
A Declarative Characterization of Different Types of

Multicomponent Tree Adjoining Grammars†

Laura Kallmeyer (lk@sfs.uni-tuebingen.de)
Collaborative Research Center 833, University of Tübingen,
Nauklerstr. 35, D-72074 Tübingen, Germany.

Abstract. Multicomponent Tree Adjoining Grammars (MCTAGs) are a formalism
that has been shown to be useful for many natural language applications. The
definition of non-local MCTAG however is problematic since it refers to the process
of the derivation itself: a simultaneity constraint must be respected concerning the
way the members of the elementary tree sets are added. Looking only at the result
of a derivation (i.e., the derived tree and the derivation tree), this simultaneity is
no longer visible and therefore cannot be checked. I.e., this way of characterizing
MCTAG does not allow to abstract away from the concrete order of derivation. In
this paper, we propose an alternative definition of MCTAG that characterizes the
trees in the tree language of an MCTAG via the properties of the derivation trees
(in the underlying TAG) the MCTAG licences. We provide similar characterizations
for various types of MCTAG. These characterizations give a better understanding
of the formalisms, they allow a more systematic comparison of different types of
MCTAG, and, furthermore, they can be exploited for parsing.

Keywords: Tree Adjoining Grammar, MCTAG, multicomponent rewriting, Simple
Range Concatenation Grammar

1. Introduction

1.1. Tree Adjoining Grammars

Tree Adjoining Grammar (TAG, see Joshi and Schabes, 1997) is a tree-
rewriting formalism. A TAG consists of a finite set of trees (elementary
trees). The nodes of these trees are labelled with nonterminals and ter-
minals (terminals only label leaf nodes). Starting from the elementary
trees, larger trees are derived using composition operations of substi-
tution (replacing a leaf with a new tree) and adjunction (replacing
an internal node with a new tree). In case of an adjunction, the tree
being adjoined has exactly one leaf that is marked as the foot node
(marked with an asterisk). Such a tree is called an auxiliary tree.
When adjoining such a tree to a node n, in the resulting tree, the
subtree with root n from the old tree is attached to the foot node of
the auxiliary tree. Elementary trees that are not auxiliary trees are

† Preprint version, to appear in Research on Language and Computation. The
original publication will be available at www.springerlink.com.

c© 2009 Kluwer Academic Publishers. Printed in the Netherlands.

mctag-decldef.tex; 30/09/2009; 12:27; p.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14512561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

NP

John

S

NP VP

V

laughs

VP

ADV VP∗

always

derived tree:

S

NP VP

John ADV VP

always V

laughs

Figure 1. Sample TAG derivation

called initial trees. Additionally, TAG allows for each node to specify
the set of auxiliary trees that can be adjoined and, furthermore, to
specify whether adjunction is obligatory or not.

As an example, Fig. 1 shows the TAG derivation of (1).

(1) John always laughs

A derivation starts with an initial tree. In a final derived tree, all
leaves must have terminal labels.

TAG derivations are represented by derivation trees that record the
history of how the elementary trees are put together. A derived tree
is the result of carrying out the substitutions and adjunctions. Each
edge in a derivation tree stands for an adjunction or a substitution.
The edges are labelled with Gorn addresses of the nodes where the
substitutions/adjunctions take place.1 E.g., the derivation tree (2) for
Fig. 1 indicates that the elementary tree for John is substituted for the
node at address 1 and always is adjoined at node address 2.

(2)

laugh

1 2

john always

1 The root has the address ε, and the jth child of the node with address p has
address pj.

mctag-decldef.tex; 30/09/2009; 12:27; p.2

MCTAG 3

S

aux S

did NP VP

you V NP

see ε

S

NPi S∗

which painting

NP

Det N

a N PP

picture P NP∗

i

of

Figure 2. MCTAG elementary trees for extraction from NP

1.2. Multicomponent TAG

An extension of TAG that has been shown to be useful for several
linguistic applications is multicomponent TAG (MCTAG, Joshi, 1987;
Weir, 1988). An MCTAG contains sets of elementary trees. In each
derivation step, one of the tree sets is chosen and all trees from the set
are attached simultaneously to pairwise different nodes in the already
derived tree. The very first definition of MCTAG goes back to (Joshi
et al., 1975) where these grammars are called Simultaneous TAG.

Depending on the nodes to which the different trees from the set
attach, different kinds of MCTAG are distinguished: if all nodes are
required to be part of the same elementary tree, the MCTAG is called
tree-local, if all nodes are required to be part of the same tree set, the
grammar is set-local and otherwise the grammar is non-local. These
three types of MCTAG were introduced in (Joshi, 1987; Weir, 1988).

A derivation starts from an initial tree α being in a singleton set. In
the final derived tree, all leaves must be labelled by terminals.

Tree-local MCTAG have for example been used for extraction out
of complex noun phrases (Kroch and Joshi, 1987) as in the analysis of
(3) in Fig. 2.

(3) which painting did you see a picture of

The term “MCTAG” without further specification is sometimes used
as meaning “set-local MCTAG” (Weir, 1988) and sometimes as a term
for unrestricted (non-local) MCTAG (Becker et al., 1991). In this pa-
per, the term “MCTAG” stands for “non-local MCTAG”, i.e., MCTAG
without any locality requirement.

mctag-decldef.tex; 30/09/2009; 12:27; p.3

4

More recently, various other types of MCTAG have been proposed,
such as Vector MCTAG with Dominance Links (Rambow, 1994), tree-
local MCTAG with node sharing (Kallmeyer, 2005), tree-local MCTAG
with flexible composition (Joshi et al., 2007), k-delayed tree-local
MCTAG (Chiang and Scheffler, 2008) and tree-local MCTAG with
node sharing and tree tuples (Lichte, 2007; Kallmeyer and Parmentier,
2008). We will introduce these different MCTAG formalisms in section
4. Chen-Main and Joshi (2007) provide a good overview of various
linguistic phenomena and the type of MCTAG they require.

In this paper we argue that the simultaneity requirement of the
standard definition for non-local MCTAG is problematic and we pro-
pose an alternative declarative definition of MCTAG. Section 2 formally
introduces TAG and MCTAG and section 3 gives the new MCTAG def-
inition. Section 4 treats different local and non-local types of MCTAG
and gives similar declarative definitions for them. Section 5 sketches a
parsing strategy for MCTAG based on the declarative characterizations
from sections 3 and 4. Section 6 concludes this article.

2. Definition of TAG

In the following, we give a graph-based definition of TAG that differs
from the way TAG is mostly presented in the literature. This new
definition of TAG is, in the first place, useful for the work presented
here and, moreover, gives a good understanding of the formal properties
of TAG.

In order to give a formal definition of TAG, we first need some
preliminary definitions about trees:

DEFINITION 1 (Tree).

1. A finite tree is a directed graph γ = 〈V,E, r〉 such that

− γ contains no cycles,

− only the root r ∈ V has in-degree 0,

− every vertex v ∈ V is accessible from r, and

− all nodes v ∈ V − {r} have in-degree 1, i.e., there is a unique
u with 〈u, v〉 ∈ E.

E+ is the transitive closure and E∗ the reflexive transitive closure
of E. E∗ is called the dominance relation.

A vertex with out-degree 0 is called a leaf. The vertices in a tree
are also called nodes.

mctag-decldef.tex; 30/09/2009; 12:27; p.4

MCTAG 5

2. A tree is ordered if it has an additional linear precedence relation
≺∈ V × V such that

− ≺ is irreflexive, antisymmetric and transitive,

− for all v1, v2 with {〈v1, v2〉, 〈v2, v1〉} ∩ E∗ = ∅: either v1 ≺ v2
or v2 ≺ v1,

− for all v1, v2 ∈ V : if there is either a 〈v3, v1〉 ∈ E with v3 ≺ v2
or a 〈v4, v2〉 ∈ E with v1 ≺ v4, then v1 ≺ v2, and

− nothing else is in ≺.

In this paper, we are only concerned with finite trees and therefore,
we use the term “tree” as denoting “finite tree”.

In the case of TAG, the derived trees and also the derivation trees
are labeled trees. Derived trees have nodes labeled with non-terminals
or terminals, while derivation trees have nodes labeled with names
of elementary trees and edges labeled with node adresses. The node
labeling is given by a function l and the edge labeling by a function g.

DEFINITION 2 (Labeling). A labeling of a graph γ = 〈V,E〉 over a
signature 〈A1, A2〉 is a pair of functions l : V → A1 and g : E → A2

with A1, A2 being disjoint alphabets.

For TAG we need, specifically, the definition of initial and auxil-
iary trees. In the following, we assume an alphabet N of non-terminal
symbols and an alphabet T of terminal symbols.

DEFINITION 3 (Auxiliary and initial trees).

1. A syntactic tree is an ordered labeled tree such that l(v) ∈ N for
each vertex v with out-degree at least 1 and l(v) ∈ (N ∪ T ∪ {ε})
for each leaf v.

2. An auxiliary tree is a syntactic tree 〈V,E, r〉 such that there is a
unique leaf f marked as foot node with l(r) = l(f). We write this
tree as 〈V,E, r, f〉.

3. An initial tree is a non-auxiliary syntactic tree.

Now we can introduce TAG.

DEFINITION 4 (Tree Adjoining Grammar).
A Tree Adjoining Grammar (TAG) is a tuple G =

〈N,T, S, I,A, fOA, fSA〉 where

mctag-decldef.tex; 30/09/2009; 12:27; p.5

6

− N,T are disjoint alphabets of non-terminal and terminal symbols,

− S ∈ N is the start symbol,

− I is a finite set of initial trees, and A a finite set of auxiliary
trees.

− fOA : {v | v is a node in some γ ∈ I ∪A} → {0, 1} and
fSA : {v | v is a node in some γ ∈ I ∪A} → P (A)
where P (A) is the set of subsets of A are functions such that
fOA(v) = 0 and fSA(v) = ∅ for every leaf v.

Every tree in I ∪A is called an elementary tree.

For a given node, the function fOA specifies whether adjunction is
obligatory (value 1) or not (value 0) and fSA gives the set of auxiliary
trees that can be adjoined. Only internal nodes can allow for adjunc-
tion, adjunction at leaves is not possible.2 As a notational convention,
we often omit the function fOA and fSA in the tuple notation, i.e., we
write TAGs as quintuples 〈N,T, S, I,A〉.

In TAG, larger trees are derived from I ∪A by subsequent applica-
tions of the operations substitution and adjunction. The substitution
operation combines a syntactic tree and an initial tree into a new syn-
tactic tree while adjunction combines a syntactic tree and an auxiliary
tree into a new syntactic tree.

DEFINITION 5 (Substitution).
Let γ = 〈V,E, r〉 be a syntactic tree, γ′ = 〈V ′, E′, r′〉 an initial tree

and v ∈ V . γ[v, γ′], the result of substituting γ′ into γ at node v is
defined as follows:

− if v is not a leaf or v is a foot node or l(v) 6= l(r′), then γ[v, γ′]
is undefined;

− otherwise, γ[v, γ′] = 〈V ′′, E′′, r′′〉 with V ′′ = V ∪ V ′ \ {v} and
E′′ = (E \ {〈v1, v2〉 | v2 = v}) ∪ E′ ∪ {〈v1, r

′〉 | 〈v1, v〉 ∈ E}.

A leaf that has a non-terminal label and that is no foot node is called
a substitution node.

DEFINITION 6 (Adjunction).
Let γ = 〈V,E, r〉 be a syntactic tree, γ′ = 〈V ′, E′, r′, f〉 an auxiliary

tree and v ∈ V . γ[v, γ′], the result of adjoining γ′ into γ at node v is
defined as follows:

2 We adopt the standard assumption that adjunction at foot nodes is not allowed.

mctag-decldef.tex; 30/09/2009; 12:27; p.6

MCTAG 7

− if l(v) 6= l(r′), then γ[v, γ′] is undefined;

− otherwise, γ[v, γ′] = 〈V ′′, E′′, r′′〉 with V ′′ = V ∪ V ′ \ {v} and
E′′ = (E \ {〈v1, v2〉 | v1 = v or v2 = v}) ∪ E′ ∪ {〈v1, r

′〉 | 〈v1, v〉 ∈
E} ∪ {〈f, v2〉 | 〈v, v2〉 ∈ E}.

Note that we define adjunctions and substitutions at a node v in
a tree γ not with respect to the address of v in γ as usually done in
TAG (see for example Vijay-Shanker and Weir, 1994). This way, we
avoid the problem of updating node addresses after each adjunction or
substitution.

Now we can introduce derived trees together with their correspond-
ing derivation trees. Derived trees are syntactic trees while derivation
trees are unordered trees.3

In the following, we call a tree an instance of a tree γ if it is isomor-
phic to γ while preserving the labeling. Furthermore, we say that two
trees are disjoint if their node sets are disjoint.

DEFINITION 7 (Derived tree and derivation tree).
Let G = 〈N,T, S, I,A〉 be a TAG.

1. Every instance γ of a γe ∈ I ∪A is a derived tree in G.4

The corresponding derivation tree is 〈{v}, ∅, v〉 with l(v) = γe.
5

2. For pairwise disjoint γ1, . . . , γn, γ such that γ1, . . . , γn are derived
trees in G with derivation trees Di = 〈Vi, Ei, ri〉 (1 ≤ i ≤ n) and
γ = 〈V,E, r〉 is an instance of a γe ∈ I∪A such that v1, . . . , vn ∈ V
are pairwise different with Gorn addresses p1, . . . , pn: if

− γ′ = γ[v1, γ1] . . . [vn, γn] is defined and

− l(ri) ∈ fSA(vi) for all γi ∈ A,

3 According to our definitions of substitution and adjunction, once an adjunction
or substitution is performed on a node, the node disappears (this is the general as-
sumption in standard TAG). This means that multiple adjunctions are not possible.
Consequently, the order of adjunctions and substitutions on a tree does not matter
for the resulting derived tree.

4 We use instances of elementary trees to avoid using twice exactly the same tree,
i.e., the same set of nodes and edges, in a derivation. Instead, the tree instances
involved in one derivation must be pairwise disjoint.

5 While in this definition the labels of nodes in derivation trees are elementary
trees, when depicting a derivation tree, we usually use names of elementary trees
as node labels. These names serve only to avoid drawing the entire tree as label.
Formally, they are not needed, i.e, whenever we talk about an elementary tree γ,
this γ denotes the tree, not its name.

mctag-decldef.tex; 30/09/2009; 12:27; p.7

8

then γ′ is a derived tree in G with a corresponding derivation tree
D = 〈VD, ED, rD〉 such that VD =

⋃n
i=1 Vi ∪ {rD} where rD /∈

⋃n
i=1 Vi is a new node, ED =

⋃n
i=1Ei ∪ {〈rD, r1〉, . . . , 〈rD, rn〉} and

l(rD) = γe and g(〈rD, ri〉) = pi for 1 ≤ i ≤ n.

3. These are all derived trees and derivation trees in G.

We call a derived tree that does not contain substitution nodes or
nodes v with fOA(v) = 1 a saturated derived tree and the corresponding
derivation tree a saturated derivation tree.

Note that we have not defined the process of TAG derivation here. A
derivation tree describes the set of adjunctions and substitutions that
are performed in a derivation. However, it does not specify the order
in which these adjunctions have to be performed. We could traverse
a derivation tree in any order, e.g., start from the root and proceed
top-down or compute first the derived trees of the daughter nodes of
the root and then attach them to the root elementary tree.

TAG derivation trees are important structures. They describe
uniquely the derived tree and they are often the output of pars-
ing. Furthermore, they are usually used as the central structure of
the syntax-semantics interface, i.e., TAG semantics is computed on
the derivation tree (Kallmeyer and Joshi, 2003; Nesson and Shieber,
2006; Kallmeyer and Romero, 2008). Derivation trees are context-free
since the set of derivation trees of a given TAG can be described by a
CFG.

DEFINITION 8 (Tree language).
Let G = 〈N,T, S, I,A〉 be a TAG. The tree language of G is

LT (G) = {γ | γ is a saturated derived initial tree in G with root label
S}. The string language of G is the set of yields of trees in LT (G).

In an MCTAG, the elementary trees are grouped into elementary
tree sets:

DEFINITION 9 (MCTAG).
A multicomponent TAG (MCTAG) is a tuple G = 〈N,T, S, I,A,A〉

where GTAG = 〈N,T, S, I,A〉 is a TAG with elementary trees I∪A, and
A is a partition of I ∪A. A is called the set of elementary tree sets.6

6 Note that this definition does not exclude that the same tree occurs in different
sets or even several times in the same set. In this case, we consider that there are
different trees that look exactly the same (i.e., that are isomorphic while having
identical labels).

mctag-decldef.tex; 30/09/2009; 12:27; p.8

MCTAG 9

Since we assume that every elementary tree occurs in exactly one
of the elementary tree sets, we can uniquely determine the tree set a
given tree belongs to. This is crucial for several of the definitions we
give for different MCTAG variants and also for the way the conditions
imposed for these MCTAG variants can be checked during parsing.
We formulate for instance the condition that whenever a tree from an
elementary tree set is used, all trees from this tree set must be used by
imposing that every two elementary trees γ1, γ2 belonging to the same
tree set must be used the same number of times. Such a formalization
of this condition is only possible if elementary trees belong to unique
tree sets. A disadvantage is of course that in cases where isomorphic
trees appear in different sets, we cannot capture this generalization.
Allowing a tree to appear in different sets would lead to a more compact
representation of the grammar.

For non-local MCTAG we require that in each derivation step, a
new instance of an elementary tree set is chosen and all elements from
this set are adjoined/substituted simultaneously to the already derived
tree:

DEFINITION 10 (MCTAG derivation).
Let G = 〈N,T, S, I,A,A〉 be an MCTAG.

1. Every instance γ of an elementary tree γe ∈ I ∪A such that {γe} ∈
A is a derived tree in G.

2. For pairwise disjoint γ1, . . . , γn, γ such that γ is a derived tree in
G and γ1, . . . , γn are instances of elementary trees γ′1, . . . , γ

′
n with

{γ′1, . . . , γ
′
n} ∈ A and for pairwise different nodes v1, . . . , vn in γ:

if γ′ = γ[v1, γ1] · · · [vn, γn] is defined and if γ′i ∈ fSA(vi) for all vi

with out-degree at least 1 (1 ≤ i ≤ n), then γ ⇒ γ′ and γ′ is a
derived tree in G.
∗
⇒ is the reflexive transitive closure of ⇒.

We call the sequence of adjunctions γ[v1, γ1] · · · [vn, γn] correspond-

ing to a sequence of derivation steps γ
∗
⇒ γ′ a derivation.

In this definition, the elements from the new set instance are added
one after the other. However, since they are added to pairwise different
nodes in γ, the order does not matter and we consider them as being

Furthermore, this definition differs from the definition in (Weir, 1988) in the sense
that Weir defines elementary tree sets as sequences of elementary trees. However,
the usual practice in more recent MCTAG publications is a definition as sets, which
was actually already adopted by the first introduction of MCTAG under the name
of simultaneous TAG in (Joshi et al., 1975).

mctag-decldef.tex; 30/09/2009; 12:27; p.9

10

{

WH

what

}

{

NP

John

}

S’

WH S

NP S

to like

S

to be
certain S∗

S

does S∗

S

seem S∗

Figure 3. MCTAG derivation for (4)

added simultaneously. For this, it is crucial that none of the attachment
sites belongs to any of the new elementary tree instances.

As in TAG, derived trees that do not contain substitution nodes or
nodes v with fOA(v) = 1 are called saturated derived trees and the
tree language of a non-local MCTAG is the set of its saturated derived
initial trees with root label S.

3. A declarative characterization of MCTAG

3.1. Motivation

To illustrate the idea of this paper let us consider the non-local MCTAG
derivation of (4) in Fig. 3.

(4) what does John seem to be certain to like

Here, the tree for to be certain adjoins to the lower S node of the like
tree, the WH and NP nodes of the like tree are substituted for what
and John respectively, and the trees for does and seem are adjoined
simultaneously to the upper S node of like and the root node of to
be certain respectively. These last two operations cannot be performed
before having added to be certain to like, otherwise the simultaneity
requirement cannot be satisfied.

Intuitively, the requirement of attaching all elements of an elemen-
tary set instance simultaneously to pairwise different nodes in a derived
tree is easy to understand and the definition of MCTAG based on
this simultaneity seems clear. However, for the single adjunctions and
substitutions performed in an MCTAG derivation, the simultaneity
requirement imposes certain derivation orders even though a different
order might lead to the same adjunctions and substitutions and to the
same derived tree. E.g., in Fig. 3 one might as well start by adding
does to like (at the higher S node), then adjoin to be certain to like (at
the lower S node) and then adjoin seem to to be certain. This yields

mctag-decldef.tex; 30/09/2009; 12:27; p.10

MCTAG 11

the same derived tree, and the same adjunctions and substitutions are
performed. But the simultaneity requirement is not respected since does
is adjoined at a moment where the adjunctions site for seem is not yet
available. Consequently, in order to check whether a given tree is part
of the tree language of a given MCTAG, one really has to check the
possible derivations of this tree including the different derivation orders.

In contrast to this, in a TAG it is sufficient to check whether there is
a derivation tree that yields the tree in question; one can abstract away
from the order of the derivation steps. E.g. in Fig. 1 it does not matter
in which order John and always are added to laughs. The derivation
tree and consequently the derived tree are the same.

For MCTAG as well one would like to abstract away from differences
with respect to derivation order that do not yield different derived trees
and that do not make any difference concerning the substitutions and
adjunctions that are performed. One way to achieve this is to con-
sider an MCTAG as a TAG G where the elementary trees are grouped
into pairwise disjoint sets. Because of this grouping, only some of the
derivation trees in G are licensed by the MCTAG. Namely those that
satisfy the constraints following from the multicomponent sets and the
simultaneity requirement. This is the idea we will pursue in this paper.

Each MCTAG derivation step is a sequence of substitutions and/or
adjunctions. Consequently, each derivation in an MCTAG G with
G = 〈N,T, S, I,A,A〉 corresponds to a derivation tree in the underly-
ing TAG GTAG = 〈N,T, S, I,A〉 with a node for every elementary tree
component of every instance of an element of A used and an edge for
every adjunction/substitution. Let us define the TAG derivation tree of
such a multicomponent derivation as the corresponding derivation tree
in GTAG.7 We can then define different variants of MCTAG by putting
different constraints on this derivation tree.

Consider for example the derivation trees in Fig. 4. They are both
possible in a TAG with the elementary trees from the MCTAG in Fig. 3.
The first derivation tree is the one for the derivation from Fig. 3. Since
we know that only does and seem are in one set (all other trees are
in singletons) and since there is no dominance relation between does
and seem, this is a possible TAG derivation tree in the MCTAG from
Fig. 3. The second derivation tree in Fig. 4 which is possible in the
underlying TAG (while generating a string different from (4)), should
not be possible in the MCTAG: Since seem adjoins into does, it is not
possible to order the adjunctions and substitutions in such a way as

7 Note that this TAG derivation tree is not the MCTAG derivation tree defined
in (Weir, 1988). We will discuss the difference in Section 4.

mctag-decldef.tex; 30/09/2009; 12:27; p.11

12

TAG derivation tree for the derivation of (4) in Fig. 3:

like

2 22 1 21

does certain what john

ε

seem

TAG derivation tree that does not correspond to

a possible MCTAG derivation:

like

2 22 1 21

does certain what john

ε

seem

Figure 4. TAG derivation trees for the TAG underlying Fig. 3

to add does and seem simultaneously to different nodes in an already
derived tree.

3.2. Declarative MCTAG definition

In general, the TAG derivation trees for MCTAG derivations must have
the two properties described in the following.

Firstly, if an instance of an elementary tree set is used, then all trees
from this set must occur in the derivation tree. This is the multicompo-
nent condition that we will call (MC). Fig. 5 shows a sample derivation
that does not satisfy (MC).

α A

B

ε

{

βa A

a A∗

NA

βb B

B∗

NA
b

}

not

possible:

α

ε

βa

(only one tree from the tree set used)

Figure 5. A derivation that does not satisfy (MC)

In other words, trees γ1 and γ2 from the same elementary tree set
must be used the same number of times in the course of a derivation.
This is expressed by the condition (MC):

DEFINITION 11 (Multicomponent condition).

mctag-decldef.tex; 30/09/2009; 12:27; p.12

MCTAG 13

Let G = 〈N,T, S, I,A,A〉 be an MCTAG, GTAG = 〈N,T, S, I,A〉.
Let D = 〈V,E, r〉 be the derivation tree of a saturated derived initial
tree in GTAG.
D is a multicomponent TAG derivation tree in G iff
(MC) If γ1, γ2 are in the same Γ ∈ A, then
|{v | v ∈ V and l(v) = γ1}| = |{v | v ∈ V and l(v) = γ2}|.

Note that, in order to check this definition on a given derivation tree,
it is not necessary to know which occurrences γ1 and γ2 come from the
same instance of Γ, i.e., it is not necessary to group the elementary
trees involved in the derivation into tree set instances.

The second property is the simultaneity requirement (SIM). It can
be split into two conditions: On the one hand, one tree from an instance
of an elementary tree set cannot be substituted or adjoined into another
tree from the same set instance. An example is shown in Fig. 6.

α A

B

ε

βa A

B A∗

NA

a

βb B

B∗

NA
b

not

possible:

α

0

βa

1

βb

(trees from the same tree set adjoined into each other)

Figure 6. A derivation that does not satisfy the first part of (SIM)

On the other hand, two tree sets cannot be interleaved, i.e., they
must be added one after the other. Consequently, derivation trees as

(5) are not allowed with γ
(i)
1 and γ

(i)
2 being in the same tree set instance

Γi because (5) indicates that there is a cycle in the order of adding the
tree sets: Γ2 must be added before Γ1, Γ3 before Γ2 etc., Γm before Γm−1

and Γ1 before Γm. By transitive closure, Γ1 must be added before Γm

and Γm before Γ1.

(5) γ
(1)
1 γ

(2)
1 γ

(m−1)
1 γ

(m)
1

γ
(m)
2 γ

(1)
2 . . . γ

(m−2)
2 γ

(m−1)
2

An example where this second condition is not satisfied is shown in
Fig. 7.

For non-local MCTAG, these are all constraints the TAG derivation
tree needs to satisfy. If the simultaneity requirement is dropped, only
the multicomponent condition, (MC), must be satisfied. In order to

mctag-decldef.tex; 30/09/2009; 12:27; p.13

14

α
A

B

ε

{

βa A

a A∗

NA

βb B

B∗

NA
b

}

{

βc A

c A∗

NA

βd B

B∗

NA
d

}

not

possible:

α

0 1

βa βd

0 0

βc βb

(βa added before βc but βd added before βb ⇒ neither {βa, βb} nor {βc, βd} can be

added first)

Figure 7. A derivation that does not satisfy the second part of (SIM)

formalize the simultaneity constraint, we introduce the notion of A-
partition of the set V of nodes in a MCTAG derivation tree:

DEFINITION 12 (A-partition).
Let G = 〈N,T, S, I,A,A〉 be an MCTAG, GTAG = 〈N,T, S, I,A〉.

Let D = 〈V,E, r〉 be the derivation tree of a saturated derived initial
tree in GTAG.

A partition V1, . . . , Vn of V is called an A-partition if for each Vi

(1 ≤ i ≤ n) there is a Γi ∈ A such that Γi = {γ | l(v) = γ for some
v ∈ Vi} and |Vi| = |Γi|.

The simultaneity constraint (SIM) is then defined as follows:

DEFINITION 13 (Simultaneity condition).
Let G = 〈N,T, S, I,A,A〉 be an MCTAG, GTAG = 〈N,T, S, I,A〉.

Let D = 〈V,E, r〉 be the derivation tree of a saturated derived initial
tree in GTAG.
D is a simultaneous TAG derivation tree in G iff
(SIM) There is an A-partition V1, . . . , Vn of V such that

(a) For all Vi (1 ≤ i ≤ n) and v, v′ ∈ Vi with v 6= v′: 〈v, v′〉 6∈ E∗.

(b) For all pairwise different V (1), V (2), . . . , V (m) ∈ {V1, . . . , Vn} with
m ≥ 2:

There are no n
(i)
1 , n

(i)
2 ∈ V (i) (1 ≤ i ≤ m) such that 〈n

(1)
1 , n

(m)
2 〉 ∈

E∗ and 〈n
(i)
1 , n

(i−1)
2 〉 ∈ E∗ for 2 ≤ i ≤ m.

(SIM) implies (MC) because of the partition requirement: If we can
partition the nodes into sets Vi such that the labels of each Vi form
an elementary set with no elementary tree occurring more than once,
(MC) is necessarily satisfied.

Now we can show the following lemma:

LEMMA 1.
In a non-local MCTAG G = 〈N,T, S, I,A,A〉 with GTAG =

〈N,T, S, I,A〉, the following holds:

mctag-decldef.tex; 30/09/2009; 12:27; p.14

MCTAG 15

A derivation tree D of a saturated derived initial tree t in GTAG is a
possible TAG derivation tree in G iff D satisfies (SIM).

This lemma corresponds to the Lemma 1 shown in (Kallmeyer, 2005)
except for the following differences in the definition and notation of
(MC1)–(MC3) from (Kallmeyer, 2005) and the condition (SIM) defined
here: In (Kallmeyer, 2005), the nodes of the derivation tree are defined
as instances of elementary trees (not as nodes labeled with elementary
trees). (MC1) from (Kallmeyer, 2005) states that for every instance of
an elementary tree set, if one of its elements occurs in the derivation
tree D, then all of them must occur in D. This is equivalent to the
condition on the partition of the nodes into sets Vi required in (SIM) if
we take a set Vi in (SIM) as a tree set instance Γ in (MC1). Conditions
(MC2) and (MC3) from (Kallmeyer, 2005) are the parts a) and b) of the
(SIM) condition. The adaptation of the proof from (Kallmeyer, 2005)
to the notations used here is given in the appendix.

Lemma 1 gives us a way to characterize non-local MCTAG via the
properties of the TAG derivation trees the grammar licenses. With this
characterization we get rid of the original simultaneity requirement:
The corresponding properties are now captured in the constraints (MC)
and (SIM). But, since these constraints need to hold only for the TAG
derivation trees that correspond to derived trees in the tree language,
sub-derivation trees need not satisfy them. In other words, γ1 and γ2

from the same elementary tree set can be added at different moments
of the derivation as long as the final complete TAG derivation tree
satisfies (SIM).

Note, however, that in order to check (SIM), we need to group the
elementary tree instances of a derivation into set instances. This is
why non-local MCTAG parsing is NP complete. In the following, we
therefore try to find characterizations of the TAG derivation trees of
different types of MCTAG that can be checked without performing this
grouping. A first example was (MC) that only requires the number of
occurrences in a derivation to be the same for trees from the same
elementary tree set.

4. Different types of MCTAG

4.1. Local MCTAG variants

4.1.1. Tree-locality and set-locality
We can define tree-local and set-local TAG derivation trees by impos-
ing further conditions. To satisfy tree-locality, in the TAG derivation
tree, the root label must be in a singleton elementary tree set and,

mctag-decldef.tex; 30/09/2009; 12:27; p.15

16

furthermore, for every instance of a tree set used in the derivation, all
trees from this set instance must be added to the same elementary tree.
Alternatively, we can capture this condition by stating that for every
γ1 and γ2 from the same elementary tree set, every node must have
equal numbers of γ1-daughters and γ2-daughters:

DEFINITION 14 (Tree-locality condition).
Let G = 〈N,T, S, I,A,A〉 be an MCTAG, GTAG = 〈N,T, S, I,A〉.

Let D = 〈V,E, r〉 be the derivation tree of a saturated derived initial
tree in GTAG.
D is a tree-local TAG derivation tree in G iff
(TL) {l(r)} ∈ A and for every Γ ∈ A, γ1, γ2 ∈ Γ and v ∈ V :
|{v′ | 〈v, v′〉 ∈ E and l(v′) = γ1}| = |{v′ | 〈v, v′〉 ∈ E and l(v′) = γ2}|.

From (TL), (MC) and (SIM) follow immediately. Therefore, we can
define tree-local MCTAG by saying that an MCTAG G is tree-local iff
the TAG derivation trees licensed by it satisfy (TL).

The (TL) condition can be encoded in the functions fOA and fSA of
the underlying TAG. This is why tree-local MCTAG generate exactly
Tree Adjoining Languages as observed in (Joshi, 1987).

DEFINITION 15 (Set-locality condition).
Let G = 〈N,T, S, I,A,A〉 be an MCTAG. Let D = 〈V,E, r〉 be the

derivation tree of a saturated derived initial tree in GTAG.
D is called set-local if
(SL) there is an A-partition V1, . . . , Vn of V such that for all Vi

(1 ≤ i ≤ n), either Vi = {l(r)} or there is a Vj (1 ≤ j ≤ n) such that
for every v ∈ Vi there is a v′ ∈ Vj with 〈v′, v〉 ∈ E.

Note that (SL) implies (MC) because of the possibility to partition
V into sets labeled with elementary tree sets required in (SL).

Actually, not only (TL) but even (SL) implies (SIM):

LEMMA 2. Let G = 〈N,T, S, I,A,A〉 be an MCTAG. Let D =
〈V,E, r〉 be the derivation tree of a saturated derived initial tree in GTAG.

If D satisfies (SL) then it satisfies (SIM).

The proof is given in the appendix.
We can therefore define set-local MCTAG imposing only (SL): An

MCTAG G is a set-local MCTAG if the TAG derivation trees licensed
by it satisfy (SL).

For tree-local and set-local MCTAG, Weir (1988) introduces a spe-
cial MCTAG derivation structure called MCTAG derivation tree. This
is a derivation tree where the node labels are elementary tree sets

mctag-decldef.tex; 30/09/2009; 12:27; p.16

MCTAG 17

{

VP

NPnom VP∗ verspricht

} {

VP

NPacc zu reparieren

}

VP

es VP∗

NPacc

ε

VP

NPnom VP verspricht

der M. NPacc zu reparieren

TAG derivation tree:

reparieren

ε 1

verspricht ε-es

1 ε

Mechaniker es

Figure 8. SN-MCTAG derivation of (6)

and the edge labels are tuples of node addresses. Each edge stands for
adjunctions/substitutions of the trees from the daughter set into the
trees of the mother sets at the nodes whose addresses are specified in
the edge label. However, such derivation trees can be obtained only for
set-local (and then also for tree-local) MCTAG. They are not available
for non-local MCTAG or for the other types of MCTAG that we will
describe in this paper.

4.1.2. SN-MCTAG
Another variant that also involves a locality constraint is tree-local
MCTAG with shared nodes (SN-MCTAG, Kallmeyer, 2005). See the
derivation of (6) in Fig. 8 to illustrate the idea of SN-MCTAG:

(6) ... dass [es]1 der Mechaniker [t1 zu reparieren] verspricht

... that it the mechanic to repair promises

‘... that the mechanic promises to repair it’

Consider the root of the reparieren tree. The verspricht tree adjoins
to this node. In standard TAG, in the derived tree (see Fig. 8), the
root node belongs only to verspricht, i.e., further adjunctions at that
node are adjunctions to verspricht. In contrast to this, in SN-MCTAG,
the node in question is considered as being shared by reparieren and
verspricht since it is a merging or unification of the root nodes of

mctag-decldef.tex; 30/09/2009; 12:27; p.17

18

reparieren and verspricht. Further adjunctions at that node can be
considered being either adjunctions to reparieren or to verspricht. This
node sharing, combined with tree-locality, gives additional expressive
power (Kallmeyer, 2005).

SN-MCTAG are defined via the properties of the underlying TAG
derivation trees: In the TAG derivation trees in SN-MCTAG, for each
elementary tree set there must be a γ such that all elements from the
tree set are either daughters of γ or linked to a daughter of γ by a chain
of adjunctions at root nodes. For example, in Fig. 8 ε-es is substituted
into reparieren while es is adjoined to the root of verspricht which is
adjoined to reparieren.

In the following, we adapt the definition from (Kallmeyer, 2005) to
the formalization of TAG and TAG derivation trees used here.

DEFINITION 16 (SN-tree-locality). Let G = 〈N,T, S, I,A,A〉 be an
MCTAG. Let D = 〈V,E, r〉 be the derivation tree of a saturated derived
initial tree in GTAG.
D is called SN-tree-local if
(SN-TL) there is an A-partition V1, . . . , Vn of V such that for every

Vi = {n1, . . . , nm} (1 ≤ i ≤ n) there is a node n0 ∈ V such that: for
all nj (1 ≤ j ≤ m) either 〈n0, nj〉 ∈ E or there are nj,1, . . . , nj,k ∈ V
for some k > 1 with nj = nj,k, 〈n0, nj,1〉 ∈ E and for 1 ≤ l ≤ k − 1:
〈nj,l, nj,l+1〉 ∈ E and g(〈nj,l, nj,l+1〉) = ε (i.e. root adjunction).

G is a tree-local MCTAG with Shared Nodes (SN-MCTAG) if the
TAG derivation trees licensed by it satisfy (SIM) and (SN-TL). ((MC)
follows from (SN-TL).)

Here (in contrast to set-local MCTAG), the simultaneity constraint
cannot be omitted. As an example consider the MCTAG in Fig. 9. If
we impose (SIM) and (SN-TL), we obtain the copy language {ww |w ∈
{a, b}∗}: In each derivation step, one of the tree sets is picked and,
simultaneously, its first element adjoins to the A-daughter of the S-
node, its second element to the B-daughter. However, if we impose
only (MC) and (SN-TL), we obtain the language {ww′ |w and w′

contain equal numbers of as and equal numbers of bs} since we can
delay adjunctions: The only condition is that all the A-auxiliary trees
involved in the derivation adjoin at some point to the A-daughter of
the S-node and similarly for the B-auxiliary trees. (Except the first,
all of them adjoin to the root, so SN-tree locality is trivially satisfied.)

mctag-decldef.tex; 30/09/2009; 12:27; p.18

MCTAG 19

S

A B

ε ε

A

a A∗

NA

B

a B∗

NA

A

b A∗

NA

B

b B∗

NA

Figure 9. SN-MCTAG for the copy language

4.1.3. TT-MCTAG
A more recent MCTAG variant proposed in the context of anlyzing Ger-
man scrambling data is SN-MCTAG with Tree Tuples (TT-MCTAG,
Lichte, 2007). The grammar itself is slightly different from standard
MCTAG since the elementary tree sets contain two parts: 1. one lex-
icalized tree γ, the unique head tree, and 2. a set of auxiliary trees,
the so-called argument trees. Such a pair is called a tree tuple. During
derivation, the auxiliary trees must either adjoin directly to their head
tree or they must be linked by a chain of adjunctions at root nodes to a
tree that attaches to the head tree. In other words, in the corresponding
TAG derivation tree, the head tree must dominate the auxiliary trees
such that all positions on the path between them, except the first one,
must be root node addresses. This is again the notion of adjunction
under node sharing.

Fig. 10 shows the TT-MCTAG analysis of (6). In this derivation,
the NPnom auxiliary tree adjoins directly to verspricht (its head tree)
while the NPacc tree adjoins to the root of a tree that adjoins to the
root of a tree that adjoins to reparieren.

In contrast to SN-MCTAG, TT-MCTAG does not require simul-
taneity. The simultaneity requirement (SIM) formulated for standard
MCTAG (without tuples) is actually in contradiction to the TT-
MCTAG requirement of adjoining the argument trees of a tuple to their
head tree or to trees attached to their head tree. Even simultaneity of
the adjunctions of the auxiliary trees of a tuple to their head tree is
not required.

DEFINITION 17 (TT-MCTAG).
Let G = 〈N,T, S, I,A,A〉 be an MCTAG. G is a Tree-Tuple MC-

TAG with Shared Nodes (TT-MCTAG) iff every Γ ∈ A has the form
{γ, β1, . . . , βn} where γ is a tree with at least one leaf with terminal
label, the head tree, and β1, . . . , βn are auxiliary trees, the argument
trees. We write such a set as a tuple 〈γ, {β1, . . . , βn}〉.

mctag-decldef.tex; 30/09/2009; 12:27; p.19

20

〈

VP

VP∗ verspricht
,

{

VP

NPnom VP∗

} 〉 〈

NPnom

der Mech.
, {}

〉

〈

VP

zu reparieren
,

{

VP

NPacc VP∗

} 〉 〈

NPacc

es
, {}

〉

TAG derivation tree:

reparieren

ε

verspricht

ε

NPnom

1 ε

Mechaniker NPacc

1

es

Figure 10. TT-MCTAG derivation of (6)

As a notation, for a given argument tree β, h(β) denotes the head of
β. For a given TT-MCTAG G, H(G) is the set of head trees and A(G)
the set of argument trees.

DEFINITION 18 (SN-tree-tuple-locality). Let G = 〈N,T, S, I,A,A〉
be a TT-MCTAG, GTAG = 〈N,T, S, I,A〉. Let D = 〈V,E, r〉 be the
derivation tree of a saturated derived initial tree in GTAG.
D is a SN-tree-tuple-local TAG derivation tree in G iff
(SN-TTL) For all argument trees β ∈ A(G):

If v1, . . . , vn ∈ V are pairwise different nodes with l(vi) = h(β) for 1 ≤
i ≤ n, then there are pairwise different u1, . . . , un ∈ V with l(ui) = β
for 1 ≤ i ≤ n such that for all i, 1 ≤ i ≤ n: either 〈vi, ui〉 ∈ E or there
are nodes ui,1, . . . , ui,k ∈ V with k > 1 such that ui = ui,k, 〈vi, ui,1〉 ∈ E
and for 1 ≤ j ≤ k − 1: 〈ui,j , ui,j+1〉 ∈ E and g(〈ui,j , ui,j+1〉) = ε (i.e.
root adjunction).

Note that a derivation tree satisfying (SN-TTL) does not necessarily
satisfy (MC) since it only requires that for every h(β)-node there is a
corresponding β-node but not vice versa.

We define that for a TT-MCTAG G, a derivation tree D in the
underlying TAG GTAG is licensed in G iff it satisfies (MC) and (SN-
TTL).

mctag-decldef.tex; 30/09/2009; 12:27; p.20

MCTAG 21

Checking the condition (SN-TTL) as it is provided here requires
to find an appropriate partition of the derivation tree nodes. In other
words, one has to group the tree instances into set instances. In order
to avoid this, Kallmeyer and Satta (2009) provide a characterization of
(SN-TTL) based on a counting of elementary trees.

For a node v in a derivation tree D, we write Dv to represent the
subtree of D rooted at v. For γ ∈ (I∪A), we defineDom(v, γ) as the set
of nodes of Dv that are labeled by γ. Furthermore, for an argument tree
β ∈ A(G), we let π(v, β) = |Dom(v, β)| − |Dom(v, h(β))|. Intuitively,
π(v, β) gives us the number of pending β-nodes below v, i.e., the number
of β instances below v whose heads are higher.

DEFINITION 19 (SN-tree-tuple-locality, revised).
Let G be an TT-MCTAG, GTAG = 〈N,T, S, I,A〉. Let D = 〈V,E, r〉

be the derivation tree of a saturated derived initial tree in GTAG.
D is a SN-tree-tuple-local TAG derivation tree in G iff
(SN-TTL-counting) For every v ∈ V and every β ∈ A(G), the

following conditions both hold.

1. π(v, β) ≥ 0.

2. If π(v, β) > 0, then one of the following conditions must be
satisfied:

a) l(v) = β and π(v, β) = 1;

b) l(v) = β and π(v, β) > 1, and there is some 〈v, vε〉 ∈ E with
g(〈v, vε〉) = ε and π(vε, β) + 1 = π(v, β);

c) l(v) /∈ {β, h(β)} and there is some 〈v, vε〉 ∈ E with g(〈v, vε〉) =
ε and π(vε, β) = π(v, β);

d) l(v) = h(β) and there is some 〈v, vε〉 ∈ E with g(〈v, vε〉) = ε
and π(v, β) ≤ π(vε, β) ≤ π(v, β) + 1.

(Kallmeyer and Satta, 2009) have shown the following lemma:

LEMMA 3. Let G be a TT-MCTAG with underlying TAG GT , and let
D = 〈V,E, r〉 be a derivation tree in GT that satisfies (MC). D satisfies
(SN-TTL) if and only if it satisfies (SN-TTL-counting).

Furthermore, they show that the characterization of TT-MCTAG
derivation trees using (SN-TTL-counting) can be used to do polynomial
parsing of TT-MCTAG since, due to the lexicalization of the grammar,
the number of pending arguments is always limited, depending on the
length of the input.

mctag-decldef.tex; 30/09/2009; 12:27; p.21

22

Besides this general definition of TT-MCTAG, a limitation for
TT-MCTAG was introduced (Kallmeyer and Parmentier, 2008): TT-
MCTAG are of rank k if, at any time during the derivation, at most
k argument trees depending on higher heads in the derivation tree are
still waiting for adjunction.

DEFINITION 20 (TT-MCTAG derivation of rank k).
Let G be an TT-MCTAG, GTAG = 〈N,T, S, I,A〉. Let D = 〈V,E, r〉

be the derivation tree of a saturated derived initial tree in GTAG.
D is of rank k iff
(TT-k) There is no v ∈ V such that

∑

β∈A(G)

(|{v′ | l(v′) = β and 〈v, v′〉 ∈ E+}|

− |{v′ | l(v′) = h(β) and 〈v, v′〉 ∈ E∗}|) > k

A TT-MCTAG G is of rank k (or a k-TT-MCTAG for short) iff
each TAG derivation tree D = 〈V,E, r〉 licenced in G satisfies (MC),
(SN-TTL) and (TT-k).

Note that, since k is limited, the list of pending argument trees
at every node in the derivation tree is limited as well. Consequently,
we can encode this list as a condition in the names of elementary trees
and model the adjunctions of pending arguments with the fOA and fSA

functions. In other words, for a given k-TT-MCTAG we can construct
an equivalent TAG that generates the same derived trees but that does
not capture the relations between heads and arguments. This idea is
followed in the construction of an equivalent simple 2-RCG (Range
Concatenation Grammar) for a given k-TT-MCTAG in (Kallmeyer and
Parmentier, 2008). We therefore obtain that k-TT-MCTAG generate
exactly all Tree Adjoining Languages.

In general, the universal recognition problem for TT-MCTAG and
probably also for k-TT-MCTAG is NP-hard (Søgaard et al., 2007). But
parsing can be done in an amount of time polynomial in the length
of the input string (Kallmeyer and Parmentier, 2008; Kallmeyer and
Satta, 2009).

4.1.4. Delayed tree-locality
Another recent proposal for extending the expressive power of TAG
with multicomponents while keeping the idea of tree-locality is delayed
tree-locality (Chiang and Scheffler, 2008). This idea arouse from the
desire to provide a precise formal definition of flexible composition.

Let us briefly sketch the idea of flexible composition. Flexible com-
position (Joshi et al., 2007) is a way of viewing TAG derivation so that
the operation of adjoining a tree β into a tree γ can be alternatively

mctag-decldef.tex; 30/09/2009; 12:27; p.22

MCTAG 23

{

WH

what

}

{

NP

John

}

S’

WH S

NP S

to like

S

to be
certain S∗

S

does S∗

S

seem S∗

flexible composition

derivation tree:

to like

sub@1 sub@21 adj@2 adj@22

what John does seem

rev@ε

to be certain

Figure 11. Tree-local MCTAG with flexible composition

viewed as attachment of γ to β. Applied to MCTAG, this “flexible”
view allows to turn non-local derivations into tree-local derivations.

Formalizing flexible composition leads to operations different from
adjunction and substitution, namely to reverse-adjunctions as defined
in (Chiang and Scheffler, 2008). As an example consider the non-local
derivation from Fig.3, repeated in Fig.11 together with its flexible com-
position derivation tree. If we adopt flexible composition , we can say
that to be certain reverse-adjoins to seem which in turn adjoins to like.
The reverse adjunction is a splitting at a node (here the root of to be
certain) and a wrapping around an auxiliary tree. As can be seen in
Fig.11, the corresponding derivation tree satisfies (TL).

However, this new derivation tree is not the underlying TAG deriva-
tion tree since it has reverse adjunction edges. Instead of using this new
operation, one can also think of flexible composition as delayed adjunc-
tion as introduecd in (Chiang and Scheffler, 2008): All trees from one
set must be adjoined (or substituted) at some point of the derivation
but, instead of adding all to the same elementary tree, some of them
can be delayed. Chiang and Scheffler restrict this mechanism of delayed
adjunction by requiring that elementary trees from at most k different
elementary tree set instances can be delayed at every particular node
in the underlying TAG derivation tree.

In order to formulate the corresponding condition, we need the
definition of the delay of a set of nodes in the TAG derivation tree.

DEFINITION 21 (delay).
Let D = 〈V,E, r〉 be a TAG derivation tree and U ⊆ V .

mctag-decldef.tex; 30/09/2009; 12:27; p.23

24

1. The destination of U (in D) is the least common ancestor v ∈ V
of all u ∈ U .

2. The delay of U is then
⋃

u∈U{u
′ | 〈v, u′〉, 〈u′, u〉 ∈ E∗, u′ 6= v} where

v is the destination of U .

DEFINITION 22 (k-delayed-tree-locality).
Let G be an MCTAG, GTAG = 〈N,T, S, I,A〉. Let D = 〈V,E, r〉 be

the derivation tree of a saturated derived initial tree in GTAG.
D is a k-delayed tree-local TAG derivation tree with multicompo-

nents in G iff
(k-DTL) there is an A-partition V1, . . . , Vn of V such that for every

v ∈ V : |{V ′
i |V

′
i delay of a Vi, 1 ≤ i ≤ n and v ∈ V ′

i }| ≤ k.

This is a formalization of the condition for a k-delayed tree-local
MCTAG deriation trees from (Chiang and Scheffler, 2008). The con-
dition (k-DTL) makes use of the partition of the derivation tree into
elementary tree set instances. As already mentioned, if possible, we
want to avoid this since it increases the complexity of parsing. For k-
delayed tree-locality, we can avoid the grouping into tree set instances
by, instead, requiring that the TAG derivation tree satisfies (MC) and
that the number of incomplete elementary tree sets below any given
node v is limited to k. This number can be obtained as follows. For
every elementary tree set Γ and every γ1, γ2 ∈ Γ, the following holds: If
there are n1 nodes with label γ1 and only n2 < n1 nodes with label γ2

below v, then this means that when visiting v, there are at least n1−n2

incomplete sets Γ. In general, the maximal number of γ-nodes for any
γ ∈ Γ minus the minimal number of γ-nodes for any γ ∈ Γ provides
the number of incomplete Γ-sets. This is formulated in the following
alternative definition of (k-DTL-counting):

DEFINITION 23 (k-delayed-tree-locality, revised).
Let G be an MCTAG, GTAG = 〈N,T, S, I,A〉. Let D = 〈V,E, r〉 be

the derivation tree of a saturated derived initial tree in GTAG.
For any γ ∈ I ∪ A, v ∈ V we define domγ(v) = |{v′ | 〈v, v′〉 ∈

E∗, l(v′) = γ}| as the number of γ-nodes dominated by v.
D is a k-delayed tree-local TAG derivation tree in G iff
(k-DTL-counting) for every v ∈ V :
∑

Γ∈A

(max
γ∈Γ

|Domγ(v)| − min
γ∈Γ

|Domγ(v)|) ≤ k.

The following lemma holds:

LEMMA 4. Let G be a MCTAG with underlying TAG GT , and let
D = 〈V,E, r〉 be a derivation tree in GT .

mctag-decldef.tex; 30/09/2009; 12:27; p.24

MCTAG 25

D satisfies (k-DTL) if and only if it satisfies (MC) and (k-DTL-
counting).

This lemma follows immediately from the fact that for any node v in
the derivation tree and any set Γ ∈ A, the maximal number of γ-nodes
for any γ ∈ Γ dominated by v minus the minimal number of γ-nodes for
any γ ∈ Γ dominated by v provides the number of incomplete instances
of the set Γ below v, i.e., the number of Γ instances with v being part
of their delay.

Note that (MC) follows from (k-DTL) but not from (k-DTL-
counting). (SIM) is not required for delayed tree-local MCTAG: An
MCTAG G is a k-delayed tree-local MCTAG iff the TAG derivation
trees licensed by it satisfy (MC) and (k-DTL-counting).

We will show in section 5 how this characterization can be exploited
for parsing lexicalized k-delayed tree-local MCTAG in polynomial time.

Chiang and Scheffler (2008) show that for every tree-local MCTAG
with flexible composition, there is a weakly equivalent 2-delayed tree-
local MCTAG that even has the same elementary tree sets.

Note that k-TT-MCTAG is a special case of k-delayed tree-locality
where the head of an elementary tree set instance is its destination.
Therefore, the following lemma holds:

LEMMA 5. Let G = 〈N,T, S, I,A,A〉 be an TT-MCTAG. Let D =
〈V,E, r〉 be the derivation tree of a saturated derived initial tree in GTAG.

If D satisfies (TT-k) and (SN-TTL) then it satisfies (k-DTL-
counting).

Similar to tree-local MCTAG and k-TT-MCTAG, k-delayed tree-
local MCTAG are also weakly equivalent to TAG (Chiang and Scheffler,
2008): The set of delayed trees can be encoded in the trees and thereby
constrain the derivation tree.

4.2. Non-local MCTAG variants

Other restrictions sometimes imposed on MCTAG derivations come
from so-called dominance links. Examples are MCTAG with domi-
nance links (Becker et al., 1991) and Vector MCTAG with Dominance
Links (V-TAG, Rambow, 1994). Vector MCTAG, defined in (Rambow,
1994), are like non-local MCTAG except that there is no simultaneity
requirement for the derivations.

Dominance links are constraints of the form f ≥ n where f is a foot
node in some tree β, n an internal node in some tree γ such that β
and γ belong to the same elementary tree set. A dominance link f ≥ n
means that whenever an instance of this set is used in a derivation,

mctag-decldef.tex; 30/09/2009; 12:27; p.25

26

VP

es VP∗

NPacc

ε

VP

NPnom VP∗ verspricht

NPnom

der M. VP

NPacc zu reparieren

TAG derivation tree:

reparieren

ε 1

verspricht ε-es

1 ε

Mechaniker es

Figure 12. Multicomponent derivation with dominance constraints

in the final derived tree, the node corresponding to f in this instance
must dominate the node corresponding to n (or anything adjoined to
this node).

As an example for dominance constraints see the analysis of (6) in
Fig. 12. Here again the scrambled es and the empty trace it leaves
behind are two elements of the same elementary tree set. Furthermore,
the dominance link between the foot node of the es auxiliary tree
and the root of the empty NP means that in the resulting derived
tree the moved element must c-command its trace. A derivation as in
Fig. 12 is therefore possible. The crucial property of the corresponding
TAG derivation tree (see Fig. 8) is that es is adjoined to the spine8 of
verspricht which is adjoined to reparieren at a node that dominates the
substitution site of ε-es (the tree with the empty trace).

Dominance constraints are restrictions on the derived trees. We
can formulate a corresponding constraint (Dom) for the possible TAG
derivation trees.9

We first define the notion of spine-dominance. For this we need spine
addresses: a spine address is a an address of a node on the spine of
an auxiliary tree, i.e., a prefix of the foot node address. A node in a
derivation tree spine-dominates another node if all edge labels on the
path that links them are spine addresses (see Fig. 13).

8 The spine is the path from the root to the foot node.
9 Note that dominance constraints are particularly of interest in non-local MC-

TAG variants. In most local variants they can be simulated choosing appropriate
node labels.

mctag-decldef.tex; 30/09/2009; 12:27; p.26

MCTAG 27

β1

p1 ← position on spine

β2

. . .

βn−1

pn−1 ← position on spine

βn

Figure 13. Spine-dominance

DEFINITION 24. Let G = 〈N,T, S, I,A〉 be a TAG, D = 〈V,E, r〉 a
derivation tree in G.

A node n ∈ V spine-dominates a node n′ ∈ V iff

• either n = n′

• or there are n1, . . . , nm ∈ V (m > 1) with n = n1, n
′ = nm and for

all 1 ≤ i < m: 〈ni, ni+1〉 ∈ E with g(〈ni, ni+1〉) a spine address in
l(ni).

As a notation, we write E∗
Spine for the spine-dominance relation.

If we have a chain of adjunctions such that γ1 adjoins to some γ0, γ2

adjoins to γ1, γ3 to γ2 etc. up to some γn, then in the derived tree the
following holds: the foot node of γn dominates a node k from γ0 iff (i)
this node is below the node γ1 adjoins to and (ii) in the corresponding
derivation tree γ1 spine-dominates γn. This is what the next lemma
tells us.

In order to formulate the lemma, we need to specify the nodes in a
derived tree that correspond to nodes in the elementary trees that have
been used in the derivation. For this purpose, we define a mapping δ
from nodes in elementary trees that label nodes in the derivation tree
to nodes in the corresponding derived tree. An example for a δ-function
for a given pair of derivation and derived tree is shown in Fig. 14.

In the following, as a notation, we write node(τ, p) for the node at
position p in a tree τ .

DEFINITION 25 (δ-function).
Let G = 〈N,T, S, I,A〉 be a TAG. Let D = 〈VD, ED, rD〉 be a deriva-

tion tree with t = 〈Vt, Et, rt〉 being a corresponding derived tree such
that for every node v ∈ VD, tv is the instance of l(v) used to obtain t.

Then we define a (partial) function δD,t : {n |n is a node in a γ ∈
I ∪A} × VD → Vt as follows:

1. If VD = {rD} then for every node position p in l(rD):
δD,t(node(l(rD), p), rD) = node(trD

, p).

mctag-decldef.tex; 30/09/2009; 12:27; p.27

28

TAG:

α
S

ε

β
S

a S∗ b

α:
S

ε

ε

β:
S

a S∗ b

ε

β:
S

a S∗ b

S

a S b

a S b

ε

Figure 14. Sample δ-function for the derivation of aabb

2. If |VD| > 1 such that v1, . . . , vn ∈ VD are all nodes with 〈rD, vi〉 ∈
ED and g(〈rD, vi〉) = pi for 1 ≤ i ≤ n, then for all addresses p in
l(rD):

If p /∈ {p1, . . . , pn} then δD,t(node(l(rD), p), rD) = node(trD
, p).

If p = pi ∈ {p1, . . . , pn} then δD,t(node(l(rD), pi), rD) =
δD,t(node(l(vi), ε), vi).

3. For all pairs 〈n, v〉 with v ∈ VD and n is a node in an elementary
tree γ 6= l(v), δD,t(node(l(v), p), v) is undefined.

We can now formulate our lemma:

LEMMA 6. Let D = 〈VD, ED, rD〉 be a TAG derivation tree with t =
〈Vt, Et, rt〉 being a corresponding derived tree.

Let n0, . . . , nm ∈ VD with 〈ni−1, ni〉 ∈ ED and g(〈ni−1, ni〉) = pi for
all 1 ≤ i ≤ m. Let l(nm) be an auxiliary tree with foot node f and,
furthermore, let k be a node in l(n0) with address p. Then the following
holds:

〈δD,t(f, nm), δD,t(k, n0)〉 ∈ E∗
t iff 〈n1, nm〉 ∈ ED

∗
Spine and p1 is a

prefix of p.

The proof of this lemma is given in the appendix.
Below we define the condition (Dom) as a condition on the TAG

derivation tree. For a dominance constraint f ≥ k with f foot node
of β and k internal node in γ, (Dom) requires that k is not part of a
derived tree γ′ that is attached to β (i.e., in the derivation tree, the
β-node does not dominate the γ-node) since adjunction at foot nodes
is not allowed. Furthermore, (Dom) distinguishes two cases (a) and (b)

mctag-decldef.tex; 30/09/2009; 12:27; p.28

MCTAG 29

Case (a):

γ

p ← p prefix of address of k

β′

p′ ← position on spine

. . .

p′′ ← position on spine

β

(In the derived tree the foot
node of β dominates the foot
node of β′, and the foot node
of β′ dominates k.)

Case (b):

γ′

p1 prefix of p2 → p1 p2

γ1 γ2

spine dominance → ← dominance

β γ

(In the derived tree the
foot node of β dom-
inates the foot node
of γ1 that dominates
everything attached to
γ2.)

Figure 15. Cases (a) and (b) of (Dom)

that correspond to the configuration of Lemma 6. The two cases are
depicted in Fig. 15. Condition (a) makes sure that if 〈γ, β〉 ∈ E∗ then
the foot node f of β dominates the foot node of β′, and the foot node
of β′ dominates k. (b) guarantees that if 〈γ, β〉 /∈ E∗ then f dominates
the foot node of γ1 that dominates everything attached (by adjunction
or substitution) to γ2, including the node k.

DEFINITION 26. Let G = 〈N,T, S, I,A,A〉 be an MCTAG, DomG a
set of dominance links for G.

Let D = 〈V,E, r〉 be the derivation tree of a saturated derived initial
tree in GTAG.
D respects the dominance links in DomG iff it satisfies the following:
(Dom) there is an A-partition V1, . . . , Vn of V such that for each

Vi, 1 ≤ i ≤ n and each nβ, nγ ∈ Vi such that l(nβ) = β ∈ A, l(nγ) =
γ ∈ I ∪A and there is a dominance constraint f ≥ k with f foot node
of β, k an internal node in γ:

〈nβ, nγ〉 /∈ E∗ and

(a) if 〈nγ , nβ〉 ∈ E∗, then there is a n′ ∈ V with 〈nγ , n
′〉 ∈ E,

g(〈nγ , n
′〉) a prefix of the address of k in γ and 〈n′, nβ〉 ∈ E∗

Spine.

mctag-decldef.tex; 30/09/2009; 12:27; p.29

30

(b) if 〈nγ , nβ〉 /∈ E∗ and n is the least common ancestor of nγ and
nβ in D, then there are n1, n2 ∈ V with 〈n, n1〉, 〈n, n2〉 ∈ E,
g(〈n, n1〉) = p1, g(〈n, n2〉) = p2 where p1 is a prefix of p2 and
〈n1, nβ〉 ∈ E∗

Spine and 〈n2, nγ〉 ∈ E
∗.

In MCTAG with dominance links the TAG derivation trees licensed
by the grammar must satisfy (SIM) and (Dom) while in V-TAG they
must satisfy only (Dom). ((Dom) implies (MC).)

With Lemma 6, this is almost immediate: In the case (a) where the
γ-node dominates the β-node in the derivation tree, Lemma 6 applies
immediately. In the second case, (b), there must be a lowest γ′-node
that dominates both, the γ-node and the β-node. Then, necessarily,
for a dominance relation in the derived tree between any node from
β and any node from γ, the immediate daughter n1 (with label γ1) of
the γ′-node that dominates β must adjoin higher than the immediate
daughter n2 of the γ′-node that dominates γ. Futhermore, according
to Lemma 6, for the foot node of β to dominate anything below the
adjunction site of γ1, there must be a spine-dominance relation between
n1 and the β-node.

Fig. 16 gives an overview of the different combinations of the con-
straints on TAG derivation trees and of the corresponding grammar
formalisms. (For a combination of constraints, “–” means that it does
not exist while “??” means that it exists but has not been defined in
the literature.)

5. Parsing lexicalized MCTAG

The proposed declarative definition of different types of MCTAG can
be exploited for parsing. It allows us to consider the underlying TAG
derivation tree and check whether this derivation tree satisfies (MC),
(SIM), (Dom) or one of the locality conditions. In other words, parsing
can be done in two steps: 1. parsing in the underlying TAG GTAG

and 2. check of conditions on derivation trees for all derivation trees
obtained in the first step. Of course the two steps need not be done
separately, they could be combined. In the following we will briefly
sketch how this could be done.

We concentrate on lexicalized MCTAG where lexicalization means
that every tree set in the grammar contains at least one lexicalized tree.
It does not require all trees in the grammar to be lexicalized.

DEFINITION 27 (Lexicalized MCTAG).

mctag-decldef.tex; 30/09/2009; 12:27; p.30

MCTAG 31

Local MCTAGs weakly equivalent to TAG:

(TL) (SN-TTL), (TT-k) (k-DTL-counting)

(MC) tree-local k-TT-MCTAG k-delayed tree-local

MCTAG MCTAG

(MC), tree-local – ??

(SIM) MCTAG

Other local MCTAG variants:

(SL) (SN-TL) (SN-TTL)

(MC) set-local ?? TT-MCTAG

MCTAG

(MC), set-local SN-MCTAG –

(SIM) MCTAG

Non-local MCTAG variants:

(Dom) –

(MC) Vector MCTAG with Vector

Dominance Links (V-TAG) MCTAG

(MC), non-local MCTAG non-local

(SIM) with dominance links MCTAG

Figure 16. Summary of different MCTAG variants

Let G = 〈N,T, S, I,A,A〉 be an MCTAG. G is lexicalized if for
every Γ ∈ A, there is at least one γ = 〈V,E, r〉 ∈ Γ such that there is a
v ∈ V with l(v) ∈ T .

The advantage of using lexicalized MCTAG is that the number of
trees used in a derivation is always linear in the input length. If k is
the maximal number of trees per tree set in the grammar, then every
derivation tree for an input of length n has no more than kn nodes.

mctag-decldef.tex; 30/09/2009; 12:27; p.31

32

5.1. TAG parsing with GTAG

Since we want to check conditions on derivation trees, we choose to do
TAG parsing using an algorithm that traverses the derivation tree.10 In
order to achieve this, we transform our TAG into a specific grammar
that encodes its derivation trees. One way to do this is to transform
the TAG into an equivalent 2-Linear Context-Free Rewriting System
(LCFRS, Vijay-Shanker et al., 1987; Weir, 1988) or an ordered simple 2-
Range Concatenation Grammar (SRCG, Boullier, 2000). Simple RCG
can be seen as a notation of LCFRS where the functions for yield
computation are defined inside the rules.11 We will use simple RCG to
describe TAG derivation trees.

5.1.1. Range Concatenation Grammars
The idea underlying SRCG is that non-terminals are considered as
predicates that are true for certain string tuples. The productions in
an RCG (called clauses) rewrite predicates ranging over parts of the
input by other predicates. The clause S(aXb) → S(X) for instance
signifies that S is true for a part of the input if this part starts with an
a, ends with a b, and if, furthermore, S is also true for the part between
a and b.

DEFINITION 28 (Range Concatenation Grammar).
A range concatenation grammar (RCG) is a 5-tuple G =

(N,T, V, P, S) where

1. N is a finite set of predicate names with an arity function dim:
N → IN+,

2. T and V are disjoint finite sets of terminals and variables.

3. P is a finite set of clauses of the form ψ0 → ψ1 . . . ψm, where
m ≥ 0 and each of the ψi, 0 ≤ i ≤ m, is a predicate of the form
Ai(α

i
1, . . . , α

i
dim(A)). Each αi

j ∈ (T ∪ V)∗, 1 ≤ j ≤ dim(A) and

0 ≤ i ≤ k, is an argument.

4. S ∈ N is the start predicate name with dim(S) = 1.

As a shorthand notation for Ai(α1, . . . , αdim(A)), we use Ai(~α).

10 All TAG parsing algorithm (see for instance Vijay-Shanker and Weir, 1993)
produce derivation trees but in most cases, parsing is done on the derived tree, i.e.,
the operations of the parser correspond to a traversal of the derived tree.

11 For instance, the LCFRS with rules S → f(A), A → g(A), A → h() and
functions f(〈x, y〉) := 〈xy〉, g(〈x, y〉) := 〈ax, by〉, h() := 〈a, b〉 can be written as the
SRCG with clauses S(XY)→ A(X, Y), A(aX, bY)→ A(X, Y), A(a, b)→ ε.

mctag-decldef.tex; 30/09/2009; 12:27; p.32

MCTAG 33

DEFINITION 29 (Simple Range Concatenation Grammar).

1. A RCG G = (N,T, V, P, S) is a k-RCG if for all A ∈ N, dim(A) ≤
k.

2. A RCG G = (N,T, V, P, S) is simple if for all c ∈ P , every X ∈ V
occurring in c occurs exactly once in the lefthand side and exactly
once in the righthand side, and each argument in the righthand side
of c contains exactly one X ∈ V .

3. A simple RCG G = (N,T, V, P, S) is ordered if for all ψ0 →
ψ1 · · ·ψm ∈ P , it holds that if a X1 ∈ V precedes a X2 ∈ V in
one of the ψi, 1 ≤ i ≤ m, then X1 also precedes X2 in ψ0.

The ordering requirement does not change the expressive power,
i.e., ordered simple RCG is equivalent to simple RCG (Villemonte de
La Clergerie, 2002).

In order to be able to talk about specific parts of the input, i.e.,
in order to distinguish different occurrences of the same string in the
input, we introduce ranges.

DEFINITION 30 (Range).
Let w be the input word, w = w1 . . . wn (n ≥ 0) with wi ∈ T for

1 ≤ i ≤ n.

− Pos(w) = {0, . . . , n}.

− We call a pair 〈l, r〉 ∈ Pos(w) × Pos(w) with l ≤ r a range in
w. Its yield 〈l, r〉(w) is the substring wl+1 . . . wr.

− For two ranges ρ1 = 〈l1, r1〉, ρ2 = 〈l2, r2〉: if r1 = l2, then ρ1 ·ρ2 =
〈l1, r2〉; otherwise ρ1 · ρ2 is undefined.

In order to apply a clause, its variables and terminals are instan-
tiated with substrings of the input, or, rather with ranges 〈i, j〉 that
denote the substring between positions i and j in the input string. Then
the lefthand side of the clause can be replaced with the righthand side.

DEFINITION 31 (Clause instantiation).
Let G = (N,T, V, P, S) be a RCG. For a given clause c = A0(~α0) →

A1(~α1) · · · Am(~αm) (0 ≤ m) and a string w = t1 . . . tn

1. an instantiation of c with respect to w consists of a function
f : {t′ | t′ is an occurrence of some t ∈ T in the clause} ∪ V ∪
{Epsi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai), ~αi(j) = ε} → {〈i, j〉 | i ≤
j, i, j ∈ IN} such that

mctag-decldef.tex; 30/09/2009; 12:27; p.33

34

Simple RCG:

S(XY Z) → A(X,Y, Z)

A(aX, aY, aZ) → A(X,Y, Z)

A(bX, bY, bZ) → A(X,Y, Z)

A(a, a, a) → ε

A(b, b, b) → ε

derivation for ababab:

S(〈0, 6〉) ⇒ A(〈0, 2〉, 〈2, 4〉〈4, 6〉)

⇒ A(〈1, 2〉, 〈3, 4〉〈5, 6〉)

⇒ ε

Figure 17. A sample simple RCG for {www |w ∈ {a, b}+}

a) for all occurrences t′ of a t ∈ T in the clause: f(t′) = 〈i, i + 1〉
for some i, 0 ≤ i < n such that ti = t,

b) for all X ∈ V : f(X) = 〈j, k〉 for some 0 ≤ j ≤ k ≤ n,

c) for all x, y adjacent in one of the elements of ~αi (0 ≤ i ≤ m),
there are l, j, r with f(x) = 〈l, j〉, f(y) = 〈j, r〉, and

We define then f(xy) = 〈l, r〉.

d) for all Eps ∈ {Epsi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai), ~αi(j) = ε},
there is a k, 0 ≤ k ≤ n with f(Eps) = 〈k, k〉.

We define then for every ε-argument ~αi(j) that f(~αi(j)) =
f(Epsi,j).

2. if f is an instantiation of c, then A0(f(~α0)) →
A1(f(~α1)) · · ·Am(f(~αm)) is an instantiated clause where
f(〈x1, . . . , xk〉) = 〈f(x1), . . . , f(xk)〉.

The derivation relation is defined as follows:

DEFINITION 32 (RCG derivation and string language).

− For a predicate A of arity k, a clause A(. . .) → . . ., and ranges
〈i1, j1〉, . . . , 〈ik, jk〉 with respect to a given w: if there is a instanti-
ation of this clause with lefthand side A(〈i1, j1〉, . . . , 〈ik, jk〉), then
in one derivation step (. . . ⇒ . . .) A(〈i1, j1〉, . . . , 〈ii, jk〉) can be

replaced with the righthand side of this instantiation.
∗
⇒ is the

reflexive transitive closure of ⇒.

− The language of an RCG G is

L(G) = {w |S(〈0, |w|〉)
∗
⇒ ε with respect to w}.

Fig. 17 shows a sample RCG generating the double copy language
with the derivation for the input word ababab.

mctag-decldef.tex; 30/09/2009; 12:27; p.34

MCTAG 35

5.1.2. Constructing an equivalent 2-SRCG for a given TAG
Now let us give the transformation from TAG to RCG, following (Boul-
lier, 1998; Boullier, 1999): The RCG contains predicates 〈α〉(X) and
〈β〉(L,R) for initial and auxiliary trees respectively. X covers the yield
of α and all trees added to α by adjunction or substitution, while L and
R cover those parts of the yield of β (including all trees added to β by
adjunction or substitution) that are to the left and the right of the foot
node of β. The clauses in the RCG reduce the argument(s) of these
predicates by identifying those parts that come from the elementary
tree α/β itself and those parts that come from one of the elementary
trees added by substitution or adjunction. A sample TAG with an
equivalent RCG is shown in Fig. 18.

TAG:

α1 SNA

a S F

ε

α2

F

d

α3

F

e

β S

b S∗

NA
c

Equivalent RCG:

− S(X) → 〈α1〉(X) (every word in the language is the yield of a tree derived from

α1)

− 〈α1〉(aF) → 〈α2〉(F) | 〈α3〉(F) (either the yield of α1 is a followed by the yield

of tree that substitutes at F)

− 〈α1〉(aB1B2F) → 〈β〉(B1, B2)〈α2〉(F) | 〈β〉(B1, B2)〈α3〉(F) (or β adjoins to

S in α; then the yield is a followed by the left part of β, the right part of β and the

tree substituted at F)

− 〈β〉(B1b, cB2) → 〈β〉(B1, B2) (β can adjoin to its root; then the left part is the

left part of the adjoined β follwed by b; the right part is c followed by the right part

of the adjoined β)

− 〈α2〉(d) → ε 〈α3〉(e) → ε 〈β〉(b, c) → ε (the yields of α2, α3 and β can be

d, e and the pair b (left) and c (right) resp.)

Figure 18. A sample TAG and an equivalent RCG

In order to make the choice of an adjoined/substituted tree
locally for every node and not at once for the entire elemen-
tary tree, Boullier introduces additional so-called branching pred-
icates 〈adj, γ, p〉 and 〈subst, γ, p〉 that correspond to the edges
in derivation trees. E.g., in the example in Fig. 18, the clauses
〈α1〉(aB1B2F) → 〈β〉(B1, B2)〈α2〉(F) | 〈β〉(B1 , B2)〈α3〉(F) would be
replaced with 〈α1〉(aB1B2F) → 〈adj, α1, 2〉(B1, B2)〈sub, α1, 3〉(F),
〈adj, α1, 2〉(X,Y) → 〈β〉(X,Y) and 〈sub, α1, 3〉(X) → 〈α2〉(X) |
〈α3〉(X).

mctag-decldef.tex; 30/09/2009; 12:27; p.35

36

Since the yields of initial trees require unary predicates while the
yields of auxiliary trees require binary predicates, the maximal pred-
icate arity in the resulting simple RCG is 2. Furthermore, since we
encode the yields of elementary trees always from left to right, we
obtain an ordered simple 2-RCG.

More precisely, the construction goes as follows:
We define the decoration string σγ of an elementary tree γ as in

(Boullier, 1999): each internal node has two variables L and R and
each substitution node has one variable X (L and R represent the left
and right parts of the yield of the adjoined tree and X represents the
yield of a substituted tree). In a top-down-left-to-right traversal the
left variables are collected during the top-down traversal, the termi-
nals and variables of substitution nodes are collected while visiting the
leaves and the right variables are collected during bottom-up traversal.
Furthermore, while visiting a foot node, a separating “,” is inserted.
The string obtained in this way is the decoration string.

1. We add a start predicate S and clauses S(X) → 〈α〉(X) for all
α ∈ I with root label S.

2. For every γ ∈ I ∪ A: Let Lp, Rp be the left and right symbols in
σγ for the node at position p if this is not a substitution node. Let
Xp be the symbol for the node at position p if this is a substitution
node.

We assume that p1, . . . , pk are the possible adjunction sites,
pk+1, . . . , pl the substitution sites in γ. Then the RCG contains
all clauses

〈γ〉(σγ) → 〈adj, γ, p1〉(Lp1
, Rp1

) . . . 〈adj, γ, pk〉(Lpk
, Rpk

)

〈sub, γ, pk+1〉(Xpk+1
) . . . 〈sub, γ, pl〉(Xpl

)

3. For all predicates 〈adj, γ, p〉 the RCG contains all clauses

〈adj, γ, p〉(L,R) → 〈γ′〉(L,R) such that γ′ can be adjoined at
position p in γ.

4. For all predicates 〈adj, γ, p〉 where fOA(node(γ, p)) = 0 (adjunction
not obligatory), the RCG contains a clause 〈adj, γ, p〉(ε, ε) → ε.

5. For all predicates 〈sub, γ, p〉 and all γ′ that can be substituted into
position p in γ the RCG contains a clause 〈sub, γ, p〉(X) → 〈γ′〉(X).

5.1.3. Parsing ordered simple RCG
There are various parsing algorithms for simple ordered RCG: the top-
down parsing algorithm from (Boullier, 2000), the CYK algorithms

mctag-decldef.tex; 30/09/2009; 12:27; p.36

MCTAG 37

introduced for LCFRS in (Burden and Ljunglöf, 2005) that could be
adapted to RCG and the Thread-Automaton implementation for or-
dered simple RCG presented in (Villemonte de La Clergerie, 2002).
The latter amounts to an automaton-based implementation of an in-
cremental Earley-style algorithm. Based on these ideas we will present
an incremental Earley-style chart parser for ordered simple RCG using
the framework of parsing as deduction (Shieber et al., 1995).

The general idea is that we process the arguments of the lefthand
sides of clauses incrementally, starting from an S-clause. Whenever
we reach a variable, we move into the clause of the corresponding rhs
predicate (predict or resume). Whenever we reach the end of an
argument, we suspend this clause and move into the parent clause
that has called the current one.

Our items have the form

[A(~φ) → A1(~φ1) . . . Am(~φm), pos, 〈i, j〉, ~ρ]

where

• A(~φ) → A1(~φ1) . . . Am(~φm) is a clause;

• pos ∈ {0, . . . , n} is the position up to which we have processed the
input;

• 〈i, j〉 ∈ IN2 marks the position of our dot in the arguments of the
predicate A: 〈i, j〉 indicates that we have processed the arguments
up to the jth element of the ith argument;

• ~ρ is an range vector containing the bindings of the variables occur-
ring in the clause. ~ρ(i) is the range the i-th variable in the lefthand
side is bound to.) When first predicting a clause, ~ρ is initialized with
a vector containing only symbols “?” for “unknown”. We call such
a vector (of appropriate arity) ~ρinit. We write ~ρ(X) for the range
bound to the variable X in ~ρ.

Applying a range vector ~ρ containing variable bindings to a α ∈
(T ∪ V)∗ means mapping every variable X to ~ρ(X) and concatenating
adjacent ranges.

We say that two α1, α2 ∈ (T ∪R)∗ where R is the set of ranges over
w are compatible iff we can find instantiations f1, f2 : (T ∪ R) → R
such that

− fi(r) = r for every r ∈ R and for 1 ≤ i ≤ 2,

− fi(t) = r with r(w) = t for 1 ≤ i ≤ 2,

− fi(xy) = fi(x)fi(y) for all x, y ∈ T ∪R for 1 ≤ i ≤ 2 and

− f1(α1) = f2(α2).

mctag-decldef.tex; 30/09/2009; 12:27; p.37

38

α
S

ε
β

SNA

a S d

b S∗

NA
c

S(X) → 〈α〉(X)

〈α〉(LR) → 〈adj, α, ε〉(L,R)

〈β〉(aLb, cRd) → 〈adj, β, 2〉(L,R)

〈adj, α, ε〉(L,R) → 〈β〉(L,R)

〈adj, β, 2〉(L,R) → 〈β〉(L,R)

〈adj, α, ε〉(ε, ε) → ε

〈adj, β, 2〉(ε, ε) → ε

Successful items obtained from parsing w = abcd:

dotted clause pos bindings ~ρ operation

1 S(•X) → 〈α〉(X) 0 [?]

2 〈α〉(•LR) → 〈adj, α, ε〉(L,R) 0 [?, ?] predict

3 〈adj, α, ε〉(•L,R) → 〈β〉(L,R) 0 [?, ?] predict

4 〈β〉(•aLb, cRd) → 〈adj, β, 2〉(L,R) 0 [?, ?] predict

5 〈β〉(a • Lb, cRd) → 〈adj, β, 2〉(L,R) 1 [?, ?] scan

6 〈adj, β, 2〉(•, ε) → ε 1 [] predict

7 〈β〉(aL • b, cRd) → 〈adj, β, 2〉(L,R) 1 [〈1, 1〉, ?] suspend

8 〈β〉(aLb•, cRd) → 〈adj, β, 2〉(L,R) 2 [〈1, 1〉, ?] scan

9 〈adj, α, ε〉(L•, R) → 〈β〉(L,R) 2 [〈0, 2〉, ?] suspend

10 〈α〉(L •R) → 〈adj, α, ε〉(L,R) 2 [〈0, 2〉, ?] suspend

11 〈adj, α, ε〉(L, •R) → 〈β〉(L,R) 2 [〈0, 2〉, ?] resume

12 〈β〉(aLb, •cRd) → 〈adj, β, 2〉(L,R) 2 [〈1, 1〉, ?] resume

13 〈β〉(aLb, c •Rd) → 〈adj, β, 2〉(L,R) 3 [〈1, 1〉, ?] scan

14 〈adj, β, 2〉(ε, •) → ε 3 [] resume

15 〈β〉(aLb, cR • d) → 〈adj, β, 2〉(L,R) 3 [〈1, 1〉, 〈3, 3〉] suspend

16 〈β〉(aLb, cRd•) → 〈adj, β, 2〉(L,R) 3 [〈1, 1〉, 〈3, 3〉] scan

17 〈adj, α, ε〉(L,R•) → 〈β〉(L,R) 4 [〈0, 2〉, 〈2, 4〉] suspend

18 〈α〉(LR•) → 〈adj, α, ε〉(L,R) 4 [〈0, 2〉, 〈2, 4〉] suspend

19 S(X•) → 〈α〉(X) 4 [〈0, 4〉]

Figure 19. A sample parsing trace

Note that in all the compatibility checks needed below, one of the
α1, α2 is a range, i.e., does not contain terminals.

We start by predicting the S-predicate:

[S(~φ) → ~Φ, 0, 〈1, 0〉, ~ρinit]
S(~φ) → ~Φ a clause

Scan: Whenever the next symbol after the dot is the next terminal
in the input, we can scan it:

mctag-decldef.tex; 30/09/2009; 12:27; p.38

MCTAG 39

[A(~φ) → ~Φ, pos, 〈i, j〉, ~ρ]

[A(~φ) → ~Φ, pos+ 1, 〈i, j + 1〉, ~ρ]
~φ(i, j + 1) = wpos+1

Predict: Whenever our dot is left of a variable that is the
first argument of some righthand side predicate B, we predict new
B-clauses:

[A(~φ) → . . . B(X, . . .) . . . , pos, 〈i, j〉, ~ρA]

[B(~ψ) → ~Ψ, pos, 〈1, 0〉, ~ρinit]

where ~φ(i, j + 1) = X and B(~ψ) → ~Ψ is a clause.

Suspend: Whenever we arrive at the end of an argument, we sus-
pend the processing of this clause and we go back to the item that was
used to predict it.

[B(~ψ) → ~Ψ, pos′, 〈i, j〉, ~ρB], [A(~φ) → . . . B(~ξ) . . . , pos, 〈k, l〉, ~ρA]

[A(~φ) → . . . B(~ξ) . . . , pos′, 〈k, l + 1〉, ~ρ]

where

• |~ψ(i)| = j (the ith argument has length j and has therefore been
completely processed),

• ~ρB(~ψ(i)) (contains ranges and terminals) compatible with the range
〈pos, pos′〉,

• and for all 1 ≤ h < i: ~ρB(~ψ(h)) (contains ranges and terminals)

compatible with ~ρA(~ξ(h)) (a range).

~ρ is ~ρA updated with ~ρA(~ξ(i)) = 〈pos, pos′〉.

Resume: Whenever we are left of a variable that is not the first
argument of one of the righthand side predicates, we resume the clause
of the righthand side predicate.

[A(~φ) → . . . B(~ξ) . . . , pos, 〈i, j〉, ~ρA], [B(~ψ) → ~Ψ, pos′, 〈k − 1, l〉, ~ρB]

[B(~ψ) → ~Ψ, pos, 〈k, 0〉, ~ρB]

where

• ~φ(i)(j + 1) = ~ξ(k), k > 1 (the next element is a variable that is the

kth element in ~ξ, i.e., the kth argument of B),

• |~ψ(k − 1)| = l, and

• ~ρA(~ξ(h)) (a range) and ~ρB(~ψ)(h) (a sequence of ranges and termi-
nals) are compatible for all 1 ≤ h ≤ k − 1.

mctag-decldef.tex; 30/09/2009; 12:27; p.39

40

The goal items have the form [S(~φ) → ~Φ, n, 〈1, j〉, ψ] with |~φ(1)| = j
(i.e., the dot is at the end of the lefthand side arguments).

With a dynamic programming interpretation, i.e., implemented as
a chart parser, this algorithm can run in polynomial time (Villemonte
de La Clergerie, 2002).

Fig. 19 shows a sample TAG, the corresponding RCG and a sample
parse trace.

So far, we have described a recognizer. We can extend it to a parser
if we add backpointers to the items in the resulting chart. The possible
RCG derivation trees can then be obtained by starting from a goal
item and following the backpointers. We can immediately obtain TAG
derivation trees if, while following the backpointers, every 〈γ〉-predicate
for some elementary tree γ with the dot at the right of the last argument
is considered representing a completely recognized tree γ and every
〈adj, γ, p〉-predicate with the dot at the right of the last argument
represents a completed adjunction at the node at address p in γ. In
other words, while traversing the chart following the backpointers, the
〈γ〉-predicates translate into derivation tree nodes while the branching
predicates 〈adj, γ, p〉 and 〈sub, γ, p〉 translate into derivation tree edges.

5.2. Checking constraints on MCTAG derivations

In this section, we will sketch how to check the conditions on the deriva-
tion tree imposed by the various types of MCTAG seen in this paper. In
particular, the conditions characterized via counts of elementary trees
used in a derivation can be checked during RCG-parsing if the items
are extended with corresponding counters.

5.2.1. Multicomponent condition
In order to check for the multicomponent condition, we only need to
make sure that different elementary trees from the same elementary
tree set in the grammar occur the same number of times in the deriva-
tion. Crucially, we do not need to determine which of the different
tree instances belong to the same set instance. If we have a lexicalized
MCTAG, which means that each elementary tree set contains at least
one tree with a leaf that has a terminal label, the number of nodes in
the derivation tree is limited by cn where n is the length of the input
and c is the maximal cardinality of elementary tree sets in the grammar.
Furthermore, we know that at most n different tree set instances are
used.

One way to add this additional check is to extend our items during
parsing with a counter of the elementary trees already used. This idea is

mctag-decldef.tex; 30/09/2009; 12:27; p.40

MCTAG 41

pursued in (Kallmeyer and Satta, 2009) in order to check the conditions
for TT-MCTAG.

Let cA = |A|, cΓ = maxΓ∈A|Γ|. We assume that A is ordered and
also each of the Γ ∈ A is ordered. In other words, we treat the element of
A as vectors rather than unordered sets. The same view on elementary
tree sets is used in (Rambow, 1994; Kallmeyer and Satta, 2009; Nesson
et al., 2008). Let Γi denote the ith tree set in A and γi,j the jth tree
in Γi. Our counter is then a cA × cΓ-array T . T1 + T2 for two counters
is defined in the usual componentwise way.

We impose as a general condition on our items that

(7)
∑

1≤i≤cA

max1≤j≤|Γi|T (i, j) ≤ n

where n is the length of the input. This is the condition result-
ing from lexicalization which checks that the number of tree set
instances used in the derivation is not greater than n. (For every set
Γi, max1≤j≤|Γi|T (i, j) gives us the number of Γi instances used so far.)

Let us call T 0 the counter with T (m,n) = 0 for all 1 ≤ m ≤ cA and
1 ≤ n ≤ cΓ, and for every pair i, j with 1 ≤ i ≤ cA and 1 ≤ j ≤ |Γi|,
T i,j denotes the counter with value 1 for T (i, j) and value 0 in all other
cases.

During parsing, the counters of items introduced for new predicted
clauses get initialized with values 0 for all trees. The counter of an
item gets modified whenever we are at the end of the last lefthand side
argument in a clause and perform a suspend. At that moment, in the
corresponding TAG derivation tree, we have completed a subtree and
we move up. We then have to add the counter of this subtree to the
counter of the mother item.

For our deduction rules, we obtain the following: The start rule
and the rule predict introduce initial counters T 0 for their consequent
items. The rules scan and resume just pass the counters unchanged.
Concerning suspend, we have to distinguish two cases: if |ψ| > i
(the argument we have finished is not the last), we pass the counter
unchanged. Otherwise, the consequent item receives the sum of the
two counters of the antecedent items. Furthermore, if the completed
clause is a 〈γ〉-clause, we increment the count of γ in the counter of
the consequent item. Let us call the second case suspend-completed.
For suspend, we require that |ψ| > i. The new deduction rule for the
case of the completed clause is as follows:

Suspend-completed:

[B(~ψ) → ~Ψ, pos′, 〈i, j〉, ~ρB , TB], [A(~φ) → . . . B(~ξ) . . . , pos, 〈k, l〉, ~ρA, TA]

[A(~φ) → . . . B(~ξ) . . . , pos′, 〈k, l + 1〉, ~ρ, T ′
A]

mctag-decldef.tex; 30/09/2009; 12:27; p.41

42

where in addition to the side condition for suspend, we require that
|ψ| = i and T ′

A is defined as follows:

(a) If B is of the form 〈γi,j〉 for some γi,j ∈ I ∪ A, then T ′
A = TB +

TA + T i,j.

(b) If B is of the form 〈adj . . .〉 or 〈sub . . .〉, then T ′
A = TB + TA.

The multicomponent condition (MC) can then be implemented as
an additional check on the goal item, requiring that

(8) for all i, 1 ≤ i ≤ cA, T (i, j) = T (i, k) for all 1 ≤ j < k ≤ |Γi|.

The result is still a polynomial parsing algorithm since the number
of possible counters is polynomial in the input length. More precisely,

it is O(ncG) where cG =
∑|A|

i=1 |Γi|.
This confirms the fact that lexicalized Vector MCTAG are polyno-

mially parsable, a result that was already conjectured in (Rambow,
1994).

5.2.2. Tree-locality
Concerning tree-locality (TL), we do not need a counter of all elemen-
tary trees used throughout the derivation. It is enough to count the
daughters for every node in the derivation tree (i.e., every completed
〈γ〉 predicate) and then check whether trees from the same tree set have
the same counts. This check is the multicomponent check (8) except
that it is performed only on the daughter counters.

We use again a counter T but now it counts only the daughter
elementary trees. As above, the start rule and the rule predict in-
troduce initial counters T 0 for their consequent items. The rules scan
resume and suspend (with the additional condition of |ψ| > i) pass
the counters unchanged.

The deduction rule suspend-completed is now as follows:

[B(~ψ) → ~Ψ, pos′, 〈i, j〉, ~ρB , TB], [A(~φ) → . . . B(~ξ) . . . , pos, 〈k, l〉, ~ρA, TA]

[A(~φ) → . . . B(~ξ) . . . , pos′, 〈k, l + 1〉, ~ρ, T ′
A]

where, as above, in addition to the side condition for suspend, we
require that |ψ| = i. T ′

A is now defined as follows:

(a) If B is of the form 〈γi,j〉 for some γi,j ∈ I∪A, then T ′
A = TA +T i,j.

Furthermore, we require in this case that TB satisfies the multi-
component check (8).

mctag-decldef.tex; 30/09/2009; 12:27; p.42

MCTAG 43

(b) If B is of the form 〈adj . . .〉 or 〈sub . . .〉, then T ′
A = TA + TB .

This extension of our RCG-based TAG parser gives us a way to
exploit the characterization via TAG derivation trees and the condi-
tions based on counting for parsing tree-local MCTAG. The parsing
algorithm we obtain for lexicalized tree-local MCTAG is polynomial in
the length of the input since, with our lexicalization condition (7) im-
posed on the daughter counts, the number of possible daughter counts
is polynomial in the length n of the input.

In the unlexicalized case, the size of the daughter counts depends on
the number of adjunction and substitution sites in an elementary tree.
Therefore, if we limit the number of attachment sites (adjunction sites
and substitution nodes) in the elementary trees or, more generally, the
number of nodes in the elementary trees of our tree-local MCTAG to
some k, then we obtain a polynomial parsing algorithm. This would
also limit the number of elementary trees in a tree set to k since tree-
sets with more than k elements could not be adjoined to different nodes
in a single elementary tree and consequently would be useless.

Nesson et al. (2008) have investigated tree-local MCTAG parsing
extensively, showing that the complexity depends crucially on the
maximal number of children of a node in the elementary trees. In
the approach from (Nesson et al., 2008) that performs parsing on the
derived tree, nodes (in a single elementary tree) that require adjunc-
tions or substitutions of trees from the same set instance are linked
explicitely. In contrast to this, in our approach, we do not need to
know which adjunction or substitution sites (i.e., which daughters of a
node in the derivation tree) belong to each other. We only make sure
that the daughter count is balanced in the sense of (8).

Note however that the general universal recognition problem for
tree-local MCTAG has been shown to be NP-hard (Søgaard et al.,
2007; Nesson et al., 2008).

5.2.3. Delayed tree-locality
Derivation trees in a k-delayed tree-local MCTAG have to satisfy
two conditions, (MC) and (k-DTL-counting). The condition (k-DTL-
counting) is formulated in terms of the counts of the elementary trees
below every node v in the derivation tree. This can be immediately
checked on our counters T where the counters are now again as in the
case of checking for the multicomponent condition, i.e., they count the
elementary trees occurring in the entire sub-derivation tree below a
certain node and they are obtained as shown in section 5.2.1.

The (k-DTL-counting) condition requires that for every node v ∈ V :

mctag-decldef.tex; 30/09/2009; 12:27; p.43

44

(9)
∑

Γ∈A

(max
γ∈Γ

|Domγ(v)| − min
γ∈Γ

|Domγ(v)|) ≤ k

Since for every elementary tree γi,j , T (i, j) at a specific node gives
us |Domγ(v)|, checking the condition on T amounts to requiring that

(10)
∑

1≤i≤cA

(max
1≤j≤|Γi|

T (i, j) − min
1≤j≤|Γi|

T (i, j)) ≤ k

We have to perform this check whenever we have completely pro-
cessed a sub-tree in our derivation tree. This is the case when having
reached the end of the lefthand side arguments, i.e., when performing
a suspend-completed. In case (a) (having completed a 〈γi,j〉-clause),
we impose the check (10) on TB + T i,j.

In addition, we have to require that the counter of the goal item
satisfies our (MC) check (8).

5.2.4. SN-tree-tuple locality
In (Kallmeyer and Satta, 2009), (SN-TTL-counting) is checked during
TAG parsing on the derived tree, using a similar counter T as we do.
In the following, we will transfer this check to a check on the derivation
tree which is actually closer to the characterization given in (SN-TTL-
counting).

The first part of the condition captures the fact that heads are higher
than their arguments in the derivation tree. We assume that for each
Γi ∈ A, the first element γi,1 is the head tree. Then the first condition
on the counters is

(11) for all 1 ≤ i ≤ cA and all 2 ≤ j ≤ |Γi|: Ti,j ≥ Ti,1

This condition can again be checked in suspend-completed,
requiring it to hold for TB + T i,j in the case (a).

The second part of (SN-TTL-counting) treats different cases, one of
which must hold if there is a pending argument. Some of these cases
refer to the root-adjoining sub-tree. Therefore, the corresponding condi-
tion applies when finishing a root adjunction. Since our RCG is ordered
and our parser is incremental, the root adjunction is the last adjunction
to be finished in an elementary tree. Consequently, when performing
a suspend-completed whith a consequent 〈γ〉-item that is again a
completed item, we can be sure that, if there was an adjunction at the
root node, then the B predicate in this suspend-completed is of the
form 〈adj, γ, ε〉. Within this rule application, we can therefore acces the
counter of the node itself and the counter of the root-adjoining subtree.
This is all we need to check the second part of (SN-TTL-counting).

mctag-decldef.tex; 30/09/2009; 12:27; p.44

MCTAG 45

Besides the side condition we already have and the calculation of the
counters for the multicomponent check, we add the following additional
side conditions to our deduction rule suspend-completed:

[B(~ψ) → ~Ψ, pos′, 〈i, j〉, ~ρB , TB], [A(~φ) → . . . B(~ξ) . . . , pos, 〈k, l〉, ~ρA, TA]

[A(~φ) → . . . B(~ξ) . . . , pos′, 〈k, l + 1〉, ~ρ, T ′
A]

1. If B is of the form 〈γi,j〉, then TB + T i,j must satisfy (11).

2. If the consequent item has a predicate A of the form 〈γi,j〉 and a
clause whose lefthand side has been completely recognized (i.e., the
dot is at the end which means |φ| = k, |phi(k)| = l + 1), then we
require the following. Let T ′′

A be T ′
A + T i,j.

(12) For every 1 ≤ l ≤ cA and 2 ≤ m ≤ |Γl| with T ′′
A(l,m) >

T ′′
A(l, 1)

a) either γl,m = γi,j and T ′′
A(l,m) = T ′′

A(l, 1) + 1;

b) or γl,m = γi,j and T ′′
A(l,m) > T ′′

A(l, 1) + 1 and B is
a predicate of the form 〈adj, γi,j , ε〉 and it holds that
TB(l,m) − TB(l, 1) + 1 = T ′′

A(l,m) − T ′′
A(l, 1);

c) or neither γl,m = γi,j nor γl,1 = γi,j and B is a predi-
cate 〈adj, γi,j , ε〉 and it holds that TB(l,m) − TB(l, 1) =
T ′′

A(l,m) − T ′′
A(l, 1);

d) or γl,1 = γi,j and B is a predicate 〈adj, γi,j , ε〉 and it holds
that T ′′

A(l,m)−T ′′
A(l, 1) ≤ TB(l,m)−TB(l, 1) ≤ T ′′

A(l,m)−
T ′′

A(l, 1) + 1.

With these additional conditions, we capture the conditions for tree-
tuple locality with shared nodes, similar to the proposal in (Kallmeyer
and Satta, 2009). The resulting parser is still polynomial in the input
length.

The condition (TT-k) on k-TT-MCTAG derivation trees requires
that there is no v ∈ V such that

(13)
∑

β∈A(G)

(|{v′ | l(v′) = β and 〈v, v′〉 ∈ E+}|

− |{v′ | l(v′) = h(β) and 〈v, v′〉 ∈ E∗}|) > k

This is again a condition we can check immediately on our counters
T . It amounts to the following condition:

(14)
∑

1≤i≤cA

∑

2≤j≤|Γi|

(T (i, j) − T (i, 1)) ≤ k

mctag-decldef.tex; 30/09/2009; 12:27; p.45

46

We can impose this condition again in suspend-completed, re-
quiring it to hold in the case (a) for TB +T i,j if γi,j is a head, otherwise
for TB.

In contrast to this, Kallmeyer and Parmentier (2008) encode the
(TT-k) constraint in the RCG that one obtains from transforming the
TT-MCTAG. I.e., the RCG predicates are enriched with the list of
pending arguments (that, according to (TT-k) is never larger than k).
A disadvantage is that the size of the RCG is considerably (actually
exponentially) larger than the original MCTAG.

5.2.5. Checking the simultaneity condition
It is crucial that for checking (MC), (TT-k), (SN-TTL-counting), (k-
DTL-counting) and also (TL), we do not need to group the elementary
tree instances into sets.

This is different for (SIM): in order to check (SIM) we have to group
the tree instances into set instances. This can be done building the
different derivation trees while traversing the derivation forest in the
order of a simultaneous multicomponent derivation. This way both,
(SIM) and (MC) are checked in once. Obviously, the number of ways to
combine tree instances into set instances can explode. This was actually
to be expected since the parsing of non-local MCTAG (i.e., MCTAG
satisfying (MC) and (SIM)) is NP-hard, even in the lexicalized case
(Rambow and Satta, 1992; Champollion, 2007). However, note that this
explosion is only the worst case. In a lexicalized MCTAG it depends on
the number of times a terminal occurs in the input. In natural languages
it is rather rare that words (except some functional operators) occur
more than once or twice in a sentence.12

6. Conclusion

TAG derivation trees abstract away from the concrete order of deriva-
tion steps. A similar abstraction is not possible with the classical
MCTAG definition: The simultaneity constraint refers to the process of
the derivation itself. Looking only at the result of a derivation (i.e., the
derived tree and the derivation tree), simultaneity cannot be checked. In
this respect the standard MCTAG definition is problematic. We there-
fore propose a new declarative definition of MCTAG that characterizes

12 In TüBa-D/Z, a German newspaper corpus of 15260 sentences (Telljohann
et al., 2003), without considering punctuation and determiners, 20% of the sentences
contain twice the same word and only 2.5% contain three times the same word.
Excluding only punctuation gives 32.3% for twice the same word and 6.6% for three
times the same word.

mctag-decldef.tex; 30/09/2009; 12:27; p.46

MCTAG 47

the trees in the tree language via the properties of the TAG derivation
trees the MCTAG licences. In this way, in MCTAG like in TAG, the
TAG derivation tree can be considered being the central structure of
the formalism and the desired abstraction can be obtained. We provide
similar declarative definitions for a variety of MCTAG types.

The declarative MCTAG definition enables us to see more clearly
the differences between classical MCTAG and variants of them where
some of the constraints for the TAG derivation trees need not hold
while others are added. In particular, we have shown that tree-local
and set-local derivations necessarily satisfy the simultaneity constraint
and that every derivation in a k-TT-MCTAG is a k-delayed tree-local
derivation.

For some MCTAG conditions, we have provided a definition that
does not rely on the grouping of elementary tree instances into sets but
that is, instead, based only on counts of the elementary trees occurring
in a derivation tree. Such counting conditions are easier to check in the
sense that it is enough to add a counter of the elementary trees that
label the nodes in the derivation tree and then to check the respective
condition on this counter.

We have shown that this way of defining MCTAG can be exploited
for parsing: The parsing of the underlying TAG can be done via a gram-
mar that describes the derivation trees, and the additional constraint
checking is either performed during the TAG parsing or done separately
in a second phase. In particular, for all MCTAG variants that can be
defined without the need to refer to the grouping of tree instances into
set instances, the parser can be extended with a counter of elementary
trees and the condition can be checked on this counter. This way, in the
case of lexicalized MCTAG, we obtain polynomial algorithms for Vector
TAG, tree-local MCTAG, k-delayed tree-local MCTAG, TT-MCTAG
and k-TT-MCTAG.

Acknowledgements

The work presented in this paper was financed by the Deutsche
Forschungsgemeinschaft (DFG) with an Emmy Noether Research
Grant.

I am particularly grateful to three anonymous reviewers. The pa-
per has considerably benefitted from their very extensive and detailed
comments. Furthermore, I would like to thank Wolfgang Maier for
proof-reading and for helpful discussions of various aspects of the paper.

mctag-decldef.tex; 30/09/2009; 12:27; p.47

48

Appendix: Proofs

LEMMA 1.
In a non-local MCTAG G = 〈N,T, S, I,A,A〉 with GTAG =

〈N,T, S, I,A〉, the following holds:
A derivation tree D of a saturated derived initial tree t in GTAG is a

possible TAG derivation tree in G iff D satisfies (SIM).

Proof:
Let G, GTAG and D be as in the lemma.
1. First we show ⇒ of the iff:
Let D be a TAG derivation tree licensed in G. To show: D satisfies

(SIM).
It is immediate that l(r) = α ∈ I with {α} ∈ A. For all other nodes

v ∈ V it holds that l(v) ∈ I ∪A.
Furthermore, since we use a fresh instance of a tree set in every

derivation step, there must be a partition of V into n sets V1, . . . , Vn

where for each Vi (1 ≤ i ≤ n) there is a Γi ∈ A such that Γi =
{γ | l(v) = γ for some v ∈ Vi} and |Vi| = |Γi|; Vi corresponds to an
instance of Γi used in a single derivation step. In the following, let l(v)
denote the instance of l(v) that v corresponds to and Γi the tree set
instance of Vi.

We now assume that D with this partition does not satisfy (SIM)
and show that this leads to a contradiction.

Assume that

− there is a Vi in the partition with v1, v2 ∈ Vi and 〈v1, v2〉 ∈
E+. Consequently, l(v2) was added to a tree derived from l(v1).
Contradiction since the two trees are added simultaneously.

− or there are pairwise different V (1), V (2), . . . , V (m) ∈ {V1, . . . , Vn}

with m ≥ 2 such that there are n
(i)
1 , n

(i)
2 ∈ V (i) (1 ≤ i ≤ m) such

that 〈n
(1)
1 , n

(m)
2 〉 ∈ E∗ and 〈n

(i)
1 , n

(i−1)
2 〉 ∈ E∗ for 2 ≤ i ≤ m.

⇒ l(n
(i)
1) was added before l(n

(i−1)
2) for 2 ≤ i ≤ m and since all

elements from Γ(i) must be added simultaneously for 1 ≤ i ≤ m,

Γ(m) was added before Γ(1). ⇒ 〈n
(1)
1 , n

(m)
2 〉 6∈ E∗. Contradiction.

Consequently, D satisfies (SIM).
2. Then show ⇐ of the iff:
Let D be a derivation tree in GTAG satisfying (SIM).
There are different orderings of the derivation steps in D possible:

Let the node positions on the derived tree be pairs 〈γ, p〉 with γ being
an instance of an elementary tree and p being a position in γ.

mctag-decldef.tex; 30/09/2009; 12:27; p.48

MCTAG 49

Every top-down order read off D (no matter whether (partly) depth
first or not and whether left to right or right to left) is a possible
derivation order in GTAG for the derivation tree D since in order to
perform the derivation step . . . [〈γ1, p〉, γ2] corresponding to an edge
〈γ1, γ2, p〉 in D one only needs to make sure that γ1 (i.e., the mother
node of γ2) was already added.

Because of (SIM) l(r) = α ∈ I with {α} ∈ A and the nodes in D can
be partitioned into pairwise different elementary tree sets as in (SIM).

To show: there is a top-down traversal of D such that the traversal
starts with the root and there is always an element from the partition
whose memebers are visited next in any order, i.e., simultaneously.

We assume that at some point of the traversal, the choice of a new
Vi to be visited next is not possible.

⇒ for each set Vi that has not been visited yet there is at least one
v ∈ Vi whose mother node has not been visited yet (otherwise Vi could
be visited next).

Pick an unvisited V (1) with at least one v
(1)
1 ∈ V (1) whose mother

node has been visited. Assume v
(1)
2 ∈ V (1) with mother not yet visited.

Suppose v
(2)
1 to be the highest unvisited node dominating v

(1)
2 . Since

v
(2)
1 6= v

(1)
1 and 〈v

(2)
1 , v

(1)
1 〉 ∈ E+, (with the first condition of (SIM))

v
(2)
1 ∈ V (2) where V (2) 6= V (1) is also an element of the partition.

Then there is a v
(2)
2 ∈ V (2) with unvisited mother such that

(a)
either 〈v

(1)
1 , v

(2)
2 〉 ∈ E+. Contradiction to the second

condition of (SIM) with m = 2.

v
(1)
1 v

(2)
1

v
(2)
2 v

(1)
2

mctag-decldef.tex; 30/09/2009; 12:27; p.49

50

(b)

or 〈v
(1)
1 , v

(2)
2 〉 /∈ E+. Because of the first condition, we

have 〈v
(2)
1 , v

(2)
2 〉 /∈ E∗. Let v

(3)
1 ∈ V (3) be the highest

unvisited node dominating v
(2)
2 . (V (3) is another ele-

ment of the partition.) Because of the first condition of
(SIM) V (3) 6= V (2) and because of the second condition
V (3) 6= V (1).

v
(1)
1 v

(2)
1 v

(3)
1

v
(1)
2 v

(2)
2

In the (b) case there is a v
(3)
2 ∈ V (3) with unvisited mother node.

Because of (SIM) 〈v
(1)
1 , v

(3)
2 〉 /∈ E∗, 〈v

(2)
1 , v

(3)
2 〉 /∈ E∗, and 〈v

(3)
1 , v

(3)
2 〉 /∈

E∗. Then there is a highest unvisited node v
(4)
1 ∈ V (4) dominating v

(3)
2

with V (4) 6= V (3), V (4) 6= V (2), V (4) 6= V (1). And there is a v
(4)
2 ∈ Γ4

with unvisited mother node.
For each of the V (n), 1 ≤ n with v

(n)
1 , v

(n)
2 as above the situation

is as follows: V (n) 6= V (i) for 1 ≤ i < n (otherwise contradiction to

the second part of (SIM)), and 〈v
(i)
1 , v

(n)
2 〉 /∈ E∗ for i ≤ n (otherwise

contradiction to the first part os (SIM) for i = n or to the second part
of (SIM) for i 6= n). Consequently, there is always a new V (n+1) with a

new v
(n+1)
1 being the highest unvisited node dominating v

(n)
2 .

v
(1)
1 v

(2)
1 v

(n)
1 v

(n+1)
1

γ
(1)
2 . . . v

(n−1)
2 v

(n)
2

Contradiction to the finiteness of the set of nodes in D.
⇒ there is a top-down traversal of D that corresponds to a multi-

component derivation in G in the sense that it allows us to visit the
sets of nodes corresponding to the instances of elementary tree sets one
after the other.

2

LEMMA 2. Let G = 〈N,T, S, I,A,A〉 be an MCTAG. Let D =
〈V,E, r〉 be the derivation tree of a saturated derived initial tree in GTAG.

If D satisfies (SL) then it satisfies (SIM).

mctag-decldef.tex; 30/09/2009; 12:27; p.50

MCTAG 51

Proof: Assume that D as above satisifes (SL) with a partition
V1, . . . , Vn of V .

To show: D satisfies (SIM) with the same partition.
We assume that this is not the case and show that this assumption

leads to a contradiction.
D does not satisfy (SIM) with the partition V1, . . . , Vn. ⇒

• either there is a Vi (1 ≤ i ≤ n) such that there are n0, n
′
0 ∈ Vi,

n0 6= n′0 with 〈n0, n
′
0〉 ∈ E∗.

Then, with (SL), there must be a V (0) ∈ {V1, . . . , Vn} such that
there are n1, n

′
1 ∈ V (0) with 〈n1, n0〉, 〈n

′
1, n

′
0〉 ∈ E (and therefore

n1 6= n′1) and 〈n1, n
′
1〉 ∈ E∗.

By induction, with (SL), for all i ≥ 0 there must be a V (i) ∈
{V1, . . . , Vn} and ni+1, n

′
i+1 ∈ V (i) with 〈ni+1, ni〉, 〈n

′
i+1, n

′
i〉 ∈ E,

〈ni+1, n
′
i+1〉 ∈ E∗ and ni+1 6= n′i+1.

This is in contradiction to the finiteness of V .

• or there are pairwise different V (1), . . . , V (m) ∈ {V1, . . . , Vn} (m ≥ 2)
such that:

There are n
(i)
1 , n

(i)
2 ∈ V (i) (1 ≤ i ≤ m) such that 〈n

(1)
1 , n

(m)
2 〉 ∈ E∗

and 〈n
(i)
1 , n

(i−1)
2 〉 ∈ E∗ for 2 ≤ i ≤ m.

Because of (SL), we can show: For all Vi, Vj ∈ {V1, . . . , Vn} with
i 6= j: if there are n ∈ Vi, n

′ ∈ Vj with 〈n, n′〉 ∈ E∗, then for all
nj ∈ Vj there is a ni ∈ Vi with 〈ni, nj〉 ∈ E∗.

This follows immediately from (SL) by induction on the length of
the path from n to n′.

For the V (1), . . . , V (m) we consequently obtain: for each nm ∈ V (m)

there is a n1 ∈ V (1) with 〈n1, nm〉 ∈ E∗ and (by induction) for
each n1 ∈ V (1) there is a nm ∈ V (m) with 〈nm, n1〉 ∈ E∗. This is
a contradiction since (with V (1) ∩ V (m) = ∅) this would imply that
dominance is not antisymmetric.

2

LEMMA 4. Let D = 〈VD, ED, rD〉 be a TAG derivation tree with t =
〈Vt, Et, rt〉 being a corresponding derived tree.

Let n0, . . . , nm ∈ VD with 〈ni−1, ni〉 ∈ ED with g(〈ni−1, ni〉) = pi

for all 1 ≤ i ≤ m. Let l(nm) be an auxiliary tree with foot node f and,
furthermore, let k be a node in l(n0) with address p. Then the following
holds:

〈δD,t(f, nm), δD,t(k, n0)〉 ∈ E∗
t iff 〈n1, nm〉 ∈ ED

∗
Spine and p1 is a

prefix of p.

mctag-decldef.tex; 30/09/2009; 12:27; p.51

52

Proof: The configuration inD is as shown on the right
where γi = l(ni) and pi = g(〈ni−1, ni〉) for 1 ≤ i ≤ m.
First we show the ⇐ part of the iff:
We assume that 〈n1, nm〉 ∈ ED

∗
Spine and p1 is a prefix

of p.
Then in the derived tree t, δD,t(fi, ni) dominates
δD,t(fi−1, ni−1) where fi is the foot node of γi for 1 <
i ≤ m. Furthermore, since dominance is transitive,
δD,t(f, nm) dominates δD,t(f1, n1).
Finally, since p1 is a prefix of p, the adjunction site
of the subtree of t corresponding to the subtree of
D rooted in n1 dominates the node δD,t(k, n0). Con-
sequently, δD,t(f1, n1) dominates δD,t(k, n0) and (by
transitivity) δD,t(f, nm) dominates δD,t(k, n0).

γ0

p1

γ1

p2

. . .

pm

γm

Now we show the ⇒ direction of the iff:
Assume that the left side of the iff holds. Then we assume that the
right side does not hold and we show that this leads to a contradiction.
First assume that p1 is not a prefix of p. In this case
• either p is a prefix of p1 and p 6= p1 holds. Then δD,t(k, n0) strictly

dominates anything adjoined to the node at position p1 in γ1,
including the foot node f of γm. This is a contradiction to our
assumption.

• or p is not a prefix of p1. Then (since p1 is no prefix of p either)
there is no dominance relation between k and the material adjoined
to the node at position p1 in γ1. This is also a contradiction.

Then we assume that 〈n1, nm〉 /∈
ED

∗
Spine. ⇒ there is a i ∈ {1, . . . ,m}

such that pi is not a position on the
spine. Consequently, the auxiliary tree
derived from γi−1 is either as shown on
the right or symmetric to this but with
the foot node on the left of γi, the tree
derived from γi.
Adjoining this tree to a tree γ0 de-
rived from γ0 by the first i − 1 ad-
junctions yields a tree where no node
from γi dominates a node from γ0. In
particular, f does not dominate k.

X

•

X∗

γi

•

2

mctag-decldef.tex; 30/09/2009; 12:27; p.52

MCTAG 53

References

Becker, T., A. K. Joshi, and O. Rambow: 1991, ‘Long-distance Scrambling and Tree
Adjoining Grammars’. In: Proceedings of ACL-Europe.

Boullier, P.: 1998, ‘A Generalization of Mildly Context-Sensitive Formalisms’. In:
Proceedings of the Fourth International Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+4). University of Pennsylvania, Philadelphia, pp.
17–20.

Boullier, P.: 1999, ‘On TAG Parsing’. In: TALN 99, 6e conférence annuelle sur le
Traitement Automatique des Langues Naturelles. Cargèse, Corse, pp. 75–84.

Boullier, P.: 2000, ‘Range Concatenation Grammars’. In: Proceedings of the Sixth
International Workshop on Parsing Technologies (IWPT2000). Trento, Italy, pp.
53–64.

Burden, H. and P. Ljunglöf: 2005, ‘Parsing Linear Context-Free Rewriting Systems’.
In: IWPT’05, 9th International Workshop on Parsing Technologies. Vancouver,
Canada.

Champollion, L.: 2007, ‘Lexicalized non-local MCTAG with dominance links is NP-
complete’. In: G. Penn and E. Stabler (eds.): Proceedings of Mathematics of
Language (MOL) 10.

Chen-Main, J. and A. Joshi: 2007, ‘Some Observations on a Graphical Model-
Theoretical Approach and Generative Models’. In: Model Theoretic Syntax at
10. Workshop, ESSLLI 2007. Dublin, Ireland.

Chiang, D. and T. Scheffler: 2008, ‘Flexible Composition and Delayed Tree-Locality’.
In: TAG+9 Proceedings of the ninth International Workshop on Tree-Adjoining
Grammar and Related Formalisms (TAG+9). Tübingen, pp. 17–24.

Joshi, A. K.: 1987, ‘An introduction to Tree Adjoining Grammars’. In: A. Manaster-
Ramer (ed.): Mathematics of Language. Amsterdam: John Benjamins, pp. 87–
114.

Joshi, A. K., L. Kallmeyer, and M. Romero: 2007, ‘Flexible Composition in LTAG:
Quantifier Scope and Inverse Linking’. In: R. Muskens and H. Bunt (eds.):
Computing Meaning Volume 3. Kluwer.

Joshi, A. K., L. S. Levy, and M. Takahashi: 1975, ‘Tree Adjunct Grammars’. Journal
of Computer and System Science 10, 136–163.

Joshi, A. K. and Y. Schabes: 1997, ‘Tree-Adjoning Grammars’. In: G. Rozenberg
and A. Salomaa (eds.): Handbook of Formal Languages. Berlin: Springer, pp.
69–123.

Kallmeyer, L.: 2005, ‘Tree-local Multicomponent Tree Adjoining Grammars with
Shared Nodes’. Computational Linguistics 31(2), 187–225.

Kallmeyer, L. and A. K. Joshi: 2003, ‘Factoring Predicate Argument and Scope
Semantics: Underspecified Semantics with LTAG’. Research on Language and
Computation 1(1–2), 3–58.

Kallmeyer, L. and Y. Parmentier: 2008, ‘On the relation between Multicomponent
Tree Adjoining Grammars with Tree Tuples (TT-MCTAG) and Range Concate-
nation Grammars (RCG)’. In: C. Mart́ın-Vide, F. Otto, and H. Fernaus (eds.):
Language and Automata Theory and Applications. Second International Confer-
ence, LATA 2008, No. 5196 in Lecture Notes in Computer Science. Heidelberg
Berlin: Springer-Verlag, pp. 263–274.

Kallmeyer, L. and M. Romero: 2008, ‘Scope and Situation Binding in LTAG using
Semantic Unification’. Research on Language and Computation 6(1), 3–52.

Kallmeyer, L. and G. Satta: 2009, ‘A Polynomial-Time Parsing Algorithm for TT-
MCTAG’. In: Proceedings of ACL. Singapore.

mctag-decldef.tex; 30/09/2009; 12:27; p.53

54

Kroch, A. S. and A. K. Joshi: 1987, ‘Analyzing extraposition in a tree adjoining
grammar’. In: G. J. Huck and A. E. Ojeda (eds.): Syntax and Semantics:
Discontinuous Constituency. Academic Press, Inc., pp. 107–149.

Lichte, T.: 2007, ‘An MCTAG with Tuples for Coherent Constructions in Ger-
man’. In: Proceedings of the 12th Conference on Formal Grammar 2007. Dublin,
Ireland.

Nesson, R., G. Satta, and S. Shieber: 2008, ‘Complexity, Parsing, and Factorization
of Tree-Local Multi-Component Tree-Adjoining Grammar’. Technical Report
TR-05-08, School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA.

Nesson, R. and S. M. Shieber: 2006, ‘Simpler TAG Semantics Through Synchro-
nization’. In: Proceedings of the 11th Conference on Formal Grammar. Malaga,
Spain.

Rambow, O.: 1994, ‘Formal and Computational Aspects of Natural Language
Syntax’. Ph.D. thesis, University of Pennsylvania.

Rambow, O. and G. Satta: 1992, ‘Formal Properties of Non-Locality’. In: Proceedings
of 1st International Workshop on Tree Adjoining Grammars. Philadelphia.

Seki, H., T. Matsumura, M. Fujii, and T. Kasami: 1991, ‘On multiple context-free
grammars’. Theoretical Computer Science 88(2), 191–229.

Shieber, S. M., Y. Schabes, and F. C. N. Pereira: 1995, ‘Principles and im-
plementation of deductive parsing’. Journal of Logic Programming 24(1&2),
3–36.

Søgaard, A., T. Lichte, and W. Maier: 2007, ‘The complexity of linguistically mo-
tivated extensions of tree-adjoining grammar’. In: Recent Advances in Natural
Language Processing 2007. Borovets, Bulgaria.

Telljohann, H., E. W. Hinrichs, and S. Kübler: 2003, ‘Stylebook for the Tübingen
Treebank of Written German (TüBa-D/Z)’. Seminar für Sprachwissenschaft,
Universität Tübingen, Germany.

Vijay-Shanker, K. and D. J. Weir: 1993, ‘Parsing some constrained grammar
formalisms’. Computational Linguistics 19(4), 591–636.

Vijay-Shanker, K. and D. J. Weir: 1994, ‘The Equivalence of Four Extensions of
Context-Free Grammars’. Mathematical Systems Theory 27(6), 511–546.

Vijay-Shanker, K., D. J. Weir, and A. K. Joshi: 1987, ‘Characterizing structural
descriptions produced by various grammatical formalisms’. In: Proceedings of
ACL. Stanford.

Villemonte de La Clergerie, E.: 2002, ‘Parsing Mildly Context-Sensitive Languages
with Thread Automata’. In: Proc. of COLING’02.

Weir, D. J.: 1988, ‘Characterizing mildly context-sensitive grammar formalisms’.
Ph.D. thesis, University of Pennsylvania.

mctag-decldef.tex; 30/09/2009; 12:27; p.54

