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Abstract
Developing linguistic resources, in particular grammars, is known to be a complex task in itself, because of (amongst others) redundancy
and consistency issues. Furthermore some languages can reveal themselves hard to describe because of specific characteristics, e.g. the
free word order in German. In this context, we present (i) a framework allowing to describe tree-based grammars, and (ii) an actual
fragment of a core multicomponent tree-adjoining grammar with tree tuples (TT-MCTAG) for German developed using this framework.
This framework combines a metagrammar compiler and a parser based on range concatenation grammar (RCG) to respectively check
the consistency and the correction of the grammar. The German grammar being developed within this framework already deals with a
wide range of scrambling and extraction phenomena.

1. Introduction
Among existing grammatical formalisms, tree-adjoining
grammar (TAG) (Joshi and Schabes, 1997) distinguishes
itself by its expressivity, which lies beyond context-free
grammar, and its nice computational properties (e.g. poly-
nomial parsing time complexity). It has been used for im-
plementing a large-scale grammar of English (XTAG Re-
search Group, 2001), as well as grammars for French, Chi-
nese and Korean. However, the creation of a grammar re-
source for German within a TAG framework poses a chal-
lenge, mainly due to frequently occurring scrambling phe-
nomena in German.
The purpose of this paper is to present an architecture for
the development of a German TAG-based grammar, specif-
ically taking care of the difficulties introduced by that lan-
guage. The architecture relies on a TAG-based grammar
formalism and includes a metagrammar compiler and a
parsing system to respectively ensure the grammar consis-
tency, and the grammar correctness.
The TAG-based formalism chosen for describing German
is multicomponent tree-adjoining grammar with tree tuples
(TT-MCTAG) (Lichte, 2007). The metagrammar environ-
ment used is XMG (Duchier et al., 2004), and the parser for
TT-MCTAG the TuLiPA system1, whose core component is
a parser for range concatenation grammar (RCG) (Boullier,
2000).
The paper is structured as follows. In section 2., we intro-
duce the TT-MCTAG formalism highlighting its adequacy
for describing German. Then, in section 3. we briefly intro-
duce the XMG metagrammar environment and its use for
developing electronic tree-based grammars. In section 4.,
we present the ideas underlying the TuLiPA parsing en-
vironment, namely the use of RCG as a pivot formalism,
opening the way to parsing mildly context-sensitive for-
malisms in general and TT-MCTAG in particular. Then,
in section 5., we present the German grammar under devel-
opment and give some prospects. Finally (section 6.), we
compare our approach with existing work.

1See http://www.sfb441.uni-tuebingen.de/
emmy/tulipa.

2. TT-MCTAG: A Grammar Formalism for
German

As underlying grammar formalism for our German gram-
mar, we make use of an extension of tree-adjoining gram-
mar (TAG) (Joshi and Schabes, 1997), a tree-rewriting for-
malism. Roughly put, a TAG consists of a set of elementary
trees that can be combined using two operations: substi-
tution (replacement of frontier nodes) and adjunction (re-
placement of inner nodes). Besides the derived tree, TAG
generates a second structure, the derivation tree, that en-
codes the way the derived tree was obtained. More specif-
ically, the derivation tree contains one node for each ele-
mentary tree used during the derivation and one edge for
each adjunction/substitution.
While a rather pure TAG could be used within the XTAG
system for English, German, due to its rather free word or-
der, is known to resist a satisfying analysis based on the
expressive power of TAG alone. To overcome this, exten-
sions of TAG with multiple components (MCTAG) have
been proposed, among which multicomponent TAG with
tree tuples (TT-MCTAG) (Lichte, 2007) has been chosen
for TuLiPA.
In TT-MCTAG, elementary structures are made of tuples of
the form 〈α, {β1, ..., βn}〉, where α, β1, ..., βn are elemen-
tary trees in terms of TAG. During derivation, the β-trees
have to attach to the α-tree, either directly or indirectly via
node sharing. Roughly speaking, node sharing terms an ex-
tended locality that allows β-trees to also adjoin to the root
of trees that either adjoin to α themselves, or that are again
in a node sharing relation to α. In other words, an argument
must be linked to a tree adjoining to its head by a chain of
root adjunctions.
We further restrict TT-MCTAG, such that at each point of
the derivation the number of pending β-trees is at most k.
This subclass is also called k-TT-MCTAG. TT-MCTAG in
general are NP-complete (Søgaard et al., 2007) while k-TT-
MCTAG are mildly context-sensitive (Kallmeyer and Par-
mentier, 2008).
As shown in Lichte (2007), TT-MCTAG is suitable for an-
alyzing free word order phenomena in German, such as
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scrambling and coherent constructions. The linguistic un-
derstanding of a tuple is that of a head (the α-tree) and its
subcategorization frame (the β-trees). As an example see
the tuple for vergisst (‘forgets’) in Figure 1, which shows
the derivation tree for the word order in (1)a.

(1) a. dass Peter ihn heute vergisst
b. dass ihn Peter heute vergisst
c. dass ihn heute Peter vergisst
d. dass heute ihn Peter vergisst
e. . . .
(’that Peter forgets him/it today’)

It indicates that, starting from the vergisst head tree, the
adverbial heute (‘today’) first adjoins to the root address
(Gorn address 0), then the accusative argument tree adjoins
to the root of the adverbial, and then the nominative argu-
ment tree to the root of the accusative tree. Each argument
is linked by a chain of root adjunctions to heute which ad-
joins to the head.
While TT-MCTAG provides satisfying descriptive means to
cope with free word order phenomena in German, it is not
obvious how to implement a TT-MCTAG of a wide lexical
coverage. We use the means of factorization provided by
the metagrammar environment XMG, presented in the next
section.

3. Using a Metagrammar Formalism for
Grammar Implementation

The development of large linguistic resources, especially
grammars, is known to be a complex task (Erbach and
Uszkoreit, 1990). On top of being time-consuming, gram-
mar engineering has to deal with consistency and mainte-
nance issues. Indeed, when the grammar reaches a certain
size in terms of number of rules, it is hard (if not impossi-
ble) to guarantee the consistency between these. Further-
more, a modification of some information included in the
rules may lead to the modification of a substantial part of
the grammar. To avoid these problems, several techniques
have been proposed, including the metagrammar approach.
The idea underlying metagrammars is that the rules com-
posing a grammar follow some linguistic invariants2, and
that one should be able to automatically produce the gram-
mar from a linguistic description of these invariants.
For our grammar implementation, we are using the eX-
tensible MetaGrammar (XMG) environment, which offers
an expressive language for describing tree-based gram-
mars (namely TAG, MCTAG and Interaction Grammars),
along with a Warren Abstract Machine-based implementa-
tion (Duchier et al., 2004). XMG allows to factorize the
description of single trees in the grammar into different
pieces, each describing a tree fragment that can be used
in different contexts to combine with other fragments to
form actual elementary trees. This compact way to de-
scribe a tree-based grammar allows to avoid redundancies
and thereby helps to guarantee consistency.
The XMG language provides the metagrammar designer

2E.g. a transitive verb uses a subject and an object in an active
form.

with two levels of description3:

• a tree description language allowing one to define tree
fragments using the logic described in Rogers and
Shanker (1992),

• a combination language allowing to combine tree frag-
ments either conjunctively or disjunctively (the latter
making it possible to define alternative syntactic struc-
tures, e.g. active / passive).

As an illustration of a metagrammatical description, con-
sider the tree fragments associated respectively with a
canonical subject, a relativized subject, an active verbal
morphology and a canonical subject, as depicted in Fig-
ure 2. These fragments are combined via the following rule:

Transitive → (SubjectCan ∨ SubjectRel)

∧ Active ∧ ObjectCan

The result of this combination is the production of two trees
of a TAG, namely the tree associated with transitive verbs
having a canonical object and either a canonical or a rela-
tivized subject.
From this example, it is worth noticing that the metagram-
mar does not actually describe lexicalized trees, but tree
schemata as introduced in the XTAG grammar (XTAG Re-
search Group, 2001). A tree schema is a tree where one leaf
node is marked with � and referred to as the anchor node,
i.e. the node that will receive the lexical item. Thus, tree
schemata are abstractions over lexicalized trees. They cor-
respond to tree structures that are common to words shar-
ing specific properties such as valency and syntactic cate-
gory. Furthermore, the trees are gathered into families (for
verbs, a family corresponds to a subcategorization frame).
This tree gathering makes it easier to define the associations
between words and tree schemata. These associations are
defined within a 2-layer lexicon. First, one defines a mor-
phological lexicon mapping words with lemmas and mor-
phological features (e.g. gender). Secondly, one defines a
syntactic lexicon mapping lemmas with tree families and
syntactic features (e.g. reflexivity of a verb).
The parser is thus given a grammar made of tree schemata,
plus this 2-layer lexicon as an input, and realizes the tree
anchoring prior to parsing. The conceptual interest of han-
dling tree schemata instead of lexicalized trees lies in the
abstraction theses schemata provide, and its practical in-
terest lies in the reduction of redundancy. An example of
entries of morphological and syntactic lexica are given in
section 5.
In the context of the implementation of an MCTAG for Ger-
man, XMG has been extended to describe not only trees but
also sets of trees (Parmentier et al., 2007). This extension
lies in the interpretation of node variables that do not have
any ancestor (the so-called local roots). When dealing with
descriptions of trees, one has to make sure that the mod-
els are actual trees, i.e. that there is a unique root. Thus,
if the description contains several local roots, all possible
node identifications are computed in order to obtain a tree

3For more details about the XMG language and its use for
grammar development, see Crabbé (2005a).
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Figure 2: Combination of tree fragments within a metagrammatical description.

model. When dealing with descriptions of sets of trees, this
unique root constraint has no longer to be enforced. In other
terms, if a description formula contains two node variables
for which there is no ancestor and provided this formula has
a model, this model is a set made of two trees.
Note that the notion of family still exists in this case, but
now refers to sets of sets of trees, where a given set contains
only one tree with an anchor.

4. Parsing of TT-MCTAG
In the previous section, we introduced the XMG environ-
ment allowing the linguist to define a factorized descrip-
tion of a grammar capturing its redundancy. In this section,
we present a parsing architecture supporting TT-MCTAG,
which makes it possible to check the correction and cover-
age of the grammar.
Note that prior to this work, there was no parser avail-
able for TT-MCTAG. We thus designed and implemented a
parser for this formalism, using RCG as a pivot formalism.
In this context, parsing is done as follows. First a subgram-
mar is selected according to the input sentence. This sub-
grammar is then converted into an RCG, used to parse the
input sentence. The result of parsing is an RCG derivation
forest4, that is interpreted to extract a TT-MCTAG deriva-
tion forest. The derivation / derived trees are finally ex-
tracted from the TT-MCTAG forest and additional process-
ings are performed (e.g. extraction of dependency views
and computation of semantic representations).
Section 4.1. introduces the specific TT-MCTAG to RCG
conversion algorithm and section 4.2. presents the archi-
tecture of the TuLiPA parser relying on this algorithm.

4A derivation forest is a shared representation of all parses for
a given sentence.

4.1. Using RCG as a pivot formalism

In order to parse TT-MCTAG, we first construct an equiva-
lent simple range concatenation grammar and then use this
RCG for parsing. The advantage of this approach is that
the architecture becomes more modular and parts of it (in
particular, the RCG parser) can be reused for parsing other
mildly context-sensitive formalisms.
A RCG is a tuple G = 〈N, T, V, S, P 〉 such that a) N is
an alphabet of predicates of fixed arities; b) T and V are
disjoint alphabets of terminals and of variables; c) S ∈ N
is the start predicate (of arity 1) and d) P is a finite set of
clauses A0(x01, . . . , x0a0

) → ε, or A0(x01, . . . , x0a0
) →

A1(x11, . . . , x1a1
) . . . An(xn1, . . . , xnan

) with n ≥ 1 and
Ai ∈ N, xij ∈ (T ∪ V )∗ and ai being the arity of Ai.
When applying a clause with respect to a string w =
t1 . . . tn, the arguments in the clause are instantiated with
substrings of w, more precisely with the corresponding
ranges.5 The instantiation of a clause maps all occurrences
of a t ∈ T in the clause to an occurrence of a t in w and
consecutive elements in a clause argument are mapped to
consecutive ranges.
If a clause has an instantiation wrt w, then, in one derivation
step, the left-hand side of this instantiation can be replaced
with its right-hand side. The language of an RCG G is6

L(G) = {w |S(〈0, |w|〉)
∗
⇒ ε wrt w}. As an illustration of

RCG derivation, see Figure 3.
The construction of an RCG for a given k-TT-MCTAG is
similar to the RCG construction for TAG (Boullier, 1999).
The general idea of the latter is as follows: the RCG con-

5A range 〈i, j〉 with 0 ≤ i < j ≤ n corresponds to the sub-
string between positions i and j, i.e., to ti+1 . . . tj .

6⇒ refers to the derivation operation, and
∗

⇒ to its reflexive
transitive closure.



RCG: G = 〈{S, A, B}, {a, b}, {X, Y, Z}, S, P 〉
S(X Y Z) → A(X, Z)B(Y ), A(a X, a Y ) → A(X, Y ),
B(b X) → B(X), A(ε, ε) → ε, B(ε) → ε.
Input: w = aabaa.
Derivation:
S(XY Z)→A(X ,Z)B(Y )

〈0, 2〉〈2, 3〉〈3, 5〉 〈0, 2〉〈3, 5〉〈2, 3〉
aa b aa aa aa b

yields S(〈0, 5〉) ⇒ A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉).
B(bX)→B(X) and B(ε) → ε

〈2, 3〉〈3, 3〉〈3, 3〉
b ε ε

yield A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉)
⇒ A(〈0, 2〉, 〈3, 5〉)B(〈3, 3〉) ⇒ A(〈0, 2〉, 〈3, 5〉).
A(aXaY )→ A(X ,Y )

〈0, 1〉〈1, 2〉〈3, 4〉〈4, 5〉〈1, 2〉〈4, 5〉
a a a a a a

yields A(〈0, 2〉, 〈3, 5〉) ⇒ A(〈1, 2〉, 〈4, 5〉).
A(aXaY )→ A(X ,Y ) and A(ε, ε) → ε

〈1, 2〉〈2, 2〉〈4, 5〉〈5, 5〉〈2, 2〉〈5, 5〉
a ε a ε ε ε

yield A(〈1, 2〉, 〈4, 5〉) ⇒ A(〈2, 2〉, 〈5, 5〉) ⇒ ε

Figure 3: Sample RCG

tains predicates 〈α〉(X) and 〈β〉(L, R) for initial and auxil-
iary trees respectively. X covers the yield of α and all trees
added to α, while L and R cover those parts of the yield
of β (including all trees added to β) that are to the left and
the right of the foot node of β. The clauses in the RCG
reduce the argument(s) of these predicates by identifying
those parts that come from the elementary tree α/β itself
and those parts that come from one of the elementary trees
added by substitution or adjunction.
Each TT-MCTAG derivation is a TAG derivation since it
composes elementary trees using adjunction and substitu-
tion. In the RCG we construct for a TT-MCTAG, there are
predicates 〈γ〉 for the elementary trees (not the tree sets).
The yield of 〈γ〉 contains not only γ and its arguments but
also arguments of predicates that are higher in the deriva-
tion tree and that are adjoined below γ via node sharing. In
order to keep track of the higher arguments still waiting for
adjunction, we enrich the predicate names with the “list of
pending arguments” (LPA).
This leads to an RCG of arity 2 with complex predicate
names. In order to keep the number of necessary predicates
finite, the limit k is crucial, since k gives us the maximal
LPA length.
In addition to the 〈γ . . . 〉 predicates we also use branch-
ing predicates 〈adj . . . 〉 and 〈sub . . . 〉 that take care of the
adjunctions/substitutions possible at a given node.
As an example see the TT-MCTAG tuples for (2) and some
of the equivalent RCG clauses in Figure 4.

(2) ...
...

dass
that

es
it

der
the

Mechaniker
mechanic

zu
to

reparieren
repair

verspricht
promises

‘... that the mechanic promises to repair it’

The first clause states that, starting from the initial tree
αrep for reparieren, we can decompose its yield into the
left part of a root-adjoining tree, followed by zu reparieren,
followed by the right part of a root adjoining tree. The pred-
icate 〈adj, αrep, 0, {βacc}〉 is reponsable for computing the
possible root (position 0) adjunctions in αrep. βacc is added
to the set representing the LPA since we have to keep track
of the fact that it needs to be adjoined at some point. The
clauses for the 〈adj, αrep, 0, {βacc}〉 predicate tell us that
we can either adjoin βacc (while removing it from the LPA)
or we can adjoin a new head tree, βv of verspricht while
keeping βacc on the LPA.
Note that with this construction, the grouping into sets gets
lost. However, in our parser, the transformation is done
only for the small set of tree sets selected for the input
sentence. Additionally, whenever an input symbol occurs
twice, we use two different occurrences of the same set
having different identifiers. This way, we can identify trees
belonging to the same set by searching for the same tree set
identifier.
The conversion process is described in detail in Kallmeyer
and Parmentier (2008).

4.2. TuLiPA: An RCG-based parser

The TuLiPA system includes the following components:

• a TT-MCTAG-to-RCG converter (as introduced in the
previous section),

• an RCG parser producing an RCG derivation forest,

• an RCG derivation forest interpreter producing a TT-
MCTAG derivation forest,

• a TT-MCTAG derivation forest processor building
derivation and derived trees, extracting dependency
views and computing semantic representations.

RCG parsing The RCG parsing is done using an algo-
rithm derived from that of Boullier (2000). The recognizer
corresponds to the original algorithm, while for parsing,
several additions have been made to ensure the correctness
of the output7. In TuLiPA’s RCG parser, the clause instanti-
ations occurring during parsing are tabulated so that once ε
is derived (i.e. successful parse), an RCG derivation forest
can be straightforwardly extracted from the table of clause
instantiations (see Figure 5).

RCG derivation forest interpreter After the completion
of RCG parsing, the TT-MCTAG derivation forest is ex-
tracted from the successfully instantiated clauses. Remem-
ber that the RCG clauses represent the adjunctions and sub-
stitutions that may occur on a node during the TAG deriva-
tion. To extract the forest, we look at the left and right-
hand-sides of each clause. These give respectively the site
and inserted tree, see Figure 6 for an example of clause in-
terpretation.
Note that both the RCG and TT-MCTAG derivation forests
correspond to AND-OR graphs. This follows the results of
Billot and Lang (1989).

7The original algorithm includes in the output non-valid sub-
derivations.
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Some clauses of the equivalent RCG:
〈αrep, ∅〉(L zu reparieren R) → 〈adj, αrep, 0, {βacc}〉(L, R)
〈adj, αrep, 0, {βacc}〉(L, R) → 〈βacc, ∅〉(L, R) | 〈βv, {βacc}〉(L, R)
〈βacc, ∅〉(L X, R) → 〈adj, βacc, 0, ∅〉(L, R)〈sub, βacc, 1〉(X)
〈sub, βacc, 1〉(X) → 〈αes, ∅〉(X) 〈αes, ∅〉(es) → ε
〈βv, {βacc}〉(L, verspricht R) → 〈adj, βv, 0, {βnom, βacc}〉(L, R)
. . .

Figure 4: TT-MCTAG analysis of (2) and parts of the equivalent RCG

RCG Grammar: RCG Derivation wrt aab:

C0 S(XY Z) → A(X, Y )B(Z) S(aab)
C1 A(aX, aY ) → A(X, Y )
C2 A(aX, aY ) → B(X)B(Y ) A(a, a) B(b)
C3 B(ε) → ε
C4 B(b) → ε A(ε, ε) B(ε) B(ε) ε
C5 A(ε, ε) → ε

ε ε ε

RCG derivation forest:

C0(X := a, Y := a, Z := b) → ( C1(X := ε, Y := ε) ∨ C2(X := ε, Y := ε) ) ∧ C4

C1(X := ε, Y := ε) → C5

C2(X := ε, Y := ε) → C3 ∧ C3

Figure 5: RCG derivation and corresponding derivation forest.

〈αrep, ∅〉(es der Mech zu rep versp) →

〈adj, αrep, 0, {βacc}〉(es der Mech, versp)

〈adj, αrep, 0, {βacc}〉(es der Mech, versp) →

〈βversp., {βacc}〉(es der Mech, versp)

αrep

βversp

〈adj, 0〉�

Figure 6: Interpretation of a clause instantiation in terms of
TT-MCTAG derivation (using the TT-MCTAG in Fig. 4).

TT-MCTAG derivation forest processor Eventually,
several post-processing steps are applied to the TT-MCTAG
derivation forest. The first of these expands the forest in or-
der to compute the derivation and derived trees. Recall that
the forest contains all derivation steps (that is, the forest
corresponds to a directed acyclic graph). It is thus possible

to extract all derivation trees it encodes by traversing the
graph. For each extracted derivation tree, we can compute
the corresponding derived tree.
The other post-processing steps of the derivation forest8

correspond to (i) the extraction of dependency views, and
(ii) the computation of semantic representations.
Concerning (i), the idea is to interpret the relation between
the head and the arguments of each tuple used within a
parse in terms of dependencies9.
Concerning (ii), TuLiPA has been extended to support se-
mantically annotated TT-MCTAG. The syntax / semantics
interface adopted is the one of Gardent and Kallmeyer
(2003). In this interface, each syntactic tree is associated
with a predicative semantic formula, whose arguments are
unification variables. These variables are co-indexed with
features labelling specific nodes of the syntactic tree. The
unifications occurring during derivation bind the seman-
tic arguments referring to the same entities together, thus

8More precisely of each extracted derivation tree.
9These dependencies are displayed using the DTool processor,

with courtesy of Marco Kuhlmann.



realizing the semantic composition. To integrate this se-
mantic processing within TuLiPA, the only modifications
needed were (a) the extension of the internal representation
of tree sets to include semantic formulas and (b) the update
of these formulas while the derived tree are computed.

Availability of the system TuLiPA is written
in Java and released at http://www.sfb441.
uni-tuebingen.de/emmy/tulipa under a GNU
General Public License. TuLiPA’s main features include:

• a relatively easy installation procedure (the only re-
quirement is the GecodeJ10 library),

• two interfaces, an intuitive graphical one, and a text-
based one,

• an output graphical interface displaying the result of
parsing (namely derivation tree, derived tree and flat
semantic representations),

• an XML export of the parsing result, allowing for
the integration of TuLiPA within an NLP processing
chain,

• the possibility to use an external Part-Of-Speech tag-
ger (namely the TreeTagger developed at the Univer-
sity of Stuttgart),

• the possibility to parse either tree-based grammars, or
RCGs directly.

5. The German TT-MCTAG: Current State
and Prospects

After having sketched both the grammar formalism and the
implementation framework, i.e. rather formal aspects, in
this section, we are turning to a presentation of the lin-
guistic ressources we are aiming at. This includes two di-
mensions, namely (1) the extend of the syntactic coverage
of the grammar and (2) the strategies to expand the lexi-
con. As this subpart contains still ongoing work, many de-
tails inevitably are of a prospective and preliminary nature.
Concerning semantic coverage, the addition of the syn-
tax/semantics interface of Gardent and Kallmeyer (2003)
to the tree schemata has just started.

Syntactic coverage In our implementation framework,
covering syntactic phenomena means specifying appropri-
ate tree (tuple) families lacking an anchor, i.e. a lexical
terminal. The respective specification is carried out using
the XMG description language and the XMG compiler (see
section 3.).
So far, we have implemented (amongst others) free word
order phenomena such as scrambling, coherent construc-
tions and verbal clustering. Furthermore, so-called extrac-
tion phenomena found in relative clauses, wh-questions and
bridging constructions are accounted for. Thanks to TT-
MCTAG, factorization from the many possible word orders
in German syntax is already supported by the grammar for-
malism, such that one tree tuple can license several derived
structures. To give an example, one tree tuple for each finite

10http://www.gecode.org/gecodej

Morphological specification:
vergisst vergessen [pos=v,num=sg,per=3]

Lemma specification:
*ENTRY: vergessen
*CAT: v
*SEM: BinaryRel[pred=vergessen]
*ACC: 1
*FAM: Vnp2
*FILTERS: []
*EX:
*EQUATIONS:
NParg1 → cas = nom
NParg2 → cas = acc
*COANCHORS:

Figure 7: Morphological and lemma specification of ver-
gisst.

verb is sufficient to license most of the extraction phenom-
ena, and scrambling therein. Having this highly factorized
description due to the metagrammar and the grammar for-
malism is not an end in itself, however. Eventually, the
concise, but surface-abstracted account for complementa-
tion relieves the lexicon.
While the above mentioned phenomena are satisfactorily
covered, there turned out to be (well-known) hard nuts such
as partial fronting, extraposition, and ellipsis. We hope to
include them as well in the future, at least to a certain de-
gree.
For evaluation of the syntactic coverage of the grammar,
we will make use of the TSNLP-testsuite for German
(Lehmann et al., 1996). Therefore, a handcrafted lexicon
is presently being set up.

Lexical coverage As mentioned in section 3., the lexicon
is 2-layered: a morphological lexicon maps an (inflected)
token to some lemma form, while preserving morphologi-
cal information in a feature structure; a lemma lexicon basi-
cally maps the lemmata onto tree tuple families, while also
performing case assignment. Fig. 7 contains the respective
entries for the finite verb vergisst (’forgets’). The morpho-
logical entry consists of the following columns, separated
by tabulation: token × lemma × morphological features.
The lemma specification is build up by a fixed set of fea-
tures, of which the most important ones are *ENTRY (= the
lemma), *CAT (= the POS-tag), and *FAM (= the tree fam-
ily as predefined in XMG). Case assignment can be speci-
fied in *EQUATIONS, where in this example NParg1 is a
defined label of some node in the tree tuples of the specified
tree tuple family.
Since German shows rich inflection, this approach helps
to reduce redundancies in the lexicon. In sum the lexi-
con incorporates at least the following information for each
token-lemma combination: lemmatization, morphological
features, valency information, and the POS-tag. We also
started to feed the lexicon with semantic information (see
*SEM).
When creating the lexicon, we first manually record lexi-
cally rather closed classes such as pronouns, determiners



and prepositions for the sake of correctness and complete-
ness. Since much of the inflectional information is con-
tributed by these functional items in German, this is advis-
able. However, in order to obtain a rich lexicon also with
respect to lexically rather open classes such as nouns, ad-
jectives and verbs, already existing resources need to be
combined without much modification. The combination of
several ressources is necessary, since no ressource is known
to us, that offers all the mentioned lexical information:

• morphological information: NEGRA corpus11

• lemmatization and POS-tags: TüPP-D/Z12

• valency information: subcategorization frames from
Schulte im Walde (2002)

6. Comparable Work
The German TT-MCTAG for the TuLiPA system is cur-
rently under development. However, the already existing
fragment reveals interesting differences to other grammar
projects from the TAG-realm.

XTAG The XTAG grammar for English (XTAG Research
Group, 2001) uses plain TAG, enhanced with feature struc-
tures. Covering a wide range of syntactic structures and
bringing along a rich lexicon, it is a well developed exem-
plar. Its implementation framework, however, is different
from our one, not only because of the unlike grammar for-
malisms. XTAG does not use a metagrammar such as XMG
for the description of its tree families. It does, however,
possess a 2-layered lexicon (Morph Database and Syntac-
tic Database), that divides the task similarly. Part of the
evaluation is also performed on the (English) TSNLP-data.
Remains to say, that XTAG does not offer a semantic di-
mension.
While we cannot compare performance and coverage yet,
there are some differences with respect to linguistic design,
that are worth mentioning.

1. In contrast to XTAG, we completely omit empty cate-
gories (e.g. traces, PRO) in syntactic description. This
follows from rejecting a base word order for German,
as well as dealing with argument raising and control
only in the semantics.

2. Prepositional complements are not encoded via co-
anchoring as in XTAG. Instead, prepositions are seen
as nouns that display a special case feature, that the
verb subcategorizes for.

3. In XTAG, extraction phenomena such as relative
clauses and wh-questions require separate elementary
structures. This is not the case in TuLiPA thanks to
a higher degree of factorization in our tree sets com-
pared to standard TAG.

11http://www.coli.uni-saarland.de/
projects/sfb378/negra-corpus/negra-corpus.
html

12http://www.sfs.uni-tuebingen.de/en_
tuepp.shtml

French TAG In his thesis, Benoit Crabbé (Crabbé,
2005b) designed a French TAG of considerable syntactic
coverage using the XMG framwork. As in XTAG, a plain
TAG with feature structures was used. The grammar was
also successfully evaluated against the TSNLP-dataset for
which a suitable lexicon was implemented. Other than in
XTAG, there is also a semantic extension available (Gar-
dent, 2006).

7. Conclusion
In this paper, we have presented an architecture for imple-
menting a TAG-based grammar fragment for German. Be-
cause of the limitation of standard TAG, we had to choose
a multicomponent TAG variant, TT-MCTAG, as grammar
formalism. TT-MCTAG has been argued to be suitable for
modelling free word order phenomena. With some addi-
tional constraint, the formalism is mildly context-sensitive.
For grammar development, we use a meta-formalism,
XMG, that allows a compact grammar representation and
enables us to avoid the redundancies that are one of the ma-
jor problems of grammar implementation. We had to ex-
tend XMG to allow for the description of multicomponent
TAG.
In order to do parsing with our variant of TAG, we had to
develop a new parser. Here we chose an RCG-based pars-
ing architecture that is intended to cover different mildly
context-sensitive formalisms (so far we can parse TAG, TT-
MCTAG and of course RCG). The central idea of our parser
is that RCG is used as a pivot formalism, i.e., some input
grammar is transformed into a RCG which is then used for
parsing. Søgaard (2007) has described transformations into
RCG for a range of other formalisms. These might be in-
cluded into the TuLiPA parsing system in the future.
For TAG and TT-MCTAG, our parser computes both, syn-
tax and semantics. Here we follow the approach of Gardent
and Kallmeyer (2003) that links flat semantic representa-
tions to the elementary trees while exploiting the TAG fea-
ture unifications for semantic computation.
Finally, we presented a German TT-MCTAG-based gram-
mar, that is currently being developed and lexically ex-
panded using the described implementation framework. By
now, it already covers a wide range of challenging syntactic
phenomena such as free word order and extraction. In the
near future, both the grammar and the lexicon are going to
be published under GPL.
We want to emphasize that TuLiPA is not only a parsing
architecture useful in the context of TT-MCTAG grammar
implementation but it is also one of the first TAG parsers
including syntax and semantics. Due to its graphical in-
terface and the various output formats, it helps to increase
the transparency and modularity of TAG grammar develop-
ment. Thanks to these features, it is already at the current
state a very useful tool for understanding fundamental TAG
principles and therefore can in particularly be successfully
used for teaching purposes.
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