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Abstract

Chunk parsing has focused on the
recognition of partial constituent struc-
tures at the level of individual chunks.
Little attention has been paid to the
question of how such partial analyses
can be combined into larger structures
for complete utterances. Such larger
structures are not only desirable for a
deeper syntactic analysis. They also
constitute a necessary prerequisite for
assigning function-argument structure.

The present paper offers a similarity-
based algorithm for assigning func-
tional labels such as subject, object,
head, complement, etc. to complete
syntactic structures on the basis of pre-
chunked input.

The evaluation of the algorithm has
concentrated on measuring the quality
of functional labels. It was performed
on a German and an English treebank
using two different annotation schemes
at the level of function-argument struc-
ture.  The results of 89.73% cor-
rect functional labels for German and
90.40 % for English validate the general
approach.

1 Introduction

Current research on natural language parsing
tends to gravitate toward one of two extremes:
robust, partial parsing with the goal of broad

data coverage versus more traditional parsers that
aim at complete analysis for a narrowly defined
set of data. Chunk parsing (Abney, 1991; Ab-
ney, 1996) offers a particularly promising and by
now widely used example of the former kind.
The main insight that underlies the chunk pars-
ing strategy is to isolate the (finite-state) analysis
of non-recursive syntactic structure, i.e. chunks,
from larger, recursive structures. This results
in a highly-efficient parsing architecture that is
realized as a cascade of finite-state transducers
and that pursues a leftmost longest-match pattern-
matching strategy at each level of analysis.

Despite the popularity of the chunk parsing ap-
proach, there seems to be a gap in current re-
search:

Chunk parsing research has focused on the
recognition of partial constituent structures at the
level of individual chunks. By comparison, lit-
tle or no attention has been paid to the ques-
tion of how such partial analyses can be com-
bined into larger structures for complete utter-
ances. Such larger structures are not only de-
sirable for a deeper syntactic analysis; they also
constitute a necessary prerequisite for assigning
function-argument structure.

Automatic assignment of function-argument
structure has long been recognized as a desider-
atum beyond pure syntactic labeling (Marcus et
al., 1994). The present paper offers a similarity-

lwith the exception of dependency-grammar-based
parsers (Tapanainen and Jérvinen, 1997; Broker et al., 1994;
Lesmo and Lombardo, 2000), where functional labels are
treated as first-class citizens as relations between words, and
recent work on a semi-automatic method for treebank con-
struction (Brants et al., 1997), little has been reported on
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based algorithm for assigning functional labels
such as subject, object, head, complement, etc.
to complete syntactic structures on the basis of
pre-chunked input. The evaluation of the algo-
rithm has concentrated on measuring the quality
of these functional labels.

2 TheTUSBL Architecture

In order to ensure a robust and efficient archi-
tecture, TUSBL, a similarity-based chunk parser,
is organized in a three-level architecture, with
the output of each level serving as input for the
next higher level. The first level is part-of-speech
(POS) tagging of the input string with the help
of the bigram tagger LIKELY (Feldweg, 1993)2
The parts of speech serve as pre-terminal ele-
ments for the next step, i.e. the chunk analysis.
Chunk parsing is carried out by an adapted ver-
sion of Abney’s (1996) CASS parser, which is
realized as a cascade of finite-state transducers.
The chunks, which extend if possible to the sim-
plex clause level, are then remodeled into com-
plete trees in the tree construction level.

The tree construction level is similar to the
DOP approach (Bod, 1998; Bod, 2000) in that
it uses complete tree structures instead of rules.
Contrary to Bod, we only use the complete trees
and do not allow tree cuts. Thus the number of
possible combinations of partial trees is strictly
controlled. The resulting parser is highly efficient
(3770 English sentences took 106.5 seconds to
parse on an Ultra Sparc 10).

3 Chunking and Tree Construction

The division of labor between the chunking and
tree construction modules can best be illustrated
by an example.

For sentences such as the input shown in Fig.
1, the chunker produces a structure in which some
constituents remain unattached or partially anno-
tated in keeping with the chunk-parsing strategy
to factor out recursion and to resolve only unam-
biguous attachments.

Since chunks are by definition non-recursive
structures, a chunk of a given category cannot
fully automatic recognition of functional labels.

2The inventory of POS tags is based on the STTS

(Schiller et al., 1995) for German and on the Penn Treebank
tagset (Santorini, 1990) for English.

Input: alright and that should get us there about
nine in the evening

Chunk parser output:

[uh alright]
[simpx_ ind

[cc and]
[that that]
[vp [md should]
[vb get]]
[pp us]
[adv [rb therel]]
[prep p [about about]
[np [cd nine]]]
[prep_ p [in in]
[np [dt the]

[daytime eveningl]]]

Figure 1: Chunk parser output.

contain another chunk of the same type. In
the case at hand, the two prepositional phrases
(’prep_p’) about nine and in the evening in the
chunk output cannot be combined into a sin-
gle chunk, even though semantically these words
constitute a single constituent. At the level of tree
construction, as shown in Fig. 2, the prohibition
against recursive phrases is suspended. There-
fore, the proper PP attachment becomes possible.
Additionally, the phrase about nine was wrongly
categorized as a ’prep_p’. Such miscategoriza-
tions can arise if a given word can be assigned
more than one POS tag. In the case of about
the tags ’in’ (for: preposition) or ’rb’ (for: ad-
verb) would be appropriate. However, since the
POS tagger cannot resolve this ambiguity from
local context, the underspecified tag "about’ is as-
signed, instead. However, this can in turn lead to
misclassification in the chunker.

The most obvious deficiency of the chunk out-
put shown in Fig. 1 is that the structure does
not contain any information about the function-
argument structure of the chunked phrases. How-
ever, once a (more) complete parse structure is
created, the grammatical function of each ma-
jor constituent needs to be identified. The la-
bels SUBJ (for: subject), HD (for: head), ADJ
(for: adjunct) COMP (for: complement), SPR
(for: specifier), which appear as edge-labels be-
tween tree nodes in Fig. 2, signify the grammati-
cal functions of the constituents in question. E.g.
the label SUBJ encodes that the NP that is the
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alright and that should get us
UH ccC DT MD vB PP

nine in the

about
RB RB CcD IN DT NN

evening

Figure 2: Sample tree construction output for the sentence in Fig. 1.

subject of the whole sentence. The label ADJ
above the phrase about nine in the evening signi-
fies that this phrase is an adjunct of the verb get.

TUSBL currently uses as its instance base two
semi-automatically constructed treebanks of Ger-
man and English that consist of appr. 67,000 and
35,000 fully annotated sentences, respectively’.
Each treebank uses a different annotation scheme
at the level of function-argument structure*. As
shown in Table 1, the English treebank uses a to-
tal of 13 functional labels, while the German tree-
bank has a richer set of 36 function labels.

For German, therefore, the task of tree con-
struction is slightly more complex because of the
larger set of functional labels. Fig. 3 gives an ex-
ample for a German input sentence and its corre-
sponding chunk parser output.

In this case, the subconstituents of the extra-
posed coordinated noun phrase are not attached
to the simplex clause that ends with the non-finite
verb that is typically in clause-final position in
declarative main clauses of German. Moreover,
each conjunct of the coordinated noun phrase
forms a completely flat structure. TUSBL’s tree
construction module enriches the chunk output
as shown in Fig. 4. Here the internally recur-
sive NP conjuncts have been coordinated and in-

%See (Stegmann et al., 2000; Kordoni, 2000) for further
details.

“The annotation for German follows the topological-
field-model standardly used in empirical studies of German
syntax. The annotation for English is modeled after the theo-
retical assumptions of Head-Driven Phrase Structure Gram-
mar.

Input:

dann w”urde ich vielleicht noch vorschlagen
Donnerstag den elften und Freitag den zw” olften
August (then | would suggest maybe Thursday eleventh
and Friday twelfth of August)

Chunk parser output:

[simpx [advx [adv dann] ]
[vxfin [vafin w"urdel]
[nx2 [pper ichl]
[advx [adv vielleicht]]
[advx [advmd noch]]
[vvinf vorschlagen]]

[nx3 [day Donnerstag]
[art den]
[adja elften]]

[kon und]

[nx3 [day Freitag]
[art den]
[adja zw"olften]
[month August]]

Figure 3: Chunk parser output for a German sen-
tence.

tegrated correctly into the clause as a whole. In
addition, function labels such as MOD (for: mod-
ifier), HD (for head), ON (for: subject), OA (for:
direct object), OV (for: verbal object), and APP
(for: apposition) have been added that encode the
function-argument structure of the sentence.

4 Similarity-based Tree Construction

The tree construction algorithm is based on the
machine learning paradigm of memory-based



[| German label | description | English label | description |
HD head HD head
- non-head - intentionally empty
ON nominative object COMP complement
oD dative object SPR specifier
OA accusative object SBJ subject
0OS sentential object SBQ subject, wh-
OPP prepositional object SBR subject, rel.
OADVP adverbial object ADJ adjunct
OADJP adjectival object ADJ? adjunct ambiguities
PRED predicate FIL filler
oV verbal object FLQ filler, wh-
FOPP optional prepositional object FLR filler, rel.
VPT separable verb prefix MRK marker
APP apposition
MOD ambiguous modifier
x-MOD 8 distinct labels for specific
modifiers, e.g. V-MOD
yK 13 labels for second conjuncts in
split-up coordinations, e.g. ONK

Table 1: The functional label set for the German and the English treebanks.

SIMPX

oo o i

[592]
[F0]
dann w"urde ich vielleicht noch vorschlagen Donnerstag

ADV VAFIN PPER ADV ADV VVINF NN

Dlige"
.

zw"olften
ADJA NN

den elften und Freitag den August

ART NN KON NN ART

Figure 4: Tree construction output for the German sentence in Fig. 3.

learning (Stanfill and Waltz, 1986)°> Memory-
based learning assumes that the classification of
a given input should be based on the similarity
to previously seen instances of the same type that
have been stored in memory. This paradigm is an
instance of lazy learning in the sense that these
previously encountered instances are stored “as
is” and are crucially not abstracted over, as is
typically the case in rule-based systems or other
learning approaches. Previous applications of

SMemory-based learning has recently been applied to a
variety of NLP classification tasks, including part-of-speech
tagging, noun phrase chunking, grapheme-phoneme conver-
sion, word sense disambiguation, and PP attachment (see
(Daelemans et al., 1999; Veenstra et al., 2000; Zavrel et al.,
1997) for details).

memory-based learning to NLP tasks consisted of
classification problems in which the set of classes
to be learnt was simple in the sense that the class
items did not have any internal structure and the
number of distinct items was small. Since in the
current application, the set of classes are parse
trees, the classification task is much more com-
plex. The classification is simple only in those
cases where a direct hit is found, i.e. where a com-
plete match of the input with a stored instance ex-
ists. In all other cases, the most similar tree from
the instance base needs to be modified to match
the chunked input. This means that the output
tree will group together only those elements from
the chunked input for which there is evidence in



the instance base. If these strategies fail for com-
plete chunks, TUSBL attempts to match smaller
subchunks.

The algorithm used for tree construction is pre-
sented in a slightly simplified form in Figs. 5-8.
For readability, we assume here that chunks and
complete trees share the same data structure so
that subroutines like string yield can operate on
both of them indiscriminately.

The main routine construct_tree in Fig. 5 sepa-
rates the list of input chunks and passes each one
to the subroutine process chunk in Fig. 6 where
the chunk is then turned into one or more (partial)
trees. process chunk first checks if a complete
match with an instance from the instance base is
possible.5 If this is not the case, a partial match
on the lexical level is attempted. If a partial tree is
found, attach_next_chunk in Fig. 7 and extend_tree
in Fig. 8 are used to extend the tree by either at-
taching one more chunk or by resorting to a com-
parison of the missing parts of the chunk with tree
extensions on the POS level. attach next_chunk is
necessary to ensure that the best possible tree is
found even in the rare case that the original seg-
mentation into chunks contains mistakes. If no
partial tree is found, the tree construction backs
off to finding a complete match at the POS level or
to starting the subroutine for processing a chunk
recursively with all the subchunks of the present
chunk.

The application of memory-based techniques
is implemented in the two subroutines com-
plete_match and partial_match. The presentation
of the two cases as two separate subroutines is for
expository purposes only. In the actual implemen-
tation, the search is carried out only once. The
two subroutines exist because of the postprocess-
ing of the chosen tree, which is necessary for par-
tial matches and which also deviates from stan-
dard memory-based applications. Postprocessing
mainly consists of shortening the tree from the in-
stance base so that it covers only those parts of
the chunk that could be matched. However, if the
match is done on the lexical level, a correction of
tagging errors is possible if there is enough evi-
dence in the instance base. TUSBL currently uses
an overlap metric, the most basic metric for in-

bstring_yield returns the sequence of words included in
the input structure, pos.yield the sequence of POS tags.

stances with symbolic features, as its similarity
metric. This overlap metric is based on either
lexical or POS features. Instead of applying a
more sophisticated metric like the weighted over-
lap metric, TUSBL uses a backing-off approach
that heavily favors similarity of the input with pre-
stored instances on the basis of substring identity.
Splitting up the classification and adaptation pro-
cess into different stages allows TUSBL to prefer
analyses with a higher likelihood of being correct.
This strategy enables corrections of tagging and
segmentation errors that may occur in the chun-
ked input.

5 Quantitative Evaluation

Quantitive evaluations of robust parsers typically
focus on the three PARSEVAL measures: labeled
precision, labeled recall and crossing accuracy. It
has frequently been pointed out that these evalu-
ation parameters provide little or no information
as to whether a parser assigns the correct seman-
tic structure to a given input, if the set of category
labels comprises only syntactic categories in the
narrow sense, i.e. includes only names of lexi-
cal and phrasal categories. This justified criticism
observes that a measure of semantic accuracy can
only be obtained if the gold standard includes an-
notations of syntactic-semantic dependencies be-
tween bracketed constituents. It is to answer this
criticism that the evaluation of the TUSBL system
presented here focuses on the correct assignment
of functional labels. For an in-depth evaluation
that focuses on syntactic categories, we refer the
interested reader to (Kibler and Hinrichs, 2001).

The quantitative evaluation of TUSBL has been
conducted on the treebanks of German and En-
glish described in section 3. Each treebank uses
a different annotation scheme at the level of
function-argument structure. As shown in Table
1, the English treebank uses a total of 13 func-
tional labels, while the German treebank has a
richer set of 36 function labels.

The evaluation consisted of a ten-fold cross-
validation test, where the training data provide an
instance base of already seen cases for TUSBL’s
tree construction module. The evaluation was per-
formed for both the German and English data.
For each language, the following parameters were
measured: 1. labeled precision for syntactic cat-



construct_tree(chunk_list, treebank):

| while (chunk_list is not empty) do
remove first chunk from chunk_list
process_chunk(chunk, treebank)

Figure 5: Pseudo-code for tree construction, main routine.

process_chunk(chunk, treebank):
words := string_yield(chunk)
tree := complete_match(words, treebank)

if (tree is not empty) direct hit,
then output(tree) i.e. complete chunk found in treebank
else

tree := partial_match(words, treebank)

if (tree is not empty)

then

if (tree = postfix of chunk)

then

treel := attach_next_chunk(tree, treebank)

if (tree is not empty)

then tree :=treel

if ((chunk - tree) is not empty) if attach_next_chunk succeeded

then tree := extend_tree(chunk - tree, tree, treebank) | chunk might consist of both chunks

output(tree)

if ((chunk - tree) is not empty) chunk might consist of both chunks (s.a.)

then process_chunk(chunk - tree, treebank) i.e. process remaining chunk

| dse back off to POS sequence

pos := pos_yield(chunk)

tree := complete_match(pos, treebank)

if (tree is not empty)

then output(tree)

else back off to subchunks
| while (chunk is not empty) do

remove first subchunk c1 from chunk

process_chunk(c1, treebank)

Figure 6: Pseudo-code for tree construction, subroutine process chunk.

attach_next_chunk(tree, treebank): attempts to attach the next chunk to the tree
take first chunk chunk2 from chunk_list
words2 := string_yield(tree, chunk2)

tree2 := complete_match(words2, treebank)
if (tree2 is not empty)

then

remove chunk2 from chunk_Tist

return tree2

| elsereturn empty

Figure 7: Pseudo-code for tree construction, subroutine attach. next chunk.

extend_tree(rest_chunk, tree, treebank): extends the tree on basis of POS comparison
words := string_yield(tree)

rest_pos := pos_yield(rest_chunk)

tree2 := partial_match(words + rest_pos, treebank)
if ((tree2 is not empty) and (subtree(tree, tree2)))
then return tree2

else return empty

Figure 8: Pseudo-code for tree construction, subroutine extend. tree.

egories alone, and 2. labeled precision for func-  shown in Tables 2 and 3. The results for labeled
tional labels. recall underscore the difficulty of applying the

o ) classical PARSEVAL measures to a partial pars-
The results of the quantitative evaluation are



language || parameter | minimum | maximum | average |

German || true positives 60.38% | 64.23% | 61.45%
false positives 2.93 % 3.14 % 3.03 %
unattached constituents | 15.15% | 19.23 % 18.18 %
unmatched constituents | 17.05% | 17.59 % 17.35 %

English true positives 59.11% | 60.18% | 59.78 %
false positives 311 % 3.39 % 3.25%
unattached constituents | 9.57 % 10.30 % 9.88 %
unmatched constituents | 26.80 % | 27.54 % 27.10 %

Table 2: Quantitative evaluation: recall.

language || parameter

| minimum | maximum | average |

German || labeled precision for synt. cat. | 81.28 % | 82.08 % 81.56 %
labeled precision for funct. cat. | 89.26 % | 90.13 % 89.73 %
English labeled precision for synt. cat. | 66.15% | 67.34% | 66.84 %
labeled precision for funct. cat. | 90.07 % | 90.93 % 90.40 %

Table 3: Quantitative evaluation: precision.

ing approach like ours. We have, therefore di-
vided the incorrectly matched nodes into three
categories: the genuine false positives where a
tree structure is found that matches the gold stan-
dard, but is assigned the wrong label; nodes
which, relative to the gold standard, remain
unattached in the output tree; and nodes contained
in the gold standard for which no match could be
found in the parser output. Our approach follows
a strategy of positing and attaching nodes only if
sufficient evidence can be found in the instance
base. Therefore the latter two categories can-
not really be considered errors in the strict sense.
Nevertheless, in future research we will attempt to
significantly reduce the proportion of unattached
and unmatched nodes by exploring matching al-
gorithms that permit a higher level of generaliza-
tion when matching the input against the instance
base. What is encouraging about the recall results
reported in Table 2 is that the parser produces gen-
uine false positives for an average of only 3.03 %
for German and 3.25 % for English.

For German, labeled precision for syntactic
categories yielded 81.56 % correctness. While
these results do not reach the performance re-
ported for other parsers (cf. (Collins, 1999; Char-
niak, 1997)), it is important to note that the two
treebanks consist of transliterated spontaneous

speech data. The fragmentary and partially ill-
formed nature of such spoken data makes them
harder to analyze than written data such as the
Penn treebank typically used as gold standard.

It should also be kept in mind that the basic
PARSEVAL measures were developed for parsers
that have as their main goal a complete analy-
sis that spans the entire input. This runs counter
to the basic philosophy underlying an amended
chunk parser such as TUSBL, which has as its
main goal robustness of partially analyzed struc-
tures.

Labeled precision of functional labels for the
German data resulted in a score of 89.73 % cor-
rectness. For English, precision of functional la-
bels was 90.40 %. The slightly lower correctness
rate for German is a reflection of the larger set of
function labels used by the grammar. This raises
interesting more general issues about trade-offs
in accuracy and granularity of functional annota-
tions.

6 Conclusion and Future Research

The results of 89.73 % (German) and 90.40 %
(English) correctly assigned functional labels val-
idate the general approach. We anticipate fur-
ther improvements by experimenting with more



sophisticated similarity metrics’ and by enrich-
ing the linguistic information in the instance base.
The latter can, for example, be achieved by pre-
serving more structural information contained in
the chunk parse. Yet another dimension for ex-
perimentation concerns the way in which the al-
gorithm generalizes over the instance base. In
the current version of the algorithm, generaliza-
tion heavily relies on lexical and part-of-speech
information. However, a richer set of backing-off
strategies that rely on larger domains of structure
are easy to envisage and are likely to significantly
improve recall performance.

While we intend to pursue all three dimensions
of refining the basic algorithm reported here, we
have to leave an experimentation of which modi-
fications yield improved results to future research.
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