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ABSTRACT
We review the basics of data provenance in relational
databases. We describe different provenance formalisms,
from Boolean provenance to provenance semirings and
beyond, that can be used for a wide variety of purposes,
to obtain additional information on the output of a query.
We discuss representation systems for data provenance,
circuits in particular, with a focus on practical imple-
mentation. Finally, we explain how provenance is prac-
tically used for probabilistic query evaluation in proba-
bilistic databases.

1. INTRODUCTION
The central task in data management is query

evaluation: given a database instance and a query,
compute the results of that query on that instance.
But what if we want something more than just the
query result? We might want to know:
• why this specific result was obtained;
• where values in the result come from;
• how the result was produced from the query;
• how the result would change if some of the
input tuples were missing;
• how many times each query result was ob-
tained;
• what probability the result has, given a proba-
bility distribution on the input data;
• what minimal security clearance is needed to
see the result, given some security information
on the input data;
• what the most economical way to obtain this
result is, in terms of number of data accesses.

All these questions, and more, can be answered us-
ing the tool of data provenance [11,12], which is some
additional bookkeeping information maintained dur-
ing query evaluation, that allows answering a large
number of such meta-questions on the output of a
query. The precise nature and form this provenance
information should take depends on the question

we want to answer, and on the query language we
consider.

We focus in this paper on the setting of relational
databases, though provenance and its applications
apply as well and are equally important in other
settings, such as scientific workflows [19], knowledge
graphs [30], or hierarchical data [11].

There has been a large amount of work on the foun-
dations of data provenance in relational database
systems: early definitions and implementations of
data provenance (called lineage at the time) for spe-
cific applications [13,48]; the influential framework of
where- and why-provenance introduced by Buneman,
Khanna, and Tan [11]; the seminal paper on prove-
nance semirings [27] by Green, Karvounarakis, and
Tannen; and further extensions thereof [7, 8, 22,24].
Provenance has also been a particularly useful tool in
the area of probabilistic databases [3, 23,32], where
the use of provenance is dubbed the intensional
approach to probabilistic query evaluation.

The goal of this paper is to review some of the
most important definitions of provenance, unifying
them in a single framework as much as possible, and
to address some of the concrete issues that arise
in building a modern provenance-aware database
management, and in implementing the intensional
approach to probabilistic query evaluation.

Example 1. We will use throughout this paper
a very simple running example of a single-table
database, in Table 1, that contains information on
the personal of a (fictitious) intelligence agency, to
illustrate various aspects of data provenance. Note
in Table 1 the ti annotation on each tuple. These
will be used in the following as provenance tokens
associated with the tuple, which means that they
will contain the elementary provenance information
associated to the tuple. You can think of them for
now as simple tuple identifiers.

We will consider the following two example queries



Table 1: Table Personal for the personal of an intelligence agency, used as a running example

id name position city classification
1 John Director New York unclassified t1
2 Paul Janitor New York restricted t2
3 Dave Analyst Paris confidential t3
4 Ellen Field agent Berlin secret t4
5 Magdalen Double agent Paris top_secret t5
6 Nancy HR Paris restricted t6
7 Susan Analyst Berlin secret t7

on this database. The first query, Q1, asks for the
cities referenced in the Personal table which host at
least two different employees of the agency:
SELECT DISTINCT P1.city
FROM Personal P1, Personal P2
WHERE P1.city = P2.city AND P1.id < P2.id

Obviously, the answer to this query, disregarding
provenance, is a single-attribute table, containing
the three cities New York, Paris, and Berlin. Our
second query, Q2, asks for the cities that host exactly
one employee of the agency:

SELECT DISTINCT city FROM Personal
EXCEPT

SELECT DISTINCT P1.city
FROM Personal P1, Personal P2
WHERE P1.city = P2.city AND P1.id < P2.id

Its output, once again disregarding provenance, is
the empty table.
The paper is organized as follows: in Section 2,

we first introduce the simple setting of Boolean
provenance that is in particular used in probabilistic
databases and has the advantage of being definable
for an arbitrary query language. We move in Sec-
tion 3 to semiring provenance, which captures more
information than Boolean provenance but is defined
for a specific, monotone, query language. We explore
formalisms that go beyond semiring provenance in
Section 4. In Section 5, we address the concrete
problem of which formalism to use to represent data
provenance, and settle on circuits as compact for-
malism. We explain in Section 6 how probabilistic
query evaluation in probabilistic databases can be
solved using provenance, and which tools can be
used to do this efficiently.

2. BOOLEAN PROVENANCE
Boolean provenance is one of the simplest forms of

provenance, while having a major conceptual advan-
tage: it can be defined independently of a specific

query language. The notion of Boolean provenance
is implicit in the work of Imeliński and Lipski on
conditional tables [31], although this predates the
notion of provenance itself and the query language
was limited to the relational algebra. The term
Boolean provenance was introduced specifically in
the setting of provenance semirings [26], though this
was restricted to the monotone case. The general-
ization to non-monotone queries we give below is
straightforward, and was made, e.g., in [3].

We fix a finite set X = {x1, . . . , xn }, the elements
of which we call Boolean events (i.e., variables that
can be either > or ⊥).
As in [31], we let provenance tokens (the anno-

tations attached to tuples of the input databases)
be Boolean functions over X, that is, functions of
the form ϕ : (X → {>,⊥}) → {>,⊥}. They are
interpreted under a possible-world semantics: every
valuation ν : X → {>,⊥} denotes a possible world
of the database; in this possible world, a tuple with
annotation ϕ exists if and only if ϕ(ν) = >. For
a given database D, we denote ν(D) the set of tu-
ples t with annotation ϕt such that ϕt(ν) = >. It is
a subset of the database D.

Example 2. Consider again Table 1 and assume
that, for each i, ti is the indicator function of a
distinct Boolean event xi, i.e., the function that
maps a valuation ν to > if and only if ν(xi) = >.
Then the set of possible worlds of Personal is the
set of all subrelations of Personal. For instance, if ν
maps x1, x3, x5, and x7 to > and all other variables
to ⊥, then ν(Personal) is the subrelation of Personal
where only the tuples of id 1, 3, 5, and 7 survive.

Let Q be an arbitrary query, i.e., a function that
takes as input a finite relational database over a fixed
database schema, and produces as output a finite
relation over a fixed relational schema. Then the
Boolean provenance of Q over a database D, denoted
provQ,D, is a function that maps a tuple t of the



output relational schema to the Boolean function
that maps a valuation ν to > if t ∈ Q(ν(D)), and
to ⊥ otherwise. In other words, given provenance
annotations on input database tuples, we obtain as
output of a query a new database, namely,⋃

ν:X→{>,⊥}

Q(ν(D)),

with new provenance annotations on each tuple t,
namely provQ,D(t).
Note that if Q is monotone, i.e., if D ⊆ D′ ⇒

Q(D) ⊆ Q(D′), then
⋃
ν:X→{>,⊥} Q(ν(D)) ⊆ Q(D),

but this is not true for arbitrary queries.
Example 3. We will denote in this example Boolean
functions using propositional formulas. See Sec-
tion 5 for an alternate representation. To simplify,
we assume that, once again, every ti is an indicator
function of a different Boolean event, and we write
simply ti for this event instead of xi.
One can check that the Boolean provenances of

Q1 and Q2 on Personal are, respectively:

city
New York t1 ∧ t2

Paris (t3 ∧ t5) ∨ (t3 ∧ t6) ∨ (t5 ∧ t6)

Berlin t4 ∧ t7

and:

city
New York (t1 ∧ ¬t2) ∨ (t2 ∧ ¬t1)

Paris (t3 ∧ ¬(t5 ∨ t6)) ∨ (t5 ∧ ¬(t3 ∨ t6)) ∨ (t6 ∧ ¬(t3 ∨ t5))

Berlin (t4 ∧ ¬t7) ∨ (t7 ∧ ¬t4)

One of the major applications of Boolean prove-
nance is query evaluation in probabilistic databases.
Assume that each Boolean event xi comes with an
independent probability Pr(xi) of being true. Then
we can define the probability of a valuation ν : X →
{>,⊥} as:

Pr(ν) =
∏

ν(xi)=>

Pr(xi)
∏

ν(xi)=⊥

(1− Pr(xi)).

From there, it is natural to define, for any given
Boolean function ϕ over X:

Pr(ϕ) =
∑

ν:X→{>,⊥}
ϕ(ν)=>

Pr(ν).

In particular, this defines a probability distribution
Pr(provQ,D(t)) on provenance annotations of out-
put tuples given a probability distribution on the
provenance annotations of input tuples. This obser-
vation was first made by Green and Tannen in [28].

When ti’s are indicator functions, one gets the sim-
ple model of tuple-independent databases [14, 23, 36]
that has been widely studied.

Example 4. Assume again every ti is an indicator
function of a different Boolean function, and comes
with an independent probability Pr(ti) of being true.

Then Pr(New York ∈ Q1(Personal)) = Pr(t1 ∧
t2) = Pr(t1)× Pr(t2).
Note that we were able to compute the proba-

bility this way because the Boolean formula was
simple enough. We discuss in Section 6 options
when Boolean functions are more complex.

Though Boolean provenance can be formally de-
fined for any query, what we need in practice is
efficient algorithms for computing the provenance of
a query in a given query language. We also want to
capture more with provenance than what Boolean
provenance can do. This is what provenance semir-
ings, and extensions thereof, offer.

3. SEMIRING PROVENANCE
Provenance semirings have been introduced in [27]

as a formalism for data provenance that has been
shown [34] to cover and generalize, using a clean
mathematical framework, previous formalisms such
as why-provenance [11], lineages used in view mainte-
nance [13], or the lineage used by the Trio uncertain
management system [9].
A semiring (K, 0, 1,⊕,⊗) is a set K with distin-

guished elements 0 and 1, along with two binary
operators:
• ⊕, an associative and commutative operator,
with identity 0;
• ⊗, an associative and commutative1 operator,
with identity 1.

We further require ⊗ to distribute over ⊕, and 0 to
be annihilating for ⊗.
Examples of semirings include [27,28,34]:
• (N, 0, 1,+,×): the counting semiring;
• ({⊥,>},⊥,>,∨,∧): the Boolean semiring;
• ({unclassified, restricted, confidential, secret,
top secret}, top secret,unclassified,min,max):
the security semiring;
• (N ∪ {∞},∞, 0,min,+): the tropical semiring;

1It is almost always required in the literature [27, 34]
that the semiring be commutative, which means that ⊗
must be commutative. Note that this is only necessary
if the cross product operator of the relational algebra
is assumed to be commutative, which is the case in
the named perspective, but not in the unnamed one [1].
This assumption has some technical impact, e.g., on
the universality of N[X], but is actually not critical to
implement provenance support.



• ({positive Boolean funct. over X},⊥,>,∨,∧):
the semiring of positive Boolean functions overX;
• (N[X], 0, 1,+,×): the semiring of integer poly-
nomials with variables in X (also called how-
semiring or universal semiring, see further);
• (P(P(X)), ∅, {∅},∪,d): why-semiring over X
(A dB := {a ∪ b | a ∈ A, b ∈ B}).

Now, given a fixed semiring (K, 0, 1,⊕,⊗), semir-
ing provenance works as follows: we assume prove-
nance tokens are all in K. We consider a query Q
from the positive relational algebra [1] (selection,
projection, renaming, cross product, union). We
define a semantics for the provenance of a tuple
t ∈ Q(D) inductively on the structure of Q, infor-
mally as follows (formal definitions can be found
in [27]):
• selection and renaming do not affect prove-
nance annotations;
• in the set semantics, the provenance annota-
tions of tuples that are identical after projection
are ⊕-ed; in the bag semantics [29] that more
closely models SQL, projection does not affect
provenance annotations, but duplicate elimina-
tion ⊕-es the annotations of merged tuples;
• the provenance annotations of unioned tuples
are ⊕-ed;
• the provenance annotations of tuples combined
in a cross product are ⊗-ed.

Example 5. Consider the security semiring and
query Q1, which can be rewritten in the relational
algebra as:

Πcity(σid<id2(Πid,city(Personal) 1
ρid→id2(πid,city(Personal))))

(the join operator 1 being a combination of a cross
product, selection, and projection). Using the induc-
tive definition of the provenance of a tuple in a query
result, and assuming that the initial provenance to-
kens ti are equal to the classification attribute of
the tuple, one can compute the provenance of the
output of the query as:

city
New York restricted
Paris confidential
Berlin secret

Similarly, if we consider the counting semiring
and query Q1, assuming the initial provenance to-
kens ti are equal to the id attribute of the tuple, one
can compute the provenance of the output of the

query as:
city
New York 2
Paris 63
Berlin 28

Indeed, simply using this inductive definition of
semiring provenance, one can use different semirings
to compute different meta-information on the output
of a query, with polynomial-time overhead in data
complexity:
counting semiring: the number of times a tuple

can be derived;
Boolean semiring: if a tuple exists when a sub-

database is selected;
security semiring: the minimum clearance level

required to get a tuple as a result;
tropical semiring: minimum-weight way of deriv-

ing a tuple (as when computing shortest paths
in a graph);

positive Boolean functions: Boolean provenance,
as previously defined;

integer polynomials: universal provenance, see
further;

why-semiring: why-provenance of [11], set of com-
binations of tuples needed for a tuple to exist.

However, [27] makes two important observations
that lead to a different way to compute provenance
annotations, instead of doing it one semiring at
a time. First, semiring homomorphisms commute
with provenance computation: if there is a homo-
morphism from semiring K to semiring K ′, then
one can compute the provenance in K, apply the
homomorphism, and obtain the same result as when
computing provenance in K ′. Second, the integer
polynomial semiring N[X] is the unique universal
semiring in the following sense: there exists a unique
homomorphism to any other commutative semiring
that respects a given valuation of the variables. Com-
bining these two facts, we have that all computations
can be performed in the universal semiring, with ho-
momorphisms only applied when the provenance for
a given semiring is required. This suggests a way
to implement provenance computation in a DBMS,
discussed in Section 5.
Note that two queries that are equivalent in the

usual sense [1] can have different semiring prove-
nance, as semiring provenance captures more than
logical equivalence. Indeed, two queries are logically
equivalent if and only if they have the same Boolean
provenance on every database.
Provenance semirings only capture the positive

relational algebra, a relatively small fragment of SQL.
We next discuss how to go beyond this fragment,



and investigate if all interesting forms of provenance
are captured by provenance semirings.

4. BEYOND SEMIRING PROVENANCE
We now discuss some extensions of the provenance

semiring framework.

Semirings with monus. Semiring provenance can
only be defined for the positive fragment of the
relational algebra, excluding non-monotone opera-
tions such as difference. However, some semirings
can be straightforwardly equipped with a monus
operator 	 [6, 24], that captures non-monotone be-
havior. Such an operator must verify the following
properties, for all a, b, c ∈ K:
• a⊕ (b	 a) = b⊕ (a	 b);
• (a	 b)	 c = a	 (b⊕ c);
• a	 a = 0− a = 0.
This is the case for the Boolean function semiring,

which, equipped with the monus operator a	 b =
a∧¬b, forms a semiring with monus, or m-semiring
for short. This is also the case [7] for the why-
semiring with set difference, the integer polynomial
and counting semirings with truncated difference on
scalar values (a 	 b = max(0, a − b)), etc. Indeed,
most natural semirings (though not all [5]) can be
extended to m-semirings.
Once such an m-semiring is defined, provenance

of the full relational algebra can be captured in that
m-semiring. For Boolean functions, it coincides with
the Boolean provenance introduced in Section 4.
Note, however, that sometimes some seemingly

natural axioms, such as distributivity of ⊗ over 	,
fail over m-semirings [7], which implies that two very
similar queries may return different provenances.

Another important difference between m-semirings
and semirings is that N[X] is not a universal m-
semiring [24]. There does indeed exist a unique
universal m-semiring [24], but it is simply the free
m-semiring, i.e., the m-semiring of free terms con-
structed using ⊕, ⊗, 	, quotiented by the equiva-
lence relations imposed by the m-semiring structure.
We will illustrate in Section 5 how computation

is performed using m-semirings.

Provenance for aggregates. One of the most natu-
ral ways to extend the relational algebra is to add
aggregation capabilities [37]. There have been at-
tempts at defining provenance formalisms for aggre-
gate queries [8, 22]. This is feasible in the case of
associative and commutative aggregation, though it
requires moving from annotations at the level of tu-
ples to annotations at the level of values, as elements
of a semimodule that combines provenance semir-

ing annotation with scalar values from the range of
the aggregation function. We believe the represen-
tation systems of Section 5 could be extended to
provide somewhat compact representations of these
semimodule elements, but leave this for future work.

Where-provenance. One notable provenance formal-
ism that was introduced early on [11] is where-
provenance. The where-provenance is a bipartite
graph that connects values in the output relation
to values in the input relation to indicate where a
specific value may come from in the input. It was
shown [12] that where-provenance cannot be cap-
tured by semiring provenance: there is no semiring
for which semiring provenance allows reconstructing
the where-provenance of a query. This is, intuitively,
for two reasons:
• since where-provenance is assigned to individ-
ual values instead of tuples, it is affected either
by renaming (in the named perspective) or
by projection (in the unnamed perspective),
as there needs to be a way to keep track of
which value of a given tuple has which where-
provenance;
• where-provenance is affected by joins differently
as by a combination of cross product, selection,
and projection: a value that results from a join
of two relations has where-provenance pointing
to the joined value in both relations.

However, a system keeping track of semiring prove-
nance could be relatively straightforwardly extended
to keep track of where-provenance: instead of dealing
with values in a semiring (or in an m-semiring), just
maintain value in a free algebra of terms, whose op-
erator includes, in addition to ⊕, ⊗, and perhaps 	,
operators to record projections (or renaming) and
joined values.

Recursive queries. Query languages considered so
far are unable to express recursive queries, such as
shortest distance in a graph. It is also possible to de-
fine provenance notions for such queries as extension
to semiring provenance, as long as the provenance
formalism can express cycles. This was done in
the original work on provenance semirings [27] for
ω-continuous semirings, showing that the semiring
N∞[[X]] of formal power series with integer coef-
ficients is a universal ω-continuous semiring. An
alternative approach is the use of semirings with
Kleene stars [21], such as k-closed semirings [39],
for which efficient algorithms for provenance com-
putation can be designed [39]. We leave details for
further work, though we note that the representation
systems we are introducing next – circuits – need to



be amended in the case of recursive queries, using
either equation systems as in [27] or cycluits (cyclic
circuits) as in [2].

5. PROVENANCE CIRCUITS
We now discuss concrete representations for prove-

nance annotations. As we have seen, leaving the
case of provenance for aggregates, where-provenance,
and recursive queries, to future work, provenance
annotations can be Boolean functions (see Section 2)
useful for probabilistic databases, semiring values
(see Section 3), or m-semiring values (see Section 4).
In addition, positive Boolean provenance is a spe-
cial case of semiring provenance, and non-monotone
Boolean provenance is a special case of m-semiring
provenance. Finally, there exist a universal semiring
and a universal m-semiring.
In some semirings (the Boolean, counting, and

security semirings, for instance), provenance anno-
tations are elementary, i.e., they are easily repre-
sentable with enumerations or native types. Other
semirings, such as N[X] or the Boolean function
semirings have complex annotations, for which a
compact representation needs to be found.
In many previous works [27, 31, 45], provenance

annotations have been represented as formulas, e.g.,
propositional formulas for Boolean provenance. But
this leads to suboptimal representations, as (Boolean)
formulas can be less compact than (Boolean) cir-
cuits [4, 47]. We therefore argue in favor of using
provenance circuits, arithmetic circuits whose gates
are the operators of the (m-)semiring as in [3, 20],
as a compact representation system for provenance.

Example 6. Consider queriesQ1 andQ2 on Personal.
We can represent the provenance annotations of
their output as references to gates in the universal
m-semiring circuit shown in Figure 1. The output
of Q1 is as follows:

city
New York g1
Paris g2
Berlin g3

while that of

Q2 is:
city
New York g4
Paris g5
Berlin g6

Indeed, by developing the circuit, one can for
instance verify that the provenance of “New York”
for Q2 on Personal is (t1 ⊕ t2) 	 (t1 ⊗ t2). As can
be seen on Figure 1, a significant amount of sharing
can be obtained for provenance within and across
queries by using provenance circuits.

This suggests a practical way for computing prove-
nance of queries over a relational database: induc-
tively construct a provenance circuit over input tu-
ples for each operation performed in a query, reusing
parts of the circuit that have been constructed by
subqueries. By constructing this circuit in the uni-
versal m-semiring, it then becomes easy to instanti-
ate it to a wide variety of semirings and m-semirings.

Example 7. Consider the query Q1 on Personal, for
which we want to compute the security and count-
ing semiring annotations. Since we have already
computed in Figure 1 a circuit for this query in
the universal m-semiring, we can directly obtain a
circuit whose evaluation returns the provenance of
Q1 in either of these semirings by applying the ap-
propriate semiring homomorphisms. This is what is
shown in Figures 2 and 3. One can verify that the
evaluation of these queries returns the provenance
annotations already computed in Example 5.

Similarly, one can compute the Boolean circuit of
Figure 4 by applying the m-semiring homomorphism
from the universal m-semiring of Figure 1 to the
Boolean function semiring.

This approach of incremental provenance compu-
tation in the universal m-semiring, with specializa-
tion to arbitrary semirings and m-semirings on de-
mand, is that taken by ProvSQL [43], a lightweight
add-on to the PostgreSQL database management
system for support of (m-)semiring provenance com-
putation on relational databases. To our knowledge,
this is the only publicly available system for man-
agement of data with semiring provenance, with
support of a large subset of the SQL query language.
The closest such software may be orchestra [25],
which is unfortunately unavailable.

6. PROBABILITY EVALUATION
As discussed in Section 2, Boolean provenance is

a very important tool to compute the probability
of a query in probabilistic databases, an intractable
(#P-hard) problem in general [45]. It allows sep-
arating the concerns between query evaluation on
the one hand, which produces a Boolean provenance
annotation in polynomial time, and probability eval-
uation of the provenance annotation on the other
hand, itself a #P-hard problem.
Let us thus assume we have obtained a Boolean

circuit of the data provenance of a query over a
probabilistic database. What can, then, be done to
evaluate the probability of the provenance annota-
tion, given the intractability of the problem?

Brute-force algorithms. The first possible way
is to resort to an exponential-time enumera-
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Figure 4: Boolean circuit for queries Q1 and Q2

tion of all possible valuations of the Boolean
events occurring in the provenance annotation,
and summing the probabilities of valuations
mapped to > by the provenance annotation to
compute the overall probability. This is rarely
feasible, but note that it is at least more effi-
cient than enumerating all possible worlds of
the initial database.

Approximations. One can always resort to ap-
proximating the probability of the query, ei-
ther by Monte-Carlo sampling, which is always
feasible but fairly slow, or by more refined ap-
proximation techniques, as in [42,44].

Exploiting the query structure. Jha and Suciu
[33] have shown that, when queries have spe-
cific forms, it is possible to construct Boolean
provenance circuits of certain types, that allow
for efficient probability evaluation. In partic-
ular, if a union of conjunctive queries (UCQ)
is inversion-free, an ordered binary diagram
(OBDD [10]) for it can be obtained. If some
more general property is satisfied, then it ad-
mits a deterministic decomposable negation
normal form (d-DNNF [16]). Both OBDDs
and the more general class of d-DNNFs allow
for efficient (linear-time) probabilistic query
evaluation. Of course, this approach is inap-
plicable if the query is not of the specific form
required. Note also that this approach is spe-
cific to Boolean provenance, which means it
precludes computation of provenance in a more
general (m-)semiring before specializing to the
Boolean function case.

Exploiting the data structure. An alternative is
to exploit the fact that the structure of the data
is not arbitrary. Indeed, if the data has the
structure of a tree, or has a low treewidth,
meaning that its structure is close to that of a
tree, it has been shown [2,3] that a bounded-
treewidth provenance circuit can be constructed,
which in turn supports tractable query evalu-
ation. This line of technique has been suc-
cessfully applied to synthetic [40] and real-
world [38] data, for specific kinds of queries.

When none of this is feasible, one can resort to gen-
eral knowledge compilation techniques [18]. Knowl-
edge compilation is the problem of transforming
Boolean functions of a certain form into another,
more tractable, form. Over the years, a wide vari-
ety of techniques, results, heuristics, and tools have
emerged from the knowledge compilation community.
In particular, tools such as c2d [17], Dsharp [41],
and d4 [35] compile arbitrary formulas in conjunctive
normal form into d-DNNFs.

One practical approach for probabilistic query
evaluation is therefore to produce a Boolean prove-
nance circuit, transform it into a conjunctive normal
form in linear time using the standard Tseitin trans-
formation [46], and feed it to a knowledge compiler.
This approach is used in ProvSQL.
Example 8. Consider the middle connected compo-
nent of the Boolean circuit of Figure 4, and, in par-
ticular, gate g5 which yields the Boolean provenance
of “Paris” in the output of query Q2 on Personal.
One can transform this part of the circuit into the
following equivalent conjunctive normal form, where
variables are inputs of the circuit along with its
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Figure 5: d-DNNF for tuple “Paris” in the
output of query Q2

internal gates, using Tseitin transformation:

g5 ∨ ḡ8 ∨ ḡ7 ∧ ḡ5 ∨ g8

∧ ḡ5 ∨ g7 ∧ ḡ8 ∨ t3 ∨ t5 ∨ t6
∧ g8 ∨ t̄3 ∧ g8 ∨ t̄5
∧ g8 ∨ t̄6 ∧ g7 ∨ g2

∧ ḡ7 ∨ ḡ2 ∧ ḡ2 ∨ t9 ∨ t10 ∨ t11

∧ g2 ∨ t̄9 ∧ g2 ∨ t̄10

∧ g2 ∨ t̄11 ∧ g9 ∨ t̄3 ∨ t̄6
∧ ḡ9 ∨ t3 ∧ ḡ9 ∨ t6
∧ g10 ∨ t̄3 ∨ t̄5 ∧ ḡ10 ∨ t3
∧ ḡ10 ∨ t5 ∧ g11 ∨ t̄6 ∨ t̄6
∧ ḡ11 ∨ t6 ∧ ḡ11 ∨ t6
∧ g5

Once such a formula obtained, it can be given as
input to a knowledge compiler. For example, d4
outputs the d-DNNF in Figure 5. A d-DNNF is a
special case of a Boolean circuit, where every ¬-gate
is directly connected to an input, every ∧-gate has
children with disjoint sets of descendant leaves, and

every ∨-gate is such that only one of its child can
be true in any possible world. These restrictions
make it possible to compute the probability of a gate
in linear-time, given a probability distribution on
input gate: ∧-gates become products, while ∨-gates
become sums. The computation of Pr(g5) from the
d-DNNF in Figure 4 is shown in Figure 6.

Note that this intensional (provenance-based) ap-
proach to probabilistic query evaluation is not the
only one. The extensional approach, which directly
manipulates probabilities as the query is evaluated,
without an intermediate provenance representation,
has also been successfully used [14, 15]. It is an
open problem [15,33] whether there are cases where
the extensional approach succeeds but no compact
d-DNNF is obtainable.

7. CONCLUSION
Data provenance is a major tool to obtain ad-

ditional information on query output. It allows
answering questions about:
why in the why-semiring;
where using where-provenance;
how using integer polynomials;
missing tuples using Boolean provenance;
how many times in the counting semiring;
probability using probability evaluation of Boolean

provenance;
minimal security clearance in the security semir-

ing;
most economical way in the tropical semiring.
Practical implementation of provenance manage-

ment is very much possible, since it introduces a
relatively low overhead. One avenue for practical
implementations is to perform all computations in a
universal structure, such as the universal m-semiring,
and only specialize when needed. Using these prove-
nance representations, it is also possible to per-
form query evaluation on probabilistic databases,
for instance using knowledge compilation to obtain
Boolean provenance representations on which prob-
abilistic evaluation is efficient.
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