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THE term matrix might be used in a more general sense, but in the present memoir I
consider only square and rectangular matrices, and the term matrix used without quali­
fication is to be understood as meaning a square matrix; in this restricted sense, a set
of quantities arranged in the form of a square, e. g.

ia , o, c r
a', 0', d

a" 0" 0", ,

is said to be a matrix. The notion of such a matrix arises naturally from an abbreviated
notation for a set of linear equations, viz. the equations

X=ax +by +cz,

Y =a'x +0'31 +c'z,
Z =a"x+o"y+c"z,

may be more simply represented by

(X, Y, Z)=( a, 0,'0 Xx, 'Y, ~),

ai, 1/, c'

a", 0", 0"

and the consideration of such a system of equations leads tomost of the fundamental
notions in the theory of matrices. It will be seen that matrices (attending only to those
of the same order) comport themselves as single. quantities; they may be added,
multiplied or compounded together, &c.: the law of the addition of matrices is pre­
cisely similar to that for the addition of ordinary algebraical quantities; as regards their
multiplication (or composition), there is the peculiarity that matrices are not in general
convertible; it is nevertheless possible to form. the powers (positive or negative,
integral or fractional) of a matrix, and thence to arrive at the notion of a rational and
integral function, or generally of any algebraical function, of a matrix. Iobtain the
remarkable theorem that any matrix whatever satisfies an algebraical equation of its
own order, the coefficient of the highest power being unity, and those of. the other
powers functions of the terms of the matrix, the last coefficient being in fact the deter­
minant; the rule for the formation of this equation may be stated in the following-icon­
densed form, which .will be intelligible after a perusal of the.memoir, viz.th~idetID1ni«,
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nant, formed out of the matrix diminished by the matrix considered as a single quantity
'involving the matrix unity, will be equal to zero. The theorem shows that every
rational and integral function (or indeed every rational function) of a matrix may be
considered as a .rational.and integral function, the degree of which is at most equal to
that of the matrix, less unity; it even shows that in a sense, the same is true with respect
to any algebraical function whatever of a, matrix. One of the applications of the
theorem is the finding of the' general expression of the matrices which are convertible
with a given matrix., The theory of rectangular matrices appears much less important
than that of square matrices, and I have not entered into it further than by showing
hc>w some dfthe notions applicable to these may be extended to rectangular matrices.
, 1. For conciseness, the matrices written down at full length will in general be of the

order 3, but it is to be understood that the definitions, reasonings, and conclusions
apply to matrices of any degree whatever. And when two or marc matrices arc spoken
of in connexion with each other, it is always implied (unless the contrary is expressed)
that the matrices are of the same order.

2. The notation
( a, b ,0 Xx, y, z)

'it', b', 0'
a" bIt CIf, ,

represents the set of linear functions

((a, b, oXx, v. z), (a', b', dXa', y, z), (a", s; a"Xx, y, z)),
so that-calling these (X, Y, Z), we have

(X, Y,Z)=( a, b ,(J 1.-2" y, z)
aI, b', 0'

'a", b'l, d'

and,as remarked above, this formula leads to most of the fundamental nctions in the
theory,: 'I

3. The quantities (X, Y, Z) will be identically zero, if all the terms of the matrix
aiue zero, andwe may say ,that . ;

(0,0,0')

0, 0, °
0, 0, °is the matrix zero.

. :Again, (X, y,Z~ will ~e identically equal to (x, y, z), if the matrix is

1
1, 0, 0 )

0, 1, °
, 0, 0, 1

and this is said to be the matrix unity, W f '
e may 0 course, When for distinctness it is
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lx, y, z)
(X', Y', Z'J=),. (Y,', ','. 13,",' ',,' ;,'1','

(Y,', f3', ty\

,J', f311, 'I"

required, say, the matrix zero, or (as the case maybe) the matrix unity of suoh an order:
The matrix zero may for the most part be represented simply by 0, and the matrix
unity by 1.

4. The equations

(X, Y, Z)=i a,' Ob, 0 Xx, y, z),
.e;«,»

all b" .1,, ,(i

i ,;' .. 11) •

(X+X', Y+Y', Z+Z')=( a +(Y, , b +f3, o +.'1'., "Xx,y,. z)

a'+(Y,', b' +f3', et +'1"

. a"+~I/, b"+{311, ell+'I'"
and this leads to

( a +a , b +f3 , c +'1'

a' +(Y,', b' +f3', d +'1"

a" +(Y,", b"+{3", ell+'1'''

:)=1 a, i . c ,+( (Y, , f3, 'I' )
a' ~ b', e' (Y,', [3', '1"

a", b", e" (Y,II, [3", '1'"

as the rule for the addition of matrices; that fo:r their subtraction is of course similar
to it.

5. A matrix is not altered by the addition or subtraction of the matrix zero, that is,
we have M+O=M.· . i-,', '.

The equation L=M, which expresses that the matrices L, Mare equal"ma¥ also be'
written in the form L-M=O, i.e. the difference of two equal .mateices is the matrix
zero.

6. The equation'L= -M, written in the form L+M=O, expresses that the sum of
the matrices L,M is equal to' the matrix zero, the matrices so related are said to be
opposite to each other; in other words, a matrix the terms of which are equal but,
opposite in sign to the terms of a given matrix, is said to be, opposite to the given
matrix.

7. It is clear that we have L+M=M+L, that is, the operation of addition is com­
mutative, and moreover that (L+M)+N=L+(M+N)=L+M+N, that is, the opera­
tion of addition is also associative.

8. The equation

(X, Y, Z)=i'.:: :,: :,', r""" '"y, ""')
; all. b(' 0/'I ' , ,-

written under the forms

(X, v, Z)='"~ :: :': ;

I a",. r, e"

Xx, y, z)=~ ::,I::~',.,: ,:
, I mal, mbll., md

D2
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giYe~

m( a , b., o

'a',o',d

a", b", e"

)=( ma, mb., me (
ma', mo', md

ma",mo", mc"

as the rule for the multiplication of a matrix by a single quantity. The multiplier 1n

may be written either before or after the matrix, and the operation is therefore com­
mutative. We hav~ it is clear m(L+M)=mL+mM, or the operation is distributive.

9. The matrices Land mL may be said to be similar to each other; ill particular, if
m=l, they are equal, and if m= -:'1, they are opposite.

10. We have, in particular;

m/I, 0, 0)=, m, 0,, °(,
0, 1, ° 0, m, °
0, 0, i I 0, 0, m

or replacing the matrix on the left-hand side by unity, we may write

(x, y, Z)=, a, (3 , r (~' 'I, ~),
a' (3' ry'. "
a", f3", ry"

m '/ m, 0, °(,
0, m, °
0, 0, m

The matrix on the right-hand side is said to be the single quantity m considered as
involving the matrix wnity.,

11~ The equations

(X, Y, Z)=( a, b , er,x, y, z),
a' 0' d, , ,
a" b" 0", ,

give

(X, v, Z)=, A, B , 0 X~, 'I, ~)=( a, b , C ~ a , (3 , r· X~, 1], ~),
N,W,O a',V,o'~,~,~

A", B", 0" a", b", 0" a", (3", ry"

and thence, SUbstituting for the matrix:

,

A , B , O )

A', B', cl

N', B", 0"
its value, we obtain

((a, b , (J Xa, a', a"),

(a', 1/ , dX(1" a', a"),

(a", b", d'Xu, u', a"),.

(a, h ,e X(3, (3', (3"),

(a'., b' ,.0' X(3, (3', (3"),

(all, b",o"X(3, (31, (3"),

(a , b , 0 try, '1", ry") )=, a , b , o Xa , f3 ,r (
(a' ,hi, d Xry, ry', t") a' , u, d (/,1, (3' , '1"

(a", '6", 0" Xr, ry', r") a", r; 0" ai', e, ry"
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(X, Y, Z)=~ a , b.,. c Xx, y,z},
a' b' e' ., , .

aff bff d', ,

as the rule for the multiplication or composition of two matrices. It is to be
observed, that· the operation is not a: commutative one; the component matrices may
be distinguished as the first or further component matrix, and the second or nearer
component matrix, and the rule of composition is as follows, viz. any line of the corn­
-pound matrix is obtained by combining the corresponding line of the first or further
component matrix successively with the several columns of the second or nearer com-
pound matrix. .

12. A matrix compounded, either as first or second component matrix, with the matrix
zero, gives the matrix zero. The case where any of the terms of the given matrix are
infinite is of course excluded. •

13. A matrix is not altered by its composition, either as first or second component
matrix, with the matrix unity. It is compounded either as first or second component
matrix, with the single quantity ra considered as involving the matrix unity, by mulbi­
plication of all its terms by the quantity m: this is in fact the before-mentioned rule
for the multiplication of a matrix by a single quantity, which rule is thus seen to be a
particular case of that for the multiplication of two matrices.

14. We may in like manner multiply or compound together three or more matrices:
the order of arrangement of the factors is of course material, and we may distinguish
them as the first.or furthest, second, third, &c., and last or nearest component matrices,
but any two consecutive factors may be compounded together and replaced by a single
matrix, and so on until all the matrices are compounded together, the result being inde­
pendent of the particular mode in which the composition is effected; that is, we have
L. MN =LM. N=LMN, LM. NP =L. MN .P, &c., or the operation of multiplication,
although, as already remarked, not commutative, is associative.

15. We thus arrive at the notion of a positive and integer power LP of a matrix L,
and it is to be observed that the different powers of the same matrix are convertible.

It is clear also that P and g being positive integers, we have U.V=U+q,
which is the

theorem of indices for positive integer powers of a matrix.

16.. The last-mentioned equation, LP.V =V'+q, assumed to be true for all values what­
ever of the indices p and g, leads to the notion of the powers of a matrix for any form

whatever of the index. In particular, LP.V=U 01' V=I, that is, the Oth power of a
matrix is the matrix unity. And then puttingp:-1, g=-l,orp=-l, g=l, we have
L. L-1 =L-1. L=l; that is, L~\ or as itinay be termed the inverseor reciprocal matrix"
is a matrix which, compounded either as first or second component matrix with the
original matrix, gives the matrix unity.

17. We may arrive at the notion!of the inverse or reciprocal matrix, directly from the
equation



22
MR, A, CAYLEY ON THE THEORY OF MATRICES.

in fact this equation gives . ( l )_lyX Y Z).

( )_~. '.. A A' A!' XX, Y, z)=( a, J '. C )i.."x, 'Y, z, - , '. . 1 1

. B,W,W a, h, d
" 7./1 JI

C C' C" ac o;», , • l' •
. '., ' f h ffi ' nts of the inverse or ructprm'lI matnx,

and we have, for the determmatlOn 0 t e coe oie

the equations ( A, A',}..!' ~ a , 0 , ()I:::::C 1, 0, o f'
B B' B" al 0' c' 0, 1, 0, ,. "

. C C' C" a" 0" e" 0, 0, 1 I, ' . "

I
a 0 o ~ A, A', N' I' == ( 1, 0, o )I

a< 0< 0' B, B', B" 0, 1, 0 \
al', v, 0" C, C', C" 0, 0, 1 I

. hi h· '1 t to each other and either of them is by itselfsufftdc'nt fut' .tlH' ('litHe
W 10 are eqUlva en . , ,. . ... . ..
plete determination of the inverse or reoiprocal matrix. It UI well know n tlut! \t "

denote the determinant, that is, if
V= a, b ,e

al,o',e'
a"" 0", 0"

then the terms of the inverse 01' reciprocal matrix arc given by the cquationli

A=~ 1, 0, 0, B=.!.. 0, 1, 0 &c.
"YOb' "I vaJOd, ,N , ,

O b" 0" all, 0, e', ,
orwhat is the same thing, the'inverse or reciprocal matrix is given by the oquatlon

( a, i , (J )-1 _.!.( O}V, On/V, 0/" )
d , v, c" -V ObV, Ob,V,Ob"V

a", r, d' ooV' 00'V, oc',V

whe~eo£ course the differentiations must in every case be performed us if the tnrmfot (I. b;
&c, w:ereiiall of them independent arbitrary quantities,

18, Theif0r,mulashows, what is indeed clear aptiori, that the notion of the impf!'>'>
orreciproc~~.i~atrix fails altogether when the detel'lllinant vanishes: the matrix iR in
tmscaf1,e sat~]lito be indeterminate, and it must be understood that in the absence of
express mentio~,. the particular case in question is frequently excluded from conaidera..
tion, It may be added that the matrix zero is indeterminate; and th.at the product of
two matrices maybe zero, without either of the factors being zero, if only the matrices
are one or both of them indeterminate,
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19. The notion of the inverse or reciprocal matrix once established, the other nega­
tive integer powers of the original matrix are positive integer powers of the inverse. or
reciprocal matrix, and the theory of such negative integer powers may be taken to be
known. The further discussion of the fractional powers of a matrix will be resumed in
the sequel.

20. The positive integer power Lm of the matrix L may of course be multiplied by
any matrix of the same degree, such multiplier, however, is not in general convertible
with IJ; and to preserve as far as possible the analogy with ordinary algebraical func­
tions, we may restrict the attention to the case where the multiplier is a single quan­
tity, and such convertibility consequently exists. We have in this manner a matrix a1"',
and by the addition of any number of such terms we obtain a rational and integral func­
tion of the matrix L.

21. The general theorem before referred to will be best understood by a complete
development of a particular case. Imagine a matrix

and form the determinant

M=( a, b ),

I 0, d I
a-M, b

a, d...... M

the developed expression of this determinant is

M~-(a+d)Ml+(ad-ba)MO;

the values of M2
, M', MO are

( a2+ba , b(a+d) ),

I o(a+d), d2+ba I

( a, b), (1, 0 ),

I 0, d I 10, 1 I
and substituting these values the determinant becomes equal to the matrix zero, viz. we
have

where the matrix of the determinant is

( a, b )-M( 1, 0 ),
I 0, d I I0, 1 I

that is, it is the original matrix, diminished by the same matrix considered as a single



=0,

Dot, (l.M-:M:,l)=O.

23, I have verified the theorem, in the next simplest case, of a matrix nf the order :i,

viz, if M be such a matrix, suppose
M=( a, b, o ),

d, e, j'

,rh h, i

then the derived determinant vanishes, or we have

a-M, b ,C

d ,e-M, j'
9 ,It ,i-M

Y ON THE THEORY OF MATIUCES.
24 :]\fR. A. CAYLE

. . . 'A d th' . the general theorem, viz. the deter-. , lvi th matrix unity.> n IS IS •
quantity mvo'vmg, e . .' t" I s the same matrix oonsiderod as a nUlf{ll'
minant, having for Its matrix aglvenma nx es

. , l' th trix unity is equal to zero.
quantIty mvo ymg. e ma . 1 . " t ti of the theorem is, I think, worth no-

22 The followmg symbohca rspresen a Ion . . ."';
. ' . .. .1 . 1 ingle quantity be rnprpsl'uled by l\L thonticin . let the matrix M, conSlC eIec as a SI , . '. .

g. . it M'" 1 will represent the matrix lVI, coulIldt·rt·d tu! n
writing 1 to denote the matnx umy,.. .. . . .... T M

. . lvi the matrix unity Upon the like principles of notation, .. ..
single quantity mvo vmg. ' ,'.,. .. .. !\'1 . 1 tl •

. . b considered as repl'esontmg, SImply the matrix '. nTU . HWIll represent, or may e. . .
theorem is

or expanding,
M3_(a+e+i)M2+(ei+ia+ae-fh-og-bd)M- (aei+bfg+odl~-afll-b(li-('('g)=0 ;

but I have not thought it necessary to undertake the labour of a formal proof uf tIlt'
theorem in the general case of a matrix of any degree.

24. If we attend only to the general form of the result, we see that any matrix what­
ever satisfies an algebraical equation of its own order, which is in many C:Eli:lC'S the mate­
rial part ofthe theorem.

25. It follows at once that every rational and integral function, or indeed ('ypry
rationalfunction of a matrix, can be expressed as a rational and integral function nf an
order at most equal to that of the matrix, less unity. But it is important to eonsider
how far or in what sense the like theorem is true with respect to irrational funetion« clf
a mat~'. If we had only the equation satisfied by the matrix itself, such extension
could notpo made; but we have besides the equation of the same order 8ati8fh~d b)' the
irrationalfl1nction of the matrix, and by means of these two equations, and the ('(!\U\..

. tionby whl.Q~ the irrational function of the matrix is, determined) we mfty eXprf.lM the
irrational function as a rational and integral function of the matrix, of an order equal ut

most to that of the matrix, less unity; such expression will however involve the coejJi..
ment~rolthe efl't{();~ion satisfied by the irrational fwnction which are functions (in number

e.q.u.al..•. to the.....•. o<.rder of t.h.e. matrix) of t.he coefficieut.s assum.e.d u.nkn.own of the irration.al
. . . . .'. .....: .... . . .. . '

functioni~self,i' ,i]?ne·'transformatioll is nevertheless an important one, as reducing the
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and in like manner if'

number of unknown quantities from n2 (if n be the order of the matrix) down to n. To
complete the solution, it is necessary to compare the value obtained as above, with the
assumed value of the irrational function, which will lead to equations for the determina­
tion of the n unknown quantities.

26. As an illustration, consider the given matrix

M=( et, b )

I c, d I
and let it be required to find the matrix L=~M. In this case M satisfies the equation

M2_(a+(l)M+ad-bo=O;

L=( (AI, ~ )

I 'I, ~ I
then L satisfies the equation

V-((AI+~)L+(AI~-f3'Y=O ;

and from these two equations, and the rationalized equation V=M, it should be possible
to express L in the form of a linear function of M: in fact, putting in the last equation
for V its value (=M), we find at once

1
L- a+~ [M+((AI~-{3'Y)J,

which is the required expression, involving as it should do the coefficients a+o, a~- (3ry
of the equation in L. There is no difficulty in completing the solution; write for short­
ness ~+~=X, a~-f3'Y=Y, then we have

a+Y b ),
--X-' X

c d+Y
X

, -X

and consequently forming the values of a+o and ~o-f3r,

X a+d+2Y
X '

• Y (a+Y)(d+ Y)-bc
= X!il '

and putting also a+d-P,ad-bc=Q, we find without difficulty

X=,vP+2,vQ,.

Y=,vQ,

and the values of lX', (3, 'Y, ~ are consequently known. The' sign of~Q is the same in
both formulas, and there are consequently in all four solutions, that is, the radical~M
has four values.

MDCCCLVIII. E



p=(a+d?-2(ad-bc),

Q=(aa-bc)S,

Taking the positive sign, we have

Y=ad-bc,

x==±(a+d),

and thence ~Q=±(ad-bc).

, THE THEORY OF MA.TRWE.,"'l.
26 MR. A. OAYLEY ON "

. t ad of M we ha......e the matnx
27. To illustrate this further, suppose that lUS e )

~p==( a, b y==( as+oO , o(a+cl) I \
I c, d I Ic(a+d), tV+oc 1

so that V=NP, we find

, and these values give simply
L=±( a, b )==±M,

Ie, d I
But taking the negative sign,

Y:::::::-ad+oo,

X=±V'(a="dyq::rbc,
and retaining X todenote this radical, we find

L= a!l-ad+2bc b(a+d) ),
-y--' -r

c(a+d)
X

which may also be written

L=a+d ( a, b ?_2(adiOC} ( 1, 0 ),
X \ i \'c, d 0, 1 \

or, what is the same thing,
a+d 2(ad-bc) .

L=XM- --"- '1t - I

and it is easy to verify le posterio1'i that this value in fact gives I}:::::::.M-, It may lw
remarked that if

.M'=l ~', ~ (=1, .
the last-mentioned formula fails, for we have X=O j it will be seen presently that till'
equation V_I admits of other solutions besides L=±l. The example shows how the
values of the £~~ctional powers of a matrix are ,to be investigated.

28. There is an apparent difficulty connected with the equation satisfied by u. matrix,
. which it is proper to explain. Suppose, as before,

M=l:: ~ ?'
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so that M satisfies the equation
a-M, b =0,

o ,d-M
or

, M2~(a+d)M+ad-bc=0,
~

and let XI' X It be the single quantities, roots of the equation

a-X, b =0

o ,d-X
or

X2~(a+d)X+ad-bc=0.

The equation satisfied by the matrix may be written

27,

in which XI' X" are to be considered as respectively involving the matrix unity, and it
would at first sight seem that we ought to have one of the simple factors equal to zero,
which is obviously not the case, for such equation would signify that the perfectly inde­
terminate matrix M was equal to a single quantity, considered as involving the matrix,
unity. The explanation is that each of the simple factors is an indeterminate matrix,
in fact M-X, stands for the matrix

( a-XI' b ),

le, d...:..X, I
and the determinant of this matrix is equal to zero. The product of the two factors is
thus equal to zero without either of the factors being equal to zero.

29. A matrix satisfies, we have seen, an equation of its own order, involving the
coefficients of the matrix; assume that the matrix is to be determined to satisfy some
other equation, the coefficients of which are given single quantities. It would at first
sight appeal' that we might eliminate the matrix between the two equations, and thus
obtain an equation which would be the only condition to be. satisfied by' the terms
of the matrix'; this is obviously wrong, for more conditions must be requisite, and we
see that if we were then to proceed to complete the solution by finding the value of the
matrix common to the two equations, we should find the matrix equal in every case
to a single quantity considered as involving the matrix unity" which it is clear ought
not to be the case. The explanation is similar to that of the difficulty before adverted
to, the equations may contain one, and only one, common factor, and may be both of
them satisfied, and yet the common factor may not vanish. The necessary condition
seems to be, that the one equation should be a factor, of the other; in the case where
the assumed equation is of an order equal or superior to the matrix, then if this equation
contain as a factor the equation which is always satisfied by the matrix, the assumed
equationwill be satisfied identically, and the condition is sufficient as well asnecessary;

• :(1) 2
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we have

in the other case; where the assumed equation is of an order inferior to t lint ut' tilt'

matrix the condition is necessary, but it is not sufficient.
30. The equation satisfied by the matrix may be of the form :Mo;:::::: I : till' matrix i ...

in this case said to be periodic of the nth order. The preceding ('on1iitll'ratjolls It1'1'1~ ttl

the theory of periodic matrices; thus, for instance, supposo !t. il; }'(\(PI11'1'<I In Hurl It iuut nx
of the order 2, which is periodic of the second order. VVl'ltlllg'

M=( a, b ),

I o, cl I
M2'-(a+d)M+ad-oc=O,

and the assumed equation is

These equations will be identical if.
a+d=O, ad-oo= -I,

that is, these conditions beirig satisfied, the equation ~P-l=O requin-d tll Ill' Mti..ht.t1.
will be identical with the equation which is always satisfied, and will tht'rdi'f!' ibdf
be satisfied.. And in like manner the matrix M of the order 2 will ttlltil!\t) tht' t'uutlit iuu
M3-1=O, or will be periodic of the third order, if only MS_I ('oHtlliul'l ux u flwttH

M2_(a+d)M+ad-oc,
and so on.

31. But suppose it is required to find a matrix of the order :J,

,e-M, f
,IL" ,i-l\f

M=( a, b, o )

cl, 8, f
g, h, i

which shall be periodic of the second order. Wliting for shortn('IA.'{

\ a-M, b ,() 1=-(~P-AM2+Bl\'r_C).
d

g
the matrix here satisfies

M9-AiYP+BM_C=O,

and, as before, :he a~sumed equation is l\f2-1=O. Here, if we have l+B=O, A+<. n,
~,:~~(~ Side will contain the fuctor (M'-I), and the equation willtak,. tllt' forru
~ X. ~.~)-~, and we should have then l\f2-1=O, pro\"idc'd M+C wc'r.. nut UIt
mdetermmate'mat11x. But M+C denotes the matrix

I
a+C, b ,c )

d ,e+C, f I·

9 ,It ,i+C
. the. determinant of Which is C9+AC2·

. +BC+C, which is equal to zero in virtue! or
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the equations l+B=O, A+C=O, and we cannot, therefore,from the equation
(M2-:;1)(M+C)=O, deduce the equation M2-1=O. This is as it should be, for the
two conditions are not sufficient, in fact the equation

M2=( 'a2 +bd+cg, ab+be+ch, ac+b!+ci )'--:1

da+ed+!g, db+e2+!h, dc+ef+!i

ga+hd+ig, ,c/b+he+ih, gc+hf+i2
gives nine equations, which are however satisfied by the following values, involving in
reality four arbitrary coefficients; viz. the value of the matrix is

k=( y
._(,8+ry)~ )-(f3+y)-IX fJ, fJ,

a+f3+y
, -;--t) +-;y , «+,8+r

x
-(ry+a)fJ,y-l ,8 -("1+«)-fJ,
--«+/3 ,=-;y , «+f3+ry' a+f3+ry

y

- (IX + f3)fJ,y-l -(a+f3)-
A- ry

a+,8+r
,

a+,8+ry
,

IX+f:l+y

so that there are in all four relations (and not only two) between the' coefficients' of the
matrix.

32. Instead of the equation Mn-l=O, which belongs to a periodic matrix, it is in
many cases more convenient, and it is much the same thing to consider an equation
Mn-k=O, where k is a single quantity. The matrix may in this case be said to be
periodic to a factor pres.

33. Two matrices L, M are convertible when LM=ML. If the matrix M is given,
this equality affords a set of lineal' equations between the coefficients of L equal in
number to these coefficients, but these equations cannot be all independent, for it is
clear that if L be any rational and integral function of M (the coefficients being single
quantities), then L will be convertible 'with M; or whatis apparently (but only appa·
rently) more general, if 1, be any algebraical function whatever of M (the coefficients
being always single quantities), then L will be convertible with M. But whatever the
form of the function is, it may be reduced to.a rational and integral function of an order
equal to that of M, less unity, and we have thus thegeneral expression for the matrices \
convertible with a given matrix, viz. any such matrix is a rational and integral function
(the coefficients being single quantities) of the given matrix, the order being that of the
given matrix, less unity. In particular, the general form of the matrix L convertible
with a given matrix M of the order 2, is L=~M+f3, or what is the same thing, the
matrices

( a, b ;, (a', h' )..

le, d I I 0', d' I
will be convertible if a'- d' : b' : d= a- d.: b : c.
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34. Two matrices L, M are skew convertible when LM= - ML: this irll. a relation
much less important than ordinary convertibility, for it is to be noticed dmt \It(. rannnt
in general find a matrix L skew convertible with a given matrix 1\1. In flu,t, ('nn~

sidering M as given, the equality affords a set of linear equations ht~tw{'l'n Uw ('ul'ffi.
cients of L equal in number to these coefficients; and in this ease till' (~qtmtinn" an­
independent, and we may eliminate all the coefficients of L, and we thus nrrhv ut n
relation which must be satisfied by the coefficients ofthe given matrix t\L Tlm!', !'IuI""
pose "the matrices

( a, b ), ( a', 1/ )

Ic, d I I0', d/l
are skew convertible, we have

( a, , ;( ai, " ;=( a"'Hd, a,'+btf ,.),
le, d I Id, d' I I cal +do', cbi +del' I

<. ai, " )( a, , )=( aa'Ho, a'b+N.tl ).
I0', dl I I 0, d I I da+dlc, o'1J+d'd I

andthe conditions of skew convertibility are

2aa'+oo'+o'c =()

Ol(a+d)+b(al +czt) =0

o'(a+d)+a(a'+d')=0

2dd'+bd+o'c =0

Eliminating a'~ 1/, 0', d', the relation between a, 0, C, d is

2a, (), 0, =0,

b , a+d, b
c,

Wh.icn is

a+d, c

co, 2d

(a+d)2(ad-oc)=0.
Exclililih '.

c )".~,~om consIderatIOn the case ad-bc-O hi I .1.'
was.inaet~nate we Have a+d-O 'rh - .,WUCl would Imply that the nmtt1>;;

';;;;r' - . e rcsultmg system of conditioml, then i8

"iji;~;1\i;j a+dO,;a'+dl==O, aa'+bd+blc+dlll=O
the fusttw8f~~which imply tHat the matrice. . . I,..

order to a factor pree. s are lespecti'vely periodie of dw I'l(.(.tmd

35. It may be noticed that if the c, d .
either o't.\ compoun matl'lces LM and M..L are similar they

Pposl~JthM is, the trtatr,ices L, M axe eithel' convertible 01'
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36. Two matrices such as

31

40. A matrix such as

and in particular,

1:: ~ f' 1;: ~ (
are said to be formed one from the other by transposition, and this may be denoted by
the symbol tr.; thus we may write .

( a, o )=tr.( a, b ),

I i, d 1 I c, d 1

The effect of two successive transpositions is of course to reproduce the original matrix.
37. It is easy to see that if M be any matrix, then

(tr. M)p=tr. (MP),

(tr. Mtl = tr. (M-I).

38. If L, M be any two matrices,

tr, (LM)= tr. M. tr. L,

and similarly for three or more matrices, L, M, N, &c.,

tr. (I:MN)= tr. N. tr. M. tr. L, &c.

I
a, h, g(
h, b, f
g, f, c

which is not altered by transposition, is said to be symmetrical.
41. A matrix such as

~ -~: ~: -~ ~
I fJ', -A, '0 I

which by transposition is changed into its opposite, is said to be skew symmetrical.
.42. It is easy to see that any matrix whatever may be expressed as, the sum of a sym­

metrical matrix, and askew symmetrical matrix; thus the form

( a, h+~, fI-(IJ )

h-~, h, f+A
g+fJ',,i-A, o

which may obviously represent any matrix whatever of the order 3, is the sum of the :
two matrices last before mentioned.

43. The following formulre, although little more than examples of the composition of
transposed matrices, may be noticed, viz.

1:: .~ ~ .~ ~ [=1 ~~~~ ~:;df
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( a, c J a, b Aa, C Aa, b ) ==(( a, e r n, b »)~
I i, d \ \ o, cl \ 1 i, cl 11 c, cl \ I i. d 11 r; «:

44. In all that precedes, the lltatrix of the order 2 ha.'! fl'('tilH'utly hl'I'H 1"III1"idt'f1'd.

but chiefly byway of illustration of the general theory; but it is worth whilt' tu dl'\l'lflp'I'

mote particularly the theory of such matrix; I call to mind the fmldlU1H'nhtl prnp l ' r t H'1t

which have been obtained; viz. it was shown that the matrix

M=l :: ~ f'

which shows that a matrix compounded with the transpoHed matrix #(iH.... ri~[· tu ll~) Ill­

metrical matrix. It does not however follow, nor is it the fart. tlmt tiU' IImtrh nnd

transposed matrix are convertible. And also
( a, C Aa, b Aa, c ;==\ d+bcd+a(b 2+c2

) , 111l+(tl/(l+c,n~+d~) )

Ib, d \ I c, d 'I h, d I IbH+accl+b(a2
+ d'A), ti"+ah('+rl{b~+r~)

which is a remarkably symmetrical form, It is needless to 1)1'(1('(·(·11 Iurthrr, "illn' it il'i

clear that
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satisfies the equation

and that the two matrices

will be convertible if

M2_(a+cl)M+acl-bc:::O,

( a, b ), (aI" 0' ),

I c, d I I d, d' I
d-cll:b':c':::a-d:b:c,

and that they will be skew convertible if

a+d=O, a'+d'::: 0, aa<thd+b'c+ddl=O.

the first two of these equations bein th d't' . cl. .. g e Call I ions III or er that the twn rnntric'('l'I mM
be respectively periodic of the second order to a factor pro8, •

45. It may be noticed RI passin th t 'f I M kei .'d' . ' . . 1 g, a 1 J, are /Hew convertible lllutri(,(,g uf tIlt'

N
Ol~rLM2 ,'_, andMILf thesebmt~trlCes are also such that V:::::: .....r, M$:=-l. tl1('1I putting

_ --;- ,weo am

V=-l, M2=_1, N2=-1,

L:::MN=-NM, M=:::NL::::::-NL, N=LM::::::-ML,

which is~>~ystem of relations . . "1 ' il . . , .Tli/)1
iY,:

,', "pIeClSe y SInI ar to that III the theory of quateruions.
. e~teger powers of the matrix

M~l :: ~ r'
;~6t~:::~t~~~:~e~~'Y'll!OllIthe quadratie·equatiOll; thus we ha.ve, attending
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M2=(a+d)M-(ad-bc),

M3=[(a+d)2_(ad-be)]M-(a+ d)(ad-bc),

&c.,

whence also the conditions in order tha,t the matrix may be to a factor pres periodic of'
the orders 2, 3, &c. are

a+d =0,

(a+d)2_(ad-be)=0,

&c. ;

and for the negative powers we have

, (ctd-be)M-I=-M+(a+d),

which is equivalent to the ordinary form

(ad-be)M-l=(

. I
d, -b );

-0, a \

and the other negative powers of M can then be obtained by successive multiplications
with M-I.

47. The expression for the nth power is however most readily obtained by means of
a particular algorithm for matrices of the order 2.

Let Ii, b, o, J, q be any quantities, and write for shortness R= _li2
_ 4bc; suppose also

that hI, b', 0', J', fJ' are any other quantities, such nevertheless that N: b': c'=h: b: c, and

write in like manner R'=-h'2- 4b'o' . Then observing that JR.' JR' :R ~re respect-

. h' b' d .
ively equal to vRr' .vW' vW' the matrix

J (cot fJ- :R}
2cJ

vR

2bJ )
vR

J (cot fJ+ JJi).
contains only the quantities J, fJ, which are not the same in both systems; and we 'may
therefore represent this matrix by (J, q), and the corresponding matrix with h', 'b', 0', J1, 9.'
by (J', fJ').The two matrices are at once seen to be convertible (the assumed relations
It: 1;': 0'= h: 1; : o correspond in fact to the conditions, a'-d': 1;': 0'= a':"'d: b :'0, of con­
vertibility for the ordinary form), and the compound matrix is found to be

(:~~ ~qs~qJ JJ', fJ+~l). , , " i! "

And in like manner the several convertible matrices (J, fJ), (J', 9.'),. (.T", q") &0, give,
the compound matrix ' "

MDCCCLVIII.

(
~in (q.+ q'-t: q"•.) JJ'JII.. n+,)+nil ..).
sm qsm q'sm q" •• ':t. 'J. :r. ,

F

'. ., ,,' '1._ ~'l

".11 • ('
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( a, b )n=(iL(v!R cotnq-(d-a)), Lb )

I e, d I \L' ( , \. , '0' , ,iL-VRootnq+(d-a)) 1I

where It will be, remembered that '

where of course d-a: b: o-;;:;d'-aJ: h': d=:.cJ)'-aJ': lJl: (jI:::&c. Here writin~ h=d-el,
IfS Ji't'/

andconsequentlyR=-(d-a)2- 4bc, and assuming also J'=lv1t and cot,,?».' and

in like manner for the accented letters, the several matric(}s arc respcXltivcly

(ivR, q) (lVR1, q), a~j1i1\ (l), &c'\

and the compound matrix is

(
sin (q+q/+q/I ..) ( /-) /1 Iv:>n I)
sinqsinq/sinqll.. tv R (tv RXiv n;-) .., q+rI+rf +H •

49. When the several matrices are each of them equal to

( a, b ),

. I c, d \

we0"q.~;y:e.ofcoutse ,q~:::::q;;::ql/ .., R=R'=R" .., and we find

( a, b )n_ (Sin nq /'f5 n ).I o, d I - sin" q (iv .1.\1) ,?trz '

~:s~bstituting for the I'ight.hand side, the matrix represented by thiK notation and
p.utting for greater simplicity •

:i:::(tVR)n;;::(lVR)L, orL::= :~::(tVR)_-I;

48. The convertible matrices may be given in the :first i.nstance in the ordinary form,

or we may take these matrices to be
_( a,' b ), (d~ b' ), r«. U' ) &c.

I o, d I Id, dl I Id
l

, d/l
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50. The matrix will beto a factor pres, periodic of the nth order if only sin nq...:-O,

that is, ifq= :7r (rn must be, prime to n, for ifit were not, the order of periodicitywouldbe

not n itself, but a submultiple of n); but cosq== .:+a ,and the condition is therefore
. ,2 ad-be ,

(d+aY-4(ad-bo) C082 ~::::O,
n

or as this may also be written, .
• , 2m7r. m7r

d2+a2
_ 2ad cos- +4bc 0082- ::::: 0

n n'

a result which agrees with those before obtained for the particular values 2 and 3 of
the index of periodicity,

51. I may remark that the last preceding investigations are intimately connected with

the investigations of BARRAGE and others in relation to the function q;X~ailJ+db., ~+

I conclude with some remarks upon rectangular matrices.
52. A matrix such as'

(a,o,o)
I a', 0', d I

where the number of columns exceeds the number of lines, is said to be a broad matrix;
a matrix such as

Ca, 0 )

a', 0'

a" 0",
where the number of lines exceeds the number of columns, is said to be a deep matrix.

53. The matrix zero subsists' in ,the present theory, but not the matrix unity.

Matrices may be added or subtracted when the number of the lines and the number of
the columns of the one matrix are respectively equal to the number of the lines and the .

number of the columns of the other matrix, and under the like condition any number

of matrices may be added together. Two matrices may be equal or opposite the one to
the other. A matrix may be multiplied by a single quantity, giving rise to a matrix of

the same form; two matrices so related are similar to each other,
54: The notion of composition applies to rectangular matrices, but it is necessarythat

the number of lines in the second or nearerccmponent matrix should be equal to the
number of columns in-the first or further component' matrix: the compound matrix will
then have as many lines as the first 01' further component matrix, and as many columns
as the second or nearer component matrix. .

55. As examples of the composition of rectangulermatrioes, we have

( a, b, 0 Xa', v, 0', d' f=C (a, 0, cXa', e." i'), (a, ~,."X.•. ol,!,jlJ.(a, i; oXc', g.', kI),(a:., ",tal, It, U)),
Id, e.] I et,.f', g', h' I(d, e,.fXa',e', i'), (d, e, .fIb', 1",;")(d, 8, iXo', g', Id), (d, 8,frd', h/, l')I

. .
'f " !c' l''/, ,J , .,

F 2 .
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and

( a d X«,», 0', d'» :::; ( (a, dXa', e'), (a, dXb', 1'), (a, dXo', 9'), (a, dXd', N) ).

bel er, f', g', h' I (b, eXa', e'), (b, eXo', f'), (b, eXo', 9'), (b, eXd', N)
o f (0, fXa', e'), (0, fXb', 1'), (0, fXo', 9'), (0, fXcl', N)

56. In the particular case where the lines and columns of the one component matrix
are respectively equal in number to. the columns and lines of the other. component

matrix, the compound matrix is Square; thus we have

( a, i, 0 X a', d' )=( (a, D, 0 Xa', b', 0'), (a, b, oXd', e',.I") )

I e. e, f' b', e' . I (d, e, fXa', s, c'), (d, e, fXd', e',I') I
0',' I'

and

I
'a', d',J a, i, o )=1 (a', d'Xa, d), (a', d'Xb, e), (a', d'Xe, f) )

b', e' I d, e, f I . (b', e'Xa, d), (b', e'Xb, e), (b', e'Xe, f)

0',1' ,(c',/'Xa, d), (o',/'Xb, e), (o',I'Xo,/)

The two matrices in the case last considered admit of composition in the two different
orders of arrangement, but as the resulting square matrices are not of the same order,
the notion of the convertibility of two matrices does not apply even to the case in

question.
57. Since a rectangular matrix cannot be compounded with itself, the notions of'

the inverse or reciprocal matrix and of the powers of the matrix and the whole resulting
theory of the functions of a matrix, do not apply to rectangular matrices,

58. 'Ihenotion. of transposition and the symbol tr. apply to rectangular matrices, the
effect of a transposition beingto convert a broad matrix into a deep one and reciprocally.
It may be noticed that the symbol tr. may be used for the purpose of expressing the

. lawof- composition of square or rectangular matrices. Thus treating (a, b, 0) as a
rectangular; matrix, or representing it by (a, 0, 0), we have'1 I .

tr'(1 af, 0', d )=( a' ),
0'

and thence

~ a, b, 0 ?tr.~ a', 11, d ? ~a, i, 01~.: b, oXd, v, d),

so that the symbol
(a, 0, cXa',b', 0')

would upon principle be replaced by

~ a, 0, o(tr. ~ a, v. d ?:
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it is however more convenien.t to retain the symbol

. (a,o,(§..d,o',c').

Hence introducing the symbol tr. only on the left-hand sides, we have

( a, b, 0 )tr.( a', 0', c' )=( (a, b, old, b', c'), (a, b, aIel', e, /') ),

I d, e, f I \ e, d, /' I I(d, e,lla', 0',0'), (d, e, lld', e', /') I
or to take an example involving square matrices,

( a, b ) tr, ( a', b/ )=( (a, bla', or), (a, bld',e') ),

I d, e I Id', e' I I(d, ela', br), (d, eXd', e') I

37

so that in the composition of matrices (square or rectangular), when the second or
nearer component matrix is expressed as a matrix preceded by the symbol tr., any line.
of the compound matrix is obtained by compounding the corresponding line of the first
or further component matrix successively with the several lines of the matrix which
preceded by tr, gives the second or nearer component matrix. It is clear that the terms
, symmetrical' and ' skew symmetrical' do not apply to rectangular matrices,


