
Neural Comput & Applic (1999)8:95–105
 1999 Springer-Verlag London Limited

Using Growing RBF-Nets in Rubber Industry Process
Control

U. Pietruschka and R.W. Brause
FB Informatik, J.W. Goethe-University, Frankfurt a.M., Germany

This paper describes the use of a Radial Basis
Function (RBF) neural network in the approximation
of process parameters for the extrusion of a rubber
profile in tyre production. After introducing the rub-
ber industry problem, the RBF network model and
the RBF net learning algorithm are developed,
which uses a growing number of RBF units to
compensate the approximation error up to the
desired error limit. Its performance is shown for
simple analytic examples. Then the paper describes
the modelling of the industrial problem. Simulations
show good results, even when using only a few
training samples. The paper is concluded by a dis-
cussion of possible systematic error influences,
improvements and potential generalisation benefits.

Keywords: Adaptive process control; Parameter
estimation; RBF-nets; Rubber extrusion

1. Introduction

Process control in rubber industry has an image of
a ‘dirty’ branch of industry. This is not only because
of the dull and dusty rubber and tyre production
rooms where the products are ‘baked’ by heat and
steam, but also because the macromolecular pro-
portions of rubber are hard to predict due to their
nonlinear nature. When the rubber mixture leaves
an extruder (the melting and form-giving machine)
after being heated up to 110–140°C, compressed

Correspondence and offprint requests to: Dr R.W. Brause, J.W.
Goethe-University, FB Informatik, Postbox 11 19 32, D – 60054
Frankfurt am Main, Germany. E-mail: brauseKcs.uni-frankfurt.de

with 70–140 bar by a screw conveyor and pressed
through a metal mask, the rubber relaxes, (i.e. it
expands or shrinks), depending on the mixture, thus
changing its shape in a non-linear manner by 10–
20% up to 50%.

The basic production layout for our tyre profile
production example is shown in Fig. 1.

The task of process control consists of estimating
the extrusion parameters (i.e. the shape of the
extrusion metal mask) necessary for an acceptable
rubber product after relaxation. To date, owing to
the nonlinear nature of the macromolecular mixture,
this task has not been solved analytically. Instead,
specialised people estimate the profile of the original
metal mask using their subject experience, and cor-
rect their estimates as the process develops. This
gives a trial-and-error turn-around production cycle.

This kind of production has severe disadvantages
for the production business:

I The start for a new product is delayed by the

Fig. 1. The tyre profile extrusion is done by heating up a rubber
mixture in a machine, called an extruder, until it becomes liquid,
and then pressing it through a small opening, called a metal
mask. The resulting rubber stream expands and solidifies after
cooling down in the open air.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14507905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

96 U. Pietruschka and R.W. Brause

time taken for 2–3 turn-arounds, each taking 4–
5 days to make a new mask, install it onto the
extruder, attempt an extrusion, measure the rubber
profile obtained, and estimate for a more accurate
metal mask.

I This delay not only wastes time, money and
natural resources, but increases the production
overheads and so impedes production flexibility
severely.

I Experienced employees are tied to this job (which
is judged as ‘boring’), without the possibility of
a change within the company.

I In the case of employee illness or an employee
moving to another enterprise, the experience is
no longer accessible.

This kind of problem can now be overcome by
adaptive process control methods. Generally, these
methods are applicable in one of the following situ-
ations:

I The process control is analytically unsolved.
I In principle, the problem can be solved analyti-

cally, but it is too expensive to do this for every
case, or there are no qualified people available to
do this.

I In principle, the problem can be solved analyti-
cally, but the necessary internal parameters of the
process cannot be measured because either the
measurements will change the values themselves,
or the measurement is either technically infeas-
ible, too difficult or too expensive.

Adaptive methods will update the parameters based
purely on the final, measured outcome data. In this
paper, we show how this sort of approach can be
applied to the problem of tyre production.

Alternative, non-adaptive approaches do not exist in
this field, because here the exact solution depends
upon knowledge about the non-linear behaviour of the
rubber, which is not currently available. Also, models
using volume-oriented rubber flow within the tyre
profile have not yielded any useful results.

In the following, we consider the problem of
approximating the metal mask necessary by means of
an adaptive system, i.e. an artificial neural network.
The model for the network will be presented in the
next section.

2. An RBF Approximation Network

In this section we want to derive an algorithm for
approximating the exact extruder metal mask profile
f(x) at locationx by a neural network functionF(x),
which produces the desired rubber profiler(x). It

is well known that a two-layer neural network can
approximate any continuous function to any degree,
provided that we have enough neurons in the first
layer [1].

2.1. The Activity Network

For our purposes, let us assume a two-layer network,
like the one in Fig. 2. The network receives as
input n signals, grouped together to the inputx = (x1,
. . ., xn).

The activity y = (y1, . . ., ym) of the first layer of
units is defined by

yi = Si(x,ci) = e
(x−c

i
)2

2s2
i i = 1. . .m (2.1)

and the second layer by

F(x) = F(y(x)) = Om
j=1

wjyj = wTy y0 ; 1, w0 > bias

(2.2)

This models the approximation functionF(x) as a
linear superposition (weighted sum) ofm nonlinear
basis functionsSi, which depend only upon the
distance between the inputx and a centreci:

Si (ux 2 ciu) = Si(D) D2 = (x 2 ci)2/2s2
i

This proportion gave them the name Radial Basis
Functions (RBF).

2.2. Scaling the Receptive Field

Often, the different signalsxi in x = (xi, . . ., xn)
have different variances. Before we can combine
them, we have to normalise them to equal variance
in order to balance the different scaling influences
of their origins. For this purpose, we scale the input
space using a linear transformation with a matrix
M . For the set of input patterns, this is often
done by replacing the ordinary Euclidean distance
D2 = (x 2 c)2 by the Mahalanobis distance

Fig. 2. The activity approximation network. The input lines are
processed by special RBF-units. Their outputs are linearly
weighted and added together to form the network output. All
units with the same function are grouped as a layer, thus we
have two layers:m RBF-units in the first layer, and one unit as
the second layer.

97Using Growing RBF-Nets in Rubber Industry Process Control

D2 = uM (x2c)u2 = (x 2 c)T MT M (x 2 c) (2.3)

which is related to the covariance matrix of the
input by

C21
xx = MT M

If we assume an input activity to be significant for
a neuron if it passes a certain threshold valueu,
we might define thereceptive field5F of the neuron
as the set of all inputs for which the neuronal output
activity S passes the threshold

5F ; { x u S(x) . u}

The border {x u S(x) = u} of the receptive field, and
therefore its form, is determined by the parameters
Mij. If M is the identity matrix, the receptive field
is the unit circle. For non-diagonal matrices the
boarder becomes ellipsoidal.

For the pure purpose of designing the form, let
us develop a scaling algorithm for the matrixM .
Let x be a sample input andc the centre of a
distribution (see Fig. 3).

The new vectorx9, which is scaled relative to
the centre c, is obtained by reducingx with a
fraction b of its radial component. With the distance
vector D = (x 2 c) and the normalised version
a = D/uDu, this becomes

x′ = x − ba (aTx) = x − b(aaT)x (2.4)
= (I − b(aaT)) x = Ax

The change factorb P [0,1] (zero for no change,
one for complete radial reduction) can also be
replaced by a scaling factora ; 1 2 b (i.e. a = 0
for complete radial reduction,a = 1 for no reduction
at all, a . 1 for scaling up). A learning rate factor
g can also be included. For the basis vectors of the
transformation (2.3) (which are the rows ofM) the
scaling Eq. (2.4) becomes

(M NEW)j = (I 2 g(1 2 a)(aaT)) (MOLD)j

for j = 1. .k (2.5)

Fig. 3. The scaling of an input relative to the centre. For the
scaling, the vectorD from the centrec to x is scaled down to
a vectora in the same direction, but of length 1. This results in
a radially symmetric receptive field, instead of an ellipsoidal one.

2.3. The Learning Algorithm

There are principally two approaches to train the
network parameters: we either train the two layers
separately or as a whole. Each of these approaches
has its advantages and its flaws, which we discuss
briefly in order to develop our learning algorithm.

The first choice is to treat the two layers separately.
This avoids the well-known local minima and the very
slow speed which we encounter using the classical
backpropagation algorithm [2] for two layers. A com-
mon approach consists of first clustering the input
space using a learning algorithm (e.g. either off-line
clustering using the k-means algorithm [3] or an RBF
version [4], or on-line sequentially using an adaptive
version [5] or an RBF version [6]). This sets up the
number of neurons, the centresci of the receptive
fields and their distance matrixM i. After this, the
weights wj of the second layer can be learned by a
purely gradient descent. Since we have only a linear
neuron in the second layer, there is only one minimum
for the mean squared error.

This approach is fast, but it has some flaws:

I This input sample density generally does not cor-
respond to regions where the approximated func-
tion changes quickly. This gives us a high sample
density of output values, where we have clusters
of input samples, not where the output error
is high.

I The approach of homogeneously covering the
input space by neuronal receptive fields based on
clustering is not appropriate for all approximated
functions. Consider, for instance, the function

f(x) = e2(x2a)2 − e2(x2a)2/10

As we can see, two RBFs, both centred on centre
a, will certainly approximatef(x):

F(x) ; S1(x,a,1) 2 S2(x,a,1/10)

But this is not possible in the separate layer
clustering approach above, because their different
neurons get different cluster centres which
together cover the input space. Therefore, we
need many more neurons to approximatef(x) and
get less precision.

These problems lead us to the approach of
optimising both layers at the same time. To avoid
the computational problems of the backpropagation
approach, we choose the strategy of starting with
the lowest possible complexity of the network and
gradually increase the number of neurons in the first
layer until the error is sufficiently reduced. The
resulting network will fit the approximation needs
with the least possible resources. The ‘growing net-

98 U. Pietruschka and R.W. Brause

work’ approach has already been proposed for
Kohonen nets by Fritzke [7] and for RBF nets, for
example, by Schiøler and Hartmann [8].

There is also the possibility of starting with a
very high number of neurons covering the input
space, and then gradually pruning the network by
eliminating all unnecessary neurons [9]. This
approach is less favourable, since it has some princi-
pal flaws:

I In some cases, the increasing complexity approach
may produce very high neuron densities at some
points of the input space. To obtain the same
densities (i.e. error coverage) using the pruning
method, we have to start first with a very dense
grid and then prune all the unnecessary RBF
neurons using the algorithm. This gives a heavy
computational load compared to our approach,
because our approach deals only with necessary
neurons, not with unnecessary ones.

I There is a visualising technique for the pruning
process which gives some ideas about when and
where neurons are eliminated by drawing the
neuron positions in the input space. This kind of
visualisation is not possible for our application,
discussed in Section 3, since there we have an
input space of k = 11 dimensions, which can
hardly be visualised.

Therefore, we did not consider the pruning
technique.

Let us discuss our approach in more detail. For
our application (as for most of the control
applications), we have to reduce the maximal poss-
ible error, not the Mean Squared Error (MSE).
Therefore, we have devised a new strategy which
is different to those mentioned before. We insert
the first neuron (and all following ones) at location
xk, the kth sample, with themaximal error

uf(xk) 2 F(xk)u = max
1

uf(xi) 2 F(xi)u (2.6)

The error

zm(xk) = f(xk) − F(xk) = f(xk) − Om−1

j=0

wjSj(xk) (2.7)

have to be compensated by the newmth neuron

wmSm(xk) = zm(xk) (2.8)

Because we insert neuronm at locationcm = xk, we
haveSm(xk) = 1, and therefore Eq. (2.8) gives us the
value for the weight

wm = zm(xk) (2.9)

The only unspecified parameter for the neural net
is the width of the receptive field of neuronm,
characterised byMm. The width should be designed
so that it fits the new basis function in the context
of all neighbouring neuron basis functions.

Initially, we try to fit the output activity contri-
bution zm such that it also remains favourable for
the neighbouring training data pointsxi, i.e. it does
not increase the error

uzm−1(xi)u $ u zm(xi)u

With wmSm(xk) = zm(xk), and Eq. (2.1) we get
Sm = e−D2 = (zm−1)/(wm), or

D2 = uMm(xi − cm)u2 = −ln
zm−1

wm

= ln
wm

zm−1

(2.10)

Let us initialise Mm by the scaled unity matrix
aI , i.e. we assume a scaled circular receptive field
of radius a. For the first neighbour, we have

D2 = au(xi 2 cm)u2

which gives us, with Eq. (2.10), the scaling factor

a =
D

uxi 2 cmu
(2.11)

This is straightforward if the function valuef(xi) of
the neighbour input sample has the same sign as
f(xm) on the new neuron’s location. When they have
different signs, the situation changes: we can no
longer adapt the receptive field directly, because
principally it cannot change the sign by adaptation.
Instead, by inserting a replacement pointx. which
lies on the distance betweenxi and xm and has a
linear interpolated value of the same sign, we design
the receptive field for a sharp decrease to become
approximately zero atxi [10].

How should we treat the other neighbouring data
points? In contrast to the approach of Platt [11], we
do not use the gradient descent technique to
rearrange all the other neurons and adapt all their
receptive fields, which is computationally intensive
and is the source of new errors. Instead, we might
stop the adaptation process of the new neuron using
some criterion. Here, we have several possibilities:

1. We might look for the maximal error of all
neighbouring points, and if we do not reduce
the error by an adaptation, we should stop. In
simulations this strategy produced unnecessary
errors, because neurons inserted early on do not
have well adapted receptive fields, which are too
big and thus dominate the error amount.

2. We might stop if the outputFm−1(xi) changes its
sign compared toFm−1(xk). Here the contribution

99Using Growing RBF-Nets in Rubber Industry Process Control

zm will not diminish but increase the error. Never-
theless, since we do not know whether there are
other neurons far away with a greater error which
can be compensated byzm even though the error
in the neighbourhood is increased. Thus, this is
also not a good criterion.

3. We might consider only data which cause sig-
nificant activation of the new neuron. Here, we
stepwise decrease an activity levelz and look
for data which causes the neural activity to
exceed this level:

z # zs

For each neighbour,Mm is adapted according to
Eqs (2.11) and (2.5) and the replacement point
techniques, if necessary.

Simulation results support the third strategy as
being the most effective one, so this was chosen to
serve for the industrial application. Additionally, we
reduced the long distance neighbourhood influence
by a learning rateg(d) which drops with increasing
distance fromcm, i.e. with decreasing activity level.

The whole growing and initialisation learning
algorithm, called GGRBF (growing generalised
RBF), can be formulated in pseudo code. With the
maximal tolerated ErrorTolErr and the maximal
numbermmax of neurons, we get

GGRBF:
m: = 0; Errset (Trainingset) : =f (Inputset);
WHILE (max (Errset) .TolErr) AND (m ,mmax) DO

x = coord (max (Errset)) (* location of maximal error*)
InsertNeuron (x) (*see strategy (3)*)
AdaptTolstNeighbor (M m); (*(2.10) and (2.11)*)
level : =1; g: =1; (*start with high activation level*)
WHILE level . 0.01 DO

FOR i: =1 TO uTrainings Set u DO (*strategy (3)*)
IF S m(x i) .level THEN AdaptToNeighbor (g, x i , Mm) END

ENDFOR
g: =g*0.87; (*diminuate learning rate*)
level: =level-inc; (*lower the attention level*)

ENDWHILE
m: =m11 (*new neuron installed*)
computeErrset (Trainingset); (* ⇒ new error landscape*)

ENDWHILE

2.4. Simulation Results

The performance of the GGRBF algorithm was
tested on a number of functions. For visualisation
purposes, we restrict the input space to two dimen-
sions. In all the simulations we restricted the training
set to 50 points and the net to 10 neurons.

One of the most difficult tasks for nonlinear RBF
nets is a simple plane

f1(x) = x1 1 x2

The approximation of the plane byF(x1,x2) of a
growing RBF algorithm with only a circular recep-
tive fields (GSRBF) algorithm using only 10 neurons
is shown on the left-hand side of Fig. 4, while on
the right-hand side we plot the contour lines and
the receptive fields5F with u = 0.1.

The landscape of the function of the growing RBF
algorithm with ellipsoidal receptive fields (GGRBF
algorithm) for 10 neurons is shown in Fig. 5.

The timing performance evolution for the nets is
shown in Fig. 6. Here, the time requirements for
conventional gradient descent backpropagation
algorithms (SRBF and GRBF algorithms) to adapt
to F1 are compared to the growing GSRBF and
GGRBF algorithms with the same performance
error.

Here, we can clearly see the advantage of starting
with a low complexity. The gradient technique dra-
matically increases the computation time up to 100
times for the same approximation performance. This
is also true for the other simulations.

To be fair, it should also be noted that in the
case of functionF1, the gradient descent method
allowed further enhancements of the approximation
by additional training for the 10 neurons, whereas
this is not possible for the growing net method.

2.5. Other Benchmarks

For the sake of comparison, let us consider as
benchmarks the functions used by the growing net
with the gradient descent method of Lee and Kil
[12]. They reported that the function

f2(x) = sin (px1) cos (px2/2)

was approximated using 50,000 training samples. In
Fig. 7, on the left-hand side we show the function,
and on the right the simulation results.

100 U. Pietruschka and R.W. Brause

Fig. 4. The approximation of a plane by radially symmetric RBF. On the left-hand side we can see the approximated functionF(x,y),
whereas on the right-hand side the borders of the receptive fields of the 10 neurons are shown in thex 2 y plane. The linear behaviour
of the surface is obtained by the overlay of differently sized receptive.

Fig. 5. The approximation of a plane by ellipsoidal RBF. The analogue plot (as in Fig. 4) is shown here for ellipsoidal receptive
fields. This time, the receptive fields are superposed more smoothly.

Fig. 6. The timing performance of the different algorithms. For
the same performance, our growing nets improve much faster,
because we do not have to correct all previous sample influences
when adding a new unit.

The more complicated function

f3(x) = cos (4px1) cos (4px2) e210(x2
1+x2

2)

and the approximation performance is shown in
Fig. 8.

In both cases, we can see that our growing net-
work with local adaptation performs better than the

network of Lee and Kil adapting using a gradient
algorithm.

3. Approximating the Extrusion
Process Parameters

To apply the approximation algorithm developed in
the previous sections, we have to model the indus-
trial process for the tyre production example. As
described in the introduction, the main task consists
of estimating the profile of a metal mask which
extrudes the profile of a rubber band. This band is
then cut into a strip with the perimeter length of a
tyre, and then glued to the casing. The raw tyre is
then ‘baked’ in a metal tyre form for 20 minutes,
giving the preliminary profile the ultimate form.

101Using Growing RBF-Nets in Rubber Industry Process Control

Fig. 7. The function f2 and its different approximation performances. The smooth trigonometric functionf2(x,y), shown on the left-
hand side, is approximated by different means. The error plot on the right-hand side shows a better performance for the same number
of neurons with 10 times less training data, and therefore also shorter algorithm run times.

Fig. 8. The function f3 and its different approximation performances. For the complicated trigonometric functionf3(x,y), shown on the
left-hand side, the growing net also outperforms the classic approach, obtaining less than half of the error by training with only 5%
of the data.

3.1. Modelling the Process

Although the extruded rubber profile is a temporary
form, its desired accuracy is 0.1 mm. This settles
the upper limit for our approximation error. In Fig.
9 we show a sample profile.

Fig. 9. A rubber profile and the corresponding metal mask. In the upper figure, a cut through the rubber band is shown, whereas in
the lower figure the cutout of the metal mask bar is shown in the front view. The dotted line denotes the (carved) edges of the
opening. This is also visualised in the vertical cut of the metal mask on the right-hand side.

The upper profile is the desired rubber profile,
the lower one shows the corresponding rectangular
metal mask. On the right-hand side a cut through
the metal (shaded area) shows the form of the
opening (not shaded). The profile has a wider open-
ing where the rubber flows in. This corresponds to

102 U. Pietruschka and R.W. Brause

the dotted line which encircles the profile opening
in the metal mask.

The modelling has to reflect the following:

I The profile of the extruded rubber band princi-
pally depends upon the volume of extruded rub-
ber. The rubber expansion pressure and flow
within the profile depends greatly on whether
there is ‘a huge amount of rubber’, i.e. the neigh-
bouring parts of the profile have a high level, or
if we have ‘very little rubber around’, i.e. the
neighbouring parts are of a low level. This means
the rubber profile is also a function of the profile
height of the neighbouring points.

I Additionally, the extruded rubber profile heights
depend nonlinearly upon the rubber mixtureG,
the pressureP from the screw conveyor, on the
temperatureT and on the extruder typeE.

I Because of the nonlinear form of the screw con-
veyor, the pressure along the profile mask
decreases nonlinearly. This depends upon both
the extruder machine and profile type. Therefore,
the rubber profile also depends upon the absolute
position along the metal mask.

Nevertheless, the whole system is deterministic: the
same rubber mixtureG with the same maskg(x),
temperatureT and pressureP result in the same
rubber profiler(x) on a different extruder machine
of the same typeE. The analytical treatment of the
nonlinear dependencies is very difficult. Conven-
tional assumptions about energy (i.e. enthalpy) con-
servation are not valid here. Also, the direct
measurement of the process parameters like tempera-
ture and pressure in the profile are limited practi-
cally. The sensors have to be incorporated in such
a way that they do not constitute an obstacle them-
selves, otherwise the pressure conditions will be
changed and give different results. This is practically
impossible, or at the least, very expensive.

In contrast, our approach models the system as a
whole, avoiding all difference equations and con-
stants which are hard to devise and measure. In
particular, the model of a neural network with
locally sensitive elements underlines the local
character of the modelling. We devided the whole
centred profile, depending on the tyre width, into
170–270 points, placed at a regular distance of
d mm. Each point has a desired rubber profile height
r(i). Since the profile data initially contains only
points of profile change (x1,r(x1), x2, r(x2), . . .), the
intermediate points are generated by interpolation
(Fig. 10).

Since the influence of the sample points is limited
to the neighbourhood for a certain rubber profile

height r(i), we only have to considerk = 2s 1 1
neighbouring points

g(i) = F(ri2s,. . .,ri,. . ., ri1s, i, G, E, P,. . .)
; F(xi,. . ., xn)

Using this model, we implement a neighbourhood
window which uses k = 2s 1 1 sampling points
around locationi. All values kk for the sampling
points outside the profile limits are set to zero.

3.2. Simulation Results

An important key for the simulation performance
turned out to be the two parametersk, the number of
neighbourhood sampling points, andd, the distance
between the sampling points. The proper choice is
determined by balancing the counter-acting influ-
ences:

I If we choosed too small, we increase the number
of necessary sampling points for a certain neigh-
bourhood and thus increase the dimensions of the
input space. Since we have only a limited number
of training samples, the training becomes very
difficult, since the input space becomes very
sparse. On the other hand, if we choosed too
large, important information can be lost due to
undersampling of the dependency function.

I If we choosek too large, we encounter the same
problem of dimension inflation and training diffi-
culties due to the sparseness of the training
samples in the input space. Additionally, by
increasing the context information too much, the
generalisation ability of the network will be lim-
ited. On the other hand, if we limit the window
too much, necessary context information which
helps to distinguish between different situations
is ignored, resulting in an unnecessarily random-
ised training.

From a theoretical point of view, this is an interest-
ing situation. Nevertheless, we are not aware of any
applicable method to determine the optimald and
k to solve the problem of optimal training. There-
fore, we decided to simulate different configurations
in order to get an acceptable choice for the para-
meters.

We generated the training set by shifting a win-
dow (determined byd and k) by an increment of
1 mm over the profile data of five profiles with the
same values ofG, E and P. This generated 1346
training patterns. The sixth profile was used for the
generation of a test set of 271 test points. Our
multi-dimensional approximated function became

g (i) = F(ri2s,. . .,ri,. . ., ri1s, i,w)

103Using Growing RBF-Nets in Rubber Industry Process Control

Fig. 10. The intermediate interpolation of the profile. The intermediate points are obtained by equidistant points and are denoted by
dotted lines. This procedure coverts the profile into a fixed raster of constant point number size, whereas the initial representation
minimises the storage requirements by the variable number of profile points and inter-point distances.

with w being the weight per meter of the extruded
rubber band. The simulation results generally
showed only a very small influence of the position
i. So, let us consider other dependencies.

For the expected absolute error for 100 neurons
we obtained different results, depending on the type
of network we used. Generally, the GGRBF nets
are more successful than the GSRBF nets. The
GSRBF nets with growing, radially symmetric input
regions have, on average, 10–90% more errors than
growing ellipsoidal nets. The best performance of
the two types converged by training to the following
expected absolute error, depending on the number
of sampling pointsk and the interpoint distanced.
In Fig. 11, this is shown fork = 7,9,11 for each of
the intersample distances ofd = 3,4,5 mm.

It is interesting to see that the error does not
automatically decrease when we increase the number
of sampling points. There is a configuration of the
parameters where the balance is roughly met and
the error becomes quite small.

The best results are observed byk = 9 and
d = 4 mm, which corresponds to a window size of

Fig. 11. The error development for different parameter values of
d and k. The expected absolute error of the approximation
depends, in a non-linear manner, upon the inter-sample distance
d and the numberk of samples used for approximating one
profile point. For d = 4,5 the error also increases whenk is
increased due to long distance disturbance influences for a fixed
number of units, i.e. iterations.

Fig. 12. The error development and window size. The data of
Fig. 11 can also be interpreted in the light of the density of the
sample points. Therefore, the nine results are plotted for the
window sizew = (k 2 1)d. In the plot derived, we see that above
a certain level, increasing the window size also increases the
error monotonously.

32 mm. In Fig. 13, the test profile, the result of the
network and the resulting error is shown for this
configuration. The expected absolute error was
0.16 mm, the maximal absolute error 0.56 mm. The
y-axis is scaled up by the factor of three to enhance
the visibility of the errors.

Why is there still such a big error? For example,
let us consider the centre. When we scale up the
error, the drawing in Fig. 14 arises. Here, the typical

Fig. 13. The desired profile and the profile produced by the net
for k = 9, d = 4. For visualisation purposes, the profiles and the
error is multiplied three times. You can clearly see that the error
is particularly increased in the neighbourhood of strong changes
in the profile.

104 U. Pietruschka and R.W. Brause

influence of the sampling window is shown. The
size of the sampling window is 32 mm, whereas the
width of the profile hill is 34 mm. Since in the
training, on average, there are no valleys on the
right and left-hand sides, the net ‘assumes’ more
rubber volume on the right and left hand sides
which will bring up the middle. Here this is not the
case, so without the anticipated neighbouring rubber
pressure, the top in the middle is not reached and
an error occurs.

To get rid of this effect, we have to enlarge the
window and include the neighbouring information
about the neighbouring lack of rubber material. If
we do this, the error will also increase. Why? This
can be explained by the sparse input space: if we
enlarge the input space without filling it with train-
ing patterns, the whole system learns less. This
problem is known as the ‘curse of the dimensions’
[13]. The only remedy for this is the augmentation
of the number of training patterns.

4. Discussion and Outlook

In the previous sections, we presented an adaptive
solution for the problem of unknown process para-
meters in tyre production. The proposed neural net-
work learns the function which estimates the form
of the metal profile for the extrusion of a rubber
band when the rubber profile is given as a goal.
The learning algorithm uses no internal process
variables or other intrinsic knowledge, but only the
measurable external process parameters, such as the
weight per meter and the resulting rubber profile.

This approach has many technical advantages:

I There is no intrinsic system knowledge necessary,
like non-linear dependencies or differential equa-
tions for modelling.

I The same adaptive program can be used even
when the parameters change, due to a change in
the non-modelled system background context.

Fig. 14. The error and the sampling window size (k = 9, d = 4). When the sampling window is too small, the deep ridges on the left-
and right-hand sides are not seen by the system, and the prediction assumes too much rubber volume flow from the sides to the
middle. This results in a faulty estimation of the necessary metal profile in the middle.

I There is the theoretical possibility to obtain for
a new rubber mixture all the necessary estimation
parameter values just by training with one stan-
dard profile. By using a generalised adaptation,
the initial parameters will determine the correct
metal mask for all possible desired profiles.

Nevertheless, our work also shows that there are
still several problems to be solved:

I The current modelling uses the data provided by
the production in the form of tuples (desired
rubber profile, successful metal profile). The suc-
cessful metal profile was obtained after several
trials and corrections. Since the trial-and-error
cycle was stopped when the ‘overall’ error was
small enough, this results not in a good training
profile, but in an error deviated training profile.

The way in which to solve this problem is
easy: as training samples, we have to use the
directly laser-measured profiles of the metal mask
and the resulting rubber profile, even if the rubber
profile is not the desired one. This involves an
additional data measuring stage and the corre-
sponding software that is necessary.

I The number of training profiles is not high enough
to contain the information necessary for the deter-
mination of all parameters.

This problem is not easy to solve. By the very
nature of the problem, we do not have hundreds of
sample profiles, just a few. The careful dimension
analysis (necessary neighbour points) will help us to
obtain the balance between input dimension, learning
complexity and the number of neurons and para-
meters. Here, the work of the theorist is welcome.

An interesting alternative approach for computing
k andd is the application of evolutionary algorithms,
which search for the parameter optimum ofk and
d by random strategies [14]. Whereas this approach
can potentially give good results, it is compu-
tationally heavy and does not provide any new
insights into the underlying structure.

105Using Growing RBF-Nets in Rubber Industry Process Control

Fig. 15. The adaptive control for process parameter estimation.
Initially, the adaptive loop consists of a human being, estimating
the mask profile properties due to a given tyre profile specifi-
cation. After producing a small number of rubber profiles, the
profiles are measured, compared to the specification and the
obtained error is corrected by correcting the metal mask. This
loop is performed several times, updating the implicit knowledge
of the estimation by the human operator. In this adaptive loop,
the human estimation is replaced by the neural network.

The introduction of automated estimation in the
fabrication process must be carefully planned in
order to be accepted by employees. The adaptive
process control scheme shown in Fig. 15 uses the
neural network control as a bypass for the human-
based estimation process. As soon as human operator
confidence in the software is high enough, he or
she automates the transfer of the network results to
the profile mask cutting device.

The economical and human labour context impli-
cations are discussed more deeply in a separate
publication [15].

References

1. Hornik K, Stichcombe M, White H. Multilayer feedf-
orward networks are universal approximators. Neural
Networks 1989; 2: 359–366

2. Rumelhart DE, McClelland L. Parallel Distributed Pro-
cessing. Vols I,II,III. MIT Press, Cambridge, MA 1986

3. Tou JT, Gonzalez RC. Pattern Recognition Principles.
Addison-Wesley, Reading, MA, 1974

4. Musavi WA, Chan K, Faris K, Hummels D. On the
training of radial basis function classifiers. Neural
Networks 1992; 5: 595–603

5. Kohonen T. Self-Organisation and Associative Mem-
ory. Springer-Verlag, Berlin, 1984

6. Xu L, Krzyzak A, Oja E. Rival penalised competitive
learning for clustering analysis, RBF Net, and curve

detection. IEEE Trans Neural Networks 1993; 4(4):
636–649

7. Fritzke B. Growing cell structures – a self-organizing
network in k dimensions. In I Aleksander, J Taylor
(eds), Artificial Neural Networks II, North-Holland,
1992, pp 1051–1056

8. Schiøler H, Hartmann U. Mapping neural network
derived from Parzen window estimator. Neural Net-
works 1992; 5: 903–909

9. Hong X, Billings SA. Given rotation based fast back-
ward elimination algorithm for RBF neural networks
pruning. IEE Proc Control Theory Applic 1997; 144(5)

10. Pietruschka. Funktionsapproximation mit RBF-Netzen.
Diplomarbeit an der JW Goethe-Universita¨t, FB
Informatik, Frankfurt a.M., 1995 (in German)

11. Platt C. Learning by Combining Memorisation and
Gradient Descent. NIPS, 1992, pp 714–720

12. Lee S, Kil R. A Gaussian potential function network
with hierarchicallly self-organizing learning. Neural
Networks 1991; 4: 207–224

13. Huber PJ. Projection Pursuit. Ann Statistics 1985;
13(2): 435–475

14. Dasgupta D, Michalewicz Z. (eds) Evolutionary Algor-
ithms in Engineering Applications. Springer-Verlag,
New York 1997

15. Brause R, Pietruschka U. Adaptive control in rubber
industry. Int Occ Safety and Ergonomics (JOSE),
Ablex Publishing 1998; 4(3): 253–269

Notation

x input vector of neural network
y output vector of the RBF-units in the neural

network
c fixed parameter of a RBF-unit.
Si(x,c) output function (‘activation function’) of RBF-

unit i
si variance parameter of the RBF-unit
Wj weight from first layer to output unit (‘second

layer’)
zm(xk) activity level in the output unit due to thekth

input component of themth sample
F(x) scalar output function of the network
f(x) teacher-related, unknown output function. The

function valuesf(xk) are the desired output values
of the net

D distance between a input samplex and the centre
of the neuronc

M matrix for scaling the receptive field
a,b scaling constants for the receptive field
g learning rate
5F receptive field (set of input points)
u threshold used as lower limit of receptive field

of a unit
r(x) scalar function of the desired rubber profile
g(x) scalar function of the estimated metal mask pro-

file
k number of samples used to estimate one profile

point
n number of input components of the network
d scalar distance between two profile sample points

