
HAL Id: hal-01673529
https://hal.inria.fr/hal-01673529

Submitted on 30 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Declarative Framework for Semantical Interpretations of
Structured Information - An Applicative Approach

Stefan Haar, Salim Perchy, Frank Valencia

To cite this version:
Stefan Haar, Salim Perchy, Frank Valencia. Declarative Framework for Semantical Interpretations of
Structured Information - An Applicative Approach. International Journal of Semantic Computing,
World Scientific, 2017, 11 (04), pp.451 - 472. �10.1142/S1793351X17400189�. �hal-01673529�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/145142518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01673529
https://hal.archives-ouvertes.fr

DECLARATIVE FRAMEWORK FOR SEMANTICAL
INTERPRETATIONS OF STRUCTURED INFORMATION. AN

APPLICATIVE APPROACH

STEFAN HAAR

LSV, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson

Cachan, Île-de-France 94235, France

stefan.haar@inria.fr

http://www.lsv.fr/~haar/

SALIM PERCHY

Loria, INRIA Grand-Est, 615 rue du Jardin Botanique

Villers-lès-Nancy, Meurthe-et-Moselle 54600, France

yamil-salim.perchy@inria.fr

http://www.lix.polytechnique.fr/~perchy/

FRANK VALENCIA

LIX, École Polytechnique de Paris, 1 rue Honoré d’Estienne d’Orves

Palaiseau, Île-de-France, 91120, France

frank.valencia@polytechnique.fr

http://www.lix.polytechnique.fr/~fvalenci/

Abstract

We study the applicability of declarative models to encode and describe
structured information by means of semantics. Specifically, we introduce D-
SPACES, an implementation of constraint systems with space and extrusion
operators. Constraint systems are algebraic models that allow for a semantic
language-like representation of information in systems where the concept of
space is a primary structural feature. We mainly give this information an
epistemic and temporal interpretation and consider various agents as entities
acting upon it. D-SPACES is coded as a c++ library providing implemen-
tations of constraint systems, space functions and extrusion functions. The
interfaces to access each implementation are minimal and thoroughly docu-
mented. D-SPACES also provides property-checking methods as well as an
implementation of a specific type of constraint systems (a boolean algebra).
This last implementation serves as an entry point for quick access and proof
of concept when using these models. Finally, we show the applicability of
this framework with two examples; a scenario in the form of a social net-
work where users post their beliefs and utter their opinions, and a semantical
interpretation of a logical language to express time behaviors and properties.

1

mailto:stefan.haar@inria.fr
http://www.lsv.fr/~haar/
mailto:yamil-salim.perchy@inria.fr
http://www.lix.polytechnique.fr/~perchy/
mailto:frank.valencia@polytechnique.fr
http://www.lix.polytechnique.fr/~fvalenci/

1 Introduction

Systems where information is created and manipulated across a spatial structure
are now commonplace. Applications like social networks, forums, or any other
that organizes its information in a defined hierarchy are among these systems. The
nature of this information can be reviews, opinions, news, etc., whereas the infor-
mation belongs to a certain entity, e.g. users, agents, applications. This relation of
ownership and its alteration can be conceptualized as space and extrusion respec-
tively [12, 15]. We aim to achieve a clear understanding of the concept of space and
extrusion that enables us to study the meaning of information in these systems.

Initially, we focus on epistemic systems where we have agents believing infor-
mation [9] and uttering opinions and lies [19]. In order to attain a semantical
meaning of these epistemic behaviors we use declarative models, specifically con-
straint systems; algebraic structures that operate on elements called constraints
(the information) [18]. Later on, we demonstrate how the concepts of space and
extrusion have a tight semantical relationship with those of the future and past
operations in discrete time processes. We think this relationship applies to scenar-
ios where time properties are critical to their correct execution and/or expected
output. For this specific goal, we show how the proposed framework can create
an accurate semantical description of temporal logics, that in turn are mature
languages for specification of reactive systems.

Constraints can be viewed as assertions representing partial information (e.g.
t < 50 may stand for a certain temperature bellow 50 degrees), this makes con-
straint systems ideal to model and operate over scattered data. The characteriza-
tion of space as the operator [·] over constraints was developed in [12]. This made
possible assertions like [c]i “information c belongs to agent i’s space” or [[c]j]i “c
holds in a space associated to agent j inside agent i’s space”. Alternatively, we
can epistemically interpret these assertions as “agent i believes c” and “agent i be-
lieves that agent j believes c” respectively. Movement of information across spaces
was introduced by means of the constraint operator ↑ called extrusion [10]. One
can now conceive statements like [↑i[c]j]i “agent i extrudes the information c to
agent j” or epistemically as “agent i extrudes that agent j believes c”. Space and
extrusion functions may also be read as temporal assertions; [c] can be interpreted
as “c holds in the next instant” while ↑c as “previously c was true”.

The purpose of this work is to present the usability of the tool D-SPACES;
an implementation of constraint systems with space and extrusion operators. We
also use the tool to provide a semantic language for describing systems where
information is structured in a hierarchy of spaces. D-SPACES1 was conceived
as a c++ library heavily relying on the boost graph implementation2 (BGL). It is
thoroughly documented using HeaderDoc3 and can be directly used in the OS X
(XCode) and Linux (GCC+Make) environments. Usage on Windows depends upon

1http://www.lix.polytechnique.fr/~perchy/d-spaces/
2http://www.boost.org/doc/libs/release/libs/graph/
3https://developer.apple.com/legacy/library/documentation/DeveloperTools/Conceptual/

HeaderDoc/

2

http://www.lix.polytechnique.fr/~perchy/d-spaces/
http://www.boost.org/doc/libs/release/libs/graph/
https://developer.apple.com/legacy/library/documentation/DeveloperTools/Conceptual/HeaderDoc/
https://developer.apple.com/legacy/library/documentation/DeveloperTools/Conceptual/HeaderDoc/

cs

T

scs

T

scs-e

T

ba

std::set<T>

Figure 1: General class diagram

compilation of BGL, nonetheless the implementation is sufficiently cross-platform.
The paper is divided in four sections. Section 1 provides an introduction with

basic details of the tool. Section 2 formally defines the constraints systems and
describes D-SPACES; it explains the general design, the class interfaces, and details
the property checking methods implemented therein. Moreover, we provide some
remarks on the complexity issues of the implementation of some constraint system
operations and finally present powerset boolean algebras as a specific instantiation
of our model. In section 3 we use these algebras to give semantics to a belief
language describing a small social network based on tags. In addition to this,
we present a semantical interpretation of the Linear Time Temporal Logic [16]
language by way of the models studied here and show its potential use for asserting
time behaviors and/or results. Finally, Section 4 offers some concluding remarks
and future endeavors regarding the methodology exposed here and the tool.

2 Implementing Space and Extrusion in Constraint
Systems

Constraint systems are declarative formalisms which specify partial information
that programs (processes) may act upon [14]. Intuitively, constraint systems build
a specific structure of information (that of a poset) and define useful operations
between the different elements that make up the totality of the information. Like-
wise, the notion of computational space and the movement of the information
therein may be extended to constraint systems by means of space and extrusion
functions [10]. In previous works, formal models describing the concept of space
were generally treated from a theoretical standpoint and much of their results are
mathematical in nature [6, 5]. To demonstrate their applicability to real compu-
tational problems, the authors have developed D-SPACES, a tool implementing
constraints systems with extrusion.

We begin by describing the class hierarchy of D-SPACES (Fig. 1). There
are three modules implementing each constraint system, they are named cs, scs
and scs-e. A fourth module, named ba, implements powerset boolean algebras
using the functionality of all the others. Each module parametrizes the cs el-
ements (the information) using a template T. The type used must be compa-
rable in the standard way (i.e. operator<) as there is reliance on the auto-
matic sorting of the container std::set. Currently, there are instantiations of
types int, char, std::string, std::pair<std::string,int>> and containers
std::vector and std::set of these same types. We continue by introducing the
necessary mathematical concepts to describe the first component; the cs module.

3

0

1 2

3 4

5

Figure 2: A Poset

2.1 Flat Constraint Systems

We first formalize the concept of constraint system. A basic background in domain
theory is presupposed [8, 1].

Definition 2.1 (Lattice). A lattice is a partially ordered set (poset) (Con,v) where
for each c, d ∈ Con we define;

(i) c u d as the maximal element e w.r.t. v s.t. e v c and e v d (read as the
meet of c and d) and,

(ii) c t d as the minimal element e w.r.t. v s.t. c v e and d v e (read as the
join of c and d).

The ordering relation in posets is reflexive (i.e. c v c), antisymmetric (i.e.
c v d and d v c imply c = d) and transitive (i.e. a v b and b v c imply a v c).
Its reverse is denoted as w. The meet and join operators are alternatively called
greatest lower bound (glb) or infimum and least upper bound (lub) or supremum.
We give an example lattice with elements {0, 1, 2, 3, 4, 5} where Fig. 2 is the Hasse
diagram of its underlying poset.

Definition 2.2 (cs). A constraint system [18] is a complete lattice, that is, a lattice
where the meet and join operations are defined for every subset of the set Con.

Intuitively, a cs is an information structure where its elements are the set Con
(called constraints). A cs has a bottom element true (denoted as the global meet
⊥ in lattice literature) and a top element false (denoted as the global join >).
Furthermore, the reverse ordering relation w is interpreted in cs as entailment (i.e.
d w c means d entails c). Notice this interpretation suggests the greater an element
is on the ordering relation v, the more information the element denotes. In the
example of Fig. 2, true is the element 0 and false is the element 5, needlessly to
say, false entails all the elements of the cs.

Example 2.1 (Herbrand Constraint System). The Herbrand cs [4, 18] captures
syntactic equality between terms t, t′, . . . built from a first-order alphabet L with
variables x, y, . . ., function symbols, and equality =. The elements are (equivalent
classes of) sets of equalities over the terms of L: E.g., {x = t, y = t} is an
element. The relation c v d holds if the equalities in c follow from those in d:
E.g., {x = y} v {x = t, y = t}. The top element false is the set of all (possibly

4

true

{x = y}{y = a}{x = a} {y = b} {x = b}

{
x = a
y = b

}{
x = a
y = a

} {
x = b
y = a

} {
x = b
y = b

}
false

Figure 3: A Herbrand constraint system

inconsistent) term equalities in L and true is (the equivalence class of) the empty
set. The join operation is the (equivalence class of) set union. Figure 3 is the hasse
diagram of a Herbrand cs with variables {x, y} and constants {a, b} with a 6= b. �

We can also define a binary implication operator c → d =
d
{e | c t e w d}.

This definition is adapted from Complete Heyting Algebras [20] and it additionally
allows us to encode the pseudo-complement of a constraint as ∼ c = c → false.
Pseudo-complements do not necessarily comply with the law of the excluded middle
and the above definition only works as an implication if the cs is distributed, that
is if for every a, b, c ∈ Con we have that:

a t (b u c) = (a t b) u (a t c) (2.1)

Notice that, by the M3-N5 theorem [8], Herbrand constraint systems are not
distributed (i.e. their underlying lattices are sub-lattices of the N5 lattice).

2.1.1 Interface and usage

Table 1 describes part of the interface to the cs module. The input elements in
glb and lub (the respective implementations of the meet and join operators) may
be empty vectors, in this situation they produce the bottom and top elements

Table 1: Interface to cs
Method Desc. Symbol
add_element(T c, vector<T> L, vector<T> U) addition of element L v c v U
bool leq(T c, T d) ordering relation c v d ?
T glb(vector<T> elems) meet of elements

d
(elems)

T lub(vector<T> elems) join of elements
⊔
(elems)

T imp(T c, T d) implication operator c → d

5

respectively. Similarly, in the method add_element the upper and lower bounds
of c (i.e. parameters L and U) may be empty, denoting false and true respectively.

2.1.2 Properties of cs

As mentioned above, one optional and important property of constraint systems is
that of distributivity. This property is necessary for modus ponens to hold, that is,
(c→ d) t c w d must be true for every c, d ∈ Con [11]. In D-SPACES distributivity
can be checked with the boolean method CS.is_distributive().

The D-SPACES snippet in Fig. 4 creates a constraint system with the underly-
ing lattice of Fig. 2. Additionally, it calculates 1 t 2, u{2, 3, 4}, 2→ 3 and checks
if the cs is distributive.

2.2 Spatial Constraint Systems with Extrusion

We continue with the scs and scs-e modules. For this we begin by defining the
remaining two constraint systems.

Definition 2.3 (scs). An n-agent spatial constraint system (scs) is a cs equipped
with n self-maps [·]1, . . . , [·]n (called space functions) over its set of elements Con.
Additionally, for each map [·]i : Con→ Con we have:

S.1 [true]i = true and

S.2 [c t d]i = [c]i t [d]i for all c, d ∈ Con.

We refer to S.1 as emptiness, intuitively signifying that an empty space amounts
to no information at all. S.2 is referred to as t-distribution, meaning that spaces
distribute over the joining of information. A derived property of S.2 is monotonicity
of spaces; for all i = 1 . . . n,

S.3 if c v d then [c]i v [d]i for all c, d ∈ Con.

cs<int> CS(0, 5); // true = 0, false = 5

CS.add_element(1); // 0 <= 1 <= 5

CS.add_element(2); // 0 <= 2 <= 5

CS.add_element(3, {1, 2}); // 1,2 <= 3 <= 5

CS.add_element(4, {2}); // 2 <= 4 <= 5

CS.lub({1, 2}); // lub(1,2) = 3

CS.glb({2, 3, 4}); // glb(2,3,4) = 2

CS.imp(2, 3); // 2 -> 3 = 1

CS.is_distributive(); // cs IS distributive.

Figure 4: Snippet using the cs module

6

The intuition behind S.3 is that the structure of the information (w.r.t. v) is
preserved inside spaces. We now define extrusion in spatial constraint systems.

Definition 2.4 (scse). An n-agent spatial constraint system with extrusion is a
scs equipped with n self-maps ↑1, . . . , ↑n (called extrusion functions) over its set of
elements Con. Additionally, for each map ↑i : Con→ Con:

E.1 [↑ic]i = c for all c ∈ Con.

E.1 means that the i-th extrusion function is the right inverse of the i-th space
function. One might also require that the extrusion function satisfy duals of S.1
and S.2:

E.2 ↑i(true) = true, and

E.3 ↑i(c t d) = ↑ic t ↑id for all c, d ∈ Con.

It is not unreasonable to suppose that the extrusion function might be a se-
mantical interpretation of an operation that satisfies emptiness and t-distribution.

Example 2.2 (Structured information). Let us consider the following computa-
tional setting:

[c]i t [↑j([c→ d]i) t e]j (2.2)

Equation 2.2 specifies the sending of information d from agent j to agent i. This
action is conditioned by the presence of information c in the space of agent i.
Indeed, with the help of S.2, E.1 and modus ponens we can derive the expected
result as follows:

[c]i t [↑j([c→ d]i) t e]j

= [c]i t [↑j([c→ d]i)]j t [e]j (S.2)

= [c]i t [c→ d]i t [e]j (E.1)

= [c t c→ d]i t [e]j (S.2)

= [c t d]i t [e]j (MP)

This derivation corresponds to the movement of a piece of (partial) information
among a hierarchy of spaces that structures the (total) information in the system.
�

2.2.1 Interface and usage

Table 2 exposes part of the interfaces to the scs and the scs-e modules. The
interfaces are similar in that both offer methods to retrieve, set and modify the
space/extrusion functions. However, with module scs-e it is possible to evolve a scs
into a scse according to a choice function that automatically maps the extrusion
functions. There are four choice functions implemented; i. infima, ii. suprema,
iii. manual and iv. random.

7

Table 2: Interface to scs and scs-e
Method Desc. Symbol
T s(int i, T c) / T e(int i, T c) space/extrusion functions [c]i, ↑ic
vector<T> s_inv(int i, T c) inverse of space function [c]−1

i

vector<T> e_inv(int i, T c) inverse of extrusion function ↑−1
i c

s_map(int i, T c, vector<T> elems) mapping of space function [elems]i = c
e_map(int i, T c, vector<T> elems) mapping of extrusion function ↑ielems = c

The choice function manual expects the user to set the extrusion function using
e_map after the creation of the scse. The choice function random maps each con-
straint c ∈ Con to a random element of its space function pre-image (i.e. [c]

−1
i).

Choice functions infima and suprema map each constraint to the greatest lower
bound and least upper bound appropriately of its space function pre-image. Mathe-
matically speaking, for each c ∈ Con we have ↑ic =

d
[c]
−1
i and ↑ic =

⊔
[c]
−1
i when

using the infima and sumprema choice functions respectively. Choice functions
random and manual do not necessarily satisfy E.1 while infima and sumprema do,
moreover the choice function infima satisfies E.2 and E.3 [11].

2.2.2 Properties of scs and scs-e

Several properties of the space/extrusion functions might be desired or needed for
correct functioning (e.g. E.1 as mentioned above). Both modules offer property
checking via the methods s_properties and e_properties. One can verify stan-
dard properties like surjectivity (this implies the existence of an inverse function),
t-distributivity (i.e. S.2, E.3) and inversion (i.e. E.1) among others.

The snippet in Fig. 5 creates a scs out of the cs created in Fig. 4 and maps
some of its elements. Next, it creates a scs-e with this scs. Here, the parameter
EC_SUPREMA corresponds to the choice function suprema.

2.3 Complexity

We now turn our attention to the details of time complexity (see Table 3 for a
complete chart). Implementation of lattices operators, and by extension those of
constraint systems, might yield considerable time complexities due to the poten-
tially large number of elements. We discuss the critical cases here, those of methods
leq, glb, lub and imp. Recall that posets were implemented using a BGL graph.

Table 3: Worst-case complexity of methods, n means # of elements in the cs
Method Complexity Method Complexity
add_element O(n3) s, e O(1)
leq O(1) s_inv, e_inv O(n)
glb, lub O(n2) s_map, e_map O(1)
imp O(n3) s_property O(n2)
is_distributive O(n3) e_property O(n2)

8

scs<int> SCS(CS, 1); // 1-agent scs, s_1(0) = 0 mapped at

creation↪→

SCS.s_map(1, 1, {1, 2, 3}); // s_1({1,2,3}) = 1

SCS.s_map(1, 4, {4}); // s(4) = 4

SCS.s_map(1, 5, {5}); // s(5) = 5

SCS.s(1, 4); // 4

SCS.s_inv(1, 1); // {1,2,3}

scse<int> SCSE(SCS, EC_SUPREMA); // e_1(c) = lub(s_1_inv(c))

SCSE.e(1, 1); // lub(s_1_inv(1)) = lub({1,2,3}) = 3

SCSE.e_inv(1, 5); // 2,3,5

SCSE.e_map(1, 2, {2}); // e(2) = 2

SCSE.e_properties(1, EP_RIGHT_INVERSE_S); // e_1 is NOT the

right inverse of s_1↪→

Figure 5: Snippet using the scs and scse modules

2.3.1 leq

The result of c v d can be given in constant time provided this is calculated in
advanced. We achieve this by performing a transitive closure on the poset relation
whenever an element is added (i.e. method add_element). This transitive closure
is performed using the BGL method boost::transitive_closure.

2.3.2 glb and lub

We take advantage of the fact that posets in cs are always in transitive closure to
lower the complexity of calculating meets and joins. The meet and join of a set of
elements S are defined as glb(S) = max(Sl) and lub(S) = min(Su) respectively,
where Sl (lower bounds of S) is defined as the set {e | ∀s∈S e v s} and Su (upper
bounds of S) as the set {e | ∀s∈S e w s} [8].

Moreover, Sl and Su can be calculated in consant time with BGL methods
boost::inv_adjacent_vertices and boost::adjacent_vertices. Calculating
max(Sl) and min(Su) then boils down to finding a minimum value as the next
proposition shows. Corollary 2.1 follows from Proposition 2.1.

Proposition 2.1 (). max(Sl) = argmin
si∈Sl

|siu|

Proof. Suppose not, then sk = max(Sl), sj = argmin
si∈Sl

|siu| and sj < sk because the

maximal element is unique (v is antisymmetric by Definition 2.1). Furthermore,
sk

u ⊂ sj
u because v is transitive. Consequently |sku| < |sju|, a contradiction.

Corollary 2.1 (). min(Su) = argmin
si∈Su

|sil|

9

2.3.3 imp

Recall that c → d =
d
S where S = {e | c t e w d}, we lower the complexity by

characterizing S. When c w d we have that S = Con, thereby c → d =
d

Con =
true. When c w d is not the case, it is easy to show that du ⊆ S, whereby

d
du = d,

therefore we can safely omit all elements of du from S except d (due to associativity
of u).

Additionally, some elements need not be tested when calculating S. A particular
common case is the negation (i.e. d = false), the elements of the set (cu\{false})l
are never in S. The next proposition proves this.

Proposition 2.2 (). S′ ∩ S = ∅ where S = {e | c t e w false} and S′ =
(cu\{false})l.

Proof. If c = false then S′ = ∅, thus the proposition is trivially true. If c 6= true
we prove that if a ∈ S′ then a 6∈ S. Suppose not, then a ∈ S′, meaning that
∃a′ ∈ cu\{false} and a v a′. Furthermore c v a′ < false and a v a′. We can show
that cta v a′ and by transitivity we deduce that cta < false. Furthermore a ∈ S
(by supposition), meaning that c t a w false, a contradiction.

2.4 Boolean Algebras

Adopting D-SPACES for constructing proof of concepts using constraint systems
with extrusion is feasible. To achieve this, the module ba is offered as an imple-
mentation of powerset boolean algebras (ba). In this module, a constraint system
is built automatically from a powerset lattice which in turn is constructed from a
set of elements called atoms. The atoms represent the indivisible bits that make up
the information in the constraint system, moreover, a powerset lattice is complete
and distributive by construction [8].

Given a set of atoms A, a powerset ba is a specific case of a scse where Con =
P(A), t = ∪ (or ∩ if the lattice is inverted), u = ∩ (or ∪ if inverted), true = ∅
(or A if inverted) and false = A (or ∅ if inverted). Additionally, a boolean algebra
is equipped with a complementation operation (i.e. c′) that we calculate by using
the pseudo-complement4 defined in Section 2.

Space and extrusion functions are defined programmatically using c++11 lambda
functions. Because the powerset ba is also a scse, the module also exposes all the
functionality of the constraint systems discussed up until this point. The code
example in Fig. 6 creates a two-agent powerset boolean algebra and automatically
maps the extrusion functions as the infima choice of user-given space functions.

4In powerset lattices, the complement and the pseudo-complement are equivalent.

10

ba<char> BA({'c', 'a', 'b'}, 2, true); // A = {a,b,c}

// space function

auto s = [] (int i, set<char> e, set<char> atoms) {

switch(i) {

case 1: // s_1(c) = c

return e;

case 2: // s_2(c) = A \ c

return set_difference(atoms.begin(), atoms.end(),

e.begin(), e.end());↪→

}

};

BA.map_s(s, EC_INFIMA); // e_n(c) = glb(s_n_inv(c))

BA.m_scse.is_distributibe(); // All powerset lattices are

distributive↪→

Figure 6: Snippet using the ba module

3 Applicability of Semantical Descriptions for Struc-
tured Information

We now focus on the applicability of constraint system semantics to relevant com-
putational scenarios. In this section we provide two different settings, one of a social
network with users capable of posting comments that are automatically tagged and
another of a logical language that is mainly used to express time behaviors and/or
properties in programs. Both settings have been and continue to be active subjects
in the literature [2, 13].

On both cases the methodology remains the same: we first identify how the
information is structured (that is, we instantiate the concept of space) and then
we proceed to describe the information and its operations as a semantical language
based on constraint systems. Naturally, this allows us to encode the setting’s
computational behaviors as D-SPACES methods that yield results for analysis or
input to other computations.

3.1 A Tagged Social Network

As our first illustrative example, we use space and extrusion functions as semantics
for epistemic behaviors in social networks. We define a social network of comments
that are tagged according to their content, the tags used are the following:

h: Personal.

p: Political.

r: Religious.

n: News.

s: Sports.

11

We create a powerset boolean algebra to represent the social network, its set
of atoms being the above tags. Additionally, there are three users in the social
network represented as the three agents of the constraint system:

ba<char> ReseauSocial({ 'h', 'p', 'r', 'n', 's' }, 3);

Users in this social network are allowed to have their own set of beliefs inside
their walls (i.e. the concept of space) and make opinions/posts about the existing
information (i.e. the concept of extrusion). We intend to use the boolean algebra
to calculate the semantic meaning of scenarios where these opinions and beliefs
exist together. For this we express the epistemic behaviors using the multi-agent
language of belief and utterance BUn [11]:

F := t | F ∧ F ′ | ¬F | Bi(F) | Ui(F)

where i = 1 . . . n. In BUn, a comment F can be a tag t, a conjunction of
comments, a negation of a comment, a user belief (i.e. Bi(F) stands for “user i
believes F”) and a user utterance (i.e. Ui(F) stands for “user i utters F”).

We assign to each user a profile that dictates how he believes and utters com-
ments. User 1 is a political person and at the same time discreet of his personal
life, user 2 has a very religious character while being apolitical and finally user 3
is an objetive individual. We emulate their belief profiles by applying the next
lambda function as the space function of the social network:

auto belief_func = [] (int agent, std::set<char> comment,

std::set<char> tags) {↪→

std::set<char> belief;

switch(agent) {

case 1:

belief = comment;

if(belief.find('n') != belief.end())

belief.insert('p');

break;

case 2:

belief = comment;

if(belief.find('h') != belief.end())

belief.insert('r');

break;

case 3:

belief = comment;

break;

}

return belief;

};

ReseauSocial.map_s(belief_func);

12

Notice how user 1 inserts in every news a political aspect, while user 2 gives to
his personal comments a religious interpretation. User 3 is objective and interprets
the comment unchanged. We also create a lambda function to code the uttering
profiles:

auto utterance_func = [] (int agent, std::set<char> comment,

std::set<char> tags) {↪→

std::set<char> utterance;

switch(agent) {

case 1:

utterance = comment;

utterance.erase('h');

if(utterance.find('n') != utterance.end())

utterance.insert('p');

break;

case 2:

utterance = comment;

utterance.erase('p');

break;

case 3:

utterance = comment;

break;

}

return utterance;

};

ReseauSocial.map_e(utterance_func);

In this case user 1 inserts a political angle in every news but removes any
personal detail from a comment. User 2 removes the political aspect of the comment
and user 3 remains objective. To interpret statements of epistemic behavior in the
social network we inductively give semantics to the language of belief and utterance
using constraint systems with extrusion. We define a function J·K : F 7→ Con that
maps a statement from BUn to a constraint of ReseauSocial:

JtK = {t}
JF ∧ F K = JF K t JF K

J¬F K = ∼ JF K
JBi(F)K = [JF K]i
JUi(F)K = ↑iJF K

A tag is semantically interpreted as a set containing the tag, the conjunction of
comments is interpreted as their join, the negation as the pseudo-complement and
the belief and utterance actions as the space and extrusion operators respectively.
We now present some epistemic scenarios where we use the boolean algebra repre-
senting the social network to calculate their semantical meaning. As a first case,

13

we want to model the belief of user 2 of a news comment that user 1 believes true
and utters to him:

B2(B1(news t U1(news)))

We encode this scenario in the social network as follows:

ReseauSocial.m_scse.s(2, ReseauSocial.m_scse.s(1,

ReseauSocial.m_scse.lub({ {'n'}, ReseauSocial.m_scse.e(1,

{'n'}) })));

↪→

↪→

The semantical result of the above statement is {’n’, ’p’} indicating that the
subjective (possibly wrong) political interpretation of the news from user 1 was
also picked up by user 2. Next, we model a scenario where users share beliefs (e.g.
friendship) and user 1 comments on a mutual personal activity with agent 2 (a
sport activity denoted here by personal). For this, user 1 verifies if the activity
in question is common to them (i.e. B1(personal)), and utters such activity as
interpreted by user 2:

B1(personal)→ U1(B2(personal t sports))

t B1(personal)

The scenario is encoded as follows:

ReseauSocial.m_scse.lub({ ReseauSocial.m_scse.imp(

ReseauSocial.m_scse.s(1, {'h'}), ReseauSocial.m_scse.e(1,

ReseauSocial.m_scse.s(2, ReseauSocial.m_scse.lub({ { 'h', 's'}

})))), ReseauSocial.m_scse.s(1, {'h'}) });

↪→

↪→

↪→

The result here, {’h’, ’r’, ’s’}, shows that the semantical interpretation mixes
religious and sport tags in the same scenario (due to the profile of agent 2). Such
configurations could be considered potentially problematic and politically incorrect
for a moderator of the social network. For the last scenario we want to model user 3
as an active liar where he intentionally utters to the other users news he regards as
untrue. User 2 however already believes the news to be untrue. For this scenario,
we adopt a logical and epistemic description of a lie[19, 17]:

B3(¬news t ¬news→ U3(B1(news) t B2(news)))

tB2(¬news)

ReseauSocial.m_scse.lub({ ReseauSocial.m_scse.s(3,

ReseauSocial.m_scse.lub({ ReseauSocial.m_scse.imp(

ReseauSocial.m_scse.imp({'n'}, {ReseauSocial.m_scse.lub()}),

ReseauSocial.m_scse.e(3, ReseauSocial.m_scse.lub({

ReseauSocial.m_scse.s(1, {'n'}), ReseauSocial.m_scse.s(2,

{'n'}) }))), ReseauSocial.m_scse.imp({'n'},

{ReseauSocial.m_scse.lub()}) })), ReseauSocial.m_scse.s(1,

ReseauSocial.m_scse.imp({'n'}, {ReseauSocial.m_scse.lub()}))

});

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14

The semantical result is {’h’, ’n’, ’p’, ’r’, ’s’} which is the top element of
the constraint system. This can be interpreted as false due to the inconsistency
generated in the beliefs of agent 2 after the news is uttered to him by agent 3.

3.2 A Time Description Language

Our next application of D-SPACES features the ability to express and verify time
behaviors in computer programs. We focus on the following computational process
as the main target of this application:

procedure Program(arg1, arg2)
a← 1
b← 4
while a < b do

if even(a) then
a← a + arg1

end if
if odd(a) then

a← a + arg2
end if

end while
if a = b then

c← 1
else

c← 0
end if

end procedure

To describe such behaviors, we use an established language that is capable of ex-
pressing propositions with temporal characteristics. LTL (Linear Temporal Logic)
is a logical language with time operators (contextually called temporal modalities)
to describe temporal properties [16]. We write its syntax as follows:

F := v | F ∧ F ′ | F ∨ F ′ | #F | �F

Here, a basic proposition v stands for a variable value, this relates to the vari-
able assignation concept we see in normal computer programs (such as our target
Program). Notice that LTL is a special case of a modal logic, which in turn is
an extension of propositional logic [3], thus the last two operators are its temporal
modalities. #F is read as “next F” and means that in the next time instant F is
valid. �F on the other hand, read as “previous F”, is interpreted as F being valid
in the previous time instant. It is natural to conceptually tie the concept of next
and previous to those of space and extrusion respectively.

The expressivity of LTL can be further expanded with additional temporal
modalities that are directly related to the next and previous operations. We extend

15

the syntax with the following operators:

F := · · · | �F | �F | � F | � F

�F and �F are read as “henceforth F” and “always F” respectively. The
former states that from now on F holds, while the latter states that F has always
been true up to this point. � F and � F are read as “eventually F” and “once
F”. The first one is interpreted as F being true at one point in the future and the
second one as F being valid at one point in the past. These extra operations can
be encoded with the first two modalities as follows:

�F := F ∧#F ∧# #F ∧# # #F ∧ . . .

�F := F ∧�F ∧�� F ∧���F ∧ . . .
� F =: F ∨#F ∨# #F ∨# # #F ∨ . . .
� F := F ∨�F ∨�� F ∨���F ∨ . . .

The basic sentences (i.e., v) of the LTL language defined above are variable val-
ues. In contrast to the last application on social networks, we do not use a boolean
algebras as our main constraint system structure. A much more apt structure for
this scenario is a Herbrand constraint system (see Example 3). Programmatically,
the creation of a Herbrand cs is very similar to that of the powerset of boolean alge-
bras. The constraint system elements are possible valuations of the variables in the
target program (e.g., Procedure Program). These elements are represented by
sets of pairs (i.e., variable/valuation) in our example. Inconsistent elements (e.g.,
states containing variables with double valuations) are eliminated at construction
time as they are never reached in a program. We omit the code for constructing
Hebrand cs but the interested reader is referred to the demos of D-SPACES:

// Herbrand cs element type: set of (var, val) where var = val

typedef std::set<std::pair<std::string,int>> CS_TYPE;

int nRuns = 2;

std::vector<std::string> vars = {"a", "b", "c"};

std::pair<int,int> range(0, 5);

cs<CS_TYPE> CS = herbrand(vars, range), nRuns);

scse<CS_TYPE> HCS(scs<CS_TYPE>(CS, nRuns),

scse<CS_TYPE>::E_CHOICE_FUNCTION::EC_MANUAL);↪→

In Procedure Program we use variables a, b and c (vars) with a permitted
value range from 0 to 5 (range). We use agents of the constraint systems to define
different runs of the program with different argument values. The number of runs
is determined by variable nRuns. Contrary to the social networks application where
the space and extrusion functions were intentionally defined, here we specify them
in a procedural fashion. For this, we create an evaluation function to encapsulate
Procedure Program:

16

template<typename... ArgTypes>

void evaluate(scse<CS_TYPE>& hcs, int run, ArgTypes... args) {

CS_TYPE state; // Current state

CS_TYPE next; // Following state

#define STEP(Var) step(hcs, run, state, next, #Var, (Var))

// Target Program

std::function<void(int,int)> program = [&hcs, run, &state, &next]

(int incr1, int incr2) {↪→

int a = 1;

STEP(a);

int b = 4;

STEP(b);

while(a < b) {

if(a % 2 == 0)

a = a + incr1;

else

a = a + incr2;

STEP(a);

}

int c;

if(a == b)

c = 1;

else

c = 0;

STEP(c);

};

program(args...);

hcs.s_map(run, {next}, next);

}

Naturally, the framework should allow evaluation of a generic program (i.e.,
different number and/or type of arguments, different body, etc), Because of this,
evaluate is a variadic function à la C++11 where a parameter pack carries the
different arguments for the target program. Moreover, the encapsulation of the
target program inside the evaluation function allows for the capture of the con-
straint system and hides its handling from the body of the target program. In
spite of this, the task of informing the cs of a variable assignment remains explicit
by invoking a stepping function. The macro STEP allows to stringify a variable
using the operator # .

// Stepping function: Updates the run on the Herbrand cs

void step(scse<CS_TYPE>& hcs, int run, // Herbrand cs and run id

CS_TYPE& s, // Previous state

17

CS_TYPE& n, // Following state

std::string var, int val) { // Variable assignment

(i.e., var = val)↪→

// Remove previous assignment

for(auto pair : n) {

if(pair.first == var)

n.erase(pair);

}

n.insert(std::make_pair(var, val));// Add assignment to state

hcs.s_map(run, {s}, n); // Update space (next) function

hcs.e_map(run, {n}, s) ; // Update extrusion (previous)

function↪→

s = n;

}

The stepping function is basically in charge of progressively constructing the
space and extrusion functions accordingly, also accounting for the run number in
the Herbrand cs. It calculates the elements to be mapped taking into account
the new assignment and then does the actual mapping. Notice that at the end
of evaluate, the last state is mapped to itself with respect to the space function.
This is crucial to the use of some LTL modalities such as �F .

We remark that, after the evaluation is done, the Hebrand cs resembles (in
structure) a state machine, thus it also suffers from the state explosion problem
[7]. Although it is out of the scope of this work, this caveat can be tackled with
the possibility of an element removal method in the constraint system module (see
Section 4). Additionally, Herbrand cs are not distributive, therefore the comple-
ment of an element is not consistent with its logical counterpart. This is expected
because the complement of a variable valuation is not a natural (nor a trivial)
operation in imperative languages. Nevertheless, this issue can be avoided if the
structure is made distributive by requiring the introduction of elements that are
logically inconsistent (i.e, double valuations), though they are never reached by the
space or extrusion function.

We now proceed to inductively give a semantical description to every operator
of the LTL language:

JvKs =

{
⊥ if {v} v s

> otherwise

JF ∧ F Ks = JF Ks t JF Ks

JF ∨ F Ks = JF Ks u JF Ks

J#F K = JF K[s]

J�F K = JF K↑s

The semantical meaning of a basic proposition is either the top and bottom
elements of the cs. The result is decided based on its entailment from an element

18

s that represents the current state of the target program. This of course ties to
the semantic principle of bivalence that is present by a logical language like LTL.
Disjunctions and conjunctions are semantically interpreted by, naturally, meets and
joins respectively. The next and previous operations are mapped to a semantical
evaluation on the space and extrusion valuation of the element s. Notice that
space and extrusion functions are devoid of agent indexes for simplicity reasons,
we expect every semantical sub-evaluation to be consistent on the same run.

We are now ready to express a time behavior in LTL using our constraint system
and test its validity in a run of the target program and its underlying Herbrand cs.
We start by testing if variable b is always 4 in the program (i.e., � b = 4).

int cRun = 1;

evaluate(HCS, cRun, 1, 2); // arg1 = 1, arg2 = 2

CS_TYPE proposition;

proposition.insert(std::make_pair("b", 4)); // p: b == 4

CS_TYPE answer = HCS.glb();

CS_TYPE current_state;

CS_TYPE next_state = HCS.s(cRun, HCS.s(cRun, HCS.glb())); // The

state when variable b is created↪→

do {

current_state = next_state;

answer = HCS.lub({ answer, (HCS.leq(proposition, current_state

) ? HCS.glb() : HCS.lub()) }); // p<=s and p<=[s] and ...↪→

next_state = HCS.s(cRun, current_state);

} while(next_state != current_state); // end of run

We perform a run of Procedure Program with arguments 1 and 2, then create
the proposition b = 4. Next, we semantically evaluate the henceforth operation by
consecutive conjunctions of the next operation until the last resulting element of
the evaluation. It is important to be aware that a query on the variable b only
makes sense at or after the point where it was created, not before, hence we start
evaluating � b = 4 just there. After computing the LTL expression, answer ends
up being the bottom element (i.e., ⊥) which semantically is interpreted as � b = 4
being valid.

We test a second LTL expression that checks if variable c is, at any point, equal
to 1 (i.e., � c = 1). We perform this by using consecutive disjunctions starting at
the initial element (i.e., ⊥).

proposition.clear();

proposition.insert(std::make_pair("c", 1)); // p: c == 1

answer = HCS.lub();

next_state = HCS.glb(); // Initial state of execution

do {

current_state = next_state;

19

answer = HCS.glb({ answer, (HCS.leq(proposition, current_state

) ? HCS.glb() : HCS.lub()) }); // p<=s or p<=[s] or ...↪→

next_state = HCS.s(cRun, current_state);

} while(next_state != current_state); // end of run

As expected, answer evaluates to the top element (i.e., � c = 1 is not true).
This is due to the fact that arg2 is 2. If we make a second run where arg2 is 1 we
can reevaluate the LTL sentence on the specific run.

cRun = 2;

evaluate(HCS, cRun, 1, 1); // program arguments: 1, 1

answer = HCS.lub();

next_state = HCS.glb(); // Initial state of execution

do {

current_state = next_state;

answer = HCS.glb({ answer, (HCS.leq(proposition, current_state

) ? HCS.glb() : HCS.lub()) }); // p<=s or p<=[s] or ...↪→

next_state = HCS.s(cRun, current_state);

} while(next_state != current_state); // end of run

In this case, c is eventually valued at 1, therefore � c = 1 is true in the second
run of Procedure Program.

4 Conclusions and Future Work

We presented a declarative framework for semantically interpreting structured in-
formation. To show its applicability, we developed D-SPACES; an implementation
of constraint systems with space and extrusion operators for semantically describing
information structured in spaces. We covered the different definitions of constraint
systems as well as an implication operator to increase expressivity. Additionally,
we documented the different methods in the implementation to verify conditions
in the constraint systems that might be desired for certain properties to hold. To
implement the ordering relation of a constraint system we used the BGL’s imple-
mentation of graphs. This, together with some mathematical results, allowed us
to work on the complexity of the cs operators.

As a way to code proof of concepts on scse we introduced a module to cre-
ate powerset boolean algebras (a specific case of scse) with space and extrusion
functions specified as lambda functions. Furthermore, we illustrated the use of
declarative semantics with two scenarios. In one we constructed a declarative in-
terpretation of an epistemic language of belief and utterance. We then used this
interpretation to create a small social network as a powerset ba. Additionally we
discussed the resulting semantical interpretations of different epistemic behaviors
described in the language mentioned above. Another illustration of the use of our
framework came as a semantical description of a logical language that expresses

20

time behaviors and properties. Here we looked over different logical expressions
that describe information structured over a discrete timeline.

As future endeavors we plan to implement more significant cases of scse and
support more data types. This will allow for more description languages to be
interpreted easier and quicker and a widened applicability on the type of computa-
tional scenarios that D-SPACES can tackle. We would also like to see support for
removing elements, as this, together with the add_element method, would allow
to interactively manipulate a scse and give meaning to a constantly changing struc-
ture of information. We believe that permanent mutating hierarchies of information
are also of great significance in the possible applications of declarative semantics.
Finally, we envisage that results from an interpretation of a language can be cou-
pled with other tools to perform verification and/or detection of desired/undesired
features.

Acknowledgments

This work has been partially supported by the Colciencias project 125171250031
CLASSIC, and Labex DigiCosme (project ANR-11-LABEX-0045-DIGICOSME)
operated by ANR as part of the program “Investissement d’Avenir” Idex Paris-
Saclay (ANR-11-IDEX-0003-02).

References

[1] Samson Abramsky and Achim Jung. Domain theory. Handbook of logic in computer
science, pages 1–77, 1994.

[2] Alexandru Baltag, Zoé Christoff, Rasmus K Rendsvig, and Sonja Smets. Dynamic
epistemic logics of diffusion and prediction in social networks. Draftpaper, April,
2015.

[3] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 1st edition, 2002.

[4] Frank S. Boer, Alessandra Di Pierro, and Catuscia Palamidessi. Nondeterminism
and infinite computations in constraint programming. Theoretical Computer Science,
pages 37–78, 1995.

[5] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part ii). In Proceedings
of the 13th International Conference of Concurrency Theory, CONCUR 2002, pages
209–225, 2002.

[6] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part i). Information
and Computation, pages 194–235, 2003.

[7] Edmund M. Clarke and Orna Grumberg. Avoiding the state explosion problem in
temporal logic model checking. In Proceedings of the sixth annual ACM Symposium
on Principles of distributed computing, pages 294–303. ACM, 1987.

[8] Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cambridge
university press, 2nd edition, 2002.

21

[9] Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning
about knowledge. MIT press Cambridge, 4th edition, 1995.

[10] Michell Guzman, Stefan Haar, Salim Perchy, Camilo Rueda, and Frank D. Valencia.
Belief, knowledge, lies and other utterances in an algebra for space and extrusion.
Journal of Logical and Algebraic Methods in Programming, JLAMP, 86:107–133,
2017.

[11] Stefan Haar, Salim Perchy, Camilo Rueda, and Frank D. Valencia. An algebraic
view of space/belief and extrusion/utterance for concurrency/epistemic logic. In
Proceedings of the 17th ACM SIGPLAN International Symposium on Principles and
Practice of Declarative Programming, PPDP 2015, pages 161–172, 2015.

[12] Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and Frank D Valencia.
Spatial and epistemic modalities in constraint-based process calculi. In Proceedings
of the 23rd International Conference on Concurrency Theory, CONCUR 2012, pages
317–332. Springer, 2012.

[13] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer Science & Business Media, 2012.

[14] Prakash Panangaden, Vijay Saraswat, Philip J Scott, and RAG Seely. A hyper-
doctrinal view of concurrent constraint programming. In Workshop of Semantics:
Foundations and Applications, REX, pages 457–476. Springer, 1993.

[15] Salim Perchy and Frank D. Valencia. Opinions and beliefs as constraint system
operators. In Technical Communications of the 31st International Conference on
Logic Programming, ICLP 2015, 2015.

[16] Amir Pnueli and Zohar Manna. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer, 1992.

[17] Chiaki Sakama, Martin Caminada, and Andreas Herzig. A logical account of lying.
In Proceeedings of the 12th European Conference of Logics in Artificial, JELIA 2010,
pages 286–299. Springer, 2010.

[18] Vijay A Saraswat, Martin Rinard, and Prakash Panangaden. Semantic foundations of
concurrent constraint programming. In Conference Record of the Eighteenth Annual
ACM Symposium on Principles of Programming Languages, pages 333–352, 1991.

[19] Hans Van Ditmarsch, Jan Van Eijck, Floor Sietsma, and Yanjing Wang. On the logic
of lying. In Games, actions and social software, pages 41–72. Springer, 2012.

[20] Steven Vickers. Topology via logic. Cambridge University Press, 1st edition, 1996.

22

	Introduction
	Implementing Space and Extrusion in Constraint Systems
	Flat Constraint Systems
	Interface and usage
	Properties of cs

	Spatial Constraint Systems with Extrusion
	Interface and usage
	Properties of scs and scs-e

	Complexity
	c++|leq|
	c++|glb| and c++|lub|
	c++|imp|

	Boolean Algebras

	Applicability of Semantical Descriptions for Structured Information
	A Tagged Social Network
	A Time Description Language

	Conclusions and Future Work

