
Comparing Lexicalized Grammar Formalisms in
an Empirically Adequate Way:

The Notion of Generative Attachment Capacity

Laura Kallmeyer

SFB 441 – University of Tübingen, Germany

lk@sfs.uni-tuebingen.de

The work presented here addresses the question of how to determine whether a gram-
mar formalism is powerful enough to describe natural languages. The expressive
power of a formalism can be characterized in terms of i) the string languages it gen-
erates (weak generative capacity (WGC)) or ii) the tree languages it generates (strong
generative capacity (SGC)). The notion of WGC is not enough to determine whether
a formalism is adequate for natural languages. We argue that even SGC is problematic
since the sets of trees a grammar formalism for natural languages should be able to
generate is difficult to determine. The concrete syntactic structures assumed for nat-
ural languages depend very much on theoretical stipulations and empirical evidence
for syntactic structures is rather hard to obtain. Therefore, for lexicalized formalisms,
we propose to consider the ability to generate certain strings together with specific
predicate argument dependencies as a criterion for adequacy for natural languages.

Weak, strong and derivational generative capacity The WGC, i.e., the sets of string
languages a formalism generates, is not enough to determine whether a formalism
is powerful enough for natural languages: CFG can generate the string set of cross-
serial dependencies in Dutch. But (see Fig. 1) these strings do not show the desired
dependencies (i.e., arguments are added to predicates they do not depend on).

(1) ... dat Wim Jan Marie de kinderen zag helpen leren zwemmen
... that Wim Jan Marie the children saw help teach swim

‘... that Wim saw Jan help Marie teach the children to swim’

Besides WGC, SGC was introduced, a characterization of the expressive power of a
formalism by the set of tree languages it generates. Computationally this is a very
useful notion. Bresnan et al. (1982) use the notion of SGC to argue that CFGs are
not able to describe the cross-serial dependencies in Dutch. We think however that the
set of trees necessary for natural languages is difficult to determine for two reasons:

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14509783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S → NP S zwemen
S → NP S leren
S → NP S helpen
S → NP zag
NP → Wim
NP → Jan
NP → Marie
NP → de kinderen

tree for (1): S

NP zwemen

Wim S

NP leren

Jan S

NP helpen

Marie S

NP zag

de kinderen

attachments:
zwemen

Wim leren

Jan helpen

Marie zag

de kinderen

Figure 1: CFG for cross-serial dependencies displaying the wrong attachments

1. the question whether a formalism is adequate for natural languages should be de-
cided as independent as possible from any concrete linguistic theory. The choice of
syntactic structures however depends very much on the theory behind. Therefore each
argument that a certain formalism cannot generate natural languages because it cannot
generate the syntactic structures needed is a little weak since it does not show that it
is in general not possible (by adopting a different syntactic theory) to find a natural
language grammar using the formalism in question. 2. the requirements for a grammar
formalism for natural languages should, if possible, be empirically observable. With
constituent tests, syntactic structure is observable to a certain degree but in some cases
syntactic structure follows only from theoretical stipulations without a solid empirical
foundation. Even constituent tests make theoretical stipulations. Therefore we think
SGC not adequate to determine whether a formalism can generate natural languages.

For generative grammars, Becker et al. (1992) introduce the derivational generative
capacity (DGC), a characterization in terms of so-called indexed languages. In these
grammars, for each string a derivation with a certain number of steps is performed.
Each lexical item in the string receives an index, the number of the derivation step
in which it was added. The sets of indexed strings one can generate with the for-
malism determines the DGC. We think that this is not adequate for natural languages
either since rather than considering which items are added in which derivation step one
should consider which item is added to (i.e., is argument of) which item.

Generative attachment capacity We therefore introduce the notion of generative at-
tachment capacity (GAC) for lexicalized generative grammars (i.e., the grammar con-
sists of a set of elementary objects associated with lexical items; larger objects are
derived by putting the elementary objects together): For each derivation of some string
w, the attachment structure is a graph containing as nodes the occurrences of termi-
nal symbols t in w such that there is an edge between t1 and t2 iff one of them was
added to the other in the course of the derivation. The set of sets of pairs of strings and
corresponding attachment structures a formalism can generate determines its GAC.

2



For natural languages, the attachment structures should contain all predicate argument
links. I.e., if we use the notion of GAC the question whether a formalism is adequate
for natural languages amounts to asking whether it can generate all strings with the
correct predicate argument dependencies. This is a very useful characterization since
1. it is empirically more appropriate than SCG because linguistic evidence for predi-
cate argument dependencies is much easier to obtain than for syntactic structures, and
2. attachment structures are crucial for semantics since they are at the heart of the
syntax-semantics interface.

With the GAC, the CFG in Fig. 1 is not adequate for Dutch cross-serial dependen-
cies since it does not generate the dependencies in Fig. 2. We can in fact show that
lexicalized CFGs can generate {nkvk |k > 0} only with nested dependencies but not
with crossed dependencies as in Fig. 2: assume that there is a lexicalized CFG for the
language in Fig. 2. Then there is a nonterminal A in the rule introducing vi where ni

gets attached. I.e., these rules are of the form X → w1Aw2vw3 or X → w1vw2Aw3 with
X ∈ N,w1,w2,w3 ∈ (N∪T )∗. Replacing these rules with new rules X → w1tw2tw3 for
all t ∈ T gives a new CFG that generates the copy language {ww |w ∈ T ∗}. Contradic-
tion since the copy language is not context-free.

String language {nkvk |k > 0}
with the following
attachment structure
for w = n1n2 . . .nkv1v2 . . .vk

(indices mark different
occurrences of a terminal):

v1

n1 v2

n2 v3

. . .

vk

nk

Figure 2: Language necessary for cross-serial dependencies

This work was much influenced by similar discussions in the context of Tree Adjoining
Grammars (TAG), and the notion of DGC is actually very close to GAC. Under certain
assumptions (e.g., the possibility to precompile substitution or, in other words, to re-
place preterminals in a CFG in advance by the corresponding terminals) it amounts to
the same. However, in some grammar formalisms one cannot make these assumptions
and then GAC is a better criterion for the expressive power needed.

References
Becker, T., O. Rambow, and M. Niv (1992). The Derivationel Generative Power of

Formal Systems or Scrambling is Beyond LCFRS. Technical Report IRCS-92-38,
Institute for Research in Cognitive Science, University of Pennsylvania.

Bresnan, J., R. M. Kaplan, S. Peters, and A. Zaenen (1982). Cross-serial dependencies
in Dutch. Linguistic Inquiry, 13(4):613–635.

3


