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Abstract

The prevention of credit card fraud is an important ap-
plication for prediction techniques. One major obstacle
for using neural network training techniques is the high
necessary diagnostic quality: Since only one financial
transaction of a thousand is invalid no prediction success
less than 99.9%  is acceptable.

Due to these credit card transaction proportions
complete new concepts had to be developed and tested on
real credit card data. This paper shows how advanced
data mining techniques and neural network algorithm
can be combined successfully to obtain a high fraud cov-
erage combined with  a low false alarm rate.

1 Introduction

The prediction of user behavior in financial systems
can  be used in many situations. Predicting client migra-
tion, marketing or public relations can save a lot of
money and other resources. One of the most interesting
fields of prediction is the fraud of credit lines, especially
credit card payments. For the high data traffic of 400,000
transactions per day, a reduction of 2.5% of fraud triggers
a saving of  one million dollars per year.

Certainly, all transactions which deal with accounts of
known misuse are not authorized. Nevertheless, there are
transactions which are formally valid, but experienced
people can tell that these transactions are probably mis-
used, caused by stolen cards or fake merchants. So, the
task is to avoid a fraud by a credit card transaction before
it is known as “illegal”.

With an increasing number of transactions people can
no longer control all of them. As remedy, one may catch
the experience of the experts and put it into an expert
system. This traditional approach has the disadvantage
that the expert’s knowledge, even when it can be ex-
tracted explicitly, changes rapidly with new kinds of or-
ganized attacks and patterns of credit card fraud. In order
to keep track with this, no predefined fraud models as in
[5] but automatic learning algorithms are needed.

This paper deals with the problems specific to this

special data mining application and tries to solve them by
a combined probabilistic and neuro-adaptive approach for
a given data base of credit card transactions of the GZS.

1.1 Modeling the data

The transaction data are characterized by some very spe-
cial proportions:
• The probability of a fraud is very low (0.2%) and has

been lowered in a preprocessing step by a conven-
tional fraud detecting system down to 0.1%.

• Most of the 38 data fields (about 26 fields) per trans-
action contain symbolic data as merchant code, ac-
count number, client name etc.

• A symbolic field can contain as low as two values
(e.g. the kind of credit card) up to several hundred
thousand values (as the merchant code).

• The confidence limit for a transaction abort is very
subjective and subject to client policy. Transactions
with a confidence for fraud of higher than 10% are
accepted to be revised or aborted.

These data proportions have several implications. For the
very low fraud occurrence of only 0.1% a constant, “stu-
pid” diagnosis of “transactions is no fraud” will have a
success rate of 99.9%. All adaptive fraud diagnosis which
has lower success than this 99.9% (e.g. [3] with 92.5% or
[7] with 50%) is questionable. In principal, we are aiming
for maximizing the correct diagnosis by minimizing both
the number of false alarms and the number of fraud
transactions not recognized.

2 Mining the symbolic data

One transaction can be seen as a data tuple x of features
xi : x = (x1,..,xn). For the analysis we distinguish between
the categorical, symbolic features and the analog, nu-
merical data. Let us treat the symbolic data first.

Our main concept for mining the symbolic data relays
on the idea that all misuse transactions can be seen as a
kind of rules: IF all symbolic features are given THEN
misuse takes place. Combining several misuse rules to-
gether will result in less and shorter, more general rules.
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Thus, we have to design a generalization mechanism in
order to reduce the dependence of a rule on unimportant
features.

2.1 Generalizing and weighting the association rules

In contrast to standard basket prediction association rules
[1], [2] our goal does not consist of generating long asso-
ciating rules but of shortening our raw associations by
generalizing them to the most common types of transac-
tions. Although generalizations are common for symbolic
AI, there are no standard algorithms in data mining to do
this.

How can such a generalization be done? We start with
the data base of fraud transactions and compare each
transaction with all others in order to find pairs of similar
ones. Each pair is then merged into a generalized rule by
replacing a non-identical feature by a ‘don’t-care’-symbol
‘*’. By doing so, a generalization process evolves, see
Fig. 1. Here, the generalization of two transactions with
the feature tuples x1 = (F,D,C,D,A) and x2 = (F,D,G,D,A)
(dotted circle) to the rule (F,D,*,D,A) and further up to
(F,*,*,D,A) and to (*,*,*,D,*) is shown. Thus, each gen-
eralization provides at least one ‘don’t-care’-symbol for
an unimportant feature, increases the generalization level
by one and shortens the rule excluding one feature. All
generalizations which have not been generalized them-
selves are the root of the subgraph, forming a tree.
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Fig. 1 The generalization graph

For the example of 5850 fraud data, there are 4 gener-
alized rules in level 16 shown in Table 1.

1 * EA 840 *  *  EM  2768  8403184   *  0 1100 * 0 * * * * I * * * 0 * * N *  *
2 * EA 840 1)  0  EM    *            *       563  0 1100 * 0 *  * * * I  * * * 0 * * * *  *
3 * EA 840 *  0   EM  2768 8403184   *   * 1100 * 0 *  * * * I * * * 0 * * * 002 *
4 * EA 840 * 995 EM     *             *        *   0 1100 * 0 *   0   * * I 

� �
 *  * 0 * * * *  *

1) ZZUTSZ1UZZZ1

R
ul

e
A

C
C

T
_N

B
R

T
R

N
_T

Y
P

C
U

R
R

_C
D

PO
S_

E
N

T
_C

D
FA

L
_S

C
O

R

C
R

D
_T

Y
P

IC
A

_C
D

A
ID

_C
D

SI
C

_C
D

A
C

T
_C

D
M

SG
_T

Y
P

M
E

R
_I

D
M

E
R

_C
N

T
Y

_C
D

C
T

Y
_1

PO
ST

_C
D

_1
C

N
T

Y
_C

D
1

C
R

_L
M

T
A

T
V

_I
N

D
A

C
C

T
_S

T
A

T
C

T
Y

_2
PO

ST
_C

D
_2

A
D

D
R

_S
T

A
T

E
M

IT
_N

B
R

IN
ST

_N
B

R
IS

S_
R

E
A

S
G

E
N

_C
D

C
A

R
D

_T
Y

P

Table 1 Generalized transactions with 16 wildcards

The feature names are labeled on the top of the columns.

All rules differ from each other. In general, there are
many rules in a level. We define the share of a fraud rule
as the percentage of fraud transactions which is covered
by the rule.
Nevertheless, the share does not reflect the fact that there
are also legal transactions which may fit a fraud rule
leading to a wrong diagnosis. The more transactions with
a correct diagnosis we have the more confidence in the
diagnostic process we get. We define therefore the confi-
dence in a fraud diagnosis as

confidence = 
rule  by  the  covered  ons transactiof#

rule  by  the  covered  misuse  of#   (2.1)

We can show that confidence = 1– P(false alarm) ≤ 1–
P(false alarm|legal). Thus, when the confidence is maxi-
mized, the probability of a false alarm is minimized. For
the rest of the paper, our main goal consists of maximiz-
ing the confidence of a fraud decision for an acceptable
probability of fraud detection when fraud is present.

The mining algorithm is described in more detail in [4].

2.2 Results

For the analysis we used a sample set of 5,850 fraud
transactions and 542,858 legal transactions, ordered by
their time stamps. It should be noted that the mining al-
gorithm has a high runtime complexity. Therefore, we
used only 30,000 of the legal transactions. The resulting
values for the confidence were compared to the whole set
of transactions.

In the following Fig. 2 the performance of the rule di-
agnosis is shown as function of the generalization level.
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Fig. 2 The performance of the rule diagnosis

For each generalization level, i.e. for each number of
wildcards, a set of active, non-generalized rules exists.
They are denoted as “rules per level”. Each set detects a
certain part of the fraud, measured as “share per level”.
We can see that the main part of the share and the rules



are obtained for level 5 and above. Certainly, the more
rules we take the better we perform. But, the less general
the rules are, the more the performance will depend on
statistical variations of the fraud data. If we take all the
747 rules from generalization level 4 up to level 17 we
obtain a moderate confidence for the fraud detection on
the set of all transactions, see Table 2.

#rules % correct diagnosis confidence
legal fraud total %

747 99.73 90.91 99.64 25.14
(99.72) (25.2)

510 99.97 83.08 99.79 75.17
(99.953) (73.5)

0 99.9 0.0 99.9 0.0

Table 2 Fraud detection vs. confidence

However, when we select only those rules which also
preserve their confidence sufficiently on the whole trans-
action set, we obtain 510 rules. Certainly, with less rules
the fraud diagnosis probability decreases slightly, but, as
we see in the table, our main goal, the confidence in the
diagnosis, is dramatically increased up to 75 % due to the
high proportion of legal data which are less misclassified.
This is also true when we use the real proportion for legal
vs. misuse transactions of 1000:1 which are shown in
round brackets in Table 2. Additionally, the diagnosis
performance is even better than the constant, “stupid”
diagnosis mentioned before and noted in the last table
row.

3 Mining the analog data

Each transaction is characterized by symbolic and analog
data. So far we have only used the symbolic part of the
transactions. Does the analog part containing transaction
time, credit amount etc. provide any useful information?
Will it be possible to enhance the fraud diagnosis?

The problem of fraud diagnosis can be seen as sepa-
rating two kinds or classes of events: the good and the
bad transactions. Our problem is indeed a classification
problem. One major approach for dynamic classification
with demand driven classification boundaries is the ap-
proach of learning the classification parameters, the clas-
sification boundaries, by an adaptive process. Learning is
the domain of artificial neural networks, and we used a
special model of it to perform the task.

3.1.1 The network
There are several possible network approaches for the
task. For our model we used one expert net for each fea-
ture group (time, money, etc.) and grouped the experts
together to form a common vote. In Fig. 3 this architec-
ture is shown.
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Fig. 3 The neural network experts for analog data

We used several networks of the Radial Basis Function
(RBF) type [8], each one specialized on one topic.

3.1.2 The results
Because we have a very low fraud occurrence of only
0.1% the simple constant diagnosis “transactions is no
fraud” will have a success rate of 99.9%. To compete
with this trivial diagnosis, the task of diagnosing a trans-
action is not easy to do. If we use only the analog data,
all transactions patterns characterized by n symbolic and
m analog features are projected from the n+m-
dimensional space into the m-dimensional space. Gener-
ally, this results in overlapping classes and therefore in
diagnostic success far worse than 99.9%. In Fig. 4 the
typical situation is shown for the separation of two
classes by one analog variable x.

xB CA

p(x|L) p(x|M)

Fig. 4 Diagnosis for overlapping classes

Here, the two probability density functions p(x|M) for the
fraud data and p(x|L) for the legal data are shown. For the
best separation probability of the two clusters, the class
boundary is located at point B in Fig. 4 where both den-
sities are equal. But, for our two goals of high fraud de-
tection success and high confidence in the detection we
encounter a trade-off: If we choose the boundary at point
A we get a high fraud discover probability and a low con-
fidence (high false alarm rate) whereas for a high confi-
dence we have to choose the class decision boundary at
point C with a smaller fraud discovery success.

Now, let us diagnose one transaction by the means of
the neural network. For that purpose, we used the neural
expert system shown in Fig. 3 and trained it with our
fraud data. We used 300 transactions for training and
analyzed the state of the whole network afterwards by
presenting 250 legal and 250 fraud data. The proportion



of legal to fraud data for training was changed, causing
different diagnosing behavior. The results are shown in
Table 3.

correct diagnosis % faulty diagno-
sis %

pro-
por-
tion total legal fraud legal fraud

confi-
dence

%
2:1 78.8 95.2 62.4 4.8 37.6 1.3
4:1 58.2 99.6 16.8 0.4 83.2 4.0

10:1 50.0 100 0 0 100 100

Table 3 Shifting the class boundary

As we can see, by augmenting the number of legal trans-
actions in the training the class boundary shifts towards
point C in Fig. 4. Here, the confidence is high, but the
fraud discovery becomes zero.

4 Combining symbolic and analog infor-
mation

In the previous sections we encountered the fact that the
analog data can not serve as a satisfying criterion for
fraud diagnosis. Therefore, we combined the diagnostic
information of the rule-based association system of sec-
tion 2 with the expert information of section 3 in a paral-
lel network including a decision stage. The diagnostic
influence of all the experts are initially the same and con-
verge by 1:1 training in the limit to their appropriate
value. In all situations, decisions based on the analog data
can override the rule based expert. This is shown as
“combined parallel approach” in Table 4.

Diagnostic
method

Prob. of correct
diagnose

Confidence %

Data set size 1000 11,700 1000 11,700
Rule based .901 .915 100.0 100.0
Analog data .853 .817    1.55    93.1
Comb. par. .928 .898 100.0 1.05
Comb. seq. .845 .876 100.0 81.49

(.9995527) (79.0)

Table 4 Comparing the performance of different diagnostic
expert systems on two sets of data

The parallel approach results in some extra diagnosis er-
rors for legal transactions which decrease heavily the
confidence down to 1%. Can we change this?

To do this, we also constructed a sequential system.
Here, the decisions for “fraud” by the highly successful
rule based expert module are checked additionally by the
analog neural expert. Certainly, this does not decrease the
probability for the first stage to classify fraud data as “le-
gal”, but it increases the probability for the diagnosis
“fraud” to be correct and therefore increases the confi-
dence and decreases the number of false alarms, see
Table 4.

In summary, by an automatically generated rule sys-
tem we managed to increase the inherent correct diagno-

sis of  99.9% to 99.95 %. Including also the analog in-
formation we increased this to 99.955%.

As most important topic the fraud decisions are about
80% valid which is quite high for this kind of problem.

5 Discussion

In this contribution we developed concepts for the statis-
tic-based credit card fraud diagnosis. We showed that this
task has to be based on the very special diagnostic situa-
tion imposed by the very small proportion of  fraud data
of 1:1000.
Additionally, we showed that, by algorithmically gener-
alizing the transaction data, one may obtain higher levels
of diagnostic rules. Combining this rule-based informa-
tion and adaptive classification methods yield very good
results.
Based on these results for a sample data base, additional
work is necessary to design an online learning diagnostic
system.
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