
TuLiPA: A Syntax-Semantics Parsing Environment for Mildly
Context-Sensitive Formalisms

Yannick Parmentier
CNRS - LORIA
Nancy Université

F-54506, Vandœuvre, France
parmenti@loria.fr

Timm Lichte
SFB 441

Universität Tübingen
D-72074, Tübingen, Germany
timm.lichte@uni-tuebingen.de

Laura Kallmeyer
SFB 441

Universität Tübingen
D-72074, Tübingen, Germany
lk@sfs.uni-tuebingen.de

Johannes Dellert
SFB 441 - SfS

Universität Tübingen
D-72074, Tübingen, Germany

jdellert@sfs.uni-tuebingen.de

Wolfgang Maier
SFB 441

Universität Tübingen
D-72074, Tübingen, Germany
wo.maier@uni-tuebingen.de

Abstract

In this paper we present a parsing archi-
tecture that allows processing of differ-
ent mildly context-sensitive formalisms,
in particular Tree-Adjoining Grammar
(TAG), Multi-Component Tree-Adjoining
Grammar with Tree Tuples (TT-MCTAG)
and simple Range Concatenation Gram-
mar (RCG). Furthermore, for tree-based
grammars, the parser computes not only
syntactic analyses but also the correspond-
ing semantic representations.

1 Introduction

The starting point of the work presented here
is the aim to implement a parser for a German
TAG-based grammar that computes syntax and se-
mantics. As a grammar formalism for German
we chose a multicomponent extension of TAG
called TT-MCTAG (Multicomponent TAG with
Tree Tuples) which has been first introduced by
Lichte (2007). With some additional constraints,
TT-MCTAG is mildly context-sensitive (MCS) as
shown by Kallmeyer and Parmentier (2008).

Instead of implementing a specific TT-MCTAG
parser we follow a more general approach by us-
ing Range Concatenation Grammars (RCG) as a
pivot formalism for parsing MCS languages. In-
deed the generative capacity of RCGs lies beyond
MCS, while they stay parsable in polynomial time
(Boullier, 1999). In this context, the TT-MCTAG
(or TAG) is transformed into a strongly equiva-
lent RCG that is then used for parsing. We have
implemented the conversion into RCG, the RCG

parser and the retrieval of the corresponding TT-
MCTAG analyses. The parsing architecture comes
with graphical input and output interfaces, and an
XML export of the result of parsing. It is called
TuLiPA (for “Tübingen Linguistic Parsing Archi-
tecture”) and is freely available under the GPL.1

Concretely, TuLiPA processes TT-MCTAGs and
TAGs encoded in the XML format of the XMG
(eXtensible MetaGrammar) system of Duchier et
al. (2004).

In this paper, we present this parsing architec-
ture focusing on the following aspects: first, we
introduce the TT-MCTAG formalism (section 2).
Then, we present successively the RCG formalism
(section 3) and the conversion of TT-MCTAG into
RCG (section 4). Section 5 shows how RCG is
parsed in practice. Eventually, we present the re-
trieval of TT-MCTAG derivation structures (sec-
tion 6), the computation of semantic representa-
tions (section 7) and optimizations that have been
added to speed up parsing (section 8).

2 TT-MCTAG

TT-MCTAGs (Lichte, 2007) are multicomponent
TAGs (MCTAG) where the elementary tree sets
consist of one lexicalized tree γ, the head tree
and a set of auxiliary trees β1, ..., βn, the ar-
gument trees. We write these sets as tuples
〈γ, {β1, ..., βn}〉. During derivation, the argument
trees have to attach to their head, either directly or
indirectly via node sharing. The latter means that
they are linked by a chain of root-adjunctions to a
tree adjoining to their head.

1http://sourcesup.cru.fr/tulipa/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14509782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(1) ... dass es der Mechaniker zu reparieren verspricht
... that it the mechanic to repair promises
‘... that the mechanic promises to repair it’

*
VP

VP∗ verspricht
,

(
VP

NPnom VP∗

) + *
NPnom

der Mech.
, {}

+

*
VP

zu reparieren
,

(
VP

NPacc VP∗

) + *
NPacc

es
, {}

+

derivation tree:
reparieren

ε

verspricht
ε

NPnom ←

argument of
verspricht

1 ε

Mechaniker NPacc ←

argument of
reparieren

1

es

Figure 1: TT-MCTAG analysis of (1)

Definition 1 (TT-MCTAG) An MCTAG G =
〈I,A,N, T,A〉 is a TT-MCTAG iff

1. every Γ ∈ A has the form {γ, β1, . . . , βn}
where γ contains at least one leaf with a ter-
minal label, the head tree, and β1, . . . , βn are
auxiliary trees, the argument trees. We write
such a set as a tuple 〈γ, {β1, . . . , βn}〉.

2. A derivation tree D for some t ∈
L(〈I,A,N, T 〉) is licensed as a TAG deriva-
tion tree in G iff D satisfies the follow-
ing conditions (MC) (“multicomponent con-
dition”) and (SN-TTL) (“tree-tuple locality
with shared nodes”):

(a) (MC) There are k pairwise disjoint in-
stances Γ1, . . . ,Γk of elementary tree
sets from A for some k ≥ 1 such that⋃k

i=1
Γi is the set of node labels in D.

(b) (SN-TTL) for all nodes n0, n1, . . . , nm,
m > 1, in D with labels from the same
elementary tree tuple such that n0 is la-
belled by the head tree: for all 1 ≤ i ≤
m: either 〈n0, ni〉 ∈ PD

2 or there are
ni,1, . . . , ni,k with auxiliary tree labels
such that ni = ni,k, 〈n0, ni,1〉 ∈ PD

and for 1 ≤ j ≤ k − 1: 〈ni,j, ni,j+1〉 ∈
PD where this edge is labelled with ε.

TT-MCTAG has been proposed to deal with free
word order languages. An example from German
is shown in Fig. 1. Here, the NPnom auxiliary tree

2For a tree γ, Pγ is the parent relation on the nodes, i.e.,
〈x, y〉 ∈ Pγ for nodes x, y in γ iff x is the mother of y.

adjoins directly to verspricht (its head) while the
NPacc tree adjoins to the root of a tree that adjoins
to the root of a tree that adjoins to reparieren.

For a more extended account of German word
order using TT-MCTAG see Lichte (2007) and
Lichte and Kallmeyer (2008).

TT-MCTAG can be further restricted, such that
at each point of the derivation the number of pend-
ing β-trees is at most k. This subclass is also called
k-TT-MCTAG.

Definition 2 (k-TT-MCTAG) A TT-MCTAG G =
〈I,A,N, T,A〉 is of rank k (or a k-TT-MCTAG for
short) iff for each derivation tree D licensed in G:

(TT-k) There are no nodes n, h0, . . . , hk ,
a0, . . . , ak in D such that the label of ai is an ar-
gument tree of the label of hi and 〈hi, n〉, 〈n, ai〉 ∈
P+

D for 0 ≤ i ≤ k.

TT-MCTAG in general are NP-complete
(Søgaard et al., 2007) while k-TT-MCTAG are
MCS (Kallmeyer and Parmentier, 2008).

3 RCG as a pivot formalism

The central idea of our parsing strategy is to use
RCG (Boullier, 1999; Boullier, 2000) as a pivot
formalism.

Definition 3 (RCG) A RCG is a tuple G =
〈N,T, V, S, P 〉 such that a) N is an alphabet of
predicates of fixed arities; b) T and V are disjoint
alphabets of terminals and of variables; c) S ∈ N
is the start predicate (of arity 1) and d) P is a finite
set of clauses

A0(x01, . . . , x0a0
) → ε,

or

A0(x01, . . . , x0a0
) →

A1(x11, . . . , x1a1
) . . . An(xn1, . . . , xnan)

with n ≥ 1, Ai ∈ N,xij ∈ (T ∪ V)∗ and ai being
the arity of Ai.

Since throughout the paper we use only positive
RCGs, whenever we say “RCG”, we actually mean
“positive RCG”.3 An RCG with maximal predi-
cate arity n is called an RCG of arity n.

When applying a clause with respect to a string
w = t1 . . . tn, the arguments in the clause are
instantiated with substrings of w, more precisely
with the corresponding ranges.4 The instantiation
of a clause maps all occurrences of a t ∈ T in the
clause to an occurrence of a t in w and consecu-
tive elements in a clause argument are mapped to
consecutive ranges.

If a clause has an instantiation wrt w, then,
in one derivation step, the left-hand side of this
instantiation can be replaced with its right-hand
side. The language of an RCG G is L(G) =

{w |S(〈0, |w|〉)
∗

⇒ ε wrt w}.
A sample RCG is shown in Fig. 2.

RCG: G = 〈{S, A, B}, {a, b}, {X, Y, Z}, S, P 〉
S(X Y Z) → A(X,Z) B(Y),
A(a X, a Y) → A(X,Y), A(ε, ε) → ε,
B(b X) → B(X), B(ε) → ε.

Input: w = aabaa.
Derivation:
S(XY Z)→A(X,Z)B(Y)

〈0, 2〉〈2, 3〉〈3, 5〉 〈0, 2〉〈3, 5〉〈2, 3〉
aa b aa aa aa b

yields S(〈0, 5〉) ⇒ A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉).
B(bX)→B(X) and B(ε) → ε

〈2, 3〉〈3, 3〉〈3, 3〉
b ε ε

yield A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉) ⇒
A(〈0, 2〉, 〈3, 5〉)B(〈3, 3〉) ⇒ A(〈0, 2〉, 〈3, 5〉).

A(aXaY)→ A(X,Y)

〈0, 1〉〈1, 2〉〈3, 4〉〈4, 5〉〈1, 2〉〈4, 5〉
a a a a a a

yields A(〈0, 2〉, 〈3, 5〉) ⇒ A(〈1, 2〉, 〈4, 5〉).
A(aXaY)→ A(X,Y) and A(ε, ε) → ε

〈1, 2〉〈2, 2〉〈4, 5〉〈5, 5〉〈2, 2〉〈5, 5〉
a ε a ε ε ε

yield A(〈1, 2〉, 〈4, 5〉) ⇒ A(〈2, 2〉, 〈5, 5〉) ⇒ ε

Figure 2: Sample RCG

3The negative variant allows for negative predicate calls
of the form A(α1, . . . , αn). Such a predicate is meant to rec-
ognize the complement language of its positive counterpart,
see Boullier (2000).

4A range 〈i, j〉 with 0 ≤ i < j ≤ n corresponds to the
substring between positions i and j, i.e., to ti+1 . . . tj .

4 Transforming TT-MCTAG into RCG

The transformation of a given k-TT-MCTAG into
a strongly equivalent simple RCG is an extension
of the TAG-to-RCG transformation proposed by
Boullier (1999). The idea of the latter is the fol-
lowing: the RCG contains predicates 〈α〉(X) and
〈β〉(L,R) for initial and auxiliary trees respec-
tively. X covers the yield of α and all trees added
to α, while L and R cover those parts of the yield
of β (including all trees added to β) that are re-
spectively to the left and the right of the foot node
of β. The clauses in the RCG reduce the argu-
ment(s) of these predicates by identifying those
parts that come from the elementary tree α/β it-
self and those parts that come from one of the ele-
mentary trees added by substitution or adjunction.
An example is shown in Fig. 3.

TAG:
α1 SNA

a S F

ε

α2

F

d

α3

F

e

β S

b S∗NA c

Equivalent RCG:
S(X) → 〈α1〉(X) | 〈α2〉(X) | 〈α3〉(X)
〈α1〉(aF) → 〈α2〉(F) | 〈α3〉(F)
〈α1〉(aB1B2F) →

〈β〉(B1, B2)〈α2〉(F) | 〈β〉(B1, B2)〈α3〉(F)
〈β〉(B1b, cB2) → 〈β〉(B1, B2)
〈α2〉(d) → ε 〈α3〉(e) → ε 〈β〉(b, c) → ε

Figure 3: A TAG and an equivalent RCG

For the transformation from TT-MCTAG into
RCG we use the same idea. There are predicates
〈γ...〉 for the elementary trees (not the tuples) that
characterize the contribution of γ. We enrich these
predicates in a way that allows to keep track of
the “still to adjoin” argument trees and constrain
thereby further the RCG clauses. The pending ar-
guments are encoded in a list that is part of the
predicate name. The yield of a predicate corre-
sponding to a tree γ contains not only γ and its
arguments but also arguments of predicates that
are higher in the derivation tree and that are ad-
joined below γ via node sharing. In addition, we
use branching predicates adj and sub that allow
computation of the possible adjunctions or substi-
tutions at a given node in a separate clause.

As an example see Fig. 4. The first clause states
that the yield of the initial αrep consists of the left
and right parts of the root-adjoining tree wrapped
around zu reparieren. The adj predicate takes care

〈αrep, ∅〉(L zu reparieren R) → 〈adj, αrep, ε, {βacc}〉(L, R)
〈adj, αrep, ε, {βacc}〉(L, R) → 〈βacc, ∅〉(L, R) | 〈βv, {βacc}〉(L, R)
〈βacc, ∅〉(L X, R) → 〈adj, βacc, ε, ∅〉(L, R)〈sub, βacc, 1〉(X)
〈sub, βacc, 1〉(X) → 〈αes, ∅〉(X) 〈αes, ∅〉(es) → ε
〈βv, {βacc}〉(L, verspricht R) → 〈adj, βv, ε, {βnom, βacc}〉(L, R)

Figure 4: Some clauses of the RCG corresponding to the TT-MCTAG in Fig. 1

of the adjunction at the root (address ε). It states
that the list of pending arguments contains already
βacc, the argument of αrep. According to the sec-
ond clause, we can adjoin either βacc (while re-
moving it from the list of pending arguments) or
some new auxiliary tree βv .

The general construction goes as follows: We
define the decoration string σγ of an elementary
tree γ as in Boullier (1999): each internal node
has two variables L and R and each substitution
node has one variable X (L and R represent the
left and right parts of the yield of the adjoined tree
and X represents the yield of a substituted tree).
In a top-down-left-to-right traversal the left vari-
ables are collected during the top-down traversal,
the terminals and variables of substitution nodes
are collected while visiting the leaves and the right
variables are collected during bottom-up traversal.
Furthermore, while visiting a foot node, a separat-
ing “,” is inserted. The string obtained in this way
is the decoration string.

1. We add a start predicate S and clauses
S(X) → 〈α, ∅〉(X) for all α ∈ I .

2. For every γ ∈ I ∪ A: Let Lp, Rp be the left
and right symbols in σγ for the node at posi-
tion p if this is not a substitution node. Let
Xp be the symbol for the node at position p
if this is a substitution node. We assume that
p1, . . . , pk are the possible adjunction sites,
pk+1, . . . , pl the substitution sites in γ. Then
the RCG contains all clauses
〈γ, LPA〉(σγ) →
〈adj, γ, p1, LPAp1

〉(Lp1
, Rp1

)
. . . 〈adj, γ, pk, LPApk

〉(Lpk
, Rpk

)
〈sub, γ, pk+1〉(Xpk+1

) . . . 〈sub, γ, pl〉(Xpl
)

such that

• If LPA �= ∅, then ε ∈ {p1, . . . , pk} and
LPA ⊆ LPAε, and

•
⋃k

i=0
LPApi

= LPA ∪ Γ(γ) where
Γ(γ) is either the set of arguments of γ
(if γ is a head tree) or (if γ is an argu-
ment itself), the empty set.

3. For all predicates 〈adj, γ, dot, LPA〉 the
RCG contains all clauses
〈adj, γ, dot, LPA〉(L,R) →
〈γ′, LPA′〉(L,R)

such that γ′ can be adjoined at position dot in
γ and

• either γ′ ∈ LPA and LPA′ = LPA \
{γ′},

• or γ′ /∈ LPA, γ′ is a head (i.e., a head
tree), and LPA′ = LPA.

4. For all predicates 〈adj, γ, dot, ∅〉 where dot in
γ is no OA-node, the RCG contains a clause
〈adj, γ, dot, ∅〉(ε, ε) → ε.

5. For all predicates 〈sub, γ, dot〉 and all γ′ that
can be substituted into position dot in γ the
RCG contains a clause
〈sub, γ, dot〉(X) → 〈γ′, ∅〉(X).

5 RCG parsing

The input sentence is parsed using the RCG com-
puted from the input TT-MCTAG via the conver-
sion algorithm introduced in the previous section.
Note that the TT-MCTAG to RCG transformation
is applied to a subgrammar selected from the in-
put sentence5, for the cost of the conversion is
proportional to the size of the grammar (all li-
censed adjunctions have to be computed while tak-
ing into account the state of the list of pending ar-
guments).6

The RCG parsing algorithm we use is an exten-
sion of Boullier (2000). This extension concerns
(i) the production of a shared forest and (ii) the
use of constraint-based techniques for performing
some subtask of RCG parsing.

5In other terms, the RCG conversion is done on-line.
6We do not have a proof of complexity of the conversion

algorithm yet, but we conjecture that it is exponential in the
size of the grammar since the adjunctions to be predicted de-
pend on the adjunctions predicted so far and on the auxiliary
trees adjoinable at a given node.

RCG: RCG Derivation wrt aab:

C0 S(XY Z) → A(X,Y)B(Z) S(aab)
C1 A(aX, aY) → A(X,Y)
C2 A(aX, aY) → B(X)B(Y) A(a, a) B(b)
C3 B(ε) → ε
C4 B(b) → ε A(ε, ε) B(ε) B(ε) ε
C5 A(ε, ε) → ε

ε ε ε

RCG shared forest:

C0(X := a, Y := a,Z := b) → (C1(X := ε, Y := ε) ∨ C2(X := ε, Y := ε)) ∧ C4

C1(X := ε, Y := ε) → C5

C2(X := ε, Y := ε) → C3 ∧ C3

Figure 5: RCG derivation and corresponding shared forest.

5.1 Extracting an RCG shared forest

Boullier (2000) proposes a recognition algorithm
relying on two interdependent functions: one for
instantiating predicates, and one for instantiating
clauses. Recognition is then triggered by asking
for the instantiation of the start predicate with re-
spect to the input string. An interesting feature of
Boullier’s algorithm lies in the tabulation of the
(boolean) result of predicate and clause instantia-
tions. In our parsing algorithm, we propose to ex-
tend this tabulation so that not only boolean values
are stored, but also the successful clause instan-
tiations for the RHS of each instantiated clause.
In other terms, we use a 3-dimensional tabulation
structure, where entries are of the following form:

Γ[(i, �ρ)][f �ρ
q][j] := (ix, �ρx)

Γ being a table storing the clause identifier and ar-
guments ix, �ρx corresponding to the instantiation
of the jth RHS predicate of the clause i with the
qth binding of arguments �ρ.

As a consequence of this extension, after pars-
ing a shared forest can be straightforwardly ex-
tracted from the table of clause instantiations.
This shared forest is represented by a context-free
grammar, following Billot and Lang (1989). See
Fig. 5 for an example.

5.2 Using constraints to instantiate predicates

A second extension of Boullier’s algorithm con-
cerns the complex task of clause instantiation.
During RCG parsing, for each clause instantia-
tion, all possible bindings between the arguments

of the LHS predicate and (a substring of) the input
string must be computed. The more ranges with
free boundaries the arguments of the LHS predi-
cate contains, the more expensive the instantiation
is. Boullier (2000) has shown that the time com-
plexity of a clause instantiation is O(nd), where
n is length of the input string, and d is the arity
of the grammar (maximal number of free range
boundaries). To deal with this high time complex-
ity, Boullier (2000) proposes to use some prede-
fined specific predicates7 whose role is to decrease
the number of free range boundaries.

In our approach, we propose to encode the
clause instantiation task into a Constraint Satisfac-
tion Problem (CSP). More precisely, we propose to
use constraints over finite sets of integers to repre-
sent the constraints affecting the range boundaries.
Indeed, these constraints over integers offer a nat-
ural way of encoding constraints applied on ranges
(e.g. linear order).

Let us briefly introduce CSPs. In a CSP, a prob-
lem is described using a set of variables, which
take their values in a given domain. Constraints are
then applied on the values these variables can take
in order to narrow their respective domain. Finally,
one (or all) solution(s) to the problem are searched
for, that is to say some (or all) assignment(s) of
values to variables while respecting the constraints
are searched for. One particularly interesting sub-
class of CSPs are those that can be stated in terms
of constraints on variables ranging over finite sets

7E.g. a length predicate is used to limit the length of the
subpart of input string covered by a range.

of non-negative integers. For such CSPs, there ex-
ist several implementations offering a wide range
of constraints (arithmetic, boolean and linear con-
straints), and efficient solvers, such as the Gecode
library8 (Schulte and Tack, 2006).

In this context, the underlying idea of comput-
ing range instantiations as a CSP is the follow-
ing. We use the natural order of integers to rep-
resent the linear order of ranges. More precisely,
we compute all possible mappings between posi-
tion indices in the input string (positive integers)
and free range boundaries in the arguments of (the
LHS predicate of) the clause to instantiate (vari-
ables taking their values in [0..n], n being the
length of the input sentence). Note that, within
a given argument of a predicate to instantiate, a
range of type constant can be considered as a con-
straint for the values the preceding and following
range boundaries can take, see the example Fig. 6
(xi are variables ranging over finite sets of integers
and cj are constants such that cj = j).

(LHS-)Predicate instantiation:
P (aXY dZ) ↔ P (abcdef)

Constraint-based interpretation:
P (x0 a x1 X x2 Y x3 d x4 Z x5) ↔
P (c0 a c1 b c2 c c3 d c4 e c5 f c6)

8<
:

i ≤ j ⇒ xi ≤ xj (linear order)
x0 = c0 x5 = c6 (extern boundaries)
x1 = c1 x3 = c3 x4 = c4 (anchor constraints)

(here x2 is the only free range boundary, and can take 3 val-

ues, namely c1, c2 or c3)

Figure 6: Constraint-based clause instantiation.

The gain brought by CSP-based techniques re-
mains to be evaluated. So far, it has only been
observed empirically between 2 versions of the
parser. Nonetheless constraints offer a natural
framework for dealing with ranges.9

Eventually, note that the extensions introduced
in this section do not affect the time complexity
of Boullier’s algorithm, which is O(|G|nd), |G|
being the size of the grammar, d its degree, and n
the length of the input string.

8C.f. http://www.gecode.org.
9The question of whether feature constraints should be

used at this stage or not is discussed in section 6.

6 Retrieving TT-MCTAG derivation
structures

As previously mentioned, the result of RCG-
parsing is an RCG shared forest. In order to extract
from this forest the TT-MCTAG derivation struc-
ture (namely the derivation and derived trees), we
must first interpret this RCG forest to get the un-
derlying TAG forest, and then expand the latter.

6.1 Interpreting the RCG shared forest

The interpretation of the RCG forest corresponds
to performing a traversal of the forest while re-
placing all branching clauses (i.e. clauses whose
LHS predicate is labeled by adj or sub) by the tree
clause they refer to in the table of clause instanti-
ation. In other terms, each instantiated branching
clause is replaced by the tree clause corresponding
to its unique RHS-predicate (see Fig. 7).

〈αrep, ∅〉(es der Mech zu rep versp) →

〈adj, αrep, ε, {βacc}〉(es der Mech, versp)

〈adj, αrep, ε, {βacc}〉(es der Mech, versp) →

〈βversp., {βacc}〉(es der Mech, versp)

〈βversp, {βacc}〉(es der Mech, versp) →

〈adj, βversp, ε, {βacc, βnom}〉(es der Mech., ε)

αrep

βversp

〈adj, ε〉�

Figure 7: Relation between clause instantiations
and TT-MCTAG derivation (using the TT-MCTAG
in Fig. 1).

The result of this interpretation of the RCG
shared forest is the TT-MCTAG shared forest,
i.e. a factorized representation of all TT-MCTAG
derivations as a context-free grammar. The extrac-
tion of this TT-MCTAG forest is done in a sin-
gle traversal of the RCG forest (i.e. of the table
of clause instantiations) starting from the clause
whose LHS predicate is the start predicate. Since
the predicate names contain the tree identifiers
they refer to, no lookup in the grammar is needed.
As a consequence, the time complexity of the ex-
traction of the TT-MCTAG forest is bound by the
size of the table of clause instantiations.

Note that (i) we do not expand the alternatives
resulting from syntactic ambiguity at this stage,

and (ii) both the RCG and TT-MCTAG deriva-
tion forests have been computed without taking
the feature structures into account. The motiva-
tion is to delay the cost of unification to the final
step of expansion of the TT-MCTAG forest. In-
deed, the word order constraints encoded in the
RCG have possibly rejected many ungrammatical
structures for which the cost of feature unification
would have been wasted time. It would be inter-
esting to experiment whether we would benefit or
not from using feature structures as additional con-
straints on clause instantiation in practice.

6.2 Expanding the TAG shared forest

Finally, from this TT-MCTAG derivation forest,
we can extract all derivation trees, and then com-
pute the corresponding derived trees.

This task amounts to traversing the forest in a
top-down-fashion, using the information in the en-
countered nodes (referring to elementary trees) to
gradually assemble derivation trees. Some nodes
in the forest encode a syntactic ambiguity (disjunc-
tive node), in which case we make a copy of the
current derivation tree and apply one of the alter-
native options to each of the trees before following
each branch through. This behavior is easy to im-
plement using a FIFO queue. A few control mech-
anisms check for integrity of the derivation trees
during the process. We end up with a set of deriva-
tion trees in an XML DOM format that can either
be displayed directly in the GUI or exported in an
XML file.

For reasons of flexibility, we chose to rely on an
XML DOM internal representation for all the steps
of derived tree building. Indeed, this enables each
of the derivation steps to be displayed directly in
the GUI. Feature unification also happens at this
point, allowing for a graphical illustration of fea-
ture clashes in the parse tree in debug mode.

7 Computing semantics

The parsing architecture introduced here has been
extended to support the syntax/semantics interface
of Gardent and Kallmeyer (2003). The underlying
idea of this interface is to associate each tree with
flat semantic formulas. The arguments of these
formulas are unification variables co-indexed with
features labelling the nodes of the syntactic tree.
During derivation, trees are combined via adjunc-
tion and/or substitution, each triggering the unifi-

cations of the feature structures labelling specific
nodes. As a result of these unifications, the argu-
ments of the semantic formulas associated with the
trees involved in the derivation get unified. In the
end, each derivation/derived tree is associated with
a flat semantic representation corresponding to the
union of the formulas associated with the elemen-
tary trees that have been used. An example is given
in Fig. 8.

S

NP↓x VP

NPj V NP↓y NPm

John loves Mary

name(j,john) love(x,y) name(m,mary)

� love(j,m),name(j,john),name(m,mary)

Figure 8: Semantic calculus in Feature-Based
TAG.

In our system, the integration of the semantic
support has only required 2 extensions, namely
(i) the extension of the tree objects to include se-
mantic formulas, and (ii) the extension of the con-
struction of the derived tree so that the seman-
tic formulas are carried until the end and updated
with respect to the feature-structure unifications
performed.

8 Optimizations

The parsing architecture presented here can host
several optimizations. In this section, we present
two examples of these. The first one concerns lex-
ical disambiguation, the second one RCG parsing.

Lexical disambiguation becomes a necessity be-
cause, for each token of the input sentence, there
may be many candidate elementary trees, each of
these being used in the RCG conversion, thus lead-
ing to a combinatorial explosion for longer sen-
tences.10 We tackled this problem using the tech-
nique introduced in Bonfante et al. (2004). The
idea behind their approach is to encode all the pos-
sible combinations of elementary trees in an au-
tomaton. For this purpose, elementary trees are
first reduced to sets of polarity values depending
on the resources and needs they represent (a sub-
stitution or foot node refers to a need for a certain
category, while a root node corresponds to a re-

10Recall that all licensed adjunctions are predicted.

source). For example, an S elementary tree with
two places for NP substitution has an NP polar-
ity of -2 and an S polarity of +1.Using this repre-
sentation, every candidate elementary tree is rep-
resented by an edge in an automaton built by scan-
ning the input sentence from left to right. The po-
larity of a path through the automaton is the sum
of all the polarities of the edges encountered on
the way. While building this automaton, we deter-
mine all the paths with a neutral polarity for ev-
ery category but the parsed constituent’s category
(whose polarity is +1). Such a path encodes a set
of elementary trees that could contribute to a valid
parse. As a consequence, the parser only has to
consider for RCG conversion, combinations for a
small number of tree sets. This approach makes
the search space for both RCG conversion and
RCG parsing much more manageable and leads to
a significant drop in parsing time for some long
sentences.

The second optimization concerns RCG pars-
ing, which can have a high cost in cases where
there are many free range boundaries. We can de-
crease the number of such boundaries by adding
a constraint preventing range variables referring to
substitution nodes from being bound to ε.

9 Conclusion and future work

In this paper, we introduced a parsing environ-
ment using RCG as a pivot formalism to parse
mildly context-sensitive formalisms such as TT-
MCTAG. This environment opens the way to
multi-formalism parsing. Furthermore, its mod-
ular architecture (RCG conversion, RCG parsing,
RCG shared forest interpretation) made it possible
to extend the system to perform additional tasks,
such as semantic calculus or dependency structure
extraction. The system is still being developed,
but is already used for the development of a TT-
MCTAG for German (Kallmeyer et al., 2008). Fu-
ture work will include experiments with off-line
conversion of TT-MCTAG and generalization of
branching clauses to reduce the size of the RCG
and thus to improve (RCG) parsing time.

References
Billot, Sylvie and Bernard Lang. 1989. The Struc-

ture of Shared Forests in Ambiguous Parsing. In
27th Annual Meeting of the Association for Compu-
tational Linguistics, pages 143–151.

Bonfante, Guillaume, Bruno Guillaume, and Guy Per-
rier. 2004. Polarization and abstraction of grammat-
ical formalisms as methods for lexical disambigua-
tion. In Proceedings of 20th International Confer-
ence on Computational Linguistics (CoLing 2004),
pages 303–309.

Boullier, Pierre. 1999. On TAG and Multicomponent
TAG Parsing. Rapport de Recherche 3668, Institut
National de Recherche en Informatique et en Au-
tomatique (INRIA).

Boullier, Pierre. 2000. Range concatenation gram-
mars. In Proceedings of the Sixth International
Workshop on Parsing Technologies (IWPT 2000),
pages 53–64.

Duchier, Denys, Joseph Le Roux, and Yannick Par-
mentier. 2004. The Metagrammar Compiler: An
NLP Application with a Multi-paradigm Architec-
ture. In Second International Mozart/Oz Conference
(MOZ’2004).

Gardent, Claire and Laura Kallmeyer. 2003. Semantic
Construction in FTAG. In EACL 2003, 10th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 123–130.

Kallmeyer, Laura and Yannick Parmentier. 2008. On
the relation between Multicomponent Tree Adjoin-
ing Grammars with Tree Tuples (TT-MCTAG) and
Range Concatenation Grammars (RCG). In Pro-
ceedings of the 2nd International Conference on
Language and Automata Theory and Applications
LATA, pages 277–288.

Kallmeyer, Laura, Timm Lichte, Wolfgang Maier, Yan-
nick Parmentier, and Johannes Dellert. 2008. De-
veloping a TT-MCTAG for German with an RCG-
based parser. In Proceedings of the Sixth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2008). To appear.

Lichte, Timm and Laura Kallmeyer. 2008. Factoriz-
ing Complementation in a TT-MCTAG for German.
In Proceedings of the The Ninth International Work-
shop on Tree Adjoining Grammars and Related For-
malisms (TAG+9).

Lichte, Timm. 2007. An MCTAG with tuples for co-
herent constructions in German. In Proceedings of
the 12th Conference on Formal Grammar.

Schulte, Christian and Guido Tack. 2006. Views
and iterators for generic constraint implementations.
In Recent Advances in Constraints (2005), volume
3978 of Lecture Notes in Artificial Intelligence,
pages 118–132. Springer-Verlag.

Søgaard, Anders, Timm Lichte, and Wolfgang Maier.
2007. The complexity of linguistically motivated
extensions of tree-adjoining grammar. In Recent Ad-
vances in Natural Language Processing 2007.

