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Fig. 1. A scene that is challenging to render for traditional Monte Carlo methods: the Sponza Palace atrium projected into a box through a pinhole. The area
of the pinhole is only 0.01 percent of the face of the pinhole camera. Using our language we designed a specialized tridirectional path tracing algorithm
that generates a light path segment passing through the pinhole. The image shows an equal sample comparison between bidirectional path tracing and our
tridirectional path tracing. See Section 7.4 for more details.

Implementing Monte Carlo integration requires signi�cant domain exper-
tise. While simple samplers, such as unidirectional path tracing, are relatively
forgiving, more complex algorithms, such as bidirectional path tracing or
Metropolis methods, are notoriously di�cult to implement correctly. We pro-
pose Aether, an embedded domain speci�c language for Monte Carlo integra-
tion, which o�ers primitives for writing concise and correct-by-construction
sampling and probability code. The user is tasked with writing sampling
code, while our compiler automatically generates the code necessary for
evaluating PDFs as well as the book keeping and combination of multiple
sampling strategies. Our language focuses on ease of implementation for
rapid exploration, at the cost of run time performance. We demonstrate
the e�ectiveness of the language by implementing several challenging ren-
dering algorithms as well as a new algorithm, which would otherwise be
prohibitively di�cult.

CCS Concepts: • Computing methodologies→ Rendering; • Software
and its engineering→ Domain speci�c languages;
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1 INTRODUCTION
Probabilistic integration techniques used in lighting simulation
shine by their combination of elegance and e�ciency. The pseu-
docode for an algorithm like bidirectional path tracing with multiple
importance sampling �ts in a small �gure and reveals at once its
power and sophistication. Unfortunately, while the implementa-
tion of a simple path tracer is relatively straightforward, achieving
a correct implementation of more advanced algorithms, such as
bidirectional path tracing or Metropolis light transport, is a major
undertaking prone to subtle probability bugs that are extremely chal-
lenging to chase down. This is obvious from the very small number
of available implementations, and even the widely used pbrt [Pharr
and Humphreys 2010] did not include full bidirectional path tracing
with multiple importance sampling until ten years after the �rst
release, and a publicly available implementation of Metropolis light
transport [Veach and Guibas 1997] did not appear until a decade
after the original paper [Jakob 2010].
A major implementation di�culty lies with correct handling of

probabilities, both in terms of mathematical correctness and book-
keeping, by which we mean the care required for drawing samples
and combining estimates from several di�erent, complex samplers,
which are, in addition, often de�ned on di�erent parameterizations
(measures). In particular, algorithms such as multiple importance
sampling and Metropolis require the computation of not only the
probability of a sample with respect to the strategy that generated
it, but also with respect to other strategies. This means that simply
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keeping track of probabilities as we generate a sample is not su�-
cient. In addition to the challenge of deriving correct PDF formulas
for the sampling of continuous variables, algorithms that assemble
sub-paths also need to carefully track and account for the many
di�erent combinatorial ways to generate the same path.

For concreteness, the interested reader can compare and contrast
the implementations of path tracing and bidirectional path tracing
in either the publicly available Mitsuba or pbrt-v3 renderers. It is
readily apparent that the move from path tracing to bidirectional
path tracing necessitates large changes in software architecture,
including the data structures used for holding path data, as well as a
signi�cant increase in code complexity stemming from computation
of multiple importance sampling weights. Now imagine experiment-
ing with new sampling ideas, such as a tridirectional approach that
would trace sub-paths from not only the eye and the light source,
but also from a known important opening such as a keyhole or a
pinhole. This would require the proper probability computation and
book keeping for many di�erent subpath generation strategies, a
daunting task with current pen-and-paper approaches.
To address these di�culties, we propose Aether, a new domain

speci�c language that dramatically simpli�es the implementation
of unbiased Monte Carlo integration. Our central goal is to relieve
the programmer of the tasks of deriving and implementing proba-
bility density functions, performing explicit measure conversions,
and dealing with the book keeping and combinatorics of di�erent
sampling strategies. Importantly, we need to facilitate complex sam-
plers that are able to evaluate their PDFs at arbitrary sample points
that may have been sampled through other samplers, as required
by, for instance, multiple importance sampling or Metropolis. In
our language, the programmer writes only sampling code, and the
language automatically generates the necessary density code by
computing symbolic derivatives and function inverses at compile
time. This ensures consistency between a given sample and its den-
sity, and eliminates the need for explicit measure conversions. The
language also generates the book keeping and sample combination
code to deal with multiple samples. Finally, it can compute condi-
tional probabilities, as required by Metropolis-Hastings algorithms.
The resulting code is compact and correct by construction, making
it easier to focus on higher-level algorithmic and mathematical de-
sign. Our focus is on correctness and not speed. While the resulting
generated code is currently below hand optimized implementations,
the language facilitates the implemention of algorithms that can be
di�cult to achieve with existings renderers. Our succinct implemen-
tations of gradient-domain path tracing and the novel tridirectional
path tracing demonstrate the potential of our language.
We plan to make the language publicly available at

https://github.com/aekul/aether.

2 PRIOR WORK
Rendering Systems. pbrt [Pharr and Humphreys 2010] and Mit-

suba [Jakob 2010] are two well known physically based rendering
systems widely used by the research community as testbeds for
developing and verifying new algorithms. While they both include
sampling functionality, neither supports a simple, robust way to
write new code. They both require manual derivations of density
functions, and place the burden on the programmer to keep track

of the samples, their measures, and how they are to be combined.
In particular, both pbrt and Mitsuba keep a record of density values
together with their associated samples. This approach is error prone,
particularly for inexperienced users, because it does not inform the
user of which sampling strategy the density values were obtained
from. They both also feature tight coupling of sampling code, den-
sity code, and the code for computing the integrand and estimate.
This makes it di�cult to reuse existing code and extend the systems
with implementations of new algorithms.

Probabilistic Programming Languages. Many probabilistic pro-
gramming languages have been proposed, with varying properties
and features: Church [Goodman et al. 2012] (generative models,
inference); webppl [Goodman and Stuhlmüller 2014] (inference);
Stan [Stan Development Team. 2015] (Bayesian inference), Facto-
rie [McCallum et al. 2009] (factoring graphical models, inference),
BLOG [Milch et al. 2007] (inference), and many others. All exist-
ing languages that we know of are designed for statistical machine
learning tasks and focus on the Bayesian setting: data collection
and inference about probabilities. In contrast, we know the sam-
pling process and need to compute the corresponding probabilities.
We are solving the forward problem, they are solving the reverse
problem.

Symbolic Algebra Systems. There are numerous existing symbolic
algebra systems: Mathematica [Wolfram Research, Inc. 2016], SAGE,
sympy, and others. While Mathematica and sympy can be incorpo-
rated into other programs through compilation or simple importing,
none o�er a simple way to write compile time expressions in C++.
Further, these systems are typically general purpose. In comparison,
we only have to handle more restricted operations. This simpli�es
our task of computing symbolic derivatives and inverses since we
only have to handle more domain speci�c scenarios.

Dimensional Analysis. SafeGI [Ou and Pellacini 2010] is a C++
software library that o�ers compile time checking of physical di-
mensions, units, and geometric spaces for rendering systems. This
kind of library is orthogonal to our language and could potentially
be incorporated into it.

3 MATHEMATICAL BACKGROUND
In physically-based light transport simulation, the intensity of a
pixel j is given by the integral

Ij =

Z

�
hj (x) f (x)dµ (x) (1)

where� is the set of all light paths,hj is the sensor response function
for pixel j , and f is the contribution function that measures the light
throughput of a path in a chosen measure µ [Veach 1998]. A path
x = {x1,x2, . . . ,xk } is a sequence of vertices (scattering events) in
the scene, starting from the light and ending at a virtual sensor.

Modern Monte Carlo techniques, our focus, often sample N ran-
dom light paths from M distinct distributions and combine them.
Each light path xi is sampled from a distribution pj (x), which is one
of theM distributions. An estimate of the integral from the paths’
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contributions f (xi ) is weighted according to

I ⇡ 1
N

NX

i
Wi (xi )

f (xi )
pj (xi )

, (2)

where the combination weight heuristic Wi (xi ) is a function of
all the probability densities p1 (xi ),p2 (xi ), . . . ,pM (xi ), not just the
density of the sampler that actually drew xi .
In a di�erent vein, Markov Chain Monte Carlo methods such as

Metropolis Light Transport [Veach and Guibas 1997] make use of
random walks where the proposed random step from path x to path
y is accepted with probability

min
(
1,

f (y) pj (x|y)
f (x) pj (y|x)

)
. (3)

Here, pj (y|x) is one of potentially many conditional probability
densities used for randomly sampling mutations. Implementing the
mutation samplers and the computation of its conditional probability
density are challenging to the point that few complete implementa-
tions of the Metropolis algorithm are known.

3.1 Path Samplers and Their Densities
Most current light transport algorithms make use of sequential local
sampling, where paths are extended one interaction at a time by
sampling directions for extension rays. The process may start from
the camera, from the light, or generally anywhere. The PDF of the
entire path is the product of the individual sampling probabilities:

p (x) = p (x1)p (x2 |x1)p (x3 |x2,x1) . . . (4)

The standard approach for constructing local importance sampling
distributions is to �nd a function that warps a 2D uniformly dis-
tributed random variable (u1,u2) onto the (hemi-)sphere of direc-
tions, i.e., � = w (u1,u2), with the desired density. The next path
vertex xi+1 is then found by tracing a ray from the current vertex xi
in this direction. Hence, a sequential sampler S is a mapping from
a series of 2D uniform random variables to a sequence of vertices,
x = {x1,x2, . . . } = S (u1,u2, . . . ). While we omit explicit depen-
dence on location, it is understood that the shape ofw may depend
on, e.g., the incoming direction from the previous vertex, the surface
normal, and the re�ectance function.
To evaluate the probability density of a sampled local direction,

standard probability calculus yields

p (�) =
q
| det �T � | p (u1,u2) (5)

where � = @w
@u1,u2 is the 3⇥2 Jacobian of the mapping from the

square to the sphere. Note that evaluating the density at an arbitrary
direction� that was not sampled from the same PDF — so that we do
not know the u1,u2 that produced � — requires �rst the inversion

w

�1 (�) = (u1,u2). (6)

Standard hand-derived density functions implicitly include both the
Jacobian and the inversion in the �nal formula. When computing the
density of an entire path y sampled from another distribution, we
must perform the multidimensional inversion u1,u2, . . . = S

�1 (y).
This reduces to a series of local 2D inversions of the form (6).

3.2 Case Study: Path Tracing
Standard implementations of estimators in the form of Equation (2)
mix path generation, density computations, and integrand evalua-
tion in a tangled, error-prone manner, making even relatively simple
algorithms challenging to get right. Figure 2 features a pseudocode
representation of a standard recursive path tracer with next event
estimation. The code features functions for sampling BSDFs, picking
light sources, and sampling points on light sources (blue); evaluating
BSDFs and light emission for arbitrary points and directions (green),
as well as code for evaluating densities and MIS weights for all com-
binations of samples drawn from the light and BSDF samplers. Not
shown are code for generating samples from a non-pinhole camera,
etc.

While the basic algorithm is easy to describe — append a shadow
ray segment and a BSDF sample segment to the current path to
create two “virtual” paths, add the contribution of light sources
from the two paths with MIS, discard the shadow ray and extend the
current path with the BSDF sample, recurse — this structure is barely
visible from the code. Even in this simple case, it remains challenging
to ensure the density and MIS weight code (red) is consistent with
the sampling code (blue), as path generation, evaluation, and density
code are all interspersed with each other.
Evaluating the estimator (Equation 2) for a more sophisticated

path sampler, such as bidirectional path tracing [Veach 1998] poses
even further challenges due to the manual application of surface
area measure conversion factors, and, particularly, the fact that all
the combinatorial ways of generating a path have to be matched by
the manually speci�ed full-path PDF code.

Fundamentally, implementing simple formulations such as Equa-
tion (2) is di�cult for two reasons. First, the computation of pj (xi )
must be consistent with the sampling procedure that generates the
xi . Second, while the integrand f and density pj are mathematically
expressed as simple functions, ray-tracing code usually computes
them incrementally as bounces are simulated, keeping track of par-
tial values such as marginal probabilities and products of re�ectance
or radiance. This means that there is no single place where f or p
are evaluated and the code for sampling, evaluating the integrand,
and computing the density are interleaved, making it hard to create
modular strategies.

In contrast, our language focuses on the concept of paths that are
built from reusable and composable strategies, each of which encap-
sulates a simple operation such as BSDF sampling. Our language
o�ers automatically derived full-path PDF and MIS weight code,
e�ectively separating these computations from path construction.
The interested reader may want to skip ahead and consult Figure 3
to see how this results in more readable and conceptually simpler
code. While already helpful with the simple path tracer, the bene�ts
compound when implementing more sophisticated methods.

4 GOALS AND DESIGN
4.1 Goals

Correctness By Construction. Estimators written in our language
should have the correct expected value. The user may write code
that is ine�cient and has poor variance, but the expected value
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Li = 0; throughput = 1;
Ray ray = spawn ray from camera
its = intersect ray with scene

while (path length is less than maxDepth) {
break if its is invalid
bsdf = its.bsdf; P = its.point; N = its.normal;
wi = �ray.dir; Ld = 0;

// Next event estimation (shadow ray) with MIS
lightSrc = discretely pick light source
lightP = sample point on lightSrc
if (light is not blocked) {

lightBsdfPdf = PDF if lightP sampled by bsdf
lightPdf = PDF if lightP sampled by light
weight = MISWeight(lightPdf, lightBsdfPdf)
Le = evaluate lightSrc emission for P, lightP
f = evaluate bsdf for wi, lightWo
Ld += weight * Le * f / lightPdf

}

// Sample BSDF with MIS
wo = sample outgoing direction from bsdf
ray.o = P; ray.dir = wo
its = intersect ray with scene
f = evaluate bsdf for wi, wo
bsdfPdf = PDF if wo sampled by bsdf
if (hit a light) {

bsdfLightPdf = PDF if wo sampled by light
weight = MISWeight(bsdfPdf, bsdfLightPdf)
Le = evaluate lightSrc emission for P, wo
Ld += Le * f * weight / bsdfPdf

}

Li += throughput * Ld
throughput *= f / bsdfPdf

}

Fig. 2. Pseudocode for a path tracer with MIS. Integrand and estimator
code highlighted in green; sampling code highlighted in blue; and PDF and
MIS code highlighted in red. We omit some details like geometry terms and
conversions between solid angle and area measure.

should be correct. This means, in particular, that sampling code and
the corresponding PDF code must be ensured to be consistent.

Conciseness and Expressiveness. Code should be simple, readable,
and expressive enough for complex rendering algorithms.

Modularity and Reusability. User code, such as sampling strate-
gies, should be modular and reusable across di�erent algorithms.

Easy Integration with Existing Ray Tracing Kernels. Our language
focuses on the probabilistic part of an algorithm, and users should
be free to use any existing or novel library to perform computations
such as ray casting and radiometric calculations.

Dimensionality of Samples. Rendering algorithms often need to
generate samples that have a lower dimensionality than their am-
bient space, such as the use of 3D coordinates for directions or
surface intersection points. We need to properly account for the
probabilities on the lower-dimensional manifold.

Flexible Uniform Generation. The user should be free to drive
the rendering algorithm using random or quasi-random number
generators of their choice.

4.2 Design Decisions
Sampling vs. Density. To make the sampling and PDF code consis-

tent, we chose to require the user to write the sampling code while
we derive the corresponding PDF. It is much simpler than the op-
posite, since the PDF derivation requires a simple derivative, while
deducing sampling from a PDF can be arbitrarily hard, especially
for multi-dimensional cases.

Embedding in C++. As most renderers are written in C++ or C,
we chose to embed our language in C++ for easy composition. The
language requires no additional tools beyond a normal compiler and
we use template metaprogramming [Veldhuizen 1996] to perform
compile time code generation for PDF calculation and other features.

Parameterization and Measure. Renderers often mix path param-
eterizations, requiring error-prone measure conversion. In our lan-
guage, the programmer speci�es an integrand in a single chosen
parameterization (e.g., surface area). They must provide all sam-
ples in the same parameterization, via conversion code written in
our language. However, it is not required to account for measure
changes (geometry terms) explicitly because the compiler does it
automatically.

Interaction with Deterministic Code. The derivation of probabil-
ities for samples computed according to operations such as ray
casting requires the symbolic inversion and di�erentiation of, e.g.,
the intersection point. Writing a full ray casting in our language
would be prohibitive and violate our goal of interportability. To
achieve both mathematical correctness and modularity, we require
values coming from external code to be constant in the neighbor-
hood of a sample. This means that, for example, ray casting will
pass the vertices of the intersected triangle, and that the intersection
coordinates need to be re-computed in our language.

Incremental Paths. In order to make the symbolic expression of
path sampling functions tractable, we assume that all paths are
sampled sequentially and at each step only a single vertex is sam-
pled. For some special cases, such as tridirectional path tracing
(Section 7.4), we provide a construct to sample two or more vertices
at the same time. Samplers with global dependencies, such as the
Manifold perturbation of Jakob andMarschner [2012], remain future
work.

4.3 Approach
Our language focuses on sampling and integration in probabilistic
ray tracing. It is embedded in C++ via template metaprogramming
and can be used with existing libraries for ray casting and shading.
Users are responsible for sampling and path assembly, while the
computation of densities (both at the local ray level and global
path level, for the current strategy as well as other strategies) and
the combination of samples for MIS are handled automatically. For
this, users write sampling code and append vertices to a path data
structure in our language, but use existing C++ libraries for ray
casting and geometric acceleration, as well as for the computation
of shading and path throughput. What needs to be (re)written in our
language is the importance sampling portion of a shader and the
calculation of the intersection location within a visible primitive.
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// Create camera subpath
RandomSequence<Vertex> camPath;
camPath.Append(sampleCamera) // Append always called with a

strategy
camPath.Append(samplePrimaryHit)
while (camPath length is less than maxDepth) {

camPath.Append(sampleBSDF)
}

Li = 0;
for (pathLen = 2...camPath.Size()) {

bsdfPath = camPath[1...pathLen + 1] // first pathLen+1 vertices
directPath = camPath[1...pathLen] // first pathLen vertices
directPath.Append(sampleLight) // add shadow ray target

// MIS weights
combined = combine(bsdfPath, directPath);
foreach (path in combined) {

Li += path.weight * integrand of path / path.Pdf();
}

}
return Li;

Fig. 3. Pseudocode for a path tracer with MIS in our language. Integrand
and estimator code highlighted in green; sampling code highlighted in blue;
and PDF and MIS code highlighted in red.

Our language is centered on �ve main types of constructs. We
provide sampling primitives (discrete, continuous, and strategies,
which subsume and combine the two) where the programmer writes
code that produces multidimensional path samples by transforming
a series of 2D uniform random variables into sequences of vertices.
Multiple importance sampling is handled through a combine primi-
tive that takes care of weight computation. We provide a path data
structure to which vertices can be appended and which takes care
of density computation. It can also handle complex cases, such as
in bidirectional path tracing, where vertices are inserted both from
the light and from the eye. We clearly separate the de�nition of an
integrand from the sampling code for modularity. Our code interacts
with deterministic external code via a locally-constant construct
where values are assumed constant in the neighborhood of a sample.
These constructs are then extended to handle Markov chain Monte
Carlo approaches such as Metropolis.

The pseudocode in Figure 3 shows the implementation of a path
tracer as it would be written in our language. It highlights several of
the main primitives of our language. It also shows how our approach
di�ers from a regular path tracer implementation in several ways.

Sampling and PDF. We provide �ve sampling primitives:

• Random variables generate one dimensional samples (Sec-
tion 5.1)

• Random vectors generate multi-dimensional samples (Sec-
tion 5.1)

• Discrete random variables for making discrete choices (Sec-
tion 5.2)

• Strategies are a compound sampling primitive. They use
random variables and random vectors as building blocks
(Section 5.3) and can also include discrete distributions.
They are used to sample the next vertex in a path.

• A generic data structure (RandomSequence) for sampling light
paths (Section 5.6). They are constructed from a list of strate-
gies.

All PDF computations are handled by our language. In standard
renderers, the programmer must manually account for PDFs, which
is error prone, and further complicated by the fact some importance
sampling code features a mixture of continuous (e.g. BSDF sampling)
and discrete sampling (e.g. choosing a light source).
Whenever generating a sample in our language, the sample is

drawn from one of our language primitives. The programmer does
not need to write PDF code: all primitives have an automatically
derived Pdf() method. We use symbolic di�erentiation to compute
the Jacobians needed to generate PDF code (Equation 5).

Combine. In a path tracer with MIS, even with only 2 di�erent
sampling distributions, there are 4 necessary PDFs to compute. In
standard renderers, this is error prone; it is the responsibility of
the programmer to manually account for how each sample is actu-
ally sampled. This becomes increasingly complex as the number of
combinations increases.
In our language, every sample maintains a record of how it

was sampled and has an automatically derived Pdf() method. This
method can be called on arbitrary samples, which is enabled by
symbolic inversion (Equation 6). MIS then becomes simple (Section
5.4); our language o�ers a convenience combine() primitive for this
purpose.

Path Data Structure. Our language introduces the RandomSequence

(Section 5.6) data structure, which we use to store path data. It is the
fundamental building block of all algorithm implementations in our
language. Random sequences can be extended with new samples,
o�er the automatically derived Pdf() method for computing the
PDF of the path, and have methods for slicing, concatenating, and
reversing sequences, while maintaining the same Pdf() interface
on the new sequence. These methods are particularly useful in
algorithms like bidirectional path tracing where many paths are
sliced and concatenated for MIS.
Constructing a path involves implementing strategies.

sampleCamera, samplePrimaryHit, and sampleBSDF are strategies
for sampling the camera vertex, obtaining the primary hit vertex,
and sampling the previous BSDF and raycasting to obtain the next
vertex. One notable advantage of using strategies to construct paths
is that they are then reusable in other algorithms.
Random sequences are sampled sequentially so the full density

functions (Equation 4) can be built from the primitive operations
of 2D/3D function inversion and taking Jacobians. In contrast to
typical path tracer implementations, we explicitly sample full paths
before combining them or computing the integrand. We feel this is
a clearer way of constructing paths.

Separate Integrand and Sampling. Typical path tracer implementa-
tions generally mix integrand, sampling, PDF, andMIS code together
inside a for loop. Combining all of these elements reduces the clar-
ity of the algorithm and makes it di�cult to reuse any of them in
other algorithms. In our language we handle these aspects of the
algorithm separately. This allows sampling strategies and integrand
evaluation code to be reused.
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Our language is implemented using C++ template metaprogram-
ming, allowing all necessary inversion and Jacobian computation
to be resolved at compile time. That is, the template mechanism is
used as a programming language where templates act as functions
and types act as values. Under the hood, each symbolic expression is
represented as a complex type, and template instantiation is used to
transform these symbolic expressions. Template metaprogramming
can constrain the possible syntax (e.g. we de�ne real number literals
as 1_l, 2_l, etc.) but it enables powerful compile time symbolic manip-
ulation, including symbolic inversion and symbolic di�erentiation,
before code generation.

4.4 Scope and Limitations
Our language can handle Monte Carlo rendering methods that can
be expressed in a form similar to Equation (2), which proceed by
weighted summation of point estimates of an analytic integrand f at
sample locations generated probabilistically. Sampling can include
discrete and continuous random variables, based on the multidimen-
sional analytic mapping of uniform random variables. This includes
most forms of importance sampling, path tracing, bidirectional path
tracing, and Markov-chain methods such as Metropolis. We support
cases where samples are correlated, in particular when subpaths
are reused for di�erent estimates, which allows us to express vir-
tual point light source methods such as instant radiosity [Keller
1997] (see Section 7.6), where light subpaths are reused. We can
also support methods such as photon mapping [Jensen 1996] (see
Section 7.7), which can be expressed with an additional convolution
of the integrand with a density estimation kernel. We can handle
adaptive sampling techniques where the number of samples or the
importance function depends on previous samples.

Adaptive Approximation of the Integrand. Techniques such as
irradiance caching [Ward et al. 1988], lightcuts [Walter et al.
2005], or multi-dimensional adaptive sampling and reconstruc-
tion [Hachisuka et al. 2008a] which can be seen as performing
adaptive approximations of the integrand, are not supported by our
approach, and in particular we cannot o�er correctness guarantees.
However, parallel versions of irradiance caching (e.g. [Jones and
Reinhart 2016; Wang et al. 2009]) that populate the cache ahead of
time could probably be expressed with a combination of correlated
samples and convolution of the integrand similar to virtual point
lights and photon mapping, although we have not implemented it.

Non-Analytic PDFs. We focus on transform sampling techniques
for analytic PDFs. We currently cannot handle numerical techniques
such as manifold walk sampling [Jakob and Marschner 2012] or
woodcock tracking [Woodcock et al. 1965] used in volumetric ren-
dering.

Dirac Delta Functions. Our language currently does not handle
Dirac functions, such as point light sources and mirrors. The excep-
tion to this is the pinhole camera, which we support for sampling
eye subpaths. We assume the ratio between position density on the
�lm plane and the integrand is 1, but do not use an explicit construct
to characterize it as a Dirac. These functions could potentially be
handled symbolically, by storing each Dirac as a symbolic function
and relying on our symbolic simplication to cancel out the same

Diracs in the numerator and denominator of a given expression,
but this is not implemented at present. We approximate perfect
specularity with extremely shiny BSDFs, as detailed later.

Zero PDFs. Our code has the correct expected value only if the
user sampling code can generate samples almost everywhere where
the integrand is non-zero.

Inversion. Symbolic inversion can be in theory intractable, al-
though our language has so far managed the samplers we have
implemented. The system assumes all provided sampling functions
are bijective. If a non-bijective function is provided, either the in-
version will fail and result in a compile error, or the inversion will
succeed but only provide one of the possibly many inverse values.

Volumes. We currently do not support volumetric interactions.

Performance. Both compile time and run time performance of
samplers written in our language are below hand optimized imple-
mentations.

5 THE DOMAIN SPECIFIC LANGUAGE
We now introduce our embedded domain speci�c language, Aether.
We �rst illustrate the important constructs of our language with a
simple example of Monte Carlo integration with importance sam-
pling, before moving to more advanced features.

5.1 Example: Estimating Irradiance at a Point
Suppose we want to compute the irradiance at a �xed point by using
Monte Carlo integration to evaluate the hemispherical integral

E =

Z

�
Li (�) cos�d� .

Sampling the Hemisphere. We want to sample the hemisphere us-
ing importance sampling according to cos� [Pharr and Humphreys
2010]:

// Declare symbolic uniform random variables
variable<1> u1;
variable<2> u2;

auto r = sqrt(u1);
auto phi = 2_l * pi * u2; //2_l is a literal for 2.0
auto cosHemisphere = random_vector<2>(

r * cos(phi),
r * sin(phi),
sqrt(1 � u1)

);

The above code looks similar to regular numeric sampling code,
but under the hood all of the expressions are symbolic to enable
the derivation of the inverse and the PDF. It starts with symbolic
uniform random variable u1 and u2 and de�nes the symbolic ex-
pression to transform them into a random variable (cosHemisphere)
representing directions on the hemisphere. The random_vector<N>()

function constructs a vector of random variables, where 2 is the
number of uniform random variables on which it depends. In this
example, there are 2 uniforms — u1 and u2 — and the random vector
has 3 outputs, because directions are two-dimensional but encoded
with 3 coordinates.
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The compiler automatically generates a Sample() method, which
evaluates this function. More importantly, the compiler also com-
putes the symbolic Jacobian determinant and symbolic inverse, both
of which are used in the other automatically generated method,
Pdf(). This function can not only compute the PDF at a point sam-
pled with the strategy, but also for any given direction. It is fairly
straightforward in this simple example, but becomes more valuable
for sophisticated samplers.

Compute an Estimate. Using the language provided Pdf()method,
computing an estimate is simple:
// User provided uniform sampler
MyRng rng;

Spectrum total(0);
int N = 10000;

auto myIntegrand = [](const auto& sample) �> Spectrum {
// user provided regular C++ code to compute Li * |cos(theta)|

}

for (int i = 0; i < N; i++) {
// Draw a sample
auto xCos = cosHemisphere.Sample(rng(), rng());

// Compute the integrand
auto f = myIntegrand(xCos);

// Compute the PDF
auto p = cosHemisphere.Pdf(xCos);

// Add f(xCos) / p(xCos) to running total
total += f / p;

}

// Compute the final estimate
auto estimate = total / N;

To sample cosHemisphere the user provides 2 numbers between
0 and 1 to the Sample() method. These uniforms can be obtained
from any random number generator, or they can come from a quasi-
Monte Carlo sequence. This estimator is correct by construction
because Aether uses symbolic di�erentiation to ensure that the
sampling and PDF code are consistent.
For convenience, Aether provides an Estimator object construct,

which stores the integrand and handles the computation of f (x )p (x ) (and
also handles boundary cases, e.g. when p (x ) = 0). It is especially
useful when combining multiple samples, where it also handles
computing the necessary weighting values.

5.2 Discrete Random Variables
In addition to continuous random variables, Aether also supports
discrete random variables, which are frequently used in rendering
algorithms, e.g. when discretely sampling a light source or discretely
sampling a component of a multi-layered BSDF.

They are constructed from standard C++ containers, and support
the same Sample() and Pdf() methods as the continuous random
variables.

Consider the example of discretely sampling a light source:
std::vector<Emitter*> emitters = scene.getEmitters();
// Create a uniform discrete distribution
auto emitterDiscrete = discrete(emitters);

// Sample an emitter

auto em = emitterDiscrete.Sample(rng());

// Compute its probability
auto p = emitterDiscrete.Pdf(em);

Aether also supports piecewise constant and piecewise linear
distributions, which are useful for enviroment map sampling.

5.3 Sampling Strategies
So far, we have seen simple continuous and discrete random vari-
ables. We now introduce strategies, the most general sampling con-
struct in Aether, that encapsulate operations such as BSDF impor-
tance sampling, light sampling, lens sampling, etc. Strategies com-
bine together continuous random variables and vectors as well as
discrete random variables — for instance, for choosing light sources
or BSDF layers — while still providing automatic PDF derivation.
Strategies are designed to be supplied to random sequences (Section
5.6) to create incrementally sampled paths.

To implement a strategy, the user writes sampling code as usual,
but it is encapsulated within a function object with a particular
form:

struct SamplePointOnLightStrategy {
template <typename T>
auto operator()(Context<T>& context,

MyRng& rng,
const std::vector<Emitter*>& emitters) const {

// Create a uniform discrete distribution
auto emitterDiscrete = discrete(emitters);

// Randomly pick an emitting triangle
auto emitter = context.Sample(emitterDiscrete, context.

Uniform1D(rng));

// random variable for uniform point on emitter
// (for implementation, see supplemental material)
auto triPt = emitter.randomPoint();

// Sample the point
auto uv = context.Uniform2D(rng);
return triPt.Sample(uv[0], uv[1]);

}
};

The body of the strategy looks similar to the continuous and discrete
sampling code we have already seen, with three exceptions: �rst,
the sampler is wrapped in a function call operator(); second, discrete
random variables (emitterDiscrete) are not sampled directly, but
are passed as an argument to context.Sample(); and third, context.
Uniform1D() and context.Uniform2D() are used to generate uniforms.
The Context is an internal component needed for keeping track of
discrete choices, as detailed in Section 6, and does not concern the
user apart from the above.

5.4 Multiple Importance Sampling
Multiple importance sampling requires evaluating several proba-
bility densities for each sample drawn (Equation 2). Suppose we
wish to use MIS to combine the cosine hemisphere samples with
samples from an analogous uniform hemisphere random variable
uniformHemisphere. A key language feature that enables this is that
the Pdf() method of random variables accepts as argument not just
samples generated by its own Sample() method, but any sample. As
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a result, evaluating all four densities is easy. Denoting the cosine-
weighted sample by xCos and the uniform sample by xUniform, we
simply compute
// PDF of xCos if sampled by cosHemisphere
auto pCos = xCos.Pdf(xCos);
// PDF of xCos if sampled by uniformHemisphere
auto pUniformCos = xUniform.Pdf(xCos);
// PDF of xUniform if sampled by uniformHemisphere
auto pUniform = xUniform.Pdf(xUniform);
// PDF of xUniform if sampled by cosHemisphere
auto pCosUniform = xCos.Pdf(xUniform);

These two strategies (four densities) can then be combined using a
MIS heuristic of our choice. As the samples xCos and xUniform also
store the random variable from which they were sampled, we can
use their Pdf() methods directly to compute the PDFs. However, no
extra storage is needed at run time because all such dependencies
are resolved statically.
If the sample provided to Pdf() is not of the correct dimension

or domain (e.g. querying a light sampler for a direction outside the
light), the inverse will return invalid uniforms (outside [0, 1]) and
Pdf() simply returns 0. The MIS heuristic will then ensure correct
operation. The programmer does not need to manually check for
these cases.
To simplify the process of combining potentially arbitrary num-

bers of samples, our language provides the combine() primitive,
which accepts a user de�ned combining heuristic and any num-
ber of samples. The above example can be written more concisely
as
Estimator<Spectrum> myEstimator(myIntegrand);

// User provided code to compute the MIS weight
auto myWeightFn = [](float pdfA, float pdfB) {

// e.g. the power heuristic:
return (pdfA * pdfA) / (pdfA * pdfA + pdfB * pdfB);

};

// Combine samples with power heuristic
auto combined = combine<PowerHeuristic>(xCos, xUniform);

// Accumulate weighted integrand values
total += myEstimator(combined);

5.5 Interfacing with Deterministic Code
We want our language to be usable with external code such as ray
casting engines. This creates the need to compute densities that
depend on data computed outside our language, for which symbolic
descriptions are unavailable. To balance the need for such an in-
terface with the need for symbolic derivation, we require that the
data coming from the deterministic external code be constant in the
neighborhood of a sample. This means, for example, that ray cast-
ing cannot directly return an intersection point, but should instead
return the triangle’s vertices, which are constant in a neighborhood
of the intersection, and that the intersection point coordinates must
be computed in our language. This ensures that proper derivatives,
inverses and densities can be derived symbolically.
Our language provides the ConstantCall mechanism for calling

external deterministic code. A triangle intersection is implemented
as
// Intersect ray (p, dir) with the scene and expect a constant as a

result

Intersection its = context.ConstantCall(raycaster, Ray(p.Value(),
dir.Value()));

// Compute ray�triangle intersection in our language
auto v0 = constant(its.v0);
auto v1 = constant(its.v1);
auto v2 = constant(its.v2);
auto e1 = v0 � v2;
auto e2 = v1 � v2;
auto N = cross(e1, e2);
auto t = dot(v0 � p, N) / dot(dir, N);
return p + t * dir;

The Intersection object returned by the ray casting engine includes
the vertices (and other relevant information) of the intersected
object. We �rst cast each vertex to a constant (constant(its.v0), etc.)
and implement a standard ray-triangle intersection in our language
to obtain the �nal intersection point. (As it turns out, the Jacobian
determinant of this step equals the standard geometry term needed
for measure conversions, but the programmer never needs to write it
out.) Di�erent importance samplers may require other information,
in which case constant per-vertex normals or material properties
may need to be included with Intersection as well.

5.6 Random Sequences
The random vector introduced above (Section 5.1) has a �xed size
and is designed for situations when all its coordinates are sampled at
once. Aether o�ers another important data structure, RandomSequence,
which supports the creation of incremental sequences of generic
random variables, where each element is assumed to depend only
on the previous element. Each element of a random sequence is
sampled from a strategy. We use this type to represent transport
paths. The type of data stored in the sequence is user provided, e.g.,
a Vertex type representing a point on a surface.
Consider sampling a 2-vertex path segment starting from

an emitter. This is implemented by a random sequence of
two strategies, SamplePointOnLightStrategy (de�ned above), and
SampleHemiAndIntersectStrategy, a strategy that picks a cosine-
weighted direction, traces a ray starting at the previous path vertex,
and computes the intersection:
// Strategy for sampling a cosine�weighted direction
// and intersecting it with the scene
struct SampleHemiAndIntersectStrategy {

template <typename T>
auto operator()(Context<T>& context,

const RandomSequence<Vertex>& path,
MyRng& rng,
Raycaster& raycaster) const {

// Sample uniforms between 0 and 1
auto uv = context.Uniform2D(rng);

// Sample the outgoing direction
// cosHemisphere is defined as above
auto dir = cosHemisphere.Sample(uv[0], uv[1]);

// Get the previous Vertex from RandomSequence
auto p = path.Back();

// Compute intersection for ray (p, dir) as above
// ...

}
};

// Create an initially empty path
RandomSequence<Vertex> path;
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// Append a point on a light
SamplePointOnLightStrategy samplePointOnLight;
path.Append(samplePointOnLight, rng, emitters);

// Append an intersection point
SampleHemiAndIntersectStrategy sampleHemiAndIntersect;
path.Append(sampleHemiAndIntersect, rng, raycaster);

// Actually sample the strategies
path.Sample();

The fundamental operation of a random sequence is to Append

new elements to the sequence. When path.Append(samplePointOnLight

, ...) is called, the samplePointOnLight strategy is stored, without
being sampled. Random sequences are evaluated lazily. When Sample

() is called, each strategy is then sampled in sequence with path as
an argument (along with any other provided arguments). The result
is a new Vertex sample, which is stored along with the strategy from
which it was sampled.

Like the other random variables in the language, random se-
quences o�er a Pdf() method. Since each element of the random
sequence stores a strategy, which itself has a Pdf() method, the PDF
of the random sequence is computed by sequentially computing the
PDF of each sample against its corresponding strategy (Equation 4).
Like all other random variables, the random sequence Pdf() method
can be used to compute the density of any sequence, not just itself,
and hence random sequences can be combined with MIS just as
easily.

Our language also provides the functions slice, concat, and reverse

for extracting subsequences, concatenating sequences, and reversing
their order.

The separation of strategies and random sequences has the addi-
tional bene�t that strategies can be built to be orthogonal and easily
reused: they are not tied to a speci�c random sequence nor to a par-
ticular algorithm. For instance, in the above example, changing the
cosine-weighted hemisphere sampling to uniform sampling would
be as simple as de�ning a new strategy based on uniformHemisphere

and appending that instead. The rendering algorithms described in
Section 7 make much use of this freedom.

5.7 Conditional Probability for Metropolis Sampling
Aether also provides constructs for Metropolis-Hastings based sam-
pling algorithms, which require conditional probabilities of mutators
that alter existing paths in random ways (Equation 3). Mutations
are implemented as functions that take in a random sequence and
return a new sequence, in the samemanner as strategies. This allows
primitive strategies such as BSDF, lens, and emitter samplers to be
reused when implementing mutations.
We automatically derive the ConditionalPdf() function for com-

puting the conditional PDF of mutating one sample into another:
// p(curPath | proposalPath)
auto pCurGivenProposal = ConditionalPdf(myMutation, curPath,

proposalPath);
// p(proposalPath | curPath)
auto pProposalGivenCur = ConditionalPdf(myMutation, proposalPath,

curPath);

Internally, the conditioned sample is treated as a constant input,
and the PDF of the mutation strategy is then evaluated like the
non-conditional PDF of a strategy. Please consult Section 7 and the

supplemental material for a full implementation, including several
di�erent mutations.
Aether provides further convenience constructs to simplify

MCMC implementations: a MarkovChainState object, which stores a
sample, its target density, and its contribution; an acceptProbability

function, which computes the necessary conditional PDFs and ac-
ceptance ratio; and a Mutationwrapper that applies a given mutation
to the current state to produce a proposal, and uses acceptProbability
to compute the acceptance ratio for the pair of states.

6 IMPLEMENTATION
6.1 Basic Data Types
The basic data types of Aether are �oating point numbers, uniforms,
random variables, random vectors, and random sequences.

Uniform Random Variables. The fundamental operation of Aether
is to transform uniform random variables (uniforms) into more gen-
eral random variables. Uniforms are the only programming variables
in the language. They are declared with a unique ID (unique within
an expression):
variable<1> u1; variable<2> u2;

Each uniform declared in this manner instantiates a new type.

Expressions. Basic expressions of Aether are composed of literals,
uniforms, and constant parameters. The language includes standard
mathematical functions (sqrt, sin, cos, tan, etc.) and operators (*, +,

�, \) for transforming uniform random variables into more complex
expressions. Our syntax mimics the standard mathematical format
of regular C++. This is achieved by templated operator overloading.

As C++ lacks support for compile-time templatized �oats, �oating-
point literals have to be declared with a special syntax . For example,
2_l is the compile time literal representation of the �oating point
number 2.0. All literal numbers in Aether are written in this form.
Other �oats, with values not known at compile time, must be intro-
duced with constant(), but they will not then be simpli�ed.

Expressions are Types. All expressions in Aether are represented
by composing types into symbolic tree structures of expressions and
subexpressions called expression templates [Veldhuizen 1995]. Inter-
nally, each expression is represented as a single empty templated
type. We use template metaprogramming extensively to manipulate
these expressions. We implemented a standard library of compile
time containers and algorithms that operate on types, designed
speci�cally for working with large, nested types.
The use of the auto keyword is not helpful just for brevity. The

expressions are not evaluated immediately, they are represented
as templatized symbolic algebraic expression trees, and as such,
have complex types (of the form Expr<Type>). The exact type of the
expressions is not important to the user so auto is preferred.

Simplification. We use template metaprogramming to automati-
cally simplify all expressions to a canonical form. Upon creation at
compile time, we recursively sort the subtrees of each expression by
variable ID, variable degree, size of tree, operator precedence, and
lexicographic order. During this process, expressions are simpli�ed
where possible using template pattern matching and various simpli-
�cation rules. This helps reduce the size of the expression tree, and
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hence, the size of its type. This improves compile time so we always
simplify expressions immediately instead of lazily. When dealing
with large type expressions, the language will sometimes avoid sim-
pli�cation rules (e.g. expanding power expressions or large matrix
vector products) that would greatly increase the size of the type,
which would likely have a negative impact on compile time. The
language uses the heuristic of expression size to determine whether
a simpli�cation rule should be applied. In these cases, the resulting
expression may not be fully simpli�ed.

Vector Expressions. Simple expressions can be combined into
vector expressions, which are represented symbolically as typelists
of expressions. These provide indexed access and can be transformed
with standard vector operations (dot, cross, normalize, length, etc.).
They are simpli�ed in the same manner as basic expressions. Vector
expressions can also be combined into matrix expressions, which
are represented symbolically as typelists of vector expressions.

Branching. Aether also provides condition expressions (e.g. 2_l
* u1 > 1_l) and logic operators (&&, ||, !). These are used in the
language’s pattern construct for creating symbolic branch expres-
sions (like if/else, but with a mandatory default case), which is a list
of (condition expression, value expression) pairs. For example:
auto a = // vector expr
auto b = // another vector expr
auto value = pattern(

// First condition; return a
when(dot(a, a) � dot(b, b) > 0_l, a)
, otherwise(b) // default case; return b

);

Like simpler expressions, these too are simpli�ed automatically at
compile time. We use this construct frequently, e.g. for orienting tan-
gent vectors when constructing a coordinate basis at a surface point
or branching over di�erent possible BSDF samplers (the language
provides a CompositeRandomVariable type to simplify the construction
of branches over multiple possible samplers).

Sample. The result of calling Sample() on a random variable is a
sample, which is itself a random variable: it stores the same expres-
sion tree as the sampled random variable, as well as the uniforms
that were passed to Sample() and the result of evaluating the random
variable’s expression tree. Since the expression trees are simply
type names, there is almost no overhead in copying or storing them
(except the storage required for any parameters of the random vari-
able).

6.2 Symbolic PDF Derivation
In order to compute the PDF of a random variable, we require the
symbolic Jacobian and the symbolic inverse.

Symbolic Jacobian of a Random Variable. Computing the Jacobian
requires partial derivatives. To obtain them, we recursively apply
fundamental rules of di�erentiation to the symbolic expression trees
that represent random variables:
d(a + b, x) = d(a, x) + d(b, x)
d(a * b, x) = d(a, x) * b + a * d(b, x)
d(c, x) = 0 // c is a constant
d(x, x) = 1
etc.

Like all expressions in Aether, each partial derivative is simpli�ed
automatically. The partial derivatives are then collected in the sym-
bolic Jacobian and the determinant is computed.

Symbolic Inversion of a Random Variable. To invert an expression,
we �rst recursively decompose any subexpression containing a
variable into a new equation. For example, when solving for u in
x = cos(2 ⇤ � ⇤u), we �rst decompose to x = cos(�1),�1 = 2 ⇤ � ⇤u,
then solve each equation individually, and re-compose the results.
This step greatly reduces the size of the expression tree for each
equation that needs to be solved, which is bene�cial for compile
times.
Our solver is pattern matching and rule based. It iteratively at-

tempts to match the equation against a set of patterns until the
variable of interest is isolated. If a match in one iteration is success-
ful, the corresponding rule is applied, and the process restarted. This
is not guaranteed to terminate, but it is able to successfully solve all
the necessary equations for our implemented samplers. Examples
of speci�c patterns include equations with barycentric coordinates,
linear systems, and scaled vectors.
If the equation does not match one of these speci�c patterns,

we apply more generic rules. The goal of this heuristic stage is to
transform the equation at each step into a form to which we can
apply primitive inverse operations. This mainly involves attempting
to simplify the equation until there is only a single occurrence of
the variable of interest. Examples of these generic patterns include
separating constants from variables, expanding variables inside
parentheses, and factoring variables. Once there is only a single
occurrence of the variable of interest, the solver applies primitive in-
verse operations (e.g. sin(u)= x => u = arcsin(x)) to obtain the �nal
result.

A more complete list of the patterns used by the solver is available
in the supplemental material.

Sampling a Strategy. When a strategy is sampled, at run time
a new SamplingContext object is created and passed to the strategy
function. The function is then evaluated like regular sampling code.
When calls like context.Sample(emitterDiscrete, context.Uniform1D(

rng)) are encountered, the SamplingContext simply calls rng() and
passes the result to emitterDiscrete.Sample(). This style of writing
indirect method calls has no impact when sampling, but is essential
for computing the PDF.

Density of a Strategy. In order to compute the PDF of a strategy,
we need to be able to handle both discrete and continuous random
variables together.

Consider the case of the samplePointOnLight strategy from Sec-
tion 5: we discretely sample a light source, then sample a point on it.
To compute the PDF of a sample, we need to evaluate both the dis-
crete probability and the continuous PDF. This is di�cult, because
samplePointOnLight.Pdf() needs to �rst determine which light source
was sampled by the discrete random variable before evaluating the
corresponding continuous random variable.
Suppose there are two light sources, a triangleLight and a

sphericalLight, and a point in space p, sampled from some other
source. We want to evaluate samplePointOnLight.Pdf(p).
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There are two possibilities: either p was sampled on triangleLight

by its random variable (a uniform triangle) or it was sampled on
sphericalLight by its random variable (a uniform sphere). But given
only p, we do not know which light it was sampled on. Instead,
we need to try both possibilities and sum the results. That is, we
enumerate all possible discrete choices, compute the resulting PDF
of each of them and sum the results. This approach of enumeration
is similarly used in [Goodman and Stuhlmüller 2014] to compute
marginal distributions of a computation.

When samplePointOnLight.Pdf(p) is called, a new PdfContext object
is created to help compute the PDF. The main purpose of PdfContext
is recording the discrete choices made during this process. It also
prevents the user-provided random number generator from drawing
uniforms; we do not need uniforms since we are not sampling any-
thing, just computing the PDF. This is why in strategies uniforms
are generated with context.Uniform1D(rng) instead of simply rng().
The strategy is then run. When attempting to make a dis-

crete choice, e.g. sampling a light source with context.Sample

(emitterDiscrete, context.Uniform1D(rng));, emitterDiscrete.Sample()
is not actually called. Instead, the PdfContext records that a discrete
choice has been reached: it returns the 1st result (triangleLight)
from the discrete random variable and records its discrete proba-
bility (emitterDiscrete.Pdf(triangleLight)). The function continues
with triangleLight as the sampled light source and returns its uni-
form triangle random variable. We compute the PDF of p according
to this random variable and multiply it by the previously recorded
discrete probability. This is the value of samplePointOnLight.Pdf(p) if
the triangleLight had been discretely sampled.
The PdfContext checks its recorded choices and recognizes that

only the 1st of 2 possible choices has been evaluated. So the
function is run again with the same PdfContext object. This time,
context.Sample(emitterDiscrete, context.Uniform1D(rng)); returns the
2nd possible result (sphericalLight) for the discrete choice and
records its discrete probability (emitterDiscrete.Pdf(sphericalLight
)). The function continues with sphericalLight as the sampled light
source and returns its uniform sphere random variable. We compute
the PDF of p according to this random variable and multiply it by
the previously recorded discrete probability. This is the value of
samplePointOnLight.Pdf(p) if the sphericalLight had been discretely
sampled.
The PdfContext consults its recorded choices again. Both choices

have been evaluated; there are no more. The process ends and the
�nal result is the sum of the two PDFs.

The PdfContext maintains its record of discrete choices as a stack
so this process works even for multiple discrete random variables
in the one strategy.

To ensure correctness we require that the strategy is a pure func-
tion i.e. the function has no side e�ects; the result is always the
same given the same arguments. Our language assumes this to be
the case for all strategies. C++ does not support pure functions so it
is the programmer’s responsibility to ensure this assumption is true.
In particular, care should be taken to avoid any global variables that
may introduce side e�ects.

Computing the PDF of a Random Sequence. Every random se-
quence maintains the strategies with which it was created. Comput-
ing the PDF of a provided random sequence according to this list
of strategies involves iteratively computing the PDF of each vertex
with respect to the corresponding strategy and multiplying them
together.

Multiple Samples in a Strategy. It is possible to return 2 samples
from a strategy (instead of just 1), using sample_tuple(). This is used
for our tridirectional path tracer where 2 vertices are dependent on
one another and are sampled together. Handling higher numbers
of samples is challenging because the size of the expression trees
will quickly become very large, which our solver is not currently
equipped to deal with and which has a negative impact on compile
time. Extending the language to handle this is left as future work.

7 RESULTS
Using Aether we implemented several Monte Carlo rendering al-
gorithms. Speci�cally, we implemented a path tracer [Kajiya 1986],
a bidirectional path tracer [Veach and Guibas 1994], a path-space
Metropolis light transport algorithm [Veach and Guibas 1997], a
novel tridirectional path tracer, a gradient-domain path tracer [Ket-
tunen et al. 2015], instant radiosity [Keller 1997], and a probabilistic
progressive photon mapper [Knaus and Zwicker 2011]. The algo-
rithms are incorporated into two renderers: embree’s example ren-
derer [Wald et al. 2014] and Mitsuba [Jakob 2010]. We reuse the
raycasting and integrand evaluation code (e.g. BRDF evaluation)
inside the renderers, and write our own code for generating samples.
We never call the original PDF evaluation functions in the render-
ers. The results shown here are generated from our Mitsuba-based
renderer. We implemented importance sampling functions for the
di�use, roughplastic, roughconductor, and roughdielectric materials in
Mitsuba with the Beckmann microfacet distribution. We also imple-
mented light source importance sampling for triangular-mesh-based
area lights, spherical area lights [Shirley et al. 1996], and environ-
ment lights. We veri�ed the importance sampling PDFs generated
by our code against manually derived PDFs. Thanks to the modular
nature of the sampling strategies, it is relatively easy to add more
material types and light types.
The rest of this section consists of code of our rendering algo-

rithms and our implementation experiences. We verify our imple-
mentation by rendering multiple classical test scenes and compar-
ing them to Mitsuba’s implementation. The details of the sampling
strategies such as sampCamPos, sampBSDF, etc., can be found in the sup-
plementary material.

We assume the following common inputs to all algorithms:
vector<Emitter*> emitters; // List of light sources
UniDist uniDist; // Draws from U(0, 1)
Raycaster raycaster; // Ray�scene intersection
Integrand integrand; // Evaluates f(x)
int maxDepth; // Maximum depth
int x, y; // Pixel coordinate
Film* film; // For splatting contribution

7.1 Path Tracer
Figure 5 shows the main logic of our path tracer written in Aether.
Although unidirectional path tracers are usually considered simple
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Mitsuba

Ours

(a) path tracing

Mitsuba

Ours

(b) bidirectional path tracing

Mitsuba

Ours

(c) path-space Metropolis light transport

Fig. 4. Three scenes modelled a�er the test scenes in the original papers of multiple importance sampling, bidirectional path tracing, and Metropolis light
transport papers. The scenes contain a variety of di�erent materials, geometry types, and lighting conditions. The images are rendered by the respective light
transport algorithm in Mitsuba and our implementation.

// Create camera subpath
RandomSequence<Vertex> camPath;
// Append the camera position
camPath.Append(sampCamPos, uniDist);
// Append the primary intersection point for pixel (x, y)
camPath.Append(sampCamDir, uniDist, raycaster, x, y);
// Extend by successive BSDF sampling until max depth
for(; camPath.Size() <= maxDepth;) {

camPath.Append(sampBSDF, uniDist, raycaster);
}
camPath.Sample();

Spectrum Li(0);
for (int length = 2; length < camPath.Size(); length++) {

// BSDF sampled path
auto bsdfPath = camPath.Slice(0, length + 1);
// BSDF sampled path + direct light sampling
auto directPath = camPath.Slice(0, length);
// Direct sampling the light
directPath.Append(sampEmtDirect, uniDist, emitters);
directPath.Sample();
// Combine bsdf path and direct path
// Returns a list of paths with their MIS weights
auto combinedList =

combine<PowerHeuristic>(bsdfPath, directPath);
// Sum up the contributions
for (const auto &combined : combinedList) {

const auto &path = combined.sequence;
Li += combined.weight *
(integrand(path) / path.Pdf());

}
}
return Li;

Fig. 5. Our path tracer code

to implement, multiple importance sampling already introduces a
certain degree of complexity. In order to compute the MIS weights,
it is necessary to compute all 4 combination densities between the
BSDF and light source samplers (bsdfPath, directPath). The combine

call automatically handles this complication. Note that there is
no need for the user to maintain a throughput value during the
BSDF sampling loop. Russian roulette [Arvo and Kirk 1990] can
be done in the sampBSDF strategy using a discrete random variable
(Section 5.2), and the probability of termination is automatically
handled inside path.Pdf() and MIS weight computation. As a side
note, most modern path tracers, including Mitsuba and pbrt, ignore
the probability of path termination when computing MIS weights.

(Note that this does not break correctness as the weights still sum
to one.)
We verify our implementation by comparing to the reference

implementation in Mitsuba. Figure 4a shows a comparison. The
scene also showcases the ability of our language to handle di�erent
types of geometry and layered BRDFs.

7.2 Bidirectional Path Tracer
The complexity of bidirectional path tracing is a major driving
force of our development of the language. The main logic of our
Aether implementation (Figure 6) is only ten lines longer (after
removing all the empty lines and comments) than the previous
path tracer. The major additions are the sampling of the emitter
subpaths and the extra path slicing and concatenation. In contrast,
Mitsuba and pbrt’s implementations for bidirectional path tracing
are signi�cantly longer than their unidirectional path tracers.
Some variants of bidirectional path tracing perform additional

direct light source sampling when concatenating the camera and
emitter subpaths. Existing implementation techniques lead to the ad-
ditional complexity spilling out of the relevant samplers, decreasing
readability and maintainability. For example, in Mitsuba’s imple-
mentation, the sampleDirect �ag has to be checked several times
during sampling, PDF computation, integrand evaluation, and MIS
computation. In our language, the same is achieved by a simple
change in constructing the subpaths (see supplementary material
for the code). The modi�cation is self-contained due to automatic
handling of PDF computation and the decoupling of sampling and
integrand code.
We verify our implementation by comparing to the reference

implementation in Mitsuba. Figure 4b shows a comparison. Further
code is available in the supplemental material.

7.3 Metropolis Light Transport
The original Metropolis light transport algorithm proposed by Veach
and Guibas [1997] is notoriously di�cult to implement. To our
knowledge, after its introduction in 1997, there was no publicly
available implementation until Mitsuba 0.4 was released in 2012.
Our language provides constructs that address both main sources
of implementation di�culty: the asymmetric Metropolis-Hastings

ACM Transactions on Graphics, Vol. 36, No. 4, Article 99. Publication date: July 2017.



Aether: An Embedded Domain Specific Sampling Language for Monte Carlo Rendering • 99:13

RandomSequence<Vertex> camPath;
// ... sample camera subpath as in the path tracer

// Create emitter subpath
RandomSequence<Vertex> emtPath;
// Randomly sample a light and a position on the light
emtPath.Append(sampEmtPos, uniDist, emitters);
// Sample direction from emitter and intersect with scene
emtPath.Append(sampEmtDir, uniDist, raycaster);
for(; emtPath.Size() <= maxDepth;) {

emtPath.Append(sampBSDF, uniDist, raycaster);
}
emtPath.Sample();

// Combine subpaths
for (int length = 2; length <= maxDepth + 1; length++) {

// Collect paths with specified length
std::vector<RandomSequence<Vertex>> paths;
for (int camSize = 0; camSize < length; camSize++) {

const int emtSize = length � camSize;
// Slice the subpaths and connect them together
auto camSlice = camPath.Slice(0, camSize);
auto emtSlice = emtPath.Slice(0, emtSize);
paths.push_back(camSlice.Concat(reverse(emtSlice)));

}
// Combine bsdf path and direct path
// Returns a list of paths with their MIS weights
auto combinedList = combine<PowerHeuristic>(paths);
for (const auto &combined : combinedList) {

const auto &path = combined.sequence;
// Compute w*f/p and splats contribution
film�>Record(project(path),
combined.weight * (integrand(path) / path.Pdf()));

}
}

Fig. 6. Our bidirectional path tracer code

acceptance probabilities, and maintaining the light path data struc-
ture. Indeed, our language automatically generates the required
conditional PDF code, and provides constructs such as Slice and
Concat for editing the path data structures.
We implement the four mutation strategies proposed by Veach

and Guibas: bidirectional mutation, lens perturbation, caustic per-
turbation, and multi-chain perturbation. For illustration, we show
code for the main part of the bidirectional mutation here (Figure 7).
Interested readers are referred to the supplementary material for
the entire code.

Bidirectional Mutation. The bidirectional mutation strategy is
responsible for producing large changes to the path in Metropolis
light transport. It �rst selects a range of the light path to delete. This
breaks the light path into a camera subpath and an emitter subpath.
It then selects the number of vertices to be inserted for the camera
subpath and emitter subpath respectively. We implement the dis-
crete selection process using the discrete random variable construct
introduced in Section 5.2. The insertion is done in a bidirectional-
path-tracing-like fashion. We then simply Slice, Append, and Concat

the paths to form the proposal path.

Lens, Caustics, and Multi-Chain Perturbations. These perturba-
tion strategies attempt to make small changes to the path, then
propagate the changes through a chain of specular surfaces. We set
a threshold on the roughness of the BSDF, below which we consider
the surface to be specular, and follow the specular chain by impor-
tance sampling the BSDF and Append the vertices. We only sample
the transmissive components of the BSDF when the original path
is transmissive, and vice versa. After termination, the perturbed

auto operator()(Context<T>& context,
const RandomSequence<Vertex>& path) {

// ...sample the discrete random variables that
// determine the no. of vertices to delete/insert.
// The results are stored in delBegin, delEnd,
// camInsertLen, and emtInsertLen

auto camPath = slice(path, 0, delBegin);
auto emtPath = slice(path, delEnd,

path.Size() � delEnd);
auto rEmtPath = reverse(emtPath);
// Append vertices to the eye subpath
for (int i = 0; i < camInsertLen; i++) {

if (camPath.Size() == 0) {
camPath.Append(sampCamPos, uniDist);

} else if (camPath.Size() == 1) {
camPath.Append(sampCamDir, uniDist, raycaster);

} else {
camPath.Append(sampBSDF, uniDist, raycaster);

}
}
// Append vertices to the light subpath
if (emtInsertLen == 1 && rEmtPath.Size() == 0) {

// Specialized direct importance sampling
camPath.Append(sampEmtDirect, uniDist, emitters);

} else {
for (int i = 0; i < emtInsertLen; i++) {

if (rEmtPath.Size() == 0) {
rEmtPath.Append(sampEmtPos, uniDist, emitters);

} else if (rEmtPath.Size() == 1) {
rEmtPath.Append(sampEmtDir, uniDist, raycaster);

} else {
rEmtPath.Append(sampBSDF, uniDist, raycaster);

}
}

}
return camPath.Concat(reverse(rEmtPath));

}

Fig. 7. Our bidirectional mutation code

path is reconnected to the original using Slice and Concat. We ap-
proximate perfect specularity by extremely shiny BSDFs, for which
the procedure yields essentially the same result as Veach’s pertur-
bation. The code of these mutation strategies can be found in the
supplementary material.
We compare our Metropolis light transport implementation to

Mitsuba’s implementation. Figure 4c shows a comparison. The Mit-
suba rendering uses a perfectly specular glass material.

7.4 Tridirectional Path Tracer
To demonstrate the �exibility of Aether, we introduce an extension
to bidirectional path tracing, which we call tridirectional path trac-
ing. As motivation, consider a scene where the camera and the light
are placed in separate rooms, and there is only a relatively small
aperture connecting the two (e.g. Figure 1). If we apply bidirectional
path tracing to such a scene, only those paths where by chance a
connection edge (or the camera or emitter subpath) passes through
the small aperture will contribute to the image, leading to high
variance. Indeed, this challenge was one of the original motivators
for Metropolis light transport.
To increase the likelihood of obtaining paths through the small

aperture, we extend bidirectional path tracing by sampling a 2-vertex
“portal segment” that passes through the small aperture (Figure 8)
by construction. We connect each camera pre�x segment to each
emitter su�x segment as usual, but also connect each camera pre�x
and emitter su�x segment to the portal segment. Figure 1 and
Figure 9 illustrates the reduced variance at equal sample counts.
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sensor subpath

portal connection regular BDPT connection

emitter subpath portal edge

em
itter

image

Fig. 8. Tridirectional path sampling. In addition to the standard sensor
and emi�er subpaths sampled by a bidirectional path tracer (green and
red, respectively), we sample two-vertex “portal edge” segments (purple)
starting at random locations on user-specified portals. In addition to the
standard sensor-emi�er connections (gray, dashed), we connect one end of
the portal edge to all vertices of the sensor subpath and the other end to all
vertices of the emi�er subpath.

Bidirectional, 4spp Tridirectional, 4spp

Fig. 9. A comparison of bidirectional and tridirectional path tracing on the
Door scene at equal sample counts. The mean square error are 1.032 and
0.434 respectively.

We assume that the geometry of the small aperture is known in
advance. Sampling the 2-vertex segment involves �rst sampling a
position x on the surface of the small aperture, then sampling an
outgoing direction �; we intersect 2 rays (x ,�) and (x ,��) with
the scene to obtain the 2 vertices, one on each side of the small
aperture.
The code for slicing and concatenating the paths is shown in

Figure 10.

7.5 Gradient-Domain Path Tracing
Gradient-domain path tracing [Kettunen et al. 2015] samples image
gradients using pairs of correlated paths, and reconstructs the �nal
image by solving a screened Poisson problem. The path pairs are
generated by shifting paths generated by a standard path tracer by
one pixel using a deterministic shift mapping, and accumulating
di�erences in throughput modulated by the shift’s Jacobian deter-
minant, which requires considerable care to derive. We observe that
the shift mapping can be implemented using the lens perturbation,
and that the required determinant is the ratio of its conditional
densities. Denoting the original path as x and the shifted path as x0,

�����
@x0

@x

����� =
�����
p (x|x0)
p (x0 |x)

����� . (7)

// segment contains two vertices of the 'portal edge'
// We assume segment never hits the sensor, but it
// could hit the emitter
RandomSequence<Vertex> segment;
// ...
std::vector<RandomSequence<Vertex>> paths;
for (int camSize = 1; camSize < length; camSize++) {

const int emtSize = length � camSize;
// Tri�directional subpath
if (camSize > 1 && emtSize >= 1) {

// Shorten the sensor and emitter subpaths by 1
auto camSlc = camPath.Slice(0, camSize � 1);
auto emtSlc = emtPath.Slice(0, emtSize � 1);
// Replace with segment
paths.push_back(

camSlc.Concat(segment).Concat(reverse(emtSlc)));
}
// Shorten the sensor subpaths by 2
if (sensorSubpathSize > 2) {

auto camSlc = camPath.Slice(0, camSize � 2);
auto emtSlc = emtPath.Slice(0, emtSize);
paths.push_back(

camSlc.Concat(segment).Concat(reverse(emtSlc)));
}
// Shorten the emitter subpaths by 2
if (emitterSubpathSize >= 2) {

auto camSlc = camPath.Slice(0, camSize);
auto emtSlc = emtPath.Slice(0, emtSize � 2);
paths.push_back(

camSlc.Concat(segment).Concat(reverse(emtSlc)));
}
// Slice and concat without the segment
auto camSlc = camPath.Slice(0, camSize);
auto emtSlc = emtPath.Slice(0, emtSize);
paths.push_back(camSlc.Concat(reverse(emtSlc)));

}
// ...combine the paths as in BDPT
auto combinedList = combine<PowerHeuristic>(paths);
// ...

Fig. 10. Our tridirectional path tracer code

Hori. grad. Vert. grad. Result

Fig. 11. Our implementation of gradient-domain path tracing at 16 samples
per pixel, implemented through the conditional probability density of the
shi�map. The intensity of the gradients are adjusted to have a clearer view.

We implement this compactly using the ConditionalPdf function pro-
vided by our language. When the shift is not invertible, namely
either p (x|x0) or p (x0 |x) is zero, we set the Jacobian determinant
to zero, so that the shifted path has zero contribution. These non-
invertibility checks were explicitly handled inside the shift mapping
by the author’s implementation. Another challenge in gradient-
domain path tracing is the multiple importance sampling between
base paths and shifted paths. Aether handles this automatically.
Code for gradient-domain path tracing can be found in the supple-
mentary material. Figure 11 shows a rendering with both di�use
and specular materials.

7.6 Instant Radiosity
Instant radiosity [Keller 1997] reuses a set of emitter subpaths and
connects them to all pixels, at each vertex on the emitter subpath,
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(a) instant radiosity

Mitsuba

Ours

(b) progressive photon mapping

Fig. 12. (a) Sponza scene we used for testing our instant radiosity imple-
mentation. The number of virtual point lights is 827. (b) A glossy Cornell box
used for testing photon mapping. Rendered by Mitsuba’s stochastic progres-
sive photon mapping and our probabilistic photon mapping, respectively,
with the same number of photon paths and iterations.

the algorithm creates a virtual point light to light the scene. It is
possible to reuse light paths in our language by storing all emitter
subpaths in the form of RandomSequence. Gathering the contribution
from virtual point lights by slicing and concatenating light paths
is then similar to our (bidirectional) path tracing implementation.
As in typical implementations of instant radiosity, we also clamp
the geometry term at connection to a �xed value by rewriting the
integrand evaluation function. In our implementation we use ray
casting to check the visibility between the shading point and virtual
point light, but it is possible to switch to shadow mapping also by
modifying the integrand evaluation function.
Code for instant radiosity can be found in the supplementary

material. Figure 12a shows a rendering of the atrium Sponza scene
using 827 virtual point lights.

7.7 Progressive Photon Mapping
Photon mapping [Jensen 1996], similar to instant radiosity, gen-
erates a global set of emitter subpaths and reuses them across all
pixels. For each pair of emitter subpath and camera subpath, the
contribution is de�ned by a kernel function based on the distance
between the endpoints of the two subpaths. The kernel is usually
parametrized by a radius so that when the distance is larger than
the radius, the path pair has zero contribution. Progressive photon
mapping is a variant of photon mapping that makes the estimator
consistent to the path integral by reducing the kernel radius over
multiple iterations (e.g. [Hachisuka et al. 2008b; Knaus and Zwicker
2011]). We implement the probabilistic version of progressive pho-
ton mapping [Knaus and Zwicker 2011] in Aether.
We interpret photon mapping as a convolution over a kernel

function in path space (e.g. [Georgiev et al. 2012; Hachisuka et al.
2012]), and we construct an unbiased estimator of the convoluted
path integral. The photon paths are stored using RandomSequence in
a �rst pass. In the second pass the camera subpaths are traced
until they hit a di�use surface, and then concatenated (using Concat)
with the photon paths if the distance between their endpoints is
within the kernel radius. We then compute the contribution of the
concatenated path. The integrand function needs to be rewritten to
take care of the photon kernel. We also reuse Mitsuba’s kd-tree for

querying nearby photons within the kernel radius. It is the user’s
responsibility to ensure the correctness of the kd-tree. After photon
gathering, a new iteration starts, and the kernel radius is shrunken
as in [Knaus and Zwicker 2011].
Extending our photon mapping implementation to combine

with bidirectional path tracing using multiple importance sam-
pling [Georgiev et al. 2012; Hachisuka et al. 2012] requires spe-
cial care from the users to correctly handle the di�erences on the
dimensionality.
Code for photon mapping can be found in the supplementary

material. Figure 12b shows a rendering of a glossy Cornell box. The
scene is challenging for unbiased methods like bidirectional path
tracing because of the glossy �oor and the light sources enclosed in
glass.

7.8 Discussion and Limitations
In addition to demonstrating that Aether is capable of succinctly
expressing a wide range of rendering algorithms, such as Metropolis
light transport, gradient-domain path tracing and progressive pho-
ton mapping, we found that it enables easy experimentation with
di�erent sampling schemes. Examples include direct light source
importance sampling in the bidirectional path tracer and the tridi-
rectional path tracer. From a software engineering perspective, the
consistency between the sampling code and the generated PDF code,
and the separation of the sampling and integrand evaluation, means
the coupling between the code modules is drastically reduced. The
user can easily adjust their sampling algorithms without the need
to modify several code modules.

Algorithmic Limitations. As discussed in Section 4.4, somemodern
algorithms, for example the global, non-linear manifold perturbation
of Jakob andMarschner [2012] does not �t our assumptions. Also, we
currently do not support volumetric interactions. We are interested
to explore both directions in the future.

Performance. The performance, both during compilation and run
time, of samplers written in our language remains below hand-
optimized implementations. A full-rebuild of our Mitsuba-based
renderer takes around 7 minutes on a 4-core machine, while the
original Mitsuba renderer takes around 2.5 minutes. In our test
scenes, out path tracer is around 18 times slower than Mitsuba, and
our bidirectional path tracer is around 13.5 times slower than Mit-
suba. Our bidirectional path tracer takes 3.5 times more computation
time than our path tracer. Our Metropolis light transport implemen-
tation is around 19 times slower than Mitsuba. We found that much
of the overhead is due to the re-execution of the sampling strategies
using PdfContext and memory allocation/deallocation during PDF
computation.
We feel, regardless, that providing validation targets for careful

implementations of algorithms discovered by the rapid exploration
enabled by Aether is a bridge to practical applicability. Still, study-
ing the reasons behind and potentially mitigating the performance
issues, e.g. through static analysis and compiler optimization tech-
niques, is an important avenue for future work.
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8 CONCLUSION
Our language, Aether, dramatically reduces the time required for
correct implementation of modern unbiased light transport algo-
rithms, as demonstrated by the concise implementations of path
tracing, bidirectional path tracing, path space Metropolis light trans-
port, gradient-domain path tracing, instant radiosity, progressive
photon mapping, and the novel tridirectional path tracing. Our lan-
guage makes the probabilistic code correct by construction, letting
the programmer focus on new algorithmic ideas. Key to this ease
of use is the automatic derivation of PDF and sample combination
code, which results in concise and modular implementations. We
hope this e�ciency will boost the research community’s ability to
prototype, test, and validate novel light transport techniques.
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