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Abstract

We identify simultaneously the hydraulic transmissivity and the storage coefficient in a
ground water flow governed by a linear parabolic equation. Both coefficients are assumed
to be functions which are piecewise constant in space and constant in time. Therefore
the unknowns are the coefficient values as well as the geometry of the zones where these
parameters are constant. The identification problem is formulated as the minimization of
a misfit least-square function. Using refinement indicators, we refine the parameterization
locally and iteratively. We distinguish the cases where the two parameters have the same
parameterization or different parameterizations.

keywords: Inverse problem, parameter estimation, parameterization, refinement indicators, storage coefficient, hy-
draulic transmissivity

1 Introduction

For most hydrogeological problems, such as management and protection of water resources,
it is necessary to study flow and transfer of solutes in the subsurface. The corresponding
mathematical models involve source terms, boundary and initial conditions and hydrological
coefficients. Inverse modeling in groundwater applications provides ways of estimating these
coefficients from a set of experimental measurements. This work is concerned with the presen-
tation of an algorithm for solving the inverse problem of identifying hydrological coefficients,
without using a priori information on the coefficients. The coefficients are assumed to be
piecewise constant so we have to estimate not only their values but also the zones where the
coefficients are constant. There may be one or several unknown coefficients.

Solving inverse problems in hydrogeology is well investigated [1, 2]. Some papers deal with
source terms identification problems [3, 4, 5, 6]. A larger body of litterature is concerned,
as we are in this paper, with the estimation of coefficients[7, 1, 8, 9, 10, 11, 12, 13]. Most
often the proposed methods assume some sort of smoothness of the variation of these param-
eters. Alternatively, in this work, the considered situation is that of a zonation in which the
coefficients vary smoothly inside the zones and jump heavily from one zone to the other. A
first step in the inverse problem is then to identify the zones while assuming the coefficients
to be constant in the zones, identifying actually the average values of the coefficient in each
zone. In this paper we present an algorithm to do so. A second step would be to use more
traditional methods inside each zone to take into account the variation of the coefficients
inside each zone.

The assumption that parameters are constant on zones is already considered in [14, 15]
but the set of zones (zonation) was determined by a priori information. The method proposed
in this paper consists to build the parameterization in a progressive and iterative way without
using a priori information on the parameters. The first iterative parameterization method is
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the multiscale method [16, 17]. The drawback of this method, where the parameterization
is uniformly refined during the iterations, is that it may lead to an overparameterization.
The adaptive parameterization method proposed in [18] avoids this drawback since the re-
finement is local and depends on some “refinement indicator”. This method was later used
for a scalar parameter identification in [18, 19, 20, 21]. In [22], the parameterization method
was extended to the identification of a vector parameter, the colour (Red Green Blue), in a
problem of image segmentation. In such a problem the direct problem is actually the identity
operator while in this paper it is a partial differential equation.

In this work, the adaptive parameterization method is guided by refinement indicators to
identify simultaneously the storage coefficient and the hydraulic transmissivity in a confined
aquifer which are both unknown. The two coefficients are assumed to be functions constant
in time and since they are piecewise constant in space they present discontinuities at the
interfaces between different geological zones where they are supposed to be constant. The
unknowns of our inverse problem are the zonation and the values of the parameters in the
zones. Different strategies are developed to deal with the cases where the two parameters have
the same zonation or different zonations. The developed strategies can be used to identify
more then two parameters.

Our inverse problem is formulated as a minimization problem of a least-squares function
defined as a misfit between measurements and the corresponding quantities computed with
“current” parameters. In order to ease the minimization procedure it is important to keep
the number of unknowns in the minimization problem as small as possible. The data are
measurements of the piezometric head in a confined aquifer which is the solution of a linear
parabolic equation governing the flow.

The idea of the adaptive parameterization method is to refine a current parameterization
according to refinement indicators. A refinement indicator indicates the effect on the optimal
data misfit of adding some degree of freedom. The unknown parameterization is estimated,
through an iterative process, by refining the scale at which the parameter distribution is
described and the process is stopped when the refinement of the scale does not induce a
significant decrease of the misfit function. An advantage of this method is to avoid overpa-
rameterization. At a given refinement level the parameter is estimated by minimizing the
least-squares misfit function. Then refinement indicators are calculated and used to choose
the next refinement level.

This paper is organized as follows. After the introduction in section 1, in section 2 the
direct problem is introduced and the inverse problems is set as a minimization problem of
a misfit function. Then the adjoint method for computing the gradient of that function is
described. In section 3 the algorithm of adaptive parameterization is presented and different
strategies are developed in order to construct parameterizations. Finally, in the fourth sec-
tion several numerical experiments are presented corresponding to different versions of the
parameterization algorithm for cases when the two parameters have the same zonation or as
well as when they have two different zonations. The paper ends with concluding remarks.
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2 Problem setting

Consider the following equations modeling groundwater flow in an isotropic and confined
aquifer:

S
∂Φ

∂t
− div(T∇Φ) = Q in Ω× (0, tf )

Φ = 0 on ΓD × (0, tf )
(−T∇Φ) · n = 0 on ΓN × (0, tf )
Φ(0) = Φ0 in Ω

(2.1)

where Ω is a bounded connected domain of R2, the time variable t belongs to the interval
(0, tf ), S is the storage coefficient and T is the hydraulic transmissivity, Φ is the piezometric
head and Q is a distributed source terms. n is the outer normal to Ω, ΓD and ΓN are a
partition of the boundary of Ω denoting respectively Dirichlet and Neumann conditions.

Equations (2.1) correspond to the direct problem where the unknown is Φ, all other
variables, in particular, S and T , are known. We are interested in the inverse problem,
where S and T are unknown and measurements of Φ are available. This inverse problem is
formulated as a minimization problem of a least-square function J(S, T ), defined as a misfit
between measurements of the piezometric head and the piezometric head computed with
current parameters S and T :

J(S, T ) =
1

2

Nt∑
i=1

m∑
j=1

(Φ(ti,Mj ;S, T )− dobsij )2 (2.2)

where dobsij is the piezometric head measured at time ti and at pointMj(xj , yj) and Φ(ti,Mj ;S, T )
is the model output for the current coefficients S and T at the same time and the same point.
Estimating the hydraulic transmissivity T and the storage coefficient S amounts to solving

Find(S∗, T ∗) = arg
(S,T )∈Uad

min J(S, T ) (2.3)

where Uad = {(S, T ) : Smin ≤ S ≤ Smax , Tmin ≤ T ≤ Tmax} is the set of admissible
parameters.

Gradient methods are efficient methods for minimizing J . A crucial step in the minimiza-
tion process is the computation of the gradient of the function J with respect to S and T .
The adjoint method [23, 24, 1] provides an efficient way to compute this gradient and we
present it here briefly. The weak formulation of the direct problem 2.1 is

Find Φ ∈ L2(0, tf ;H1
0 (Ω)) ∩ C0(0, tf ;L2(Ω)) as∫

Ω
S∂tΦv +

∫
Ω
T∇Φ∇v =

∫
Ω
Qv ∀v ∈ H1

0 (Ω)

Φ|t=0 = Φ0

(2.4)

where L2(0, tf ;H1
0 (Ω)) is the space of square-integrable functions on (0, tf ) with values in

H1
0 (Ω) and C0(0, tf ;L2(Ω)) is the space of continuous functions on (0, tf ) with values in

L2(Ω).
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To minimize J under the constraint (2.1) we introduce the Lagrangien L:

L(S, T ; Φ,Φ∗) = J(S, T )+

∫ tf

0

∫
Ω
S∂tΦΦ∗dt+

∫ tf

0

∫
Ω
T∇Φ∇Φ∗dt

−
∫ tf

0

∫
Ω
QΦ∗dt. (2.5)

Note that if Φ(S, T ) satisfies (2.4) then Equation (2.5) becomes

L(S, T ; Φ,Φ∗) = J(S, T ) ∀Φ∗ ∈ H1
0 (Ω). (2.6)

From Equation (2.6) it follows

∂J

∂T
δT +

∂J

∂S
δS =

∂L
∂Φ

δΦ +
∂L
∂Φ∗

δΦ∗ +
∂L
∂T

δT +
∂L
∂S

δS. (2.7)

We choose Φ∗ ∈ H1
0 (Ω) such that

∂L
∂Φ

(Φ(S, T ),Φ∗;S, T )δΦ = 0 ∀δΦ ∈ H1
0 (Ω). (2.8)

This choice leads to a simplification of Equation (2.7). Φ∗ is the adjoint state and Equation
(2.8) is the adjoint equation which we can rewrite as

−S∂Φ∗

∂t
− div(T∇Φ∗) =

Nt∑
i=1

m∑
j=1

(Φ(ti,Mj ;S, T )− dobsij )δ(t− ti)δ(x− xj)

in Ω× (0, tf ),
Φ∗ = 0, on ΓD × (0, tf ),
(−T∇Φ∗) · n = 0, on ΓN × (0, tf ),
Φ∗(tf ) = 0, in Ω

(2.9)

where δ(.) is the Dirac δ-function.
Taking into account Equations (2.7), (2.8) the gradient of J can be written as

∂J

∂T
δT +

∂J

∂S
δS =

∂L(S, T ; Φ,Φ∗)

∂T
δT +

∂L(S, T ; Φ,Φ∗)

∂S
(H, p;S, T )δS

=

∫ tf

0

∫
Ω
δT∇Φ∇Φ∗ dΩdt+

∫ tf

0

∫
Ω
δS
∂Φ

∂t
Φ∗ dΩdt.

(2.10)

It follows that

∂J

∂T
=

∫ tf

0

∫
Ω
∇Φ∇Φ∗dΩdt,

∂J

∂S
=

∫ tf

0

∫
Ω

∂Φ

∂t
Φ∗dΩdt. (2.11)

Equations (2.1) and (2.9) are discretized using the finite element method in space. For
the numerical resolution of the direct equations (2.1) and the adjoint equations (2.9), the
software SUTRA [25] was used. The minimization of the misfit function J is obtained by
the code N2QN1 [26]. This optimizer implements a quasi-Newton (BFGS) method with line
search.
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3 Parameterization

The choice of a parameterization is a crucial point in for a successful parameter estimation.
As we chose piecewise constant representation of the coefficients, for each coefficient and at
each iteration we build a zonation which is a partition of the domain into zones where the
coefficient is constant. Then the value of the coefficient in each zone is calculated. The
proposed method will produce an optimal parameterization, in the sense that it minimizes
the number of zones, and consequently the number of unknowns necessary to explain the
available data. The zonations can be viewed as discretization grids for the coefficients. If we
had used the computational mesh for the coefficient discretization, the inverse problem would
have a very large number of unknowns resulting in an optimization problem of very large
dimension. There would not be any balance between the amount of data and the number of
unknowns and we would not be able to obtain meaningful results.

The idea of adaptive parameterization method is to refine the zonation iteratively by
adding at each iteration only one degree of freedom obtained by dividing one zone of the
current zonation into two zones The choice of the zone to be refined and the choice of the
refining cut are given by the refinement indicators. The new zone is added where the refine-
ment indicators indicate that it should induce a significant decrease of the misfit function.
So the refinement of the parametrization is not arbitrary and not uniform. In this work we
suppose that interfaces between zones are carried by the edges of the computational mesh.
The refining cuts are thus carried by the edges of mesh cells and belong to a predefined set
of curves.

Figure 3.1: Parametrization (colored zones) and computation mesh (fine grid).

3.1 Refinement indicators

In this section, following [18], we recall what is a refinement indicator and how it allows to
select the refinement which is likely to induce the largest decrease of the misfit function. Let
us consider an example where the initial zonation includes only one rectangular zone Z0 (see
figure 3.2) and we will proceed to its refinement by cutting it into two rectangular zones Z1,1

and Z1,2.
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Z0

Figure 3.2: Initial zonation (on the left) and computing mesh (on the right)

Let us suppose that the vectorial parameter is constant in the hole domain Ω = Z0, and

denote by m0 this parameter. In our case m0 =

(
S0

T0

)
, where T0 is the hydraulic transmis-

sivity and S0 is the the storage coefficient. The optimization problem (2.3) corresponding to
this one-zone parameterization Z0 is

mopt
0 = arg min

m0∈Uad

JZ0(m0). (3.1)

Now the goal is to refine the zonation into a zonation with two zones with the aim to decrease
the misfit function. Each component S and T of the vectorial parameter m may have its own
zonation: ZS1, ZT1. Let us divide Z0 into two rectangular zones ZS1,1 et ZS1,2 for the compo-
nent S and two others ZT1,1 et ZT1,2 for the component T , Z0 = ZS1,1∪ZS1,2 = ZT1,1∪ZT1,2.
New zones are separated by the cuts CS1 and CT1. The new zonations are ZS1 = {ZS1,i}i=1,2

and ZT1 = {ZT1,i}i=1,2. Denote by Z1 = {ZS1,ZT1}. The unknown of the optimization
problem (2.3) corresponding to the refined zonation is m1 = (S1,1, S1,2, T1,1, T1,2)t. Denote by

C1

Z1,1 Z1,2

Figure 3.3: Left: a two-zone zonation ZS1 for the coefficient. Right: computational mesh for
solving the direct and adjoint problems. The vertical cut C1 is marked with a bold line.

c =

(
cS
cT

)
the discontinuities of S and T respectively across CS1 and CT1 :

cS = S1,1 − S1,2, cT = T1,1 − T1,2.

Introducing the matrix A =

(
1 −1 0 0
0 0 1 −1

)
and assuming that c is known the estimation

of m1 comes to solve an optimization problem under the constraint Am1 = c

mopt
1 = arg min

Am1=c
JZ1(m1) (3.2)
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where JZ1 is the misfit function corresponding to the new zonation Z1. Note that the min-
imisation problem (3.1) is equivalent to (3.2) when c = 0.

To the minimization under constraint problem (3.2) let us associate the Lagrangian func-
tion

LZ1(m1, λ) = JZ1(m1) +
〈
λZ1 , Am1 − c

〉
(3.3)

where λZ1 =

(
λS,Z1

λT,Z1

)
is the Lagrange mutiplier associeted to the contraint Am1 = c. The

optimality conditions associated to (3.2) are then :

∂LZ1(mopt
1 , λoptZ1

)

∂m1
= ∇JZ1(mopt

1 ) +AtλoptZ1
= 0,

∂LZ1(mopt
1 , λoptZ1

)

∂λ
= Amopt

1 − λoptZ1
= 0.

(3.4)

Taking into account the optimality conditions (3.4) and deriving the Lagrangian function LZ1

with respect to c, we obtain

∂LZ1(mopt
1 , λoptZ1

)

∂c

∣∣∣
c=0

=
∂LZ1(mopt

1 , λoptZ1
)

∂m1

∣∣∣
c=0

∂m1

∂c
+
∂LZ1(mopt

1 , λoptZ1
)

∂λ

∣∣∣
c=0

∂λ

∂c
= 0

Using (3.3) it follows that

∂LZ1(mopt
1 , λoptZ1

)

∂c

∣∣∣
c=0

= ∇cJZ1(mopt
1 )
∣∣∣
c=0
− λoptZ1

= 0,

and
λoptZ1

= ∇cJZ1(mopt
1 )
∣∣∣
c=0

. (3.5)

The Taylor expansion of JZ1 as a function of the discontinuity c in a neighborhood of c = 0 is

JZ1(mopt
1 )
∣∣∣
c

= JZ1(mopt
1 )
∣∣∣
c=0

+
〈
c,∇cJZ1(mopt

1 )
∣∣∣
c=0

〉
+ o(||c||).

Since JZ1(mopt
1 )
∣∣∣
c=0

= J0(mopt
0 ) we conclude that

〈
c,∇cJZ1(mopt

1 )
∣∣∣
c=0

〉
=
〈
c, λoptZ1

〉
models

at a first order the variation between JZ1(mopt
1 ) and JZ0(mopt

0 ) in a neighborhood of c = 0.
Without solving the optimization problem (3.2) computing λoptZ1

allows to conclude if the
zonation refinement induced by the cuts CS1 and CT1 would produce a significant decrease
of the misfit function or not.

The components of λoptZ1
give two refinement indicators IZ1

S , IZ1
T corresponding respectively to

the cuts CS1 and CT1 inducing the zonation Z1.
Note that the refinement indicator is calculated with the gradient of JZ1 with respect to the
values of the coefficients in the zones. This gradient can be easily calculated from “the fine
gradient” computed on the computing mesh:

∂JZ1

∂S1,i
(mopt

1 ) =
∑

K⊂ZS1,i

∂JZ1

∂SK
(mopt

1 ),
∂JZ1

∂T1,i
(mopt

1 ) =
∑

K⊂ZT1,i

∂JZ1

∂TK
(mopt

1 ), i = 1, 2 (3.6)

where K denotes a cell of the computing mesh. Thus using the adjoint method (see Section
2) is crucial for an efficient computation of the gradient and of the refinement indicators.

In this work, to refine a zone by dividing it into two zones, only vertical and horizontal
cuts carried by the computational mesh edges are used (other cuts are possible, see [18]).

7



3.2 Algorithm

We are adapting an algorithm initially proposed in [18] for the estimation of a scalar param-
eter in porous media and extended in [22] to image segmentation with a vector parameter
whose components are the three colors Red,Green,Blue. In image segmentation the di-
rect problem is just the identity model, while for the hydrogeological problem, the model is
given by (2.1) which require the solution of a PDE. Therefore the application of the adaptive
parameterization algorithm is more complex.

We choose an initial zonation Z0 = Ω. A step of the algorithm is as follows:

1. Given a zonation Zk−1 = (ZS,k−1,ZT,k−1) with k zones for each parameter, minimize
JZk−1

to obtain an optimal parameter mopt
k .

2. Build a new zonation Z̃k = (Z̃S,k, Z̃T,k) with k + 1 zones for each parameter, by intro-
ducing a cut dividing a zone into two zones following four steps:

(a) Consider Cad the set of cuts C giving a possible zonation Z̃Ck having k + 1 zones
for each parameter obtained by dividing into two zones only one zone in ZS,k−1

and only one zone in ZT,k−1.

(b) For each C ∈ Cad we compute λopt
Z̃C

k

= (λopt
S,Z̃C

k

, λopt
T,Z̃C

k

) using (3.5), (3.6).

(c) For each zone Z̃Ck , C ∈ Cad, compute a refinement indicator ĨCk from vectors λopt
Z̃C

k

according to a choosen strategy proposed in the following Section 3.3.

(d) Select a set of zonations Z̃Ck , C ∈ Ck ⊂ Cad corresponding to the largest values of

ĨCk and for each of these zonations minimize JZ̃k
.

3. Update the zonation by taking fo each Zk the zonation Z̃Ck which produces the largest
decrease of the misfit function.

The stopping criteria for the algorithm are:

• The value of the misfit function is close to zero.

• The misfit function stops decreasing during a number of iterations.

• The values of the refinement indicators are small.

• The norm of the gradient of the misfit function is small.

3.3 Strategies for the computation of the refinement indicators

In this section, inspired by [22], we develop different strategies for the computation of refine-
ment indicators ĨCk from the Lagrange mutiplier λopt

Z̃C
k

computed in (3.6).

3.3.1 Strategy 1: Euclidean norm for refinement indicators

In this strategy we assume that the two coefficients S and T have the same zonation, we
define the refinement indicators by

ĨCk =

√(
λopt
S,Z̃C

k

)2
+
(
λopt
T,Z̃C

k

)2
.
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Since the refinement indicator is a scalar the adaptive parametrization algorithm can be
applied as in the scalar case described in [18]. At each iteration we perform the following
steps:

1. Compute Imaxk = max
C∈Cad

ĨCk .

2. Introduce the subset of cuts Cadδ = {C ∈ Cad : ĨCk ≥ δ ∗ Imaxk } to 0.5 ≤ δ ≤ 1.

3. Minimize the misfit function for each partition corresponding to a cut C ∈ Cadδ .

4. Keep only the cut C∗ which induces the largest decrease of the misfit function.

This strategy is efficient if both parameters S and T have the same zonation.

3.3.2 Strategy 2: Best cut for all parameters

In this strategy the algorithm is guided by two refinement indicators, one for each coefficient
S and T . Two sets of possible cuts are selected according to the two indicators. During an
iteration, a temporary selection is made with respect to only one of the two parameters. At
the end of the iteration the same cut is applied to both parameters. It is chosen according to
the criterion of “best decrease” of the misfit function. At each iteration the first steps are as
follows:

1. Compute the refinement indicators: ImaxS,k = max
C∈CadS

λopt
S,Z̃C

k

, ImaxT,k = max
C∈CadT

λopt
T,Z̃C

k

.

2. Introduce the subset of cuts CadSδ = {C ∈ CadS : ĨCS,k ≥ δ ∗ ImaxS,k } to 0.5 ≤ δ ≤ 1.

3. Introduce the subset of cuts CadTδ = {C ∈ CadT : ĨCT,k ≥ δ ∗ ImaxT,k } to 0.5 ≤ δ ≤ 1.

4. Minimize the misfit function freezing the zonation for T at ZT,k−1 and using as zonation

for S, the zonations Z̃CS,k where C ∈ CadS . Keep only the cut C∗S that maximizes the
decrease of the misfit function.

5. Minimize the misfit function by freezing the zonation for S at ZS,k−1 and using as

zonation for T , the zonations Z̃CT,k where C ∈ CadT . Keep only the cut C∗T that maximizes
the decrease of the misfit function.

Then, after obtaining a cut for each parameter, we apply the following steps:

1. Minimize the misfit function with the zonation obtained by applying the cut C∗S for
both parameters S and T .

2. Minimize the misfit function with the zonation obtained by applying the cut C∗T for
both parameters S and T .

3. Keep for the two parameters the cut C∗ = C∗S or C∗T which induces the largest decrease
of the misfit function.

Thus, going from one iteration to the next, we introduce the same cut for S and T .
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3.3.3 Strategy 3: Best cut for each parameter

In this strategy, parameters S and T are treated independently. The choice of this strategy
is justified by the case where the geological zones for the storage coefficient and the transmis-
sivity are different. The zonations are constructed by applying steps (1), (2) and (3) of the
previous subsection followed by:

(4) Minimize the misfit function by freezing the zonation for T at ZT,k−1 and use as

zonation for S, the zonation Z̃CS,k for C ∈ CadS . Keep only the cut C∗S that maximizes the
decrease of the misfit function.

(5) Minimize the misfit function by freezing the zonation for S at ZS,k−1 and use as zonation

for T , the zonation Z̃CT,k for C ∈ CadT . Keep only the cut C∗T that maximizes the decrease of
the misfit function.

(6) The new zonation is Zk = (Z̃C
∗
S

S,k, Z̃
C∗

T
T,k).

4 Numerical experiments

Consider as an example the aquifer of Rocky Mountain Arsenal, Denver, Colorado in USA
[25] represented in Figure 4.1. This aquifer is horizontal and rectangular. The computational

Figure 4.1: Geometry of the Rocky Mountain aquifer.

domain is discretized with a mesh of 320 square elements and 357 nodes, while the time interval
is 10 days and a time step is 2 days. The thickness of the aquifer is equal to 40ft. In this
aquifer, there are four wells, three pumping wells with a constant rate Qout = −0.2ft−3/s
and an injection well with a constant rate QIN = 10ft−3/s (see Figure 4.1). The lateral
boundaries are impermeable. On the top boundary, the piezometric head is set constant and
equal to 250.0ft. On the bottom boundary, the piezometric head is varying linearly from left
to right from 17.5ft to 57, 5ft. The exact hydraulic transmissivity and storage coefficient
are constant in the whole aquifer with values T = 2.5 10−4m/s, S = 6.00 10−7, except in
inclusions where their values are T = 2.5 10−6m/s, S = 9.95 10−7.

In the following two situations are considered. In the first situation the two exact coef-
ficients are those described in the Rocky Mountain Arsenal aquifer and they share the same
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zonation with two inclusions as shown in Figure 4.2. In a second situation we constructed
a model where each coefficient has its own inclusion as in Figure 4.3, their respective values
being the same as in the first situation. The mesh represented in Figures 4.2, Figure 4.3 is
that of the numerical discretization of the computational domain.

Figure 4.2: Exact coefficients S (left) and T (right) with the same zonation.

Figure 4.3: Exact coefficients S (left) and T (right) with different zonations.

In a first series of experiments the data are measurements of the piezometric head at each
node of the computing mesh and at each time step. In a second series of experiments the
number of measurements will be reduced. These measurements will be the observations of
the numerical solution calculated with the exact coefficients.

Figure 4.4 shows the piezometric head computed with the exact coefficients which is used
as data dobs. We observe two depressions corresponding to the two inclusions with very
low permeability compared to the surrounding domain and we notice a peak located at the
injection well.

The purpose of this section is to compare the performances of the three different strategies
presented in section 3.3 for computing the refinement indicators. In all experiments the initial
guess for the coefficients is a constant throughout the whole domain.

4.1 Experiments using the euclidean norm for refinement indicators (strat-
egy 1)

In Test 1 the exact coefficients S and T have the same zonation as in Figure 4.2.
To identify the zonation of the coefficients S and T and their values in each zone, we use the

algorithm described in section 3.2 with strategy 1, where the refinement indicator is defined
as the euclidean norm of the vector indicator I = (IS , IT ). In the initial parameterization
the two coefficients S and T are constant in the whole domain and their initial values are
(S0, T0) = (6.00 10−7, 2.5 10−4). Applying strategy 1 the zonation is the same for both
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Initial time After 6 days Final time

Figure 4.4: Test 1: piezometric head at 3 times calculated with the coefficients shown in
Figure 4.2.

Figure 4.5: Test 1: optimal values of S (left) and T (right) after the first minimization.

coefficients at all iterations. Going from one iteration to the next, the current zonation for
the two coefficients is refined by introducing one cut corresponding to the largest decrease of
the misfit function.

Figure 4.6 shows the evolution of the coefficient values during the iterations of the algo-
rithm. It should be noted that colors correspond to coefficient values and do not represent
the zones. If a coefficient has the same value in two different adjacent zones these zones have
the same color but a change of color corresponds to a change of zone.

We remark that in the third iteration edges limiting a large zone sourrounding the two
inclusions that we are looking for are already identified. At the 9th iteration, both sought
inclusions start to appear and they are identified at iteration 14. The exact parameter values
are obtained at the 16th iteration. Note that the exact T is obtained faster than the storage
coefficient. This behavior will be observed in all experiments and is due to a smaller sensitivity
of the system to S than to T . Figure 4.7 shows the final zonation with 16 zones and the
variation of the normalized misfit function during the iterations.

In Test 2 the same strategy is applied to a case where the exact coefficients have the same
values as in Test 1 but with different zonations as in Figure 4.3. Figure 4.8 shows the values
of the coefficients obtained during the iterations.
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Iteration 3 Iteration 9 Iteration 13 Iteration 14

Figure 4.6: Test 1: coefficients S (top row) and T (bottom row) computed during the iterations
with strategy 1, when exact S and T have the same zonation.

Figure 4.7: Test 1: strategy 1 when exact S and T have the same zonation. Final zonation
for S and T and variation of the misfit function during the iterations with strategy 1.

Iteration 3 Iteration 14 Iteration 17 Iteration 21

Figure 4.8: Test 2: coefficients S (top row) and T (bottom row) computed during the iterations
with strategy 1, when exact S and T have different zonations.
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The algorithm identifies T at iteration 17, but then fails to identify S. Figure 4.9 shows the
final zonation for the two coefficients after 20 iterations and the variation of the normalized
misfit function during the iterations.

Figure 4.9: Test 2: strategy 1 when exact S and T have different zonations. Zonation after
21 iterations (left) and variation of the misfit function during the iterations (right).

4.2 Experiments using the best cut for the two coefficients (strategy 2)

Strategy 2 is now applied using the same data as in Tests 1 and 2: going from one iteration
to the next, we add the same cut for both coefficients corresponding to the largest decrease
of the misfit function. Again strategy 2 calculates the same zonation for both coefficients.

Test 3 corresponds to the case where the two exact coefficients have the same zonation
(Figure 4.2) and Test 4 corresponds to the case where the two exact coefficients have different
zonations (Figure 4.3). Initialization is the same as before.

Figure 4.10 gives the evolution of the computed coefficients during the iterations. It took
24 iterations to obtain the exact coefficients, a few more iterations than in Test 1. Again T
was identified first. Figure 4.11 shows the final zonation obtained after 24 iterations and the
variation of the normalized misfit function during the iterations.

Iteration 5 Iteration 13 Iteration 20 Iteration 24

Figure 4.10: Test 3: coefficients S (top row) and T (bottom row) computed at iteration 24
using strategy 2, when exact S and T have the same zonation.
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Figure 4.11: Test 3: zonation after 24 iterations for the two coefficients and variation of the
misfit function during the iterations.

Strategy 2 is now applied to the case where the two coefficients have different zonations.
The algorithm is initialized as before. Figure 4.12 shows the variation of the computed
coefficients during the iterations. At iteration 10 the zonation and the exact values of the
hydraulic transmissivity are identified. For the storage coefficient, more iterations are needed
to find its zonation and its values. This is due to the weak sensitivity of the system to this
coefficient.

Iteration 4 Iteration 10 Iteration 18 Iteration 29

Figure 4.12: Test 4: coefficients S (top row) and T (bottom row) computed during the
iterations using strategy 2, when exact S and T have different zonations.

Figure 4.13 shows the zonation for the two calculated coefficients and the variation of the
normalized misfit function during the iterations.
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Figure 4.13: Test 4: strategy 2 when the two exact coefficients have different zonations.
Zonation for S and T after 29 iterations (left) and variation of the misfit function during the
iterations (right).

4.3 Experiments using the best cut for each parameter (strategy 3)

The main feature of this strategy is that during the algorithm iterations the two coefficients
are treated independently. Each coefficient has its own zonation constructed with its own
refinement indicator as described in section 3.3.3. For the case where the two coefficients
have the same zonation Figure 4.14 shows the variation of the computed coefficients during
the iterations. The algorithm identifies T after 24 iterations but fails to identify S.

Iteration 3 Iteration 8 Iteration 19 Iteration 25

Figure 4.14: Test 5: coefficients S (top row) and T (bottom row) computed during the
iterations using strategy 3, when exact S and T have the same zonation.

Figure 4.15 shows zonations for S and T after 28 iterations and the variation of the
normalized misfit function during the iterations.
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Figure 4.15: Test 5: strategy 3 when the two exact coefficients have the same zonation.
Zonations for S and T after 28 iterations (left and center) and variation of the misfit function
during the iterations (right).

Strategy 3 is now applied to the case where the exact coefficients have different zonations
(see Figure 4.3). As before, the algorithm is initialized with a single zone for each coefficient.

Figure 4.16 shows the variation of the computed coefficients during the iterations. Figure
4.14 shows the variation of the computed coefficients during the iterations. Figure 4.17 shows
zonations for S and T after 12 iterations and the variation of the normalized misfit function
during the iterations. The algorithm identifies S and T after 12 iterations.

Iteration 6 Iteration 8 Iteration 11 Iteration 12

Figure 4.16: Test 6: coefficients S (top row) and T (bottom row) computed during the
iterations using strategy 3, when exact S and T have different zonations.

4.4 Summary of results

Results for convergence for different strategies and different exact zonations are summarized
in Table 1. They show that strategy 1 works well when both exact coefficients have the
same zonation while strategy 3 works well when the two coefficients have different zonations.
Strategy 2 works well in both cases.
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Figure 4.17: Test 6: strategy 3 when the two exact coefficients have different zonations.
Zonations for S and T after 12 iterations (left and center) and variation of the misfit function
during the iterations (right).

Strategy 1 Strategy 2 Strategy 3
S T S T S T

Same exact zonation for S and T 16 14 24 20 fails 25

Different exact zonations for S and T fails 21 29 10 12 12

Table 1: Number of iterations for convergence of S and T for different strategies and different
exact zonations.

In all cases the smaller sensitivity of the system to S than to T is observed by the higher
number of iterations for convergence for S than for T , and even in some instances the failure
to converge for S while the algorithm was converging for T .

4.5 Influence of the number of measurements

The number of measurements is now decreased. Considering the two cases where the pa-
rameters have the same or different zonations, for each case the more efficient strategy is
applied, that is strategy 1 for the first case and strategy 3 for the second case. For each of
these cases three tests are investigated corresponding to different locations of the observation
points shown in Figure 4.18: in a first test there is one observation point out of 2 cells, in a
second test there is one observation point out of four cells and in the third test there is 17
observation points distributed randomly. The time sampling of data is not changed. In order
to evaluate the fit to the data achieved by the algorithm with different number of observation
points, we introduce the percentage of explained data

1−

√√√√√√√√
∑
i,j

|Φ(ti,Mj ;S, T )− dobsij |2∑
i,j

|dobsij |2
.

Case of strategy 1 with exact coefficients having the same zonation (Fig. 4.2)
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Figure 4.18: Points of observations: every other point (left), one point out of four(middle),
random (right). The inclusions are colored in blue.

Three tests are performed by changing the number of measurement points and the location
of these points. Test 7 uses one observation point out of 2 cells (Figure 4.18 left), Test 8 uses
one observation point out of 4 cells (Figure 4.18 middle) and Test 9 uses the a random
distribution of observation points (Figure 4.18 right). The results obtained for these two
experiments are summarized in Table 2. Figure 4.19 and Figure 4.20 show only for Tests 8
and 9 the values of the obtained coefficients and the decrease of the misfit function during
the iterations. The corresponding figures are not shown for Test 7 since the coefficients were
recovered almost exactly.
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Figure 4.19: Test 8: strategy 1, when exact S and T have the same zonation. Coefficients S
(left) and T (center) computed after 24 iterations and variation of the misfit function (right).
Observation points as in Figure 4.18 middle.
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Figure 4.20: Test 9: strategy 1, when exact S and T have the same zonation. Coefficients S
(left) and T (center) computed after 26 iterations and variation of the misfit function (right).
Observation points as in Figure 4.18 right.

One can observe that the algorithm did well at identifying the zonation shared by S and
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Observation points 1 out of 2 vertices 1 out of 4 vertices random

Final # of iterations 24 26 28

Final # of zones 24 26 28

Jopt 9.31 10−6 1.37 10−4 9.045 10−5

% of explained data 0.99 0.96 0.94

Table 2: Results with a reduced number of measurements, strategy 1 and case of exact
coefficients with the same zonation

T , even with a small number of observation points.

Case of strategy 3 with exact coefficients having different zonations (Fig. 4.3)

The experiments performed previously with strategy 1 when the coefficients share the
same zonation are now run again with strategy 3 when the zonations for each coefficient are
different. Test 10 uses one observation point out of 2 cells (Figure 4.18 left), Test 11 uses
one observation point out of 4 cells (Figure 4.18 middle) and Test 12 uses the a random
distribution of observation points (Figure 4.18 right). Figures 4.21 and 4.22 show for Tests 11
and 12 the values of the obtained coefficients and the decrease of the misfit function during
the iterations. Results are summarized in Table 3. In Figures 4.21 and 4.22 one can observe
that the dark brown color for the inclusion for S and the dark blue color for the inclusion for T
are clearly isolated which show that the algorithm identified the zonations of each coefficient,
even with a small number of observation points.
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Figure 4.21: Test 11: strategy 3, when exact S and T have different zonations. Coefficients S
(left) and T (center) computed after 18 iterations and variation of the misfit function (right).
Observation points as in Figure 4.18 middle.

Observation points 1 out of 2 vertices 1 out of 4 vertices random

Final # of iterations 14 18 20

Final # of zones 14 18 20

Jopt 7.13 10−4 9.54 10−3 2.94 10−5

% of explained data 0.97 0.94 0.93

Table 3: Results with a reduced number of measurements, strategy 3 when exact S and T
have different zonations.
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Figure 4.22: Test 12: strategy 3, when exact S and T have different zonations. Coefficients S
(left) and T (center) computed after 20 iterations and variation of the misfit function (right).
Observation points as in Figure 4.18 right.
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