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Abstract 

Humans possess a number concept that differs from its predecessors in animal 
cognition in two crucial respects: (1) it is based on a numerical sequence whose 
elements are not confined to quantitative contexts, but can indicate 
cardinal/quantitative as well as ordinal and even nominal properties of empirical 
objects (e.g. ‘five buses’: cardinal; ‘the fifth bus’: ordinal; ‘the #5 bus’: 
nominal), and (2) it can involve recursion and, via recursion, discrete infinity. In 
contrast to that, the predecessors of numerical cognition that we find in animals 
and human infants rely on finite and iconic representations that are limited to 
cardinality and do not support a unified concept of number. 

In this paper, I argue that the way such a unified number concept could 
evolve in humans is via verbal sequences that are employed as numerical tools, 
that is, sequences of words whose elements are associated with empirical objects 
in number assignments. In particular, I show that a certain kind of number 
words, namely the counting sequences of natural languages, can be characterised 
as a central instance of verbal numerical tools. 

I describe a possible scenario for the emergence of such verbal numerical 
tools in human history that starts from iconic roots and that suggests that in a 
process of co-evolution, the gradual emergence of counting sequences and the 
development of an increasingly comprehensive number concept supported each 
other. 

On this account, it is language that opened the way for numerical cognition, 
suggesting that it is no accident that the same species that possesses the language 
faculty as a unique trait, should also be the one that developed a systematic 
concept of number. 

0. Introduction 

What role does language play in numerical thinking? This paper 

approaches this question from an evolutionary perspective and 
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investigates the impact of our language faculty on the emergence of 

a fully-blown, unified number concept in human development. I 

describe a route to number that suggests that numerical thinking 

developed in a pattern of co-evolution of number concepts and 

counting words, indicating that language played a pivotal role in 

the emergence of systematic numerical cognition in humans. 

This article has four main parts. Section 1 provides the background 

for our discussion and describes the distinctive characteristics of 

the human number concept. On this basis, section 2 looks into the 

evolutionary foundations of number: it shows what cognitive 

resources the development could build on. I discuss, on the one 

hand, evolutionarily old concepts that we share with other species, 

and on the other hand, genuinely human cognitive capacities that 

are supported by our language faculty. Section 3, the main section 

of this article, shows how a systematic number concept might have 

emerged in human history, based on these foundations. I present a 

developmental account that suggests that the gradual emergence of 

a systematic number concept was supported by the similarly 

gradual development of a more and more sophisticated counting 

sequence. In section 4, I summarise the main points of my account 

and discuss its implications for a view of numerical cognition and 

numeral semantics and the language-number relationship. 
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1. The human number concept 

As a background for our discussion of number evolution, this 

section makes clear what is involved in human numerical 

cognition, that is, what is meant when we talk about a ‘systematic 

number concept’ in humans. I am going to address three questions: 

what do we use numbers for, how do we use them, and what kind 

of entities do we use as numbers? 

1.1 What we use numbers for 

When one thinks of numbers, the first thing that comes to mind is 

usually cardinality: numbers can be used to indicate ‘how many’, 

and it is this cardinal aspect of number usage that most accounts of 

numerical thinking and numeral semantics focus on. However, 

cardinality is not the only property we can indicate with numbers. 

What makes numbers so special, and so powerful as mental tools, 

is that we can use them to indicate a broad range of empirical 

properties, of which cardinality is just one – certainly a salient one, 

but definitely not the only property we assess in number 

assignments. We can distinguish three main kinds of number 

assignments: 

(i) In cardinal number assignments, numbers indicate the 

cardinality of sets, they identify a numerical quantity as in ‘five 

buses’, where the number indicates the cardinality of a set of buses. 

Building on this kind of usage, numbers can also be employed to 
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indicate abstract cardinalities in arithmetic contexts (‘3 + 2 = 5’), 

and to indicate, together with measure units, properties like length, 

weight, or temperature (‘5 cm long’, ‘5 kg of apples’, ‘50 C’). Since 

both arithmetic and measurement contexts can be derived from 

cardinal assignments where the number indicates a numerical 

quantity,2 I will concentrate on these as the central case in point. 

(ii) In ordinal number assignments, numbers indicate the position 

of an element in a sequence, they identify a numerical rank as in 

‘the fifth bus’. In this example, the number identifies the position 

of a particular bus in a sequence of buses, for instance a position in 

the line of buses arriving at a depot. 

(iii) In nominal number assignments, numbers indicate the identity 

of an element within a set, as in ‘the #5 bus’. Here, the number 

works as a label to identify a particular bus (or bus line) within a 

set of buses. 

1.2 How we use numbers 

The reason why numbers have such a wide range of applications, 

the secret of their success, so to speak, is a pattern of association 

that I will call system-dependent linking, or for short dependent 

linking: in number assignments, the link between a number and an 

object does not draw on features they have as individuals, but 

instead it depends on the positions they have in their respective 

systems. Numbers and objects are not treated as individuals, but 
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stand for corresponding places or properties in a numerical and an 

empirical relational structure.3 This means that first and foremost, 

we associate relations in number assignments. Let me make clear 

what that means by identifying the different relations we associate 

in each kind of number assignment. 

In cardinal number assignments, we associate the numerical 

relation ‘>’ with the empirical relation ‘has more elements than’: if 

one set of buses gets the number 5 (‘five buses’), and another set 

gets the number 6 (‘six buses’), we know that the second set has 

more elements, because 6 > 5. 

In ordinal number assignments, we associate the numerical relation 

‘<’ with sequential empirical relations like ‘arrives before’, ‘is 

faster than’, etc.: if one bus receives the number 5 (‘the fifth bus’), 

and another one receives the number 6 (‘the sixth bus’), we can 

deduce that the first one arrived earlier at the depot, because 5 < 6. 

In nominal number assignments, we associate the numerical 

relation ‘=’ (or ‘≠’, respectively) with the empirical relation of 

(non-)identity: if one bus receives the number 5 (‘the #5 bus’), and 

another one receives the number 6 (‘the #6 bus’), we expect them 

to go on different lines, because 5 ≠ 6. 

Given these different ways in which we employ them, what can we 

then identify as the essential properties of numbers? When we have 

a look at the relations that we draw on in each case, it turns out that 

we do not have to ask much of our numbers: in order to work in 
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nominal number assignments, they have to be well-distinguished, 

so that the relation ‘=’ (or ‘≠’) holds; for cardinal and ordinal 

number assignments, they have be ordered within a progression, so 

that the relation ‘>’ or ‘<’ identifies sequential positions. If we 

want to make sure that there are no limits to the size of the 

empirical structures that numbers can be assigned to, we might 

want to add as a third requirement that our number sequence should 

be infinite.  

This supports a criteria-based approach to numbers, an approach 

that sees numbers as tools that are used to assess different (cardinal, 

ordinal, and nominal) properties in empirical objects, and as such 

tools, must satisfy certain criteria: a number sequence, we can say, 

is a sequence that fulfills three requirements4 – it must (1) have 

well-distinguished elements, (2) be a progression, (3) be infinite – 

and this sequence must be applied to empirical objects in a pattern 

of dependent linking. 

Adopting such a criteria-based approach means, then, that when we 

identify a sequence that fulfills our number criteria, this sequence 

can be used as a number sequence; its elements can be employed as 

numerical tools. Hence, ‘tools’ here is used in the same way we use 

it in everyday speech, say, when talking about tools like hammers. 

For an object to be successfully used as a hammer, it has to satisfy 

certain criteria (e.g. be of a sufficiently hard material, have a handle 

etc.); if it satisfies these criteria and if we actually use it as a 
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hammer, say, in order to drive a nail into a wall, then this object is 

a hammer in the sense that it is used as a tool for hammering. 

Similarly, if a sequence satisfies the number criteria we identified 

above and if it is used to assess empirical properties in a pattern of 

dependent linking, then this sequence is a number sequence in the 

sense that it is used as a tool in number assignments. 

Hence, we are not looking for abstract entities called ‘numbers’, 

which, following the traditional approach, would be defined as sets 

of sets (or as sets of collections, cf. Hurford 1987). Defining 

numbers as sets or collections specifies them as cardinal, something 

I believe should be avoided, given their status as flexible tools that 

cover cardinal, ordinal, and nominal contexts. What we are looking 

for is a progression that fulfills our criteria for numerical tools, and 

this means, among other things, that it is not specialised for 

applications to sets, but can be used in non-cardinal contexts as 

well. What sequences can we now identify as such numerical tools? 

1.3 What numbers we use 

A good candidate for the job of numbers is a certain kind of 

number words, namely the counting sequences of natural 

languages: sequences of words like ‘one, two, three, four, …’. As 

words, they are well-distinguished from each other by their 

phonological representations, fulfilling the first requirement for 

numbers we identified above. Unlike other words, though, they also 
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meet the other two conditions on numbers: they are ordered within 

a progression, and this progression is infinite, that is, for any given 

element of a counting sequence, one can always tell its successor. 

In order to achieve this constructive infiniteness, a counting 

sequence makes use of linguistic recursion: applying recursive 

lexical rules, one can derive numerals from numerals from 

numerals …, which ensures that the sequence will never run out of 

elements.5 

Their sequential order distinguishes counting words from other, 

non-numerical words and is responsible for their exceptional status 

within the linguistic system.6 But while it makes counting words 

outsiders in language, this feature is at the core of the numerical 

side of their personality: it is the crucial characteristic we draw on 

when we use them as numbers. 

And it is counting words we actually employ in every-day number 

assignments: we do not use them to denote something, but rather, 

to do something, namely to figure out cardinalities, sequential 

ranks, and identities in the course of number assignments. For 

instance, in order to find out how many buses are in a parking lot, 

one would match up each bus with a counting word, starting with 

‘one’ and using them in their sequential order, such that the first 

bus that one counts receives the word ‘one’, the second receives the 

‘two’, and so on, until the last receives, say, the word ‘twelve’. 

This number word is then used to indicate the cardinality of the 
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whole set, and it can do so because of its sequential position in the 

counting sequence. 

This differs radically from what we usually do with words. In 

particular, counting words are not used for naming objects, they do 

not fulfill referential purposes, as other words do: one does not 

mean to name the first bus ‘one’, the next one ‘two’ etc. Rather, 

one uses counting words as gadgets to figure something out. 

Taken together, this means that counting words are not names for 

numbers, but verbal numerical tools: they form a progression of 

well-distinguished entities with an instrumental, non-referential 

status in number assignments. As a result, counting words have a 

dual status: on the one hand, they are verbal elements, on the other 

hand, they are numerical tools. 

The special status of counting words as entities correlating the 

linguistic and the numerical domain has been emphasised in other 

accounts of numerals and numerical thinking as well, most notably 

by Hurford (1987), who points out that “numeral systems lie in the 

intersection of the human language faculty and the number faculty” 

(p.3). Note, though, that according to the account I developed here, 

the dual status of counting words crucially means that they are 

numbers (as well as words), rather than number names, that is, they 

do not refer to extra-linguistic ‘numbers’, but instead are used as 

numbers right away. 
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In contrast to that, Hurford (1987) follows the traditional approach 

by assuming two separate systems: a system of numbers (defined as 

sets of collections), and a system of numerals that denote them; he 

characterises numeral systems as “systems of names” (p.12), and 

numbers as “the non-linguistic entities denoted by numerals” 

(p.178). The way in which language contributes to numeracy under 

such an account is less fundamental than what I suggest here: if 

numerals are names for numbers, language can help us develop 

such names and hence allows us to reason about numbers,7 but it 

does not give us numbers directly, within the linguistic system.8 

If, on the other hand, we identify counting words as verbal 

numerical tools, this then means that language gives us instances of 

numbers, words that we can employ as numbers, rather than just as 

names that we employ to denote numbers and to reason about them. 

But how can such tools emerge if we do not have a number concept 

already, a concept that allows us to grasp the logic of number 

assignments? In the following two sections, I describe the 

foundations that the emergence of numerical tools could build on, 

and then I develop a possible scenario for the gradual co-evolution 

of counting sequences and numerical concepts. 
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2. Foundations for the emergence of numbers 

What do we need for our number concept to emerge? More 

specifically, what was already there before numbers emerged, and 

what had to develop still? 

Based on the discussion in the previous section, we can identify 

two cognitive systems that are relevant for our number concept. 

System 1 supports the grasp of empirical properties such as the 

cardinality of sets, the position of elements in a sequence, and the 

identity of elements in a set. System 2 supports the grasp of 

numbers as tools that are used in a pattern of dependent linking to 

assess these properties in empirical objects. It is this second system 

that makes the human number concept so powerful; it brings 

together cardinal, ordinal, and nominal relationships between 

empirical objects under the umbrella of number assignments, and 

allows us to assess cardinalities (as well as ranks and identities) 

well beyond the limits of our perception. 

The development of these two systems can draw on cognitive 

capacities coming from different sources: system 1 is supported by 

early concepts of empirical properties that we share with other 

species; system 2 is uniquely human and makes use of a cognitive 

pattern provided by the human language faculty. 
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2.1 Prenumerical concepts of quantity, rank, and identity 

In order to grasp the empirical properties we assess in number 

assignments, we can make use of evolutionarily old capacities that 

have been found in other species, too. Mammals and birds have 

been shown to distinguish small sets of different sizes, and to 

perform simple transformations on them, indicating a prenumerical, 

biologically determined concept of cardinality.9 Another gift from 

our mental heritage is the apprehension of serial order, and – 

related to this – of an object’s position within a progression. Again, 

this capacity was demonstrated in a number of experiments with 

different animal species, among them canaries, rats, monkeys, and 

apes.10 

Similar evidence comes from human infants. In particular, 

newborns have been shown to discriminate small set sizes,11 and 

babies as young as 5 months are able to perform transformations on 

small sets.12 Infants have also been shown to possess a (possibly 

domain-specific) knowledge of physical objects that enables them, 

among others, to pick out discrete objects in their environment and 

to represent some of their properties even when the objects are 

moved out of their view,13 indicating an early basis for the 

distinction (identity versus non-identity) of objects. 

Note, though, that these are prenumerical concepts of empirical 

properties, rather than numerical capacities: they provide the 

cognitive underpinnings to grasp the relevant empirical properties 
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in number assignments – set size (cardinal), sequential rank 

(ordinal), and identity (nominal) – but they do not support numbers 

themselves, the tools we use to assess these properties in a pattern 

of dependent linking between two relational structures. In 

particular, prenumerical representations of set sizes are supported 

by iconic mental representations: they draw on ‘object files’, 

mental tokens that are filed in short-term memory and work like 

tallies, representing the elements of a set.14 This way, object files 

allow us to discriminate between sets of one, two, and three 

elements and to perform simple transformations on them by way of 

iconic representations: a set of object files represents elements of 

an empirical set, but it is not part of a numerical relational 

structure, and the representation does not involve any dependent 

linking. 

2.2 Non-numerical dependent linking 

The cognitive faculty that endows us with the capacity for 

dependent linking is a uniquely human domain: our language 

faculty. Language is characterised by a combination of arbitrary 

links between individual signs and their referents, and non-arbitrary 

(namely, diagrammatically iconic15) links between the structure of 

complex signs and their meaning that allow us to produce and 

understand an unlimited number of complex constructions. 
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This is possible because the interpretation of complex linguistic 

signs is based on an association of relations: we associate relations 

between signs with relations between their referents. For instance, 

in order to find out that in a sentence like ‘The dog bites the rat.’ 

the dog is the biter and the rat is the one who gets bitten, we do not 

need to learn these correlations by heart. Rather, we associate sign-

sign relations like subject of, and object of with conceptual 

relations like agent of and patient of. 

Hence, in language, we do not focus on individual signs and 

individual referents, but on their positions within their respective 

systems. The link between ‘dog’ and agent and ‘rat’ and patient 

does not draw on features of ‘dog’ as an individual word, but is 

dependent on its position within the sentence: a linguistic instance 

of dependent linking. This association of relations is a central 

feature of language as a human faculty, the feature that allows 

humans to make the step from indexical signs to symbolic 

thinking.16 

Ultimately, this means that language provides a cognitive pattern 

that can be used in the application of numbers: in linguistic 

reference, a relational structure of signs is associated with a 

relational structure of (conceptualisations of) objects, just as in 

number assignments, we need a relational structure of numbers to 

be associated with a relational structure of objects.17 
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How do we get from one domain to the other, from a linguistic 

pattern of dependent linking to a numerical one? This is where 

counting sequences come in: as verbal sequences, they bring with 

them not only linguistic recursion – and hence, constructive 

infiniteness – but also the expectation to be assigned to objects in a 

pattern of dependent linking. Due to their dual status, counting 

sequences make an ideal vehicle to take us from one cognitive 

domain, language, to the other, number.18 Once we use a sequence 

of words for instrumental, rather than referential purposes, it is only 

a small step towards a full-blown number concept. 

So, how could such sequences emerge? The following section 

describes a possible scenario for the evolution of verbal numerical 

tools, showing how the gradual emergence of counting sequences 

and the development of a more and more comprehensive number 

concept could have supported each other. 

3. An evolutionary scenario 

We can think of the co-evolution of number concepts and counting 

sequences as a development in four main stages. Stage 1 starts with 

iconic representations of cardinality. These representations can be 

non-verbal (like notches), or verbal, that is, constituted by words. 

At stage 2, the elements of some verbal iconic representations (that 

is, words) appear in a stable order, supported by their correlation 

with body parts, in particular with fingers, that are also used for 
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cardinal icons. At stage 3, this stable order supports indexical links 

between individual words and individual cardinalities. At stage 4, 

these indexical links give rise to dependent links: a counting 

sequence is born. The pattern of association can now be generalised 

to cover non-cardinal as well as cardinal contexts, supporting a 

full-blown, unified number concept. The following sections 

describe these stages in more detail. 

3.1 Stage 1: Iconic roots 

Numerical development begins with a strictly prenumerical stage: 

no number assignment takes place yet. Instead, we find iconic 

representations of cardinality, that is, representations that are based 

on similarity. Such representations do not involve dependent 

linking, but are supported by the mental object files I mentioned 

above: mental tokens that are stored in short-term memory. We 

store one object file for each element of the represented set, hence 

the set of object files has the same cardinality as the set of objects it 

represents. By drawing on this similarity, the set of object files 

works as some kind of mental tallies, that is, as an iconic 

representation of a set size. As we have seen in 2.1 above, this 

grasp of set sizes is an evolutionarily old capacity that is evident in 

human infants as well as in other species. 

Typical iconic cardinality representations produced by humans are 

visual tallies. These tallies have the advantage to allow the 
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representation of larger set sizes. They can be used by themselves, 

e.g. in the form of notches on a stick, but they can also be 

accompanied by verbalisations, that is, by some kind of verbal 

tallies. Such a combination of verbal and non-verbal tallies is 

known from early Australian cultures, for instance from Aranda, as 

described by Strehlow (ca. 1945): 

“Seven,” for instance, was normally expressed by putting down 

in the sand seven strokes side by side, with the words “njinta 

˜na˜na, arbu ˜na ˜na˜na, arbũna ˜na˜na, etc. … kalla ˜na˜nantma” (= 

“here is one, here is another, here is another, etc. … here is the 

last “). “Ten” was expressed by putting up both hands and 

spreading out all ten fingers and saying “lakintja” = “this 

many.”         (Strehlow ca.1945:103) 

Evidence for an early stage of tally usage in human history comes 

from a 30,000 year old fossilised wolf’s bone that was found at a 

mammoth hunters’ base in Dolní Våstonice. Interestingly, the 

notches on such prehistoric finds – including the ones on that 

wolf’s bone – come often in multiples of 5, suggesting an early use 

of fingers as ‘body tallies’ for iconic representations of cardinality 

(Absolon 1957). This is supported by modern-day evidence 

pointing to an influence of finger tallying on counting sequences, in 

particular 

 the abundance of base-10 (or 5 or 20)-structures in the counting 

sequences of the world; 
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 frequent diachronic links of counting words to expressions for 

fingers; 

 diachronic links of counting words to expressions referring to 

the act of (un-)bending fingers.19 

3.2 Stage 2: The emergence of stable order 

The use of fingers (and other body parts) as tallies can lead to the 

emergence of a stable conventional order and hence give rise to a 

second stage in number development: when fingers are used to 

represent elements of another set, they tend to be singled out 

successively, following the natural order of fingers on each hand. 

This means that our cardinality representations are generated in a 

fixed, stable order. In this order one could, for instance, start with 

the thumb on one hand, go all the way to the little finger, and then 

use the fingers of the second hand in the same way. As the 

differences in finger counting in modern cultures show, other 

orders are possible as well, of course; what is important here is that 

the salient order of fingers on each hand will support a convention 

for singling out individual fingers successively in a fixed order. 

Note that, given that cardinality representations are still iconic at 

this stage, this order does not fulfill any numerical purpose yet. For 

an icon, it does not matter which of its elements – that is, which 

individual tally – is produced first and which one last, since in the 

end, the whole set of tallies stands for a set of objects. For instance, 
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if we want to represent a set of five sheep iconically with our 

fingers, it does not matter in which order we unbend (or bend) our 

fingers, as long as every single sheep is associated with exactly one 

finger, so that in the end, the whole fist stands for the whole set of 

sheep. 

Hence, we do not need to presuppose any additional numerical 

concepts for this development. All we need for stable order to 

emerge is the systematic use of fingers in cardinality icons. 

Given that body tallies are frequently accompanied by verbal tallies 

(namely the names for the body parts in question), a stable 

conventional order of fingers used in cardinality icons will lead to a 

stable conventional order of words. A stable list of words, a 

conventional verbal sequence, will then represent a set of objects 

iconically, such that each object is associated with exactly one 

word in our list. 

Such non-verbal tallies accompanied by verbal ones can be found 

in body counting systems in Papua New Guinea, for instance in the 

Oksapmin language (cf. Saxe 1981). In order to represent a set size 

in these systems, one points to body parts in a fixed order (starting 

with the thumb on one side, going up on the arm and all the way to 

the head and down again via the other arm to the other hand) while 

saying aloud the name of each body part, identifying as many body 

parts as there are elements of the empirical set one wants to 

represent. 
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Evidence for an iconic usage of word lists can also be found in 

individual development, in the acquisition of counting words by 

young children. When children learn to count, they first go through 

a stage where they use sequences of counting words to represent 

the cardinality of sets. At this stage, a child will not respond with 

one number word when asked to tell the cardinality of a set, for 

instance, when asked to tell how many teddy bears she has in her 

room, but instead, she will give the whole sequence of words 

leading up to the final number. For instance, if there were four 

teddy bears, she would say “One, two, three, four”, but would then 

not use the final word in her count, “four”, to indicate the number 

of the whole set.20 Only later, around 3 ½ years of age, do children 

learn to produce non-iconic cardinality representations and use 

single words to represent whole sets, based on dependent links that 

associate quantitative relations between set sizes with sequential 

relations between counting words.21 What could this transition 

from iconic to numerical representations be like in ontogenesis? 

3.3 Stage 3: Indexical links 

At the stage I described in the previous section, we find lists of 

words used in a stable, conventional order to represent set sizes 

iconically. This can give rise to a third stage in number 

development, where individual words acquire indexical links with 
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certain cardinalities. The basis for this is the prominent status of the 

final element in a verbal list. 

The final word in a sequence is always more salient and more 

accessible than the other. This leads, for instance, to ‘recency 

effects’ shown in memory experiments: the last word in a list can 

be better recalled and memorised than the others (probably based 

on a buffer in short-term memory).22 

This leads to a prominent status of the final word that is used in an 

iconic cardinality representation. Once the words are used in stable 

order, for a set of a given cardinality, the same word will always 

come last and hence be particularly salient for the representation of 

this cardinality. This, then, will support the emergence of indexical 

links between individual words and sets of a certain cardinality. 

Evidence for the significance of such links comes from diachronic 

associations between counting words and sets of a particular size, 

which can still be found in a lot of modern counting sequences, e.g. 

in languages as diverse as Russian (where ‘sorok’, forty, goes back 

to Old Nordic ‘sekr’, the word for furs that were traded in bundles 

of forty), and Malinke (where ‘wáa’, one thousand, derives from 

the word for standardised baskets containing 1000 cola nuts). 

3.4 Stage 4: Dependent linking and generalisation 

Given that we have indexical links between individual words and 

sets of a certain cardinality, we now have verbal representations of 
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cardinality. It is then only a small step from indexical links to the 

dependent links we want for a full-blown number concept: because 

we are in language, we can make use of the linguistic pattern of 

dependent linking. Based on this pattern, indexical links between 

words and cardinalities can evolve into dependent links, such that 

sequential relations in our word list are associated with quantitative 

relations between sets. 

According to Deacon’s (1997) account of language evolution, the 

transition of indices into a symbolic linguistic system (i.e., a system 

of signs that is based on what I called ‘dependent linking’) was 

supported by ritual contexts. Ritualised routines involve the 

repeated correlation of (vocal or non-vocal) tokens with objects, 

often accompanied by pointing gestures, which sets up a context of 

indexical relationships. According to Deacon (1997), the 

redundancy involved in these routines supports an attentional shift 

from concrete, indexical sign-object associations to abstract sign-

sign relationships. This way, the repetitive context of rituals can 

support the grasp of symbolic systems. 

In a similar vein, repetitive routines can support the emergence of 

relational structures in number development. The use of stable 

word lists for our cardinality representations constitutes ritualised – 

repetitive and conventionalised – counting routines that emphasise 

sequential relationships between the words involved. By doing so, 

they support a shift from individual words to a relational structure. 



 
 

23 

Ultimately, this supports the transition from indexical links 

between individual words and cardinalities to dependent links 

between a relational structure of counting words and a relational 

structure of sets. Elements of these two relational structures can 

then be associated by way of dependent linking. 

We now have a sequence of well-distinguished elements with an 

instrumental status in cardinality assignments. This means that the 

elements of this sequence constitute verbal numerical tools: a 

counting sequence is born. 

So far, these tools are confined to cardinal number assignments. 

However, since these assignments are not based on individual 

similarities between signs and objects, but rather on an association 

of relations (given that we employ dependent linking), the way is 

open to generalise the usage of our numerical tools and apply them 

to other, non-cardinal contexts. For this generalisation, counting 

words keep the instrumental status they have in cardinal 

assignments, and they also still undergo dependent linking. All that 

is new is that the dependent links we need for our number 

assignment will now focus on non-cardinal relations, namely 

ordinal and nominal ones. 

A second field ready for expansion is the size of our counting 

sequence. Since our numerical tools are verbal ones, we can use the 

full power of linguistic recursivity, the recursivity that counting 

words bring with them as lexical items. This allows us to generate 
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infinitely many new counting words, based on a finite set of 

primitive elements and rules for their combination. This way, 

linguistic recursivity provides constructive infiniteness for our 

number sequence. 

At this stage, then, we have fully functioning numerical tools: we 

have an infinite verbal sequence that is employed, by way of 

dependent linking, in order to assess cardinal, ordinal, and nominal 

relations between empirical objects. 

4. Conclusion 

In the approach I presented here I made three main points: I argued 

for a non-Platonic view of numbers and a distinction of numbers 

and cardinality, for the gradual emergence of number concepts 

starting from iconic roots and going hand-in-hand with the gradual 

emergence of counting sequences, and for a strong impact of the 

language faculty on the development of numerical thinking. By 

way of conclusion, let me summarise the significance of these 

points for a view of numerical thinking and numeral semantics and 

of the language-number relationship. 

4.1 Non-Platonic view of numbers; distinction of numbers and 

cardinality 

I have characterised numbers as tools that are used in different 

kinds of number assignments to identify empirical properties like 
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set sizes, ranks in a sequence, and (non-)identity within a set. Such 

an account involves both weaker and stronger assumptions than 

popular accounts of number that form the basis for most analyses 

of numeral semantics. 

It makes weaker assumptions in the sense that it does not 

presuppose any abstract entities ‘numbers’ that are somehow out 

there in the world and need to be grasped by us when we acquire a 

concept of number or understand the meaning of cardinal numerals. 

Instead, numbers are regarded as cognitive tools that are developed 

by humans. Our criteria-based approach identified the crucial 

properties for these tools: what we need our numbers to be, is a 

progression (preferably infinite) of well-distinguished elements. As 

I have argued in this article, this means in particular that counting 

sequences of natural languages are suitable candidates for the job 

of numbers: as words, they are well-distinguished from each other, 

and in contrast to other kinds of words, they are sequentially 

ordered and form an infinite list. 

Crucially, this means that these numerals do not refer to numbers, 

but are numbers: they are not the names of non-linguistic entities 

‘numbers’, but linguistic instances of numbers. And since numbers 

are not regarded as abstract entities, this means that counting words 

are verbal instances of numerical tools, that is, verbal tools we use 

in number assignments. 
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While this makes the approach I put forward leaner than standard 

accounts of numerical thinking, in another respect, it makes 

stronger demands, namely by distinguishing cardinality and 

numbers. As I have argued here, numbers are flexible and powerful 

tools that are used in a pattern of dependent linking to assess a 

broad range of properties in empirical objects. In contrast to this, 

cardinality is one of these properties – and by no means the only 

one: cardinality is an empirical property that can be assessed with 

numbers, in the same way that ranks in a sequence and the 

(non-)identity of elements within a set are empirical properties that 

can be assessed with numbers (namely, in ordinal and nominal 

number assignments, respectively). Numbers are the tools we use 

to identify these different properties in empirical objects, they are 

not one of the properties. 

One of the implications of this distinction is that evidence for early 

concepts of cardinality in animals and human babies is not 

interpreted as evidence for numerical thinking. Rather, I have 

argued, it indicates prenumerical iconic concepts. In human 

development, these concepts support the grasp of one of the 

empirical properties we assess with numbers. 

4.2 Gradual emergence of a systematic number concept 

The main part of this article was dedicated to showing how these 

cognitive tools we call ‘numbers’ could have been developed in 
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human history. I presented a possible route to numbers that 

suggests a co-evolution of iconic elements developing into 

counting words, and cardinality representations developing into 

number concepts. 

The crucial point shown by this scenario is that, if we understand 

counting sequences as verbal numerical tools (as sketched in 

section 1), we can account for number development as a 

development by gradual transitions, based on small evolutionary 

steps: a development that starts from iconic representations that we 

share with other species and leads to a systematic and 

comprehensive number concept. Let me summarise these 

transitions from one stage to the next. 

The first stage draws on evolutionarily old iconic roots: it is 

characterised by non-verbal and verbal tallies that are supported by 

mental object files – mental tallies that allow us to grasp different 

set sizes and that we share with other species. At the second stage, 

the use of body tallies, and in particular the use of fingers, leads to 

a stable order in our tallying, and since body tallies are often 

accompanied by names for the respective body parts, this stable 

order can then be passed on to the verbal domain. If verbal tallies 

are used frequently, the salience of the last word in a list will 

support indexical links between individual counting words and 

particular set sizes, leading to stage three in number development: 

from a parallel usage of verbal and non-verbal cardinal icons, we 
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have proceeded to using individual words from a list as indices for 

individual cardinalities. At the fourth stage of number 

development, ritual contexts emphasise word-word relations in our 

list of indices and thus support the emergence of dependent linking. 

At this stage, we draw on sequential relations between our words to 

represent quantitative relations between sets. This usage of words 

allows us to expand our number concept in two directions: (1) 

based on recursive linguistic rules, we can increase our word set 

and thus handle set sizes far beyond the limits of our senses and up 

to infinity; (2) since we associate relations and are not dependent 

on iconic or indexical links anymore, we can generalise the usage 

of our numerals to non-cardinal contexts, yielding a unified concept 

of number that encompasses cardinal as well as ordinal and 

nominal applications. 

4.3 Impact of the language faculty on the development of numerical 

thinking 

The approach I put forward characterises the human language 

faculty as a crucial factor in the emergence of systematic numerical 

thinking in our species. According to this approach, language 

contributes in three main ways to number development: 

(1) Material. Verbal elements, namely the counting sequences of 

natural languages, are an important instance of numerical 

tools. It is words – used first for iconic cardinality 
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representations, and later as fully-blown numerical tools in 

number assignments– that trigger the emergence of number 

in human development. 

(2) Application. Language as a symbolic system provides a 

cognitive pattern of dependent linking that can be adapted for 

the application of words as tools in cardinal, ordinal, and 

nominal number assignments. 

(3) Generation. Linguistic recursivity yields words from words 

and thus allows us to generate an infinite verbal number 

sequence. 

The first two points are crucial for the development of a number 

concept: with counting words, language gives us verbal numbers, 

and with dependent linking, it gives us a way to use them in order 

to assess empirical properties in systematic number assignments. 

According to this account, language is a prerequisite for numeracy 

not only in the sense that it allows us to reason about numbers and 

to grasp concepts of higher numbers, but, more fundamentally, in 

the sense that it provides numbers directly, within the linguistic 

system itself: language provides a progression of verbal entities 

that fulfill the role of numbers in a pattern of dependent linking. 

These two aspects, being a progression and being applied by way 

of dependent linking (in order to assess cardinal, ordinal, and 

nominal properties of empirical objects), are part and parcel of 

what constitutes numbers. In comparison to this, the third way in 
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which language supports numerical development, namely by 

providing linguistic recursivity, is rather less important for our 

number concept. Recursion lays the grounds for constructive 

infiniteness, but this is not a necessary feature of a sequence we 

want to use in number assignments: as long as we only cope with 

finite empirical relational structures, a finite numerical sequence 

will do fine, and accordingly, not all cultures have an infinite, 

recursive number system (although, given that they have 

recursivity in language, once the need arises they can develop an  

infinite number system, or implement one from another culture). 

Language supports the implementation of recursivity in the 

numerical domain, but it does not necessarily trigger it. Once 

recursivity is employed, though, this opens the way for infiniteness 

in our number sequence, and eventually for a whole new range of 

mathematical objects that go far beyond the positive integers. 

Hence, with counting words and dependent linking, language 

provides the crucial elements for numerical thinking, it gives us 

numbers as powerful and flexible mental tools; with recursion, it 

provides the means for an optional, yet substantial, upgrade of 

these tools. 
Taken together, this means that when looking at the emergence of 

number, we are looking at a fundamentally shared enterprise, a 

deeply interwoven development of numerical and linguistic 

aspects. This co-evolution of number concepts and number words 
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suggests that it is no accident that the same species that possesses 

the language faculty as a unique trait, should also be the one that 

developed a systematic concept of number. 
 

                                                 
1 I would like to thank Charles Stewart, James Hurford, and an anonymous 
reviewer for comments on a previous version of this article. 
2 Cf. Wiese (2003a: ch.1). 
3 More precisely, number assignments are constituted by homomorphic 
mappings between a numerical relational structure and an empirical relational 
structure (cf. Krantz et al. 1971, Narens 1985). 
4 Of these requirements, only the first two are strictly necessary. As mentioned 
above, the third one, infiniteness, is only relevant once we want to avoid any 
limits for the range in which our numbers can be applied; as long as we only deal 
with finite empirical relational structures, we do not need infiniteness in our 
number sequence. 
5 For a detailed discussion of the recursive rules governing the generation of 
numerals cf. Hurford (1975; 1987:ch.5). 
6 Cf. also Hurford (1987:6): “In one clear respect, numerals are unlike almost 
anything else in language. Numeral expressions are ordered, in the counting 
sequence.” The sequential order, as well as their non-referential status (which 
will be discussed below) makes counting words also different from other words 
in first language acquisition, cf. Wiese (2003a: ch.3). 
7 Cf. for instance Hurford (1987:306): “The capacity to reason about particular 
numbers, above about 3, comes to humans only with language”. 
8 Hence, while, like the present account, Hurford (1987) emphasises the 
importance of language for the development of numerical thinking, unlike the 
account I develop here, he characterises language as “the mental tool by which 
we exercise control over numbers.” (p.305), rather than the system that provides 
numbers directly. 
9 Cf. Dehaene (1997), Carey (1998), Butterworth (1999) for overviews. 
10 Cf. Pastore (1961) for experimental evidence on canaries; Davis & Bradford 
(1986) and Suzuki & Kobayashi (2000) on rats;  Orlov et al. (2000) on monkeys, 
and Kawai & Matsuzawa (2000) on apes. 
11 Antell & Keating (1983). 
12 Wynn (1992). 
13 Cf. Spelke (1990). 
14 For a discussion of object files cf. Mix (1999), Uller et al. (1999), Carey 
(2001). In order to represent the cardinality of a set, object files must be applied 
to collections of objects that are subsumed under a certain concept. For this kind 
of set formation, early salient concepts as physical object or discrete sound are 
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already available in prelinguistic infants in the first months of life. As a study 
conducted by Wynn et al. (2002) showed, five-month-old infants might even be 
able to employ concepts as sophisticated as group in cardinality judgments. 
In addition to object files, a second mental system can be employed in the grasp 
of quantities, namely that of analog magnitudes (cf. Whalen 1999; Gallistel & 
Gelman 2000, Feigenson et al. 2004, Nieder 2005). Analog magnitudes are based 
on representations of accumulated quantity. Since in contrast to object files, such 
representations are fuzzy rather than discrete, I focus on object files for the 
evolution of number concepts that involve representations of discrete cardinality. 
Note that just like object files, analog magnitudes provide iconic, rather than 
numerical representations of set sizes (cf. Wiese 2003b for a detailed discussion). 
15 Cf. Peirce (1931: 2.277). 
16 Cf. Deacon (1997) for an account of symbolic thinking in human evolution. 
17 Note that this kind of linguistic support differs from linguistic bootstrapping of 
the kind suggested by Carey (2004): according to Carey (2004), in language 
acquisition, children integrate representations of natural language quantifiers 
with the counting sequence, to the effect that cardinal meanings of higher 
counting words can be constructed by successively adding ‘one more’ to the 
meaning of their successors in the count list (similarly to the developmental 
account proposed by Hurford 1987). In contrast to this, the present approach 
aims to capture the full flexibility of numbers, with cardinal, ordinal, and 
nominal usages (rather than meanings) alike. The central question here is 
therefore not so much how we arrive at cardinal interpretations for individual 
numerals, but rather, how a general pattern could emerge that allows us to use 
positions in the count list to assess different those kinds of empirical properties 
in number assignments. This is the pattern I identify as dependent linking. 
18 Note that this also solves a puzzle pointed out by Bloom (1994), namely how 
recursivity in language could have supported the emergence of recursivity in the 
numerical domain, given that recursivity is a holistic property of systems and 
cannot be transferred from one domain to the other. Following the approach 
developed here, recursivity could be passed on from language to number because 
it did not have to be transferred as an isolated feature, given that we use counting 
words as verbal numerical tools, that is, given that we employ words as numbers: 
in order to use, in the numerical domain, the recursivity that language provides, 
one does not have to move out of the system in the first place because one can 
use linguistic recursivity right away. 
19 Cf. e.g. Petitot (1876) and Menninger (1958) on Dëne S0uÎiné, a language from 
the Northern Branch of the Athapaskan family spoken in North America. 
According to Menninger's account, the words for ‘one’ to ‘five’ go back to 
expressions meaning ‘the end is bent’ (little finger, one), ‘it is bent once more’ 
(ring finger, two), ‘the middle is bent’ (middle finger, three), ‘only one remains’ 
(thumb, four), and ‘my hand is finished’ (five). Butterworth (1999:61) describes 
a similar phenomenon for Zulu number words. 
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20 In an experiment conducted by Fuson & Mierkiewicz (1980; reported in Fuson 
& Hall 1983), some children, when asked “How many” again, repeated the word 
list as often as seven times, but would not give the last word as an answer. 
21 This is when children acquire what Gelman & Gallistel (1978) called the 
‘Cardinality Principle’. Cf. Gelman (1990), Gallistel & Gelman (1990), and 
Wynn (1990, 1992b, 1998) on individual numerical development and the 
different stages that children go through. The pattern of numerical development 
in phylogenesis is beyond the scope of this paper; in Wiese (2003a: ch.5), 
though, I give a detailed discussion of these stages and of the role of linguistic 
development in the transition from iconic cardinality representations to 
numerical representations based on dependent linking. 
22 On recency effects cf. Murdock (1962), Neath (1993), and Baddeley (1998). 
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