is zero (strong duality).

Since the constraints of the primal problem are all linear,

weak Slater’s constraint qualification conditions (which imply

strong duality) follow simply from the feasibility of the primal

problem. Clearly, under the assumptions bmin ≤ bmax, δmin ≤
δmax, b0 ∈ [bmin, bmax], 0 ∈ [δmin, δmax] a feasible solution

exists (xi = 0 for all i = 1, 2, . . . , N is feasible). Furthermore,

since the primal objective function is continuous and the

constraints define a convex compact set, its minimum must

be finite and achieved at the some x∗ in the feasibility region.

According to the strong duality theorem, the above facts imply

that the dual problem must be maximized at some (α∗, β∗) and

the duality gap must be zero.

From the above reasoning it also follows that (x∗, α∗, β∗)
must be the saddle point satisfying the KKT conditions. Hence,

using RHS inequality of the Saddle Point conditions,

L (x∗, α∗, β∗) ≤ L (x, α∗, β∗)

=⇒
N
∑

i=1

{

C
(i)
storage(x

∗

i ) + α∗

i (bmin − b∗i ) + β∗

i (b
∗

i − bmax)
}

≤
N
∑

i=1

{

C
(i)
storage(xi) + α∗

i (bmin − bi) + β∗

i (bi − bmax)
}

Substituting bi = b0 +
∑i

j=1 xj we get,

N
∑

i=1

{

C
(i)
storage(x

∗

i )− µ∗

i x
∗

i

}

≤
N
∑

i=1

{

Cstorage(xi)− µ∗

i xi

}

(6)

where µ∗

i =
∑N

j=i(α
∗

j −β∗

j ). µ
∗

i is the accumulated Lagrange

multiplier for time instant i to N . Hence,

µ∗

k − µ∗

k+1 = (α∗

k − β∗

k) (7)

The complementary slackness conditions for the Lagrangian

are defined as

αi(bmin − bi) = 0, βi(bi − bmax) = 0, ∀i s.t. αi, βi ≥ 0

Equation (8) derived above and complementary slackness

conditions implies following relation of µ∗

k and µ∗

k+1 ,

µ∗

k+1











= µ∗

k, if bmin < b∗k < bmax as α∗

k = β∗

k = 0

≤ µ∗

k, if b∗k = bmin as α∗

k ≥ 0 and β∗

k = 0

≥ µ∗

k, if b∗k = bmax as α∗

k = 0 and β∗

k ≥ 0

The accumulated Lagrangian i.e. µ for the N th (last) instant

is µ∗

N = α∗

N − β∗

N , therefore

µ∗

N =











= 0∗, if bmin < b∗N < bmax

≥ 0, if b∗N = bmin

≤ 0, if b∗N = bmax

Such a x∗ solves the optimal arbitrage problem (P) and

α∗, β∗ solves the dual problem.


