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THE term matrix might be_used in a more general sense, but in. the ;pxesent memoir I
consider only square and rectangular matrices, and the term matrix used without quali-
fication is to be understood as meaning a square matrix; in this restricted sense, a set
of quantities arranged in the form of a square, ¢. g.

ay, b, ¢
ad, b,
al", bH, 0”

is said to be a matrix. The notion of such a matrix arises naturally from an abbreviated
notation for a set of linear equations, viz. the equations

X=ar +by -cz,

Y =dz +by +,
—-—a”w-{-—b’ +c''z,

. ma,y be more simply represented by
(X, Y, Z)=(a,b,c ][a:,J,z)

a,d, d
a,fI, b"’ G"

~ and the consideration of such a system of equations leads to most of the fundamental
notions in the theory of matrices. It will be seen that matrices (attending only to those
of the same order) comport themselves as single quantities; they may be added,
multiplied or compounded together, &c.: the law of the addition of matrices is pre-
cisely similar to that for the addition of ordinary algebraical quantities; as regards their
multiplication (or composition), there is the peculiarity that matrices are not in general
convertible; it is mevertheless possible to form the powers (positive or negative,
integral or freictiona,l) of a matrix, and thence to arrive at the notion of a rational and
integral function, or generally of any algebraical function, of a matrix. I obtain the
remarkable theorem that any matrix whatever satisfies an algebraical equation of its
own order, the coefficient of the highest power being unity, and those of the other .
powers functions of the terms of the matrix, the last coefficient being in fact the deter-
minant ; the rule for the formation of this equation may be stated in the following.hon—
densed form, which will be intelligible after a perusal of the memoir, viz. the determi-.
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18 ' MR. A. CAYLEY ON THE THEORY OF MATRICES.

nant, formed out of the matrix diminished by the matrix considered as & single quantity
“involving the matrix unity, will be equal to zero. The theorem shows that every
rational and integral function (or indeed every rational function) of a matrix may be
considered as a rational and integral function, the degree of which is at most equal to
that of the matrix, less unity; it even shows that in a sense, the same is true with respect
to any algebraical funetion whatever of a matrix. One of the applications of the
theorem is the finding of the general expression of the matrices which are convertible
with a given matrix. The theory of rectangular matrices appears much less important
than that of square matrices, and I have not entered into it further than by showing
how some of the notions applicable to these may be extended to rectangular matrices,

1. For conciseness, the matrices written down at full length will in general be of the
order 3, but it is to be understood that the definitions, reasonings, and conclusions
apply to matrices of any degree whatever, And when two or more matrices are spoken
of in connexion with each other, it is always implied (unless the contrary is exprosscd)
that the matrices are of the same order.

2. The notation

R (a,d,c Ia, Y, 2)

. a Z)l :
, aH’ &H’ 0
represents the set of linear functions
(a8, Xa, g, 2), (@, ¥, Xa, 9, 2), (', ", "Ya, , 2),
so that-calling these (X, Y, Z), we have
XY, Z)=(a,b,¢ Ya,y,z2)
e, Y,
*d!! 5”
:lnd as remarked a,bove, this fmmula leads to most of the fundamenta,l notions in the
1eOYY. e T SR Co

3. The quantities (X Y, Z) will be 1dentlca11y zero, 1f all the terms of the matrix
are ZGIO, and we may say’ that -
R | (0,0,0)

[o,o, 0 l
0, 0, 0

is the matrix zero.

| KAgi'ai-n,"(X,v 'Y, Z) will be identically equal to (2, g, 2), if the matrix is
0,1, 0 l
0, 0,1

and th1s is b&ld to be the matrix unity. . 'We may of course, when for distinctness it is
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required, say, the matrix zero, or (as the case may be) the matrix unity of such an order.

The matrix zero may for the most part be 1eplesented sunply by 0, and the matrix

unity by 1. ‘ : :
4. The equations

[}

(X, Y, Z)=(a,b,c X, ys z), (X, Y, 2)=( «, B,y Y&y 2
’ar"b’;c’ B “'5'6’57{’
an b" ¢ ’ - ‘ w,,., B”e

(X+X’ Y4Y, Z+Z’) ( o +o,b +B ¢ +9/ ][a:, y, z)
o 4o, V4B, ¢ 4y
‘ all_'_all, bl! B{l, H_l_'y" ,

give

and this leads to ' * |
Cata,b4B, ¢4y )=(a,b,0 )+(a,B,7 )
o+, ¥+, 49 d,t, o, B, 9
&' o" B4 B, o'y ', B, o ‘ o, "3_117. ‘y”
as the rule for the addition of matrices; that for their subtraction is of course similar
to it.
6. A matrix is not altered by the addition or subtraction of the matrix zevo, that is,
we have M+ 0=M.: ot el e
The equation L=M, which expresses that the matrices L, M are equal,,may also: be=
written in the form L—M=0, .. the difference of two equal matrices is the matrix
ZEer0. - ,
6. The equation L= —M, written in the form L+4+M=0, expresses that the sum of
the matrices L, M is equal to the matrix zero, the matrices so related are said to be
opposite to each other; in other words, a matrix the terms of which are equal but
opposite in mgn to the terms of a given matrix, is said to be opp0s1te to the given:

matrix.
7. It is clear that we have L+M_M+L that is, the operatlon of addition is com-

mutative, and moreover that (Li4M)~+Nz=L+(M+N)=L+M+N, that is, the opera-
tion of addition is also associative.
8. The equation

(X, Y, Z)=C a, b, ¢ Ymz, my, mz)
' ?ar', bl, ¢
a, B, o
written under the forms.
(X, Y, Z)=m( @, b s ¢ Y&, 9, 2)=( ma, mb, me
ad,t,d | ma , mb', me
d, bt | ma, mb, md
' D 2
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gives

Cm(a,b, e )= ma, mb, me
4, b, ¢ ma/, mb', me
a, ¥, | ma', mb', me"

as the rule for the multiplication of a matrix by a single quantity. The multiplicr m
may be written either before or after the matrix, and the operation is therefore com-
mutative. We have it is clear m(L+4M)=mL-mM, or the operation is distributive.
9. The matrices L and mL may be said to be similar to each other; in particular, if
m=1, they are equal, and if m==—1, they are opposite.
10. We have, in particular,
- m(1,0,0)=(m, 0, 0),
0, 1, 0 0, m, 0
0,0,1] [0, 0, m
or replacing the pdatrix on the left-hand side By unity, we may write
m=(m, 0, 0 ',
10, m 0
0, 0, m
- The matrix on the right-hand side is said to be the single quantity m considered as
tnvolving the matriz wnity. .
11, The equations.

‘(XaY,Z):(a,b,c"w,y,z), (@ 92)=(e, B,y £ 1, 0),

d, ¥, d N Y
o' b”,l A ol B, o
give , ' ’
(X’Y3Z)= A,B,CIE,#,Z):( a) 5,0 “:[3:7“):55”!{)?
‘ A, B, : o, b, d ||, 0, ¢
A"’ BH’ CII a'l/, bll, 0" CG”, ﬁll’ yfl
and thence, substituting for the matrix
A,B,0)
Al B, o |

. AH, BN’ CII
its value, we obtain
((",’ PooXudidl), (50,0 X, B8Y), (ayb,0Xy o,y ))=Ca,b,0 X u, B,y
(@, ¥, 0Ya, o, o), (d,8,0Y8, 0, B, (@, 8, ¢ Xy, o, ") d,8,d| o, B,y
. (alf’ 6’/) C”IO&, a!, 05”),, (all’ b”,;jﬂ"Iﬁ, ﬁl, ﬁ’"),. (03", bH, GHIy’ 7'5 7!!) . a”, bll, 0!! “H, ll’ 9/H
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as the rule for the multiplication or composition of two matrices. ~ It is to be
observed, that-the operation is not a commutative one; the component matrices may
be distinguished as the first or further component matrix, and the second or pearer
component matrix, and the rule of composition is as follows, viz. any line of the com-
pound matrix is obtained by combining the corresponding /iné of the first or further
component matrix successively with the several columns of the second or nearer com-
pound matrix. '

12. A matrix compounded, either as first or second component matrix, with the matrix
zero, gives the matrix zero. The case where any of the terms of the given matrix are
infinite is of course excluded. _ : _

13. A matrix is not altered by its composition, either as first or second component
matrix, with the matrix unity. It is compounded either as first or second component
matrix, with the single quantity m considered as involving the matrix unity, by multi-
plication of all its terms by the quantity m: this is in fact the before-mentioned rule
for the multiplication of a matrix by a single quantity, which rule is thus seen to be a
particular case of that for the multiplication of two matrices. |

14. We may in like manner multiply or compound together three or more matrices:
the order of arrangement of the factors is of course material, and we may distinguish
them as the first or furthest, second, third, &e.; and last or nearest component matrices,
but any two consecutive factors may be compounded together and replaced by a single
matrix, and so on until all the matrices are compounded together, the result being inde-
pendent of the particular mode in which the composition is effected ; that is, we have
L.MN=LM.N=LMN, LM.NP=L.MN.P, &c., or the operation of multiplication,
although, as already remarked, not commutative, is associative.

156. We thus arrive at the notion of a positive and integer power L” of a matrix L,
and it.is to be observed that the different powers of the same matrix are convertible.
It is clear also that p and ¢ being positive integers, we have I7.1/==17" which is the
theorem. of indices for positive integer powers of a matrix.

16. The last-mentioned equation, I7. L'=17"% assumed to be true for all values what-
ever of the indices p and g, leads to the notion of the powers of a matrix for any form
whatever of the index. In particular, I7.L'=IF or L'=1, that is, the Oth power of a
matrix is the matrix unity. And then putting p=1, g=-1, ox p=—1, g=1, we have
L.L'=L"".L=1; that is, L™, or as it inay be termed the inverse or reciprocal matrix,.
is a matrix which, compounded: either as first or second. component matrix with the
original matrix, gives the matrix unity. ‘

- 17. 'We may arrive at the notion,of the inverse or reciprocal matrix, dlrectly from the.
equation . :
" XY, 2)=(a,bd,c ][:v, Y, z), .

B, 0

al)‘, bll’ 0”
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in fact this equation gives ‘ o
-l B
(2, 9, 2)=( & A, A YK Y 7)y=(( a, b, ¢ YYX Y, 7).
B, B, B e, ¥,
' C Cl’ le all, bH, c’l.
é,nd we have, for the determination of the cocfficients of the inverse or yeeiprocul matrix,

the equations
| (A A A Ya,b,¢ =(1,0,0),

B, B,B"||¢#, ¥, d 0, 1, 0
. C, ¢, VAR o 0, 0, 1

a, b y € A‘s AI’ AH ..":::( 1’ U* 0 .)’
¢, ¥, ¢||B, B, B 0, 1, 0
o ¥, ¢ ¢ ¢, ¢ 0, 0, 1
which are equivalent to each other, and sither of them is by itsclf sufficivnt for the cowme
plete determination of the inverse or reciprocal matrix, It is well known that it ©
~denote the determinant, that is, if
v=|a,b,¢

aH, Z)H’ G”

then the texms of the invexse or reciprocal matrix are given by the equations

A—..l 1, 0,0 110, 4 0, &
03 bl 9 ﬁ' v a[, 0, C" 5
. 0, b", off . a)"‘ 0, (}” ‘

6r what is the same thing, the inverse or reciprocal matrix is given by the equation
( a s by 0 )“‘ =L( 3.V, 9.9, 2.V )
d, ¥, ¢ \ V13V, 3,V, 3,V
a”,b”, 0" BQV’ bolV) acﬂv
where o'f; eourse the d?fferentia.tions must in every case be performed as if the torms 4, b,
| &e. were %a}l of them independent arbitrary quantities.
Orl;Se.-‘T?ef'anmula? shox.wé, what is indeed cleax & préori, that the notion of the inverse
e clpl?”ffﬁ}fl‘&trlx ’fa;ls altogether when the determinant vanishes: the matrix is in
case saidito be indeterminate, and it must be understood that in the absence of

tion. yo . o
ion. It may be added that the matrix zexo is indeterminate ; and that the product of

. two matrices may be zero, without ej ‘
S ! 2 ut either of the factors bei if only ‘o
are one or both of them indeterminate. eing zero, it only the matrices
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19. The notion of the inverse or reciprocal matrix once established, the other nega-
tive integer powers of the original matrix are positive integer powers of the inverse or
reciprocal matrix, and the theory of such negative integei powers may be taken to be
known. The further discussion of the fractional powers of a matrix will be resumed in
the sequel. | ‘ : \ -

20. The positive integer power L™ of the matrix L may of course be multiplied by
any matrix of the same degree, such multiplier, however, is not in general convertible
with L; and to preserve as far as possible the analogy with ordinary algebraical func-
tions, we may restrict the attention to the case where the niultiplier is a single quan-
tity, and such convexrtibility consequently exists. We have in this manner a matrix ¢L™,
and by the addition of any number of such terms we obtain a rational and integral func-
tion of the matrix L.

21. The general theorem before referred to will be best understood by a complete
development of a particular case. TImagine a matrix

M=( a, b ),
| ¢, d l
and form the determinant
a—M, b ,
¢, d—M

the developed expression of this determinant is
M2 — (g4 d)M' + (ad—be)M*;
the values of M2, M, M are |
- (a@tbe, Hatd)), (@ b)), (1,0),
oatd), @t | o al |on]|

and substituting these values the determinant becomes equal to the matrix zero, viz. we

-

have

a—M, & =i' @40, Ya+d) )—(a+d) ( & b )4(ad—be) (1, 0)
¢ ad,—M{ | ata), d+ie | xa | [0, 1]
| =ﬂ‘(a?+50)~——(w+d)a+(wd—60), b(a+d)—(atd)b )=(0,0),
(a+d)—(atd)c - | Btbo—(at+d)ddrad—be | |0, 0]
that is, : . o L |
‘ a—M, b =0
¢ ,d—M

where the matrix of the determinant is
(a3 )-M(1L,0),
o, a|  Jo 1] |
that is, it is the original matrix, diminished by the same matrix considered as a single
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quaﬁtity inml_vi‘ng\‘the matrix unity. - And this is the general ‘theo‘mfn, x’::fi. the d‘etvlr,
rhinant -haxlling‘for its Tnatrix a given matrix less the same matrix considered as & single
uantity i i ix unity, 1 to zexo.
wantity involving the matrix unity, 18 equal . T
! 22 %he following symbolical representation of the theorem is, T think, w cgth no
ticing: let the matrix M, considered as a single quantity, be rtq;n"om;tml T;t} M. then
writing 1 to denote the matrix unity, M.1 will represent the matrix M, considered A u
single quantity involving the matrix unity. Upon the like principles of notatior, .M
will represent, or may be considered as representing, simply the matrix M, undd the
theorem 15 - N _
Det. (1. M—M.1)=0.

93. T have verified the theorem, in the next simplest case, of & matrix of the order §,

viz. if M be such a matrix, suppose

M=( a, b, ¢ ),
d, e, f
g, by 4
then the derived determinant vanishes, or we have
| a—M, 6 ¢ =0,
d =M f

g »h ,i=M
or expanding,
| M”'—(a-}—e+?J)M2—|—(ez’+z’a—|—cw—flz-—o_q-—bd)M-—-(aei+bfg+ad]a-af/z--»Mimwg)m('i ;
but T have not thought it necessary to undertake the labour of a formal proof of the
theorem in the general case of a matrix of any degree.

24. If we attend only to the general form of the result, we see that any matrix what-
ever satisfies an algebraical equation of its own order, which is in many cases the mates
rial part of the theorem.

25. It follows at once that every rational and integral function, or indeed cvery
rational function of a matrix, can be expressed as a rational and integral function of au
order at most equal to that of the matrix, less unity. But it is important to consider
how far or in what sense the like theorem is true with respect to irrational funetions of
a matrix. If we had only the equation satisfied by the matrix itself, such extension

could not be made ; but we have besides the equation of the same order satisfied by the
: 'irra.tion&l‘.ﬁ}nction' of the matrix, and by means of these two equations, and the equne
 tion by which the irrational function of the matrix is determined, we may express the
irrational function as a rational and integral function of the matrix, of an order equal at
- most to that of the matrix, less unity; such expression will however involve the cogffi-
clents of the equation satisfied by the drrational function which are functions (in number
equal to the order of the matrix) of the coefficients assumed unknown, of the irrational
function‘?iﬁéélfii‘4“?7*]3}1@'?tra‘.nstrmation is nevertheless an important one, as reducing the
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number of unknown quantities from #* (if # be the order of the matrix) down to n. To
complete the solution, it is necessary to compare the value obtained as above, with the
assumed value of the irrational function, which will lead to equations for the determina-
tion of the » unknown quantities.

26. As an illustration, consider the given matrix

M=(a, b )
’ ¢, 4 l
and let it be required to find the matrix L=+/M. In this case M satisfies the equation
| M —(a-dMAad—be=0; |

L:( e, (3)

7, 0
then I. satisfies the equation |
L”-—(oo-}—B)L-l-_—mB-—-By:O :
and from these two equations, and the rationalized equation I?=M, it should be possible
to express I, in the form of a linear function of M: in fact, putting in the last equation
for I its value (=M), we find at once |

=3 M (=),

which is the required expression, involving as it should do the coefficients o8, ed— By
of the equation in L. There is no difficulty in completing the solution ; write for short-

ness o+3=X, ad—pBy=Y, then we have
L=( « B ): ‘a—}—Y, _b. )’
I X X
¥, O |
c d+Y
X' X

and in like manner if

-

and consequently forming the values of «--d and «3— @y,

at+d+2Y

X.:—""—*X—’—",
Cy DY) ke
— XQ 9

and putting also a+d=P, ad—bc=Q, we find without difficalty |
| X=+P+2/Q,
Y:\/aa -

and the values of a, (8, ¥,  are consequently known. The sign of »/Q is the same in
both formule, and there are consequently in all four solutions, that is, the radical /M

has four values.
MDCCCLVIII. E
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97. To illustrate this forther, suppose that instead of M we have the matnx

wme=( 6, b Y= atbo Ha+d) ),
o, d| | ooty dtle
so that T2=M? we find
P = (g+-d) —Xad—bs),

| Q=(ad—be)’,
and thence o/ Q=+(ad—bs). Taking the positive sign, we have

Y =ad—be,
X=+(a+d),
_and these values give simply
l Lﬂi( b, b )mj:Ma
o t ¢, d '
But taking the negative sign,
£ s Y = ~—ad-be,

i Xemy/ (6= 8400
and retaining X to denote this radical, we find
. . L: [lg-—afl—JrQl)c b((ln‘» d) )3

X ) X
cla+d) d%—qd 4 2be
X ? X

which may also be written

[,—0+d (ad ‘_Q(ad—-bcl( 1, 0),
| _ X \ C, d \ 05 1 l
or, what is the same thing,

a+d

— 2(ad—b
L=-%

¢) .
. M2
and it is easy to verify & posterioré that this value in fact gives T2==M% It may be
remarked that if

CMA=( 1,0 =1,
o1
the la:st-mentioned formula fails, for we have X==0; it will be seen presently that the
equation L’=1 admits of other solutions besides L=--1. 'The example shows how the
values of the fractional powers of a matyix are to be investigated.

| 28 '.rh;ere is “an apparent difficulty connected with the equation satisfied by u matrix,
“which 1t 18 proper to explain. Suppose, as before,

. 'M::ﬂ a, b "‘, |
¢, d
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so that M satisfies the equation ‘
‘ a~—M, b =0,
¢ , d—M

or -

| —(a-—l—d)M-{—ad bc__()
and let X, X, be the smgle qmnt1tles, roots of the equation
a—X, b =
¢ ,d—X ’

or

—(e¢+d)X4ad—be=0.
The equation satisfied by the matrix may be written
(N[_X/)(M" XH)“":Os

in which X, X, are to be considered as respectively involving the matrix unity, and it
would at first sight seem that we ought to have one of the simple factors equal to zero,
which is obviously not the case, for such equation would signify that the perfectly inde-
terminate matrix M was equal to a single quantity, considered as involving the matrix .
unity. The explanation is that each of the simple factors is an indeterminate matrix,
in fact M—X, stands for the matrix |

( a"“X/: Z) ):’
’ ¢ , =X, l

and the determinant of this matrix is equal to zero. The product of the two factors is
thus equal to zero without either of the factors bemO' equal to zero,

29. A matrix satisfies, we have seen, an equation of its own order, involving the
coefficients of the matrix; assume that the matrix is to be determined to satisfy some
other equation, the coefficients of which are given single quantities. Tt would at first
sight appear that we might eliminate the matrix between the two equations, and thus
obtain an equation which would be the only condition to be satisfied by the terms
of the matrix; this is obviously wrong, for more conditions must be requisite, and we
see that if we were then to proceed to complete the solution by finding the value of the
matrix common to the two equations, we should find the matrix equal in every case
to a single quantity considered as involving the matrix unity, which it is clear ought
not to be the case. The explanation is similar to that of the difficulty before adverted
to, the equations may contain one, and only one, common factor, and may be both of
them satisfied, and yet the common factor may not vanish. The necessary condition
seems to be, that the one equation should be a factor of the. other; in the case where
the assumed equation is of an order equal or superior to the matrix, then if this equation
contain as a factor the equation which is always satisfied by the matrix, the assumed
equation will be satisfied identically, and the conditlon is suﬂi_ciqnt as well as necessary :

' T 2 :
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| in the other case, where the assumed equation is of an order inferior to that of the
matrix, the condition is necessary, but it is not sufficient. .

80. The equation satisfied by the matrix may be of the form M*=1; til‘w matrix is
in this case said to be periodic of the mth order. The preceding consicerativns apply 'tu
-~ the theory of periodic matrices; thus, for Instance, suppose jt Is required to find oty
of the order 2, which is periodic of the second order. Writing

M:j a, b ),

e, d ’
we have - _
‘ M?~(a+d)M~+ad~ be=0,
and the assumed equation is
M —1=0.

These equations will be identical if
 ad=0, sd—bo=—1,

that is, these conditions beirlg satisfied, the equation M*—~ 1= 0 vequired o bue wtistival,
will be identical with the equation which is always satisfied, mud will thevefore jtselt
be satisfied. ~ And in like manner the matvix M of the ovder 9 will satindy the concition
M*~1=0, or will be pexiodic of the third ovdex, if only M~ 1 contuinm us u factoy

| M2 — (04 d)M 4 ad — e,
and so on.

81. But suppose it is requived to find a matrix of the ovder 3,

M=(a b, ¢)

} d, ¢, f

| G hy 4

which shall be periodic of the second order. Whiting for shortness
je—M, 8 ¢ |=-~(M“—-AM’+BI\%[W()),

d ,e=M, f
g Lk, i=M
the matrix here satisfies |
R | M~ AM?+BM — (=0,
_amd, as bgfoi’*g, .the assumed equation is M?—] =), Here, if we have L Bem0, A Castr
ﬂ;;gleft‘halﬂ side will contain the factor (M*~1), and the equation will take the forn
.( —1)(M+C)::O, and we should have then M*—1=0, provided MO were not gy
mdetermmatg matrix.  But M+C denotes the matvix |
a+C b ¢ )
4 L eC f |
g sh 40

the  determing; t of whi | Tres L
an of which is C+ACHBCHC, which is equal to zero in virtue of
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the equations 14+B=0, A4+C=0, and we cannot, tilerefOre, from the equation
(M*—=1)(M~4-C)=0, deduce the equation M*—1=0. This is as it should be, for the
two conditions are not sufficient, in fact the equation :
M*=( a® +bd+cq, ab+be+ch, ac+bf e )=1

da-+ed +fg, db+é° +fh, do-}-ef—l:ﬁ

ga+hd+-ig, gb+he+ih, ge-+hf++*
gives nine equations, which are however satisfied by the following values, involving in
reality four arbitrary coefficients; viz. the value of the matrix is

=L e~
atBty  TatBry’ atBty
A
—(y+a)pr! p Tl
atfty ’ atPty atPiy
—arpu @

i}
atBty | atBty atBty

so that there are in all four relations (and not only two) between the: coefficients’ of the
matrix.

32. Instead of the equation M"—1= =0, which belongs to a periodic matrix, it is in
many cases more convenient, and it is much the same thing to consider an equation
M"*—%k=0, where % is a single quantity. The matrix may in this case be said to be
periodic to a factor prés.

83. Two matrices L, M are convertible when LM=MI. If the matrix M is given,
this equality affords a set of linear equations between the coefficients of L. equal in
number to these coefficients, but these equations cannot be all independent, for it is
clear that if L. be any rational and integral function of M (the coefficients being single
quantities), then L will be convertible with M; or what is apparently (but only appa-
rently) more general, if I be any algcbraical function whatever of M (the coefficients
being always single quantities), then L will be convertible with M. But whatever the
form of the function is, it may be reduced to a rational and integral function of an order
equal to that of M, less unity, and we have thus the general expression for the matrices
convertible with a given matrix, viz. any such matrix is a rational and integral function
(the coefficients being single quantities) of the given matrix, the order being that of the
given matrix, less unity. In particular, the general form of the matrix I convertible
with a given matrix M of the order 2, is L—wM—{-B, or what is the same thing, the

matrices .
wa’ (d,¥)

e d ¢, |
will be convertible if @' —d': 0':.d=a~—d:b:c.
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34. Two‘ matrices. L, M ar;e skew convertible whe.n .I;M.—.—.-MMI,,‘ : ﬁiiﬁ 15 a: rfe‘lam@n
much less important than ordinary convertibility,' for it 35 to ht‘:.nf)tzgml t.h;xl. %} ?.,,( ﬂfu‘mxi
in general find a matrix I skew convertible with a given mgfmx 3\1.. n lm t‘“ u;;;
sidering M as given, the equality affords a set of hnear. czqua:tm:m i.}l??t’ﬁ”{“ml t e Hhu i
cients of L equal in number to these coeﬂicients;.and in this ease the tvqtmtx'um e
independent, and we may eliminate all the coefficients of I,, and Wf* tl‘;xm i;{’m*r ut o
relation which must be satisfied by the coefficients of the given matrix M. Tl Mitp

pose the matrices (a,0),(d )
( e, d ‘ ’ G’-’ d [

are skew convertible, we have

@b ), ¥ )=( ad+bd, ab'+bd' )
¢, d d, d [ ea +de, ﬁb’+dd’§
dy ¥ ) a, b )=( ad'de, @b-0d ),
d, d f ¢, d ’ da-de, dh-4d'd !

and thé conditions of skew convertibility are

200/ 4bd Ve =()
 W(at-d)Hd+ @) =0
atd)+o(a 4 d')=0
2dd'+bd+be =0
Eliminating o, 8, ¢/, d/ the relation between g, 8, ¢, d s
| ’ | 2a, ¢ b, . |=0.
b, atd, .}
¢, . atd, ¢
whichis L b
s | ' (a+d)“(ad-~bo):~:0,
EXCl‘ldmgfrom consideration the cage
W?lsginaf?g minate, we have g-d=0.

ad—be=0, which would imply that the matyix

The resulting system of conditions then is

S o+d=0,  o+d=0, aa’+bc’+b’c+dd’m0,

the first two' Twhich imply that the matrices are ieapeotively periodie

order to a factoy pres. |
85. It may be noticed that if the compound matrices LM and M1, aye

are eith 1 e , similar, they
‘3”, > “dual or else opposite; that 15, the matrices L, M are either convertible ur
skew convertible, - S

of the seeond
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(Z,b 9“0330)5
¢, a bdl

are said to be formed one from the other by transposition, and this may be denoted by
the symbol tr.; thus we may write

el 0t

The effect of two successive transpositions is of course to reproduce the original matrlx
37. It is easy to see that if M be any matrix, then

(tr. M) = tr. (M?),
(tr. M)~'==tr. (M),
38. If L, M be any two matrices,
tr. (LM)=tr. M. tr. L,

and sumllarly for three or more matrices, L, M, N, &e., :
tr. (LMN)=tr. N. fr. M. tr. L, &c.

36. Two matrices such as

and in particular,

40, A matrix such as
a h g
hy b, f
g e

which is not altered by transposition, is said to be symmetrical.
41. A matrix such as

0, v, —p
-y, 0, A
@, —A, 0

which by transposition is changed into its opposite, is said to be skew symmétrical.
.42, It is easy to see that any matrix whatever may be expressed as the sum of a sym-
metrical matrix, and a skew symmetrical matrix; thus the form

C a ., htv, g—p )
h=—v, & , f+2
g+, f —hA C
which may obviously represent 'any matrix whatever of the order 3, is the sum of the -
two matrices last before mentioned.
48. The following formuls, although little more than examples of the composition of
transposed matrices, may be noticed, viz.

(ad X a ¢ )=( &+, ac+bd )
le,d || 4, b? | aotbd, 4 |
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which shows that a matrix compounded with the transposed matrix gites vise o i =\
i it the fact. that the watris and

metrical matrix. It does not however follow, nor 1
transposed matrix are convertible. And also

(e Xad @, ¢ :( a-+boda(b*4¢*) | o abid ol 7))

l b, d ﬁ ¢, d ﬁ b, @ ﬁ I B +aed4o(d* 4 &) A abe - d(B )

which is a remarkably symmetrical form. Tt is ne

(ac¢Xa b Y a¢Y ad )m(ﬂ a, ¢ L oa b W
s alleallealledl bodlle d

44. In all that precedes, the matrix of the order 2 has frequently bevn copmitheread,
but chiefly by way of illustration of the gencral theory; but it is worth while ta develope

more particularly the theory of such matrix. I call to mind the fundumental properties
which have been obtained; viz. it was shown that the matrix

M=( a b
¥

edless to proceed further, sinee it i

clear that

satisfies the equation

M? ~(a+d)M+ad—be=0,
ﬁa,b), (a, ),

¢, d l ! ¢, d

and that the two matrices

will be convertible if
| d—d e =a—db:c,

and that they will be skew convertible if
a+d=0, d+d'=0, aa'4bd+Ve+dd=0,

the first two of these equations being the conditions in order that the two matrices may

be rfquctively periO(ﬂ:iC of. the second order to a factor prés. ‘

- :;;)l ;t ?lfgr_ 1;3 ?}fet;geclln :tlripassinfg, that if L, M are sakew convertible mutrices of the

‘ .'=L:M,=_,'ML, e ces are also such that L= -1, M= —~1, then puiting
o IP=—1, M'=-1, Ni=-—1,

L=MN=—NM, M=NL=~NL, N=IM=-Ml,

W%lich is & Xstem of relations precisely similar to that in the theory of quaternions.
46. Th ‘nteger powers of the matrix

, ¢, d

are obtained with great facility from oy \
Mo y'from the quadratic equation: | o
- first o the positive powers, g 1 admtl? cqua_hlon  thus we have, attending

%
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Me=(a+d)M—(ad—bc), :
M'={(a+d)'—(ad—be) ] M— (cz+d)(ad be)
&c.,

whence also the conditions in order that the matrix may be to a factor prés penodlc of
the orders 2, 3, &c. are

a+d =0,
(a4 d)—(ad—bec)=0,
&e.;
and for the negative powers we have ‘

{ad—be)M=—M+(a+d), :
which is equivalent to the ordinary form

(ad-—-b(})M“':( d, —b );

a—
and the other negative powers of M can then be obtained by successive multiplications
with M-, ‘
47. The expression for the nth power is however most 1ead11y obtained by means of

a particular algorithm for matrices of the order 2.

Let %, 8, ¢, J, g be any quantities, and write for shortness R=—}*—4b¢; suppose also
that %/, ¥, ¢, J', ¢’ are any other quantities, such nevertheless tha.t lz b o’ ..Jz b : ¢, and

" write in like manner R'=—%?—4¥¢. Then observing that -~ VR are respect-
ivel 1t LA A the matri
ively equal to 74, —7= VR" ix
%J )
J@“g vn)
2¢J b
';/“TR- . y J (COt q +'7—ﬁ—)

contains only the quantities J, ¢, which are not the same in both systems ; and we may
therefore vepresent this matrix by (J, ), and the corresponding matrix with %, ¥, d, J', ¢/
by (7', ¢). The two matrices are at once seen to be convertible (the assumed relations
H:b':d=h:b:c correspond in fact to the conditions, ¢ —d':¥': ¢=a—d : ¢, of con-
vertibility for the ordinary form), and the compound matrix is found to be

o (sm(q+q)n,q+q)

8in ¢ sin ¢

And in like manner the several convertible matrices (J, g), (J ! ’) (T” ”)r&c‘ ‘givé‘ :
Athe compound matrix : . S

(31“ (9’+Q‘Fq )JJr " _(H_ql_}_g" )

_ sin ¢sin ¢' sin q
MDCCCLVIIL ‘ F
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48. The convertible matrices may be given in the first instance in the erdinary form.

or we may take these matnces to be
| ( s b ), (a0 ) (a0 ) &e
L -|ad| ﬁa’,d’l Ia",‘ﬂ":’f
where of course d—a:0: e=d—d: b’ d=d = b = Heye writing Izwdwm
and consequently R::--(d«-a) 450 and assuming also J = 1/ R and cot qm ?’*R‘ and
in like manner for the accented letters, the several matrices are respectively
' 'JQ"\/E q) (%\/ﬁa ¢h (‘%’\/Ws ") &e.,
and the compound matrix is
(B R BT g )
" 49, When the several matrices are each of them equal to
G b
‘ | o S ¢, & \
we have of course gz=¢'=(".., R=R'=R".., and we find
e e

o or substltutmg fox the right-hand side, the matrix mprescnted by this notation, and
putnng for greatm simplicity-

S e mfﬁ "~—<%\/R)L or L= Sl (/B
we find |
(ab )n-_"—.(.%L(\/‘R cotng.-(d--a)) Lb )
‘ o dl 1Lo ot ~ ,%L(\/T{cotnq+(dwm)')

where 1t w111 be remembered that

. R"""(d““w) —4bo aiﬂd cot g== Vﬁ’
thy f which equatmns may be Leplaced by

. GOSQ-F\/—-lsmq.NW

The forixiuia )

fact extends to ne
) o ga.tlve or fmctmnal valucs of the
i a fraction, the index #n, and when #

S ust, as usualy in:order to exhibit the formula in its proper generality,
e ¢+2ms instead of g. In the particular case n=4, it would, be.epsy to show the

1dent1ty of the va of the s
he square root of th
different process. Ao Ry LT Q'm%mth‘@t}fa‘t before obtained by a
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50. The matrix will be'to a factor prés, periodic of the nth order if only sin ng=0,

thatis, if g== —”-g— (m must be prime to u, for if it were not, the order of periodicity would be

. . d
not  itself, but a submultiple of ) ; but cos g= 54/_:-7?'_?5‘2’ and the condition is therefore

(@40 —4(ad—be) oo’ ’-’;1:0,
or as this may also be written,
P+a*—2ad cos — + 4be cosﬂ— =0,

a vesult which agrees with those before obtained for the particular values 2 and 3 of
the index of periodicity. :
1. I may remark that the last plecedmo' investigations are intimately connccted with

ax+b
cx+d

the investigations of Bassaan and others in relation to the function o=~

I conclude with some remarks upon rectangular matrices.
52, A matrix such ag’
' (a,b,e)

s | |
where the number of columns exceeds the number of lines, is said to be a broad matrix;
a matrix such as

(a, )

a/, i
03”, b!l
where the number of lines exceeds the number of columns, is said to be a deep matrix,

63. The matrix zero subsists in the present theory, but not the matrix unity.
Matrices may be added or subtracted when the number of the lines and the number of
the columns of the one matrix are respectively equal to the number of the lines and the
number of the columns of the other matrix, and under the like condition any number
of matrices may be added together. Two matrices may be equal or opposite the one to
the other. A matrix may be multiplied by a single quantity, giving rise to a matrix of
the same form ; two matrices so related are similar to each other.

54, The notion of composition applies to rectangular matrices, but it is necessary that
the number of lines in the second or nearer component matnx should be equal to the
number of columns in. the first or further component matrix; the compound matrix will
then have as many lines as the fivst or further component matrix, and as many columns
as the second or nearer component matrix. :

55. As examples of the composition of rectangulei matnces, we have

ﬁaz, byeX d, ¥, e, d )=((a,b, cYd, ¢, z’), (a,8, ¢X8, f',J' Xa, b, ¢X¢, ¢, /ﬁ) (4, b, X, 1, 1)),
d, 6afl ¢\ fhg, I ‘(d e, fXd, ¢, 1), (dy e P, S 7dy 6, £X, g,ic‘), (d, e, fXd, X, l’),
4,00

r2
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(adXdb,d d))=((adld, ¢) (& aX, f) (@ X0, ¢), (@ 4Xd\ ) ).
b e ’ e, s g, ¥ (3, eXd, &), (b, eX¥, 1), (b, eXd, ¢), (b, eXd, k)

o f (e, £XA, &), (0, FXT, F'h (er FXE, §)s (0 FX > 1)
56. Iﬁ the particular case where the lines and columns of the one component matrix

are respectively equal in number to the columns and lines of the other component
matrix, the compound matrix is square; thus we have

(ab e d d’) ( (s, b, o), ¥, a’),v(a, b, ¢cXd, ¢, f) )
YAl X EERECY Y CRAONCRYs ¢ o P

_c,, j‘

d, &Y a, b, ¢ )=( (d, dXa, d), (, &0, ), («, dXe, f) )
v, ¢ || defl | dXe a), @ 6XB, 6) (F, Yo F)
o f (@, £Xe ), (J, FXB, o), (¢, FXe F)
Thé two matrices in the case last considered admit of composition in the two different
orders of arrangement, but as the resulting square matrices are not of the same oxder,
the notion of the convertibility of two matrices does not apply even to the case in
question.

57. Since a rectangular matrix cannot be compounded with itself, the notions of
the inverse or reciprocal matrix and of the powers of the matrix and the whole resulting
theory of the functions of a matrix, do not apply to rectangular matrices.

58. The notion of transposition and the symbol tr. apply to rectangular matrices, the
effect of: a transposition being to convert a broad matrix into a deep one and reciprocally.
It may be noticed. that the symbol tr. may be used for the purpose of expressing the
" law ‘of: composition of square or rectangular matrices. Thus treating (a, §, ¢) as a
rectangular matrix, or representing it by Qa, b, cl), we have

| ‘br.(l _a’, U, ¢ ?:( a ),
. ”

cl
and thence.

ga,, b, ¢ )tr(la o, ¢ ) Qa, b, X a )=(a, b, cXd, ¥, ¢'),
1 y |
¢
(a b, cYd, b, c)
Would upon prmmple be replaced by

Qa, B, al)tr.q o, 8, ¢ P:

so that the symb'ol"
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it is however more convenient to retain the syrﬁbol
(a, b, cYa, ¥, ).
Hence introducing the symbol tr. only on the left-hand sides, we have
Car b e)w(d, ¥ d)=((a, b cXd, ¥ ¢), (a, b, cX&, &, f) )
l d, e,fl \ d, _e’, f I l d, e, fYd, ¥, ¢), (d, e, fXd, ¢, f)
or to take an example involving square matrices,
Ca, 8 )te.( d, ¥ )=( (a, 8Xd, V), (a, 8Yd, ¢) ),
lae] ae| (@ o), @ exa, o
go that in the composition of matrices (square or rectangular), when the second or
nearer component matrix is expressed as a matrix preceded by the symbol tr., any line .
of the compound matrix is obtained by compounding the corresponding lne of the first
or further component matrix successively with the several lnes of the matrix which

preceded by tr. gives the second or nearer component matrix. Itis clear that the terms
¢ symmetrical” and ¢ skew symmetrical’ do not apply to rectangular matrices.



