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Abstract

This paper sets up a framework for LTAG (Lex-
icalized Tree Adjoining Grammar) semantics
that brings together ideas from different recent
approaches addressing some shortcomings of
TAG semantics based on the derivation tree.
Within this framework, several sample analyses
are proposed, and it is shown that the frame-
work allows to analyze data that have been
claimed to be problematic for derivation tree
based LTAG semantics approaches.

1 Introduction

An LTAG (Joshi and Schabes, 1997) consists of a fi-
nite set of elementary trees associated with lexical items.
From these trees, larger trees are derived by substitution
(replacing a leaf with a new tree, a so-called initial tree)
and adjunction (replacing an internal node with a new
tree, a so-called auxiliary tree).

The elementary trees of an LTAG represent extended
projections of lexical items and encapsulate all syntac-
tic/semantic arguments of the lexical anchor. They are
minimal in the sense that only the arguments of the an-
chor are encapsulated, all recursion is factored away.
These linguistic properties of elementary trees are for-
mulated in the Condition on Elementary Tree Minimality
(CETM) from (Frank, 1992).

LTAG derivations are represented by derivation trees
that record the history of how the elementary trees are put
together. A derived tree is the result of carrying out the
substitutions and adjunctions. Each edge in the derivation
tree stands for an adjunction or a substitution. The edges
are equipped with Gorn addresses of the nodes where the
substitutions/adjunctions take place.1 See for example

1The root has the address 0, the jth child of the root has
address j and for all other nodes: the jth child of the node with
address p has address p · j.
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Figure 1: TAG derivation for (1)

the derivation of (1) in Fig. 1.

(1) John sometimes laughs

Taking into account the minimality of elementary trees
and the fact that derivation steps in TAG correspond to
predicate-argument applications, it seems appropriate to
base LTAG semantics on the derivation tree (Candito and
Kahane, 1998; Joshi and Vijay-Shanker, 1999; Kallmeyer
and Joshi, 2003). However, it has been observed that in
some cases this is problematic since the derivation tree
does not provide enough information to correctly con-
struct the desired semantic dependencies.

The goal of this paper is to bring together ideas from
several recent approaches in order to develop a general
framework for LTAG semantics that allows us to compute
semantic representations on the derivation tree, overcom-
ing some otherwise problematic cases. Within this frame-
work we then sketch several sample analyses.

2 Previous approaches to LTAG semantics

The data that are claimed to be the most problematic for
derivation tree based LTAG semantics (see (Rambow et
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Derivation
tree for (2):

like
wh s

who say
s

think

Desired semantics (simplified):
who(x, think(p, say(j, like(b, x))))

Derivation
tree for (3):

love
s vp

claim seem

Desired semantics (simplified):
claim(p, (seem(love(m, j))))

Figure 2: Problematic derivation trees for semantics

al., 1995; Dras et al., 2004; Frank and van Genabith,
2001; Gardent and Kallmeyer, 2003)) are long-distance
wh-movements as in (2) and interactions of attitude verbs
and raising verbs or adverbs as in (3).

(2) Who does Paul think John said Bill liked?

(3) a. Mary, Paul claims John seems to love
b. Paul claims Mary apparently loves John

The problem of (2) is that in the LTAG analysis, who is
substituted into the wh-NP node of like, say is adjoined to
the lower S node of like and think adjoins to say. Conse-
quently, in the derivation tree (see Fig. 2), there is neither
a link between who and think nor a link between like and
think.2 But in the semantics, we want the think propo-
sition to be the scopal argument of the wh-operator, i.e.,
a link between who and think must be established. This
can be done via the semantics of like but at least some
possibility to link like to think is necessary. In (3), claim
and seem (or apparently resp.) adjoin to different nodes
in the love tree, i.e., they are not linked in the derivation
tree. But the propositional argument of claim is the seems
(apparently resp.) proposition. This case however is less
hard than (2) since one can choose the semantics of like
in such a way that the desired scope orders are obtained
without a direct link between the embedding attitude verb
and the embedded raising verb (adverb resp.). A seman-
tics in the (Kallmeyer and Joshi, 2003) framework is pos-
sible here. Example (2) however poses a serious problem
for derivation tree based approaches.

Several proposals have been made to avoid the prob-
lems that arise when doing semantics based on the deriva-
tion tree:

Instead of using the derivation tree for semantics, one
could try to compute semantics based on the derived tree.

2For the sake of readability, we use names np, vp, r for root,
f for foot, ... for the node positions instead of the usual Gorn
adresses.

Such an approach is pursued in (Frank and van Genabith,
2001). However, their approach makes use not only of
the information available in the derived tree but also of
information about how the elementary trees were put to-
gether, i.e., of information available in the derivation tree.
Therefore, in a sense, their semantics is based on both,
derived and derivation tree. Considering that one of the
guiding linguistic principles of LTAG is semantic mini-
mality of elementary tree, i.e. that the semantics of ele-
mentary trees is non-decomposable, it is more appropri-
ate to link semantic representations to whole elementary
trees and to abstract away (at least to a certain degree)
from the concrete shape of the elementary trees. This
amounts to linking semantic representations to nodes in
the derivation tree.

An alternative proposal for computing semantics only
on the derivation tree is to enrich the derivation tree
with additional links as in (Kallmeyer, 2002a; Kallmeyer,
2002b). In this approach, the derived tree needs not be
considered for computing semantics. The problem with
this proposal is that sometimes it is not clear which link
one has to follow in order to find the value for some se-
mantic variable. Therefore additional rules for ordering
the links for semantic computation are needed. The re-
sult is a rather complex machinery in order to obtain the
dependencies needed for semantics.

More recently, (Gardent and Kallmeyer, 2003) propose
to use the feature unification mechanism in the syntax,
i.e., in the derived tree, in order to determine the val-
ues of semantic arguments. The underlying observation
is that whenever a semantic link in the derivation tree is
missing, it is either a) a link between trees attaching to
different nodes in the same tree (see(3)), i.e., attaching to
nodes that can share features inside an elementary tree,
or b) a link between trees γ1 and γ2 such that γ2 adjoins
to the root of a tree that (adjoins to the root of a tree that
...) attaches to some node μ in γ1 (see (2)). In this case,
indirectly, the top of μ and the top of the root of γ2 unify
and thereby features can be shared. This approach works
in the problematic cases and it has the advantage of using
a well-defined operation, unification, for semantic com-
putation. But it has the disadvantage of using the derived
tree for semantics even though semantic representations
are assigned to whole elementary trees (i.e., to nodes in
the derivation tree) and not to nodes in the derived tree.
Furthermore, the feature structures needed for semantics
are slightly different form those used for syntax since
they contain semantic variables and labels as possible fea-
ture values. Consequently, the number of feature struc-
tures is no longer finite (in contrast to feature-based TAG
(FTAG) as defined in (Vijay-Shanker and Joshi, 1988))
and therefore the generative capacity of the formalism is
extended. In other words, a more powerful formalism is
used for syntax just because it is needed for the specific



semantic features.3

In order to separate more neatly between syntax with
feature structures linked to nodes in the derived tree and
semantics where semantic representations are linked to
nodes in the derivation tree, we propose in the following
to incorporate semantic feature structures in the deriva-
tion tree. Formally, this means just extracting the seman-
tic features used in (Gardent and Kallmeyer, 2003) from
the derived trees and putting them in a semantic feature
structure linked to the semantic representation of the tree
in question. Of course one still has to link semantic fea-
tures to specific node positions in the elementary tree,
e.g., in order to make sure that syntactic argument po-
sitions get correctly linked to the corresponding semantic
arguments.

3 LTAG semantics with semantic
unification

3.1 Semantic feature structures

Semantic representations are as defined in (Kallmeyer
and Joshi, 2003) except that they do not have argument
variables: they consist of a set of formulas (typed λ-
expressions with labels) and a set of scope constraints. A
scope constraint is an expression x ≥ y where x and y are
propositional labels or propositional variables (these last
correspond to the holes in (Kallmeyer and Joshi, 2003)).
Each semantic representation is linked to a semantic fea-
ture structure. Semantic feature structures are typed fea-
ture structures, the type of the whole feature structure is
sem. The definition of the feature structures is as follows:
• a feature structure of type sem consists of features 0

(the root position), 1, 2, ..., 11, 12, ... for all node
positions that can occur in elementary trees (finite for
each TAG), the values of these features are of type tb

(for ‘top-bottom’)
• a feature structure of type tb consists of a T and a

B feature (top and bottom) whose values are feature
structures of type bindings

• a feature structure of type bindings consists of a fea-
ture I whose values are individual variables, a feature
P whose values are propositional labels, etc.

3.2 Semantic unification

Semantic composition consists only of feature unifica-
tion. It corresponds to the feature unifications in the syn-
tax that are performed during substitutions and adjunc-

3A similar approach is (Stone and Doran, 1997) where, as in
(Gardent and Kallmeyer, 2003), each elementary tree has a flat
semantic representation, the semantic representations are con-
joined when combining them and variable assignments are done
by unification in the feature structures on the derived tree. But
there is no underspecification, and the approach is less explicit
than (Gardent and Kallmeyer, 2003).

l1 : laugh( 1 )⎡
⎢⎢⎢⎣

NP

[
T

[
I 1

]]

VP

[
T

[
P 2

]
B

[
P l1

]
]
⎤
⎥⎥⎥⎦

np vp

john(x) l2 : sometimes( 3 ), 3 ≥ 4[
R

[
T

[
I x

]]] ⎡
⎢⎢⎣

R

[
B

[
P l2

]]
F

[
T

[
P 4

]]
⎤
⎥⎥⎦

Figure 3: Semantic representations for (1) John some-
times laughs

tions and the final top-bottom unifications in the derived
tree. In the derivation tree, elementary trees are replaced
by their semantic representations plus the corresponding
semantic feature structures. Then, for each edge in the
derivation tree from γ1 to γ2 with position p:
• The top feature of position p in γ1 and the top feature

of the root position in γ2, i.e., the feature structures
γ1.p.T and γ2.0.T are identified,

• and if γ2 is an auxiliary tree, then the bottom feature
of the foot node of γ2 and the bottom feature of posi-
tion p in γ1, i.e., (if f is the position of the foot node in
γ2) the feature structures γ1.p.B and γ2.f .B are iden-
tified.

Furthermore, for all γ in the derivation tree and for all
positions p in γ such that there is no edge from γ to some
other tree with position p: the T and B features of γ.p are
identified.

By these unifications, some of the variables in the se-
mantic representations get values. In the end, after having
performed these unifications, the union of all semantic
representations is built. The result is an underspecified
representation.4

3.3 A sample derivation

As an example consider the analysis of (1): Fig. 3
shows the semantic representations and the semantic fea-
ture structures of the three elementary trees involved in
the derivation.

4For combining feature structure, we adopt an operational
way in this paper because this is general practice in LTAG. I.e.,
unification is an operation on actual structures. Viewing feature
structures as descriptions and thinking of unification as find-
ing a consistent model (see, e.g., (Johnson, 1994)), is of course
possible as well. But then one needs additional constraints that
reflect the identifications performed during substitution, adjunc-
tion and top-bottom feature structure unification.



⎡
⎢⎢⎢⎣

NP

[
T 10

[
I 1

]]

VP

[
T 11

[
P 2

]
B 12

[
P l1

]
]
⎤
⎥⎥⎥⎦

np vp⎡
⎣R

[
T 10

[
I x

]
B 10

]⎤
⎦

⎡
⎢⎢⎢⎢⎢⎣

R

[
T 11

B 11

[
P l2

]]

F

[
T 12

[
P 4

]
B 12

]
⎤
⎥⎥⎥⎥⎥⎦

Figure 4: Semantic unification for (1)

The different unifications lead to the feature value
identities in Fig. 4. This gives the identities 1 = x,
2 = l2, and 4 = l1, which results in the following se-
mantic representation:

(4) l1 : laugh(x), john(x), l2 : sometimes( 3 ),
3 ≥ l1

In the end, appropriate disambiguations must be found.
These are assignments for the remaining variables, i.e.,
functions that assign propositional labels to propositional
variables, respecting the scope constraints (Kallmeyer
and Joshi, 2003). The disambiguated representation is
then interpreted conjunctively. (4) has only one disam-
biguation, namely 3 → l1. This leads to john(x) ∧

sometimes(laugh(x)).

4 Alternative ways of obtaining scope
constraints

Instead of stating explicit scope constraints of the form
x ≥ y, one could imagine two other possibilities: either i)
not using any scope constraints at all and obtaining scope
by identifying propositional variables and propositional
labels by unification during the derivation, or ii) obtaining
scope constraints from the final top-bottom unification in-
stead of stating them explicitely, i.e., not doing real top-
bottom unification but adding instead a constraint top ≥

bottom whenever a node has not been used for attaching
other elementary trees. These alternatives are illustrated
in Fig. 5 and 6.

Possibility i) has the obvious problem that is does not
allow for underspecified representations, which means
that in cases of scope ambiguities the number of repre-
sentations one would have to generate would explode.
Possibility ii) looks more interesting. In Fig. 5 for ex-
ample, the B feature of position 2 in laugh is unified with
the (empty) B feature of position 2 in sometimes so that
in the result, there is a node with T [P 3 ] and B [P l1].
From this node, the desired scope constraint 3 ≥ l1 can

l1 : laugh( 1 )⎡
⎢⎢⎢⎣

NP

[
T

[
I 1

]]

VP

[
T

[
P 2

]
B

[
P l1

]
]
⎤
⎥⎥⎥⎦

np vp

john(x) l2 : sometimes( 3 )[
R

[
T

[
I x

]]] ⎡
⎢⎢⎣

R

[
B

[
P l2

]]
F

[
T

[
P 3

]]
⎤
⎥⎥⎦

Result:

john(x), l1 : laugh(x),
l2 : sometimes(l1)

Figure 5: Alternative i): Analysis of (1) without scope
constraints

be obtained. One problem with ii) is that in some cases
one might need the original final top-bottom unification,
so one would have to distinguish between cases where a
scope constraint has to be added (these are perhaps the
cases of P features) and cases where usual unification is
done. But even more problematic is that in some cases,
it is not possible to obtain all scope constraints one needs
by the final top-bottom mechanism. Examples are cases
where two quantifier scope parts attach to the same node
as in (5).

(5) someone likes everybody

Following (Kallmeyer and Joshi, 2003), we suppose that
the contribution of a quantifier consists of an NP initial
tree (the predicate argument part) and a separate auxiliary
tree with just one S node (the scope part). The analysis
of (5) with possibility ii) is sketched in Fig. 7. The scope
constraints one wants to obtain are 1) those that place the
proposition coming with the noun in the restriction of the
quantifiers, i.e., 4 ≥ l3 and 8 ≥ l5, 2) those that place
the like proposition in the nuclear scope of the quantifiers,
i.e., 5 ≥ l1 and 9 ≥ l1, and 3) those that limit the scope
of the quantifier inside the sentence the quantifier attaches
to, i.e., 1 ≥ l2 and 1 ≥ l4.5 For 1) and 2), corresponding
top and bottom feature have to be put on some node, in
Fig. 7 they are on positions N and L (for the lexical an-
chor) of the NP tree. However, this is very arbitrary, they
are not really related to these nodes. Therefore, it is much
more appropriate to state the constraints in a general way

5The last constraints are important to make sure that in
examples as Mary thinks John likes everybody the embedded
quantifier cannot take scope over thinks.
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l1 : like( 2 , 3 )⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

[
T

[
P 1

]]
NP1

[
T

[
I 2

P l1

]]

NP2

[
T

[
I 3

P l1

]]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

r np1 np2 r

l2 : some(x, 4 , 5 ) l4 : every(y, 8 , 9 )[
R

[
B

[
P l2

]]] [
R

[
B

[
P l4

]]]
l3 : person(x) l5 : person(y)⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

[
T

[
P 7

I x

]]

N

⎡
⎣T

[
P 4

]
B

[
P l3

]
⎤
⎦

L

⎡
⎣T

[
P 5

]
B

[
P 7

]
⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

[
T

[
P 11

I x

]]

N

⎡
⎣T

[
P 8

]
B

[
P l5

]
⎤
⎦

L

⎡
⎣T

[
P 9

]
B

[
P 11

]
⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 7: Problematic case for possibility ii): Analysis of (5)

l1 : laugh( 1 )⎡
⎢⎣NP

[
T

[
I 1

]]
VP

[
B

[
P l1

]]
⎤
⎥⎦

np vp

john(x) l2 : sometimes( 3 )[
R

[
T

[
I x

]]] ⎡
⎢⎢⎣

R

[
B

[
P l2

]]
F

[
T

[
P 3

]]
⎤
⎥⎥⎦

Result:
l1 : laugh(x), john(x),
l2 : sometimes( 3 ), 3 ≥ l1

Figure 6: Alternative ii): scope constraints from top-
bottom unification

and to link them only to the semantic representation with-
out linking them to any node. The constraints 3) have to
come from the scope tree, i.e., they have to be linked to
its root since this is the only node in these trees. But this
is not possible since in the course of the derivation, the
bottom parts of all scope parts attaching to the same node
unify because of the unifications done during adjunction.
In Fig. 6 for example this means that [P l2] and [P l4] are
unified, which leads to a failure.

Because of these considerations we decided not to
choose possibilities i) or ii) but to state scope constraints

explicitely in the semantic representations and use se-
mantic unification with final top-bottom unification as de-
scribed above.

5 Comparison to Gardent & Kallmeyer

Among the approaches to LTAG semantics mentioned in
the beginning of this section, (Gardent and Kallmeyer,
2003) is the closest to our framework.

Obviously, everything one can do in the approach pro-
posed in (Gardent and Kallmeyer, 2003) can be directly
transformed into the approach presented here. An advan-
tage of our approach is that semantic feature structures
are linked to whole elementary trees and therefore they
offer the possibility to define global features for eleme-
nary trees. So far we have not exploited this in this pa-
per but it obviously might be useful, for example for the
MAXS and MINP features in section 6.

A problem of (Gardent and Kallmeyer, 2003) is that,
as already mentioned, in order to do semantics using the
feature structures in the syntax, an arbitrary number of
possible feature values needs to be allowed, since the
number of labels and individual variables occurring in
a sentence cannot be limited in a general way. Conse-
quently the number of possible feature structures is no
longer finite and therefore, in contrast to standard FTAG
(Vijay-Shanker and Joshi, 1988), the formalism is no
longer equivalent to TAG. This means that semantic fea-
tures are slightly different from those needed for syntax
in terms of formal properties. Therefore, it is more ap-
propriate to separate them from syntactic features and to



link them to whole semantic representations (i.e., to link
them to whole elementary trees). This is what the ap-
proach described above does: instead of increasing the
formal power of the syntactic formalism, the extra power
needed for semantics is added to the semantic represen-
tations, i.e., to nodes in the derivation tree.

A further important difference is that we do not use ex-
plicit holes h1, h2, . . . besides propositional variables. In-
stead, the propositional variables that remain after having
performed all unifications are understood as being holes
in the sense of previous LTAG semantics approaches.
This simplifies the formal framework considerably.

6 Sample analyses

6.1 Quantifiers

(6) everybody laughs

For quantificational NPs as in (6) we propose the anal-
ysis shown in Fig. 8. This allows us to obtain the scope
constraints mentioned above: the NP proposition is in the
restriction of the quantifier because of 4 ≥ l3. Further-
more, the following must be guaranteed: 1. the proposi-
tion to which a quantifier attaches must be in its nuclear
scope and 2. a quantifier cannot scope higher than the
next finite clause. The first constraint must result from
the combination of the lower part of the quantifier (the
NP tree) and the tree to which it attaches.6 We intro-
duce a feature MINP to pass the proposition of a tree to an
embedded quantifier. The second constraint must result
from the adjunction of the scope part of the quantifier.
We use a feature MAXS (‘maximal scope’) that passes
an upper limit for scope from a verb tree to an adjoin-
ing scope tree. E.g., see Fig. 8 for the analysis of (6). It
leads to the following unifications: 6 = 2 (adjunction of
the scope part), 1 = x and 7 = l1 (substitution of the
predicate-argument part, and 3 = l1 (final top-bottom
unification). The result is (7) which has just one disam-
biguation: 2 → l2, 4 → l3, 5 → l1.

(7)
l1 : laugh(x),
l2 : every(x, 4 , 5 ), l3 : person(x)
2 ≥ l1, 2 ≥ l2, 4 ≥ l3, 5 ≥ l1

Note that this analysis of quantifiers differs crucially
form what is proposed in (Gardent and Kallmeyer, 2003)
where quantifiers do not have a separate scope part. This
separate scope part allows us to account for various con-
straints for quantifier scope.7

6This is particularly clear in examples with quantificational
NPs that are embedded in other quantificational NPs as consid-
ered in (Joshi et al., 2003). Here, the minimal nuclear scope of
the embedded NP depends on the embedding NP and not on the
verb tree.

7(Joshi et al., 2003) derive for example constraints for rela-
tive quantifier scope in so-called inverse linking configurations
from the way the scope parts combine.

⎧⎪⎨
⎪⎩

S∗

NP

everybody

⎫⎪⎬
⎪⎭

S

NP VP

laughs

l1 : laugh( 1 ), 2 ≥ 3⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S

[
B

[
P 3

MAXS 2

]]

VP

[
T

[
P 3

]
B

[
P l1

]
]

NP

[
T

[
I 1

MINP l1

]]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s np

l2 : every(x, 4 , 5 ),
6 ≥ l2

l3 : person(x),
4 ≥ l3, 5 ≥ 7[

R

[
B

[
MAXS 6

]]] ⎡
⎣R

[
T

[
MINP 7

I x

]]⎤⎦
Figure 8: Analysis of (6)

6.2 Attitude verbs

(8) Mary thinks John laughs

The analysis of attitude verbs such as thinks in (8) is
shown in Fig. 9. The propositional argument of think
(variable 3 ) is the MAXS value of the embedded verb
(MAXS of the top of the foot node). This means that quan-
tifiers or adverbs attaching to the lower verb cannot scope
over thinks.8 The adjunction leads to 3 = 1 .

(9) Mary thinks John likes everybody

In (9), wide scope of everybody over thinks should be
disallowed. If its scope part attaches to the S node of
likes, then the scope is blocked by the MAXS value of
likes. Consequently, everybody cannot have scope over
thinks because thinks takes the MAXS proposition of likes
as its argument. However, we have to make sure that
the scope part of everybody cannot attach higher, i.e., to
thinks.

In general, we allow scope parts to adjoin higher. But,
following (Joshi et al., 2003), the compositions must be
such that one or more already derived trees or tree sets
attach (by substitution or adjunction) to one single ele-
mentary tree. If only the NP tree of everybody attaches to
like, there are only two possible continuations and both
lead to an incorrect derivation for (9). The first possible

8Some counterexamples to finite clause boundness are ana-
lyzed nowadays as cases of illusive scope (Fox and Sauerland,
1996).
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NP VP

thinks S∗
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NP VP

laughs

l1 : laugh(j), 1 ≥ 2

⎡
⎢⎢⎢⎢⎢⎢⎣

S

[
B

[
MAXS 1

P 2

]]

VP

⎡
⎣T

[
P 2

]
B

[
P l1

]
⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

s

l2 : think(m, 3 ), 4 ≥ 5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

[
B

[
MAXS 4

P 5

]]

VP

⎡
⎣T

[
P 5

]
B

[
P l2

]
⎤
⎦

F

[
T

[
MAXS 3

]]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 9: Analysis of (8)

continuation is to adjoin the scope part of everybody to
thinks. Then the derived like tree also must be added to
thinks since it is part of the same derived tree set, i.e.,
thinks would have a substitution node instead of a foot
node. This however is problematic for the analysis of
long-distance dependencies in LTAG. The second possi-
ble continuation is that thinks attaches to like simultane-
ously with the lower everybody part. But then the scope
part has to find some other node than the S node of thinks
in order to attach to it. There is no other S node be-
sides those coming from thinks or like, so this possibility
does not work either. Consequently, one has to adjoin the
scope part to the like S node.

6.3 Problems for derivation based semantics

Now let us come back to the examples (2) and (3) men-
tioned in the beginning, repeated here as (10) and (11):

(10) Who does Paul think John said Bill liked?

(11) a. Mary, Paul claims John seems to love
b. Paul claims Mary apparently loves John

For an analysis of (10) we refer to (Romero et al.,
2004) in this volume. An analysis of (11b) is shown in
Fig. 10, (11a) is analyzed in the same way. We analyze
raising verbs similar to adverbs (see sometimes in Fig. 3).
They are in a sense inserted between the top and bottom

l1 : love(m, j), 1 ≥ 2⎡
⎢⎢⎢⎢⎢⎣

S

[
B

[
MAXS 1

P 2

]]

VP

[
T

[
P 2

]
B

[
P l1

]
]

⎤
⎥⎥⎥⎥⎥⎦

s vp

l2 : claim(p, 3 ),
4 ≥ 5

l3 : apparently( 6 ),
6 ≥ 7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

[
B

[
MAXS 4

P 5

]]

VP

⎡
⎣T

[
P 5

]
B

[
P l2

]
⎤
⎦

F

[
T

[
MAXS 3

]]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

R

[
B

[
P l3

]]
F

[
T

[
P 7

]]
⎤
⎥⎥⎦

Figure 10: Analysis of (11b)

P values of the node to which they adjoin. They scope
over the lower proposition. By unification, the proposi-
tion introduced by the topmost adverb/raising verb is the
P value of the root of the verb tree which is below the
MAXS proposition. Therefore, in (11b), the attitude verb
claim takes scope over the adverb.

Furthermore, the problem of multiple modifiers as in
(12) is also often discussed as an example where the TAG
derivation tree does not give the semantic dependencies
one needs (see, e.g., (Schabes and Shieber, 1994; Rogers,
2002)). These cases are difficult for a derivation tree
based semantics because only the adjective that is closest
to the modified noun attaches to the noun, all adjectives
that are further to the left attach to the adjective on their
right. However, all adjectives equally take the variable
provided by the noun as their argument.

(12) roasted red pepper

As shown in Fig. 11, in our approach the arguments of
the three predicates, pepper, red and roasted can be easily
unified such that they all refer to the same individual.

7 Conclusion

In this paper we introduced an LTAG semantics frame-
work based on the derivation tree. We use feature struc-
ture unification on the derivation tree as semantic com-
position operation, similar to the syntactic features on the
derived tree that are used in TAG. Within this framework,
we proposed an account of quantificational NPs, adverbs,
raising verbs and attitude verbs, and we have shown that



N l1 : pepper( 1 )

pepper [
R

[
B

[
I 1

]]]
r

N l2 : red( 2 )

red N∗ ⎡
⎢⎢⎣

R

[
B

[
I 2

]]
F

[
T

[
I 2

]]
⎤
⎥⎥⎦

r

N l2 : roasted( 3 )

roasted N∗ ⎡
⎢⎢⎣

R

[
B

[
I 3

]]
F

[
T

[
I 3

]]
⎤
⎥⎥⎦

Figure 11: Analysis of (12)

we can analyze the examples considered in the literature
as problematic for derivation tree based LTAG semantics
approaches.
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