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This paper concerns the semantics of determiners. I point out that the currently

dominant generalized quantifiers analysis of determiners has certain deficiencies. I

then provide an alternative which seems offer some hope not suffer from the same

deficiencies.

It is generally believed that the semantics of all determiners fits into one

or a limited number general schema. The same assumption is made also for other

categorial classes. This assumption is well motivated, since there must be a gen-

eral mechanism that relates syntactic structures to semantic representations. This

mechanism can be easy and elegant in a straightforward way if the semantics of each

syntactic class is internally uniform, such that for example all transitive verbs, or

all complementizers belong to the same semantic type of things.

The general schema of determiner quantification that is most popular these

days is the generalized quantifier analysis. This analysis goes back to at least Mon-

tague (1970) and was developed by Barwise and Cooper (1981) and Keenan and

Stavi (1986) among many others. All modern textbooks of natural language seman-

tics (Larson and Segal 1995, Heim and Kratzer 1998, de Swart 1998) present this

analysis of determiner quantification. The basic claim, the general schema, is that

all determiners are two place functions that take two predicates as arguments.

In this paper I want to do the following. In the first section, I argue that

the a certain generalized quantifier, the one usually called NO, is not attested in

any natural language, and that what use be analyzed as NO is better analyzed as a

morpho-syntactically composed expression but should semantically as negation plus

an indefinite. As I argue, this observation provides motivation to seek an alternative

∗It’s my pleasure to acknowledge the helpful comments of Paolo Casalegno, Irene Heim, Makoto
Kanazawa, and the participants of the Tsukuba workshop on Quantifiers. As this paper reports
work in progress, mistakes shouldn’t be blamed on me and definitely not on anybody else. I do
welcome comments though.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14511793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to the generalized quantifiers view of determiner quantification. In the second part

of the paper, I propose an alternative to generalized quantifiers, that is based on

a different syntactic structure of quantificational DPs and involves quantification

over choice functions. For this reason, I introduce the term Cfantifiers for these

semantic functions. While the considerations I offer are unfortunately at present

still inconclusive, I hope to show that there is some reason for optimism.

1 Absence of Negative Quantifiers

According to the generalized quantifiers view of determiners, all determiner mean-

ings are two place functions that take two predicates as their arguments and yield

truth values as their result. In the type-theoretic notation of Montague (1970) ,

generalized quantifiers are the functions of type 〈〈e, t〉, 〈〈e, t〉, t〉〉〉. The generalized

quantifiers analysis is, as far as I know, descriptively successful: all determiners

of English and as far as I know also all other languages can be assigned the right

interpretation on the generalized quantifier analysis, though it may sometimes be

difficult to figure out which analysis of a number of candidates is the correct one.

The criticism I develop in this section is, though, that of all the semantically pos-

sible generalized quantifiers few are actually attested—I believe at most universal,

existential, and cardinal quantification is attested.

For reasons of space I focus on one conceivable generalized quantifier, the

quantifier NO. I want to show that no language has a determiner that means NO.

In particular, I claim that the English word no must be analyzed as not+one by

decomposition into sentential negation NOT together with an existential determiner

∃.

(1) NO(R)(S) = 1 iff ∀x : R(x) ⇒� S(x)

I don’t address in this paper other expressions that have been sometimes analyzed

as generalized quantifiers (Keenan and Stavi 1986). I’m thinking of comparatives

like more than three, partitives like three out of four, and superlatives like most. I

believe that all of these are also semantically decomposed into smaller parts and

that the determiners that occur in the decomposed LF-structure all accord to my



generalization, but don’t have the space here to justify this assumption.

Consider now the English Quantifier no, which seems an even more likely

candidate that the complex expressions of the previous paragraph for a determiner

since it’s one word in English. As already mentioned, a popular analysis of the

sentence in (2a) is that sketched in (2b) where the meaning of no is the generalized

determiner NO of (1).

(2) a. Andy has no enemies.

b. NO([[enemies]])(λx Andy has x)

An alternative semantic analysis of (2a) is to decompose no into negation and an

indefinite. This is sketched in (3a) and paraphrased in (3b).

(3) a. NOT(∃x ∈ [[enemies]]: Andy has x)

b. ‘It’s not the case that Andy has an enemy’

‘Andy doesn’t have any enemies.’

The truth conditions of (3a) are identical to those of (2b). I argue in the following

sections with evidence from a variety of languages that only the analysis (3a) is

actually possible for sentences with no or their equivalents in other languages. I

show that some languages don’t have a word like the English no, but must express

the meaning by overtly using either negation and indefinite (Japanese and Salish)

or negation and a negative concord item (French, Italian, and Japanese), which I

take to be a morphological variant of an indefinite. I then show evidence from four

languages (Mohawk, Norwegian, German, and English) that seem to have a word

no which shows that in these languages to no can be decomposed into negation and

indefinite, and in at least Mohawk and Norwegian must be. Based on these data I’ll

conclude that the simplest assumption, especially from an acquisition point of view,

is that the determiner no is always decomposed, which means that the generalized

quantifier NO is not attested in any natural language.



1.1 Overt Decomposition: Japanese and Salish

In some languages, there’s no candidate for a determiner meaning ‘no’. Japanese

apparently is such a language (Yabushita 1996). The way to express a statement

like ‘No students read that book’ is (4), where negation and an indefinite are used

to capture the English ‘no’.

(4) Sono
that

hon-o
book

yonda
read

gakusei-wa
students

hitori-mo
one-even

inai.
exist-not

‘Students who read that book don’t exist.’ (literally)

‘No students read that book.’

Another way to express ‘No students read that book’ is (5), where again ‘NO’ is

split into ‘not’ and and indefinite.

(5) gakusei-wa
students

sono
that

hon-o
book

yomanakatta
read-not-past

Japanese also has negative concord/polarity words which offer another way to ex-

press the meaning of ‘no’. Such expressions are discussed in the next subsection.

Another language, where the only way of expressing ‘no’ is transparently

decomposed into an indefinite and negation is Salish (Matthewson 1998:49-50) (see

also Matthewson 1998 for the details of the transcription).

(6) a. xwa
neg

kwet
thing

syaqcu-s
wife-his

(Sechelt)

‘His wife didn’t exist.’ (literally)

‘He had no wife.’

b. 7axw
neg

ti
det

ka
hyp

lhalas
boat

7ala
here

7ats (Bella Coola)

‘A boat doesn’t exist here.’ (literally)

‘There’s no boat here.’

1.2 Negative Concord: French, Italian, Japanese, . . .

Negative concord words are words that can only cooccur with negation in the same

sentence, and moreover must be in the scope of negation. Negation and the negative



concord word together have a meaning equivalent to English no. For example in

French and Italian, the words that seem to translate ‘no’ must cooccur with senten-

tial negation when they occur in a sentence (or at least when they occur in object

position). (see Haegeman 1995, Herburger 1998, Ladusaw 1992, Zanuttini 1997,

among many others)

(7) a. Je
I

n’ai
not-have

vu
seen

personne
nobody

(French)

‘I saw nobody.’

b. ∗Je
I

ai
have

vu
seen

personne
nobody

(8) a. Non
Non

o
have

visto
seen

nessuno
nobody

(Italian)

‘I saw nobody.’

b. ∗o
have

visto
seen

nessuno
nobody

One interesting question that has been asked about negative concord is whether the

negative force of sentences like (7a) and (8a) originates with the negation word or

is part of the meaning of the negative concord item. As far as I know, the majority

of the literature on the topic assumes that negation is interpreted in examples like

the above, and that the interpretation of a negative concord word is essentially that

of an indefinite. The strongest argument for this assumption comes from cases that

contain more than one negative concord item. If more than one of the negative

concord item occurs in a sentence as in (9) only one instance of sentential negation

is required to license all of them. Moreover, an interpretation with multiple negation

isn’t available as shown by (9) (Haegeman and Zanuttini 1996:(13)).

(9) Non
No

ho
I have

mai
never

detto
told

niente
nothing

a
to

nessuno
noone

(Italian)

‘I haven’t ever told anybody anything.’

∗‘I have never told nobody nothing.’



If it is true that words like nessuno are to be analyzed as indefinites that

require a special relationship with negation, that means that negative concord lan-

guages also belong to the languages that lack a determiner meaning NO.

1.3 Decomposition I: Mohawk

In the following four sections, I address languages that seem to possess a morpho-

logical determiner meaning NO. My goal is to show that in the first two language

actually the determiner must always be analyzed as decomposed, while in the second

two languages the decomposition analysis must be possible, and might be the only

possible one.

Mohawk seems to have a word, yahuhka, that has the generalized quantifier

meaning also attributed to nobody (Baker 1995, 28-29, Baker 1996, 58-60).

(10) Shawatis
John

yahuhka
nobody

to-shako-ka-0
neg-Agr-see-stat

John saw nobody.

However, Baker argues that yahuhka is not a determiner, but decomposed into nega-

tion and an indefinite. I summarize Baker’s argument. First, Yahuhka cannot appear

following the verb unlike other nominal phrases as shown by the contrast between

(11) and (12).

(11) ∗Shawatis
John

to-shako-ka-0
neg-Agr-see-stat

yahuhka
nobody

(12) a. Shawatis
John

akweku
all

wa-shako-kv-’
fact-Agr-see-punc

John saw everyone.

b. Shawatis
John

wa-shako-kv-’
fact-Agr-see-punc

akweku
all

John saw everyone.

Furthermore, Yah is the morpheme for sentential negation.

(13) a. Ter
Peter

yah
not

te-ha-yena-0
neg-Agr-catch-stat

ne
ne

takos
cat



Peter didn’t catch the cat.

b. Sak
Sak

yah
not

kanusha’
house

te-ho-hninu-0
neg-Agr-buy-stat

Sak didn’t buy a/the house.

And, Uhkak has an existential meaning.

(14) Uhkak
someone

wa-shako-kv-’
fact-Agr-see-punc

He saw somebody.

In fact, yahuhka can be split into yah and uhka (without the final /k/ of

uhkak, see discussion by Baker).

(15) yah
not

to-shako-ka-0
neg-Agr-see-stat

uhka
somebody

He didn’t see anybody.

Hence, Baker proposes that yahuhka should really be analyzed a compound of nega-

tion and the indefinite uhka(k). Notice that the ungrammaticality of (11) is only

be explained, if the decomposition is the only possible analysis of yahuhka. If the

generalized quantifier existed as an option, (11) should be grammatical.

1.4 Decomposition II: Norwegian

Norwegian behaves exactly like Mohawk, except that the relation ship between Nor-

wegian ingen (‘no’) and the negation and indefinite morphemes is less transparent

(the following discussion is a summary of Christensen 1986 via Kayne 1998).

The first property of ingen that resembles Mohawk is that it cannot occur

following a verb as shown in (16).

(16) a. ∗Jon
John

har
hasn’t

lest
read

ingen
no

romaner.
novels.

b. ∗Dette
This

er
is

en
a

student
student

som
who

leser
reads

ingen
no

romaner.
novels.

There are examples like (17) where ingen seems to be following the verb, but in (17)



the verb has moved to C and therefore the base position of the verb might well be

following the ingen phrase.

(17) Jon
John

leser
reads

ingen
no

romaner.
novels.

Secondly, in Norwegian a synonymous, but transparently decomposed way of ex-

pressing (17) is available as illustrated by (18).

(18) John
John

leser
read

ikke
not

noen
any

romaner.
novels

For the examples (16), decomposition of ingen into ikke and noen is the only way to

express the English equivalent in Norwegian.

(19) a. John
John

har
has

ikke
not

lest
read

noen
any

romaner.
novels.

b. Dette
this

er
is

en
a

student
student

som
that

ikke
not

leser
reads

noen
any

romaner.
novels

If negation must occur to the left of the base position of the verb, and ingen can

only occur as the result of some morphological replacement when negation and the

indefinite noen are adjacent, these facts are expected. Again, the explanation of the

ungrammaticality of (16) argues in this analysis that ingen must be decomposed into

negation and an indefinite, and that the generalized quantifier NO is not a possible

meaning of ingen.

1.5 Decomposition III: German

In German the equivalent of English no is kein. Unlike in Mohawk and Norwegian,

kein can appear in essentially any position a DP can occur (see below). However,

there is semantic evidence that the determiner kein (‘no’) can be decomposed into

negation and an indefinite (Bech 1955/1957, Lerner and Sternefeld 1984, Kratzer

1995). Namely, a modal can take scope between negation and the indefinite in

both (20a) and (20b). Furthermore, there’s is a difference between the plural of

kein in (20a) and the singular in (20b). Namely, the example (20a) with the plural

allows only the interpretation where the modal takes scope between two parts of



the decomposed kein. The example (20b) with the singular, on the other hand, also

allows an interpretation that can be characterized both as the generalized quantifier

NO taking scope over the modal or as negation and the indefinite part of kein both

taking scope above the modal.

(20) a. weil
since

keine
no

Beispiele
examples

bekannt
known

sein
be

müssen
must

‘since it’s not necessary that examples are known’

(not 
 must 
 some, ∗NO 
 must, ∗must 
 NO)

b. weil
since

kein
no

Beispiel
example

bekannt
known

sein
be

muß
must

(not 
 must 
 some, NO 
 must, ∗must 
 NO)

A second argument for the decomposition analysis is that negation cannot be directly

followed by an indefinite as shown by (21a). (21b) shows that topicalization of the

indefinite makes the cooccurence of negation and an indefinite in the same sentence

possible. This indicates that the sequence nicht ein is morphologically transformed

into kein whenever it occurs.

(21) a.??Dem
The

Hans
John

ist
is

nicht
not

ein
an

Beispiel
example

bekannt.
known.

b. Ein
An

Beispiel
example

ist
is

dem
the

Hans
John

nicht
not

bekannt.
known.

‘John doesn’t know one example.’

Kratzer (1995) observed a second difference between singular and plural kein in (22).

While plural kein is ungrammatical as the subject of an individual level predicate,

singular kein can occur as the subject of an individual level predicate.

(22) a. ∗weil
since

keine
no

Ärzte
doctors

altruistisch
altruistic

sind
are

b. weil
since

kein
no

Arzt
doctors

altruistisch
altruistic

ist
is



Based on (20) and (22), Kratzer (1995) claim that while plural kein must be de-

composed in German, singular kein can also be a generalized quantifier. With the

assumption that indefinites must always reconstruct to the narrowest scopal posi-

tion, this assumption explains the contrast in (20). In the plural example, the split

reading is forced, because negation cannot reconstruct while the indefinite must re-

construct below the modal. In the singular example, the decomposition analysis

of kein gives rise to the split reading, while generalized quantifier analysis explains

the second reading available in this example. The contrasts in (22), follows from

Kratzer’s assumption together with the belief that the decomposition analysis is

blocked by the presence of an individual level predicate.

Kratzer’s analysis would provide the first evidence that at least in some cases

the generalized quantifier NO is attested. However, an alternative analysis of her

facts is possible, based on the assumption that kein is always decomposed. Namely,

assume that the indefinite part of kein must be interpreted in the lowest position of

its chain only when its plural (cf. Carlson 1977). This predicts the contrast in (20)

straightforwardly, and is not less likely to be true than Kratzer’s assumption that

the indefinite part of decomposed kein must reconstruct regardless of whether it’s

singular or plural. Since reconstruction is blocked with individual level predicates,

the new assumption also explains the contrast in (22). In (22a), the reconstruction

requirement of plural kein conflicts with whatever blocks reconstruction in individual

level predicates.

The scope evidence in (20) argues that regardless of number, the German

kein at least can always be decomposed into negation and an indefinite part. In the

plural, this must be the only possible analysis of kein since the split scope is the

only interpretation possible. However, for the singular of kein it might be that both

the generalized quantifier analysis and the decomposition analysis are possible as

Kratzer proposes, or that only the decomposition analysis is possible as we saw in

the previous paragraph.

1.6 Decomposition IV: English

Even in English there’s evidence that the decomposition of no must be assumed in

at least some cases. Johnson (1996) points out that negative quantifiers can serve as



the antecedent material for an indefinite in VP-ellipsis. It’s well established that an

elided VP must be identical to an antecedent (Sag 1976, Tancredi 1992). Then the

first conjunct in (22) must somehow be able to provide an antecedent of the form

find a solution. This is easily explained, if no can decompose into negation and the

indefinite a.

(23) I could find no solution, but Holly might 〈find a solution〉

Kayne (1998) presents a second, independent argument from English that argues

for a form of decomposition—in his version, overt movement of negative quantifiers

to negation. His argument is based on the contrasts in (24).

(24) a. I’m required to work out no solution. (not
required
a solution)

b. I’m required to work no solution out. (required
not
solution)

Kayne’s argument relies on the similarity of the contrast in (24) to other extraction

properties of particle verbs. For reasons of space I leave out Kayne’s main argu-

ment. Note however, that (24) show the same split scope as the German example

(20). Namely, (24a) shows that negation and indefinite can take scope in different

positions. Hence, the decomposition analysis is also possible in English. In English,

however, there’s no evidence for or against the generalized quantifier analysis of no.

1.7 Section Conclusion

The evidence in this section showed that a whole number of typologically diverse

languages— Japanese, Salish, French, Italian, Mohawk, and Norwegian—simply lack

a determiner with the meaning NO. A way to express the same meaning, however,

available to all these languages was the combination of negation and the indefinite.

For German and English, I showed that the decomposition of no is also possible.

However, the available evidence didn’t allow us to decide whether or not in English

and in the German singular the analysis of no as the generalized quantifier NO is

possible. The easiest assumption would be, however, that universally no language

has a determiner that means what the generalized quantifier ‘NO’ expresses.

The following acquisition consideration supports the assumption that English



and German also lack the generalized quantifier NO. The consideration is based on

the assumption that children can only rely on positive evidence in the acquisition

process (Crain 1991). However, as I discussed above there’s no evidence available

from either German or English whether the generalized quantifier NO is available.

If one were to postulate NO for German and English, it would hence need to be the

default of children to assume a generalized quantifier analysis of the morpheme no.

But, if that was true, how would children acquire Mohawk and Norwegian? In both

Mohawk and Norwegian a morpheme similar to no occurs, hence the generalized

quantifier analysis of it as NO should be entertained by the children, and some

evidence must have triggered them to reject this analysis. However, the evidence

above that led us to conclude that the generalized quantifier NO is not available in

Mohawk and Norwegian was only negative evidence—namely the ungrammaticality

of (11) and (16). This evidence, however, cannot be available to the child learning

either language, and therefore the assumption that the generalized quantifier analysis

is available in English and German must be wrong.

In sum, no language has a determiner with the meaning of NO. Depending on

the syntactic and morphological structure of a language—especially the word order

of Neg, Verb, and Object—the decomposition of NO is more or less obscured. In

languages where negation on one side of the verb and the object on the other, no

must be transparently decomposed into not and indefinite as we saw in Japanese and

Salish, as well as in the negative concord languages. In Mohawk and Norwegian,

we saw that the morpheme no only surfaces when negation and indefinite object

are adjacent. Finally, German and English seem to allow negation to always mor-

phologically interact with the verb. German, since it is verb final with negation on

the left of the VP, is straightforward. In English, negation and the object seem to

separated by the verb, which we would expect to block the insertion of no. Hence

the finding lends support to the idea that the surface position of the English verb

is not it’s base position (Kayne 1998 and references therein).

What implications does the result have for the semantics of determiners?

First consider what it would imply for the standard semantic theory of determiner

meaning: generalized quantifiers. As far as I can see, we would need to postulate



a second semantic universal ‘Non-negativity’ akin to the ‘Conservativity’ constraint

of Barwise and Cooper (1981) and Keenan and Stavi (1986). Since this is not an

attractive option, unless the constraint could be argued to follow from something,

I take the result to be motivation to search for alternatives to the Generalized

Quantifiers view of determiner quantification in the hope they might predict the

restrictions on available determiner quantifiers. This is what the rest of the paper

is about.

2 An Alternative to Generalized Quantifiers

One major support of the generalized quantifiers view of quantification is that it fits

very well with the surface syntactic structure of English. Namely, underlying the

generalized quantifiers view are structure like (24) where DQ is a quantificational

determiner, R is the NP-complement of DQ and S is the scope of the Determiner

Phrase headed by DQ.

(25)

IP

�� ��

DP

�� ��

DQ R

S

A structure like (25) can be easily correlated with a semantics of quantifiers where

these take two arguments. This are the restrictor R, which is provided by the com-

plement of the Determiner, and the scope S, which is provided by the complement

of the Determiner Phrase.

(26) Q(R)(S) or more explicitly Q(λxR(x))(λyS(y))

For example (27a) has the semantics in (27b): The generalized quantifier NO takes

the two one-place properties “man” and “smoked” as its arguments.

(27) a. No man smoked.

b. NO(man)(smoked)



However, the next section points to some evidence that the structures that are

actually interpreted are in some cases quite different from the surface syntax of

English. Namely, it seems that a quantifier takes only one argument, which contains

both the restrictor and the scope information of the generalized quantifier analysis.

2.1 Restrictors inside the Scope

There is evidence that the restrictor of a quantifiers occurs in a position inside the

scope at LF when a quantifier is A-bar moved.. (Chomsky 1993, Fox 1995, 1999,

Sauerland 1998)

On argument from my own work (Sauerland 1998) in favor of this assumption

is based on VP-ellipsis of constituents containing a trace of quantifier movement. In

English, a VP can often be elided if it means the same as an antecedent. If both the

antecedent and the elided VP contain a trace, as sketched in (28), the possibility of

deletion can be used to test for the content of the trace position.

(28) moved DPa . . .

antecedent
︷ ︸︸ ︷

. . . tracea . . . . . . moved DPb . . .

elided VP
︷ ︸︸ ︷

. . . traceb . . .

The expectation of the copy theory is that Ellipsis of a VP containing a trace is

possible exactly if the two trace positions have the same content. An argument of

this type is developed by Sauerland (1998:ch.3) based on paradigms with antecedent

contained deletion like (29), which bear out the expectation in (28). Since In (29),

the antecedent of the elided VP on the surface is the matrix VP visited every town

that . . . . Since the antecedent containment in (29) must be resolved by quantifier

raising of the matrix object, at LF the antecedent VP is visited t, where t is the

trace left by QR of every town with the adjoined relative clause. The observation in

(29) is that ellipsis is only licensed when the head noun of the DP undergoing QR

and the head noun of the relative clause head are identical.

(29) a. ∗Polly visited every town that’s near the lake that Eric did 〈visit t〉.
(Kennedy 1994)

b. Polly visited every town that’s near the town that Eric did 〈visit t〉.

The contrast in (29) bears out the prediction of the copy theory—two traces are



considered identical when their antecedents are. My account of (29) relies on a rep-

resentation like (30) where the trace positions contain material of their antecedents.

This means that the trace of a moved quantifier has content which restricts the

range of the quantifier.

(30) every that’s near the lake Op Eric

elided VP
︷ ︸︸ ︷

visited lake Polly

antecedent
︷ ︸︸ ︷

visited town

This result then argues that the syntactic division of restrictor and scope of the

English surface syntax, is not as clear at LF. Hence, the assumption of generalized

quantifier theory that restrictor and scope are the two arguments of a quantifica-

tional head is in doubt.

2.2 Cfantifiers

My first departure from generalized quantifier theory is the LF-structures. As argue

in the previous section, I assume that the syntactic structure of quantification is that

sketched in (31): the Quantifier Q takes as it’s complement a phrase that contains

both the lexical content of the scope and the restrictor, but there is a semantic

relationship between the quantifier and the restrictor.

(31)

MP

��� ���

Qx IP

�� ��

[x, R] S

The next question is what the semantic relationship between quantifier and restrictor

is—or, in other words, what the variable x may refer to. Since the interpretation

of [x, R] is the complement of S, which is a predicate, it’s natural to assume that

the meaning of [x, R] serves as the argument of S, and hence is of the type of

individuals. I assume that x is a function applying to the predicate R and resulting

in an individual.

Hence, the semantics of (31) I assume to be that in (32).

(32) Q(λfS(f(R)))



The meaning of Q, hence, is that of a function assigning to a predicate of certain

functions a truth value. I’ll use the term Cfantifier for such functions.

(33) A Cfantifier is a function assigning to a predicate of type 〈〈〈e, t〉, e〉, t〉 a

truth value.

2.3 Weak Crossover

Quantification over functions may seem counterintuitive as an analysis of quantifiers

like every. Before spelling out the analysis in more detail, consider a benefit of

this analysis: The following new implication falls out from the assumption that

quantifiers don’t quantify over individual. Namely, the so called weak crossover

constraint would be a consequence of this view.

It’s well known that in many cases moved quantificational expressions cannot

bind pronominals anywhere in their scope. This is the so-called weak crossover

constraint (Wasow 1972).

(34) a.??A relative of hisi is visiting every studenti.

b.??One of heri friends was talking to every teacheri.

c.??Which studenti are hisi relatives visiting?

If in all these cases, the lexical material restricting the moved quantifier is interpreted

in the trace position, the dependency between the quantifier and its trace is mediated

by a variable ranging over functions.

(35) ∗Which λf are hisf relatives visiting f(student)

But, the pronoun in (35) would have to be interpreted as a function rather than

an individual. The result we expect to be illformed, since for example the function

in the pronoun position doesn’t have an argument. Therefore, weak crossover is a

corollary of the view that quantifiers don’t range over individuals, when they are

binding material from an A-bar position.



2.4 Expressiveness of Cfantifiers: Easy Case

Now consider the following question: For which determiners is there a Cfantifier

that captures the meaning of the determiner accurately? The result we are aiming

is that for ‘’no” there can be no Cfantifier that captures the meaning of “no” as a

primitive, while at least for “every” and “a” such a cfantifier exists.

Without knowledge of what possible determiners the question of the expres-

siveness of Cfantifiers would be hard to decide. However, we can rely on the theory

of generalized quantifiers as a guide, since it captures a lot of the determiner mean-

ing that were investigate accurately, it just allowed to many possible determiner

meanings. In fact, there is also systematic relationship of the syntactic structure as-

sumed by generalized quantifier theory, and the structures I’m assuming here. This

makes it easy to compare the expressiveness of the two theories. So, given the more

than adequate descriptive coverage of generalized quantifiers, a natural question to

ask is (36). As I show in the following section, (36) represents only the easy case of

the expressiveness comparison.

(36) For which generalized quantifiers Q is there a Cfantifier C such that:

Q(R)(S) ↔ C(λfS(f(R)))?

It turns out that it’s easier to ask for which Q a corresponding C doesn’t exist.

For such a Q there must be R1, R2, S1 and S2 for which Q yields different values

(Q(R1)(S1) �= Q(R2)(S2)), but all Cfantifiers C yield the same values. That implies

that (37) holds.

(37) λf.S1(f(R1)) = λf.S2(f(R2))

Since for any x there’s an f with f(R1) = f(R2) = x, (37) implies:

(38) S1 = S2 =: S

If S isn’t constant then R1 = R2 follows, because otherwise there is an f with

S(f(R1)) �= S(f(R2)). But, if R1 = R2 then it can’t be that Q(R1)(S) �= Q(R2)(S)

contrary to assumption. Hence, S must be a constant function that is either always



true or always false.

The leads to the conclusion that, for a Q with Q(R1)(∅) �= Q(R2)(∅) or a

Q(R1)(De) �= Q(R2)(De), there is no corresponding cfantifier.

Are such quantifiers relevant for linguistic purposes? I think so. Consider

the example in (39): If everybody left, the predicate left is true of every individual.

But, if two boys and only one girl are all the people, (39a) is judged true, while

(39b) is false. Hence, it seems that there are possible generalized quantifiers that

cannot be expressed by Cfantifiers.

(39) a. Two boys left.

b. Two girls left.

This result is, however, built on assumptions about semantics more simple than the

usual one. Specifically, presuppositions weren’t considered in the argument.

I follow Heim (1983, 1992) in modelling presuppositions formally using partial

functions. Presupposition failure corresponds to an undefined function. So for

example, the predicate “stop” presupposes that whatever stopped or didn’t stop

was going on in the past. This is expressed by assuming that “stop” only is defined

for two arguments, an individual x and a VP P , if P (x) held at some point in the

past.

(40) a. John stopped smoking.

b. [[stopped smoking]](x) is defined only if x has been smoking.

Consider now again the question from above, but under the assumption that the

predicate initiated by λf can be either true, false or undefined for any f :

(41) For which generalized quantifiers Q is there a Cfantifier C such that:

Q(R)(S) ↔ C(λfS(f(R)))?

The reasoning as above shows that all Q can be expressed by Cfantifier except for

maybe a Q that yields different values for two different R’s while S is either the

constantly true or the constantly false predicate. Actually, though even for such a



Q, λf.S(f(R)) can differ in whether f is defined for R. For any R1 �= R2, there is

an f with f(R1) defined and f(R2) not defined. Hence, at least for all generalized

quantifiers Q there is a corresponding Cfantifier C that has the same truth value.

This result shows that we haven’t lost any of the expressiveness of generalized

quantifiers by adopting Cfantifiers instead. This is not the desired, since the goal

is to loose expressiveness, to loose at least the generalized quantifier NO. The next

section shows, that actually the easy case considered is not the only to consider

when asking whether a Cfantifier captures the meaning of generalized quantifier.

2.5 Expressiveness of Cfantifiers: Difficult Case

What is the case of Cfantifiers we didn’t consider yet? Since the material that on

the generalized quantifier view is the restrictor occupies a position internal to the

scope, it should also be able to contain a variable bound within the scope. Actually,

such structures have been considered in the literature. One place where something

like Cfantifiers have been employed previously is the work of Engdahl (1980) on the

interpretation of questions. In particular, she discusses examples like (42) where the

interrogative phrase contain a bound variable.

(42) Q: Which friend of heri’s did every studenti invite?

A: Mary invited John and Sue invited Bill.

Engdahl (1980) proposes LF-representation in (43) and a semantics involving quan-

tification over functions.

(43) which λf did every studenti invite f(friend of heri’s )

See also recent work on existential quantification (Reinhart 1994, 1997, Kratzer

1998, and others).

The question is cfantifiers can be defined such that structures with a bound

variable in the argument of the choice function receive the right interpretation. First,

consider what the right interpretation is—the interpretation generalized quantifier

theory predicts.



(44) a. Every student brought a/two/no book of his.

b. a/two/no λf every studenti brought f(book of hisi)

It seems to be generally the case that the interpretation of such examples with bound

variables is correctly described by a generalized quantifier taking scope below the

binder of the variable. Then the question is, or which Q is there C such that (45)

holds for T , R and S.

(45) T (λx.Q(Rx)(Sx)) = C(λf.T (λx.Sx(Rx)))

I cannot conclusively answer this question at this moment, especially the even for

the case of indefinites recent work by Chierchia (1999) has shown that modifications

are required. Instead I would like to offer a heuristic.

3 Constructing some Cfantifiers

In this section, I approach the question of which generalized quantifiers can be

expressed by a cfantifier in a heuristic way. I try to develop a general schema for

defining cfantifiers adjusting it to cover as many examples as possible. It turns out

then that on this approach the first assumptions about how to define cfantifiers seem

very natural and that then a cfantifier expressing NO turns out to not definable.

The general schema for defining Cfantifiers that I assume is a reduction to

a predicate of sets D, which has to be intuitive. I assume that every cfantifier is

related to a D by the formula in (46). Furthermore, for the C expressing a determiner

Det, D has to be the intuitive set-predicate correlate of Det: D for the existential

determiner “a” should be the predicate “non-empty”, D for cardinal determiners

“n-many” should be the predicate “n-many elements”. I leave open for now what

D should be for the universal “every”.

(46) C(P ) = ∃M ⊂ P : (D(M) and M fulfills certain requirements)

In the schema (46), I assume that the additional requirements on M , whatever their

nature maybe, don’t vary with the Cfantifier C, but are the same for all Cfantifiers

we define.



3.1 An Existential Cfantifier

Is there a Cfantifier that can capture existential quantification? Or more formally:

Is there Cfantifier C with (47) for any R, S and T?

(47) T (λx.∃(Rx)(Sx)) = C(λf.T (λx.Sx(Rx)))

If we assume that C involves existential quantification, maybe over some set M

which is a subset of the total domain of Cfantifiers, it follows that this subset must

be that of choice functions. Namely, (48a) entails (48b).

(48) a. ∀R, S: (∃f : S(f(R)) → ∃x ∈ R: S(x))

b. ∀R:∀f ∈ C:∀R: f(R) ∈ R

This is in fact Engdahl’s (1980) analysis of questions: existential quantification over

choice functions. Consider the example in (49a), which Engdahl analyzes as in (49b).

(49) a. Which friend of heri’s did every studenti invite?

b. ∃ λf C+wh did every studenti invite f(friend of heri’s)

A choice function is a function which assigns to sets elements thereof. The concept

is defined in (50).

(50) f is a Choice Function iff. ∀X ∈ Domain(f) : f(X) ∈ X

For illustration, consider example (49) in the situation (51), where only the marked

people have received an invitation.

(51)
John

BillSue Mary
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In this situation, (49) is a felicitous question and could be answered Sue invited

Bill and Mary invited John. This is explained by the existence of a choice function

that satisfies the predicate in (52), which is the scope of the quantification in (49b).

Namely, the choice function that from every set of friends of someone picks the one

that is marked in (51).

(52) λf C+wh did every studenti invite f(friend of heri’s)

Choice functions have also been used for wide scope existentials (Reinhart

1994 and others). (53) gives one illustration of this analysis.

(53) a. Mary will leave if a certain philosopher comes.

b. ∃λf Mary will leave if f(a certain philosopher) comes.

3.2 Cardinal Cfantifiers

I assume with Diesing (1992) and others that English cardinal expressions can be

indefinites, but also quantificational. This explains that they can occur in environ-

ments limited to indefinites as in (54a), but also take distributive wide scope as in

(54b).

(54) a. There are three women in the room.

b. A different man greeted three women.

With cardinal quantifiers, however, there are problems assuming quantification over

all choice functions. Here I assume that cardinals quantifiers are expressed reduced

to the cardinal predicate “n-many element” for the appropriate n.

Namely, assuming quantification over all choice functions incorrectly predicts

(55a) to be true in the situation sketched in (56).

(55) a. Every studenti brought two books of hisi.

b.
�

two λf every studenti brought [f , books of hisi]



(56)
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The scope of (55b) is satisfied by the two distinct choice functions f and g defined

as follows. Hence, (55b) is true in situation (56), while intuitively (55a) is false.

(57) a. f : {books of Mary} �→ A

{books of John} �→ C

b. g: {books of Mary} �→ A

{books of John} �→ D

At this point, a further restriction on the set of choice functions D applies to becomes

necessary. It seems fairly clear, that what is going wrong in (57) is that the choice

function f and g both pick the element A from the set of books of Mary.

3.3 Pointwise Different Choice Functions

As we saw, if cardinal quantifiers are requirements on the number of elements of a

set of choice functions, this set must usually be a true subset of the set of all choice

functions satisfying the complement of the cardinal quantifier.

I propose the modification of the choice function approach in (58).

(58) Proposal: Quantificational determiners range over pointwise different

choice functions.

Two choice functions are pointwise different if they choose different elements for

every set that is in the domain of both of them. This is stated in (59).

(59) f and g are pointwise different iff.

∀ x ∈ Domain(f) ∩ Domain(g) : f(x) �= g(x)



This restriction brings about another shift: the choice functions the existen-

tial cfantifier quantifies over could have all been total choice functions: ones that are

defined for any nonempty set. But, note that two global choice functions can never

be pointwise different, because for any singleton in their domain that must yield

the same value. Hence, now we are committed to partial choice functions. This,

however, doesn’t affect the earlier argument since for the truth of the predicate the

Cfantifier applies to only the value of the choice function for those sets that it’s

presupposed that the choice function is defined for matters.

The proposal avoids the problem noted above. The problematic f and g of

(57) are not pointwise different. They choose the same element from the set of books

of Mary.

(60) a. f : {books of Mary} �→ A

{books of John} �→ C

b. g: {books of Mary} �→ A

{books of John} �→ D

3.3.1 The PPD-set

For two a set of two pointwise different choice functions that satisfy the scope is

required. For other cardinal quantifiers a set of choice functions must satisfy the

scope each two of which are pointwise different.

(61) a. Every student brought three books of his.

b. three λf every student brought [f , books of hisi]

The set of choice functions required must have the property of being pairwise point-

wise different. The following abbreviation is useful:

(62) PPD(S) is true iff. S is a set of choice functions with

∀f, g ∈ S : f, g are pointwise different or f = g



3.4 Quantification over the PPD-set

If quantification is restricted to a PPD-set, how is the PPD provided. One option

to consider is that the PPD-set is given by context. This assumption runs into

problems: Consider example (63a) in the situation (51), where it was intuitively

true.

(63) a. Every studenti invited a friend of heri’s.

b. ∃λf every studenti invited f(friend of heri’s)

If quantification over choice functions was restricted to a contextually salient PPD-

set, the truth of (63a) actually depends on the PPD-set. Since there’s only one f

that satisfies the scope of (63b), only if this f was always in the relevant PPD-set,

would (63a) be predicted true regardless of the context. But, if the f ′ in (64) is

in the contextually relevant PPD-set, the only f satisfying the scope of (63b) was

excluded, since the f ′ in (64) is not pointwise different with f with it.

(64) f ′:
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Hence, in a context where f ′ is contextually relevant, (63) should be false and (65)

should be true.

(65) It’s not true that every studenti invited a friend of heri’s.

Therefore, the PPD-set cannot be contextually given. I suggest that the PPD set is

existentially quantified over, like other implicit arguments are. For cardinal quanti-

fiers this amounts to the lexical entry in (66):

(66) [[more than n]](S) is true iff. ∃F (PPD(F ) and there are more than n f

such that S(f) and f ∈ F )



3.5 Absence of Negative Quantifiers

The reasoning so far, has lead us to the definition schema in (67), where D is

determined as discussed above. We can now argue that the schema in (67) doesn’t

allow the definition of a Cfantifier expressing NO.

(67) C(P ) = 1 iff ∃M : (D(M ∩ P ) and M is a PPD set of choice functions

(more restrictions possible))

Assume we’re to define a cfantifier for ‘no’ following schema (67). Then consider

again the situation with two students M and J and four books A, B, C, D (two

each) where each student brought one of his book, namely Mary brought A, and

John brought C.

(68)
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In this situation, consider the following examples with an existential quantifier in

(69), a cardinal quantifier in (70), and “no” in (71). The result we want is that (69)

is true, while (70) and (71) are false.

(69) a. Every student brought a book of his.—TRUE

b. a λf every studenti brought f(book of hisi)

(70) a. Every student brought two books of his.—FALSE

b. two λf every studenti brought f(books of hisi)

(71) a. Every student brought no books of his.—FALSE

b. no λf every studenti brought f(books of hisi)

Let’s use BM to stand for the set of books of Mary and BJ to stand for the set of

books of John. Consider the two PPD-sets in (72).



(72) a. M1 = {{〈BM, A〉, 〈BJ, C〉}, {〈BM, B〉, 〈BJ, D〉}}
b. M2 = {{〈BM, A〉, 〈BJ, D〉}, {〈BM, B〉, 〈BJ, C〉}}

At least these two PPD-sets must be amongst the possible Values for M in the

schema (67) since the truth of (70) could be due to any of the choice functions in

M1 ∪ M2. In the situation we’re considering, the scope of the cfantifiers in (69),

(70), and (71) is true of only one of the four choice functions in M1 ∪ M2, namely

{〈BM, A〉, 〈BJ, C〉}, which is an element of M1. Clearly for the situation could be

modified such that any other choice function in M1 ∪M2 was the one satisfying the

scope. Hence, both of these sets must be considered.

‘No’ cannot be expressed following the above schema. Consider any set pred-

icate D in schema (67) that leads to the result that “no” is false in the situation

we’re considering. It would be required that D is false of both M1∩P and M2∩P in

(71). This means D must be false of both the empty set and the singleton set con-

taining {〈BM, A〉, 〈BJ, C〉}. Moreover, this consideration holds regardless of which

of the four choice functions in (72) actually is the one satisfying the scope of the

cfantifier. Hence, D must be false of any other singleton set. We could go on to

show that D must actually be false of any set of choice functions. However, there

are situations where (71) is true. Then, the same D should be true of either M1 ∩P

or M2 ∩ P . In fact, this sets will both be the empty set in this situation. Clearly,

it’s impossible that D sometimes be true and sometimes be false of the same set.

Therefore, “no” cannot be expressed by a quantifier following the schema (67).

This is the desired result. “No” cannot be captured as a determiner meaning

by the given theory of possible determiner meanings. Hence, ‘No’ can only be

expressed by decomposition into negation that takes scope above the existential

quantifier.

4 Conclusion

This paper first argued for a new observation, namely that Negative Quantifiers

(specifically “no”) must be composed out of negation and an indefinite. This is

not expected on the standard theory of possible determiner meanings: generalized

quantifier theory.



I then pursued an alternative theory of possible determiner meanings, based

on a different syntactic structure of quantification at LF. I claimed Quantification

ranges over complicated objects (functions). Since there are in intuitive sense more

functions than there are individuals, the theory of quantifiers becomes more diffi-

cult. The argument I developed, showed that Existentials must be allowed over a

big subset of these functions, but for cardinals smaller subsets must be considered

separately. This lead to the assumption that there is existential quantification over

the small subset under consideration in the schema defining possible quantifiers. I

then showed that negative quantification cannot be expressed in this form because

of the existential quantifier over subsets. This leads to the result that decomposi-

tion of negative quantifiers into negation and an indefinite part is the only way the

meaning of ‘no’ can arise.

The character of the argument, which is still incomplete as I noted, relies

on comparison of the expressiveness generalized quantifiers and the new type of

quantifiers, cfantifiers, which I define above. I try to argue that only certain gen-

eralized quantifiers can be expressed by cfantifiers. However, a little consideration

shows that there are also many cfantifiers that cannot be expressed by generalized

quantifiers. The actually attested quantifiers are those that can be expressed by a

generalized quantifier and equivalently by a cfantifier. This indicates that both gen-

eralized quantifiers and cfantifiers play a role. Since cfantifiers match the syntactic

LF-structure of quantification, I assume that they’re the primary semantic device of

quantification. Generalized quantifiers, however, might well play a role in processing

systems. Then quantificational determiners are required to be expressible as both

generalized quantifiers and cfantifiers. Since this is not the case for “no” this gives

the desired result.
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