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Abstract

This paper describes the problems and an adaptive solution for process control in rubber

industry. We show that the human and economical benefits of an adaptive solution for the

approximation of process parameters are very attractive.

The modeling of the industrial problem is done by the means of artificial neural

networks. For the example of the extrusion of a rubber profile in tire production our method

shows good results even using only a few training samples.
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1 Introduction

In many industrial processes, the optimization of the process might reduce environmental

damages and  increase employee satisfaction as well as economical benefits. Here, the key

problem lies in the optimal choice of the process parameters which are typically not available

due to several reasons. This contribution tries to show that adaptive methods are important

alternatives to conventional solutions.

Let us study this idea in more detail for a concrete type of production: the rubber

industry.

1.1 A rubber industry production problem

Process control in rubber industry has the smell of a „dirty“  industrial branch. This relays

not only on the often very dull and dusty rubber and tire production rooms where the

products are „baked“ by heat and steam, but also on the fact that the macromolecular

proportions of rubber are hard to predict due to their nonlinear character. When a rubber

mixture leaves the extruder (the melting and form-giving machine) after being heated up to

110°-140°C, compressed to 70-140 bar by a screw conveyor and pressed through a metal

mask, the rubber relaxes, i.e. it expands or shrinks, depending on the mixture, changing

therefore its shape in a non-linear manner by 10%-20% up to 50%.

The basic production layout is shown for our example of tire profile production in figure

1.
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Fig. 1 The tire profile extrusion is done by heating up a rubber mixture in a
machine, called an extruder, until it becomes liquid and then pressing it
through a small opening, called a metal mask. The outcoming rubber stream
expands and solidifies after cooling down at the open air.

The task of process control consists of estimating the necessary extrusion parameters (in

our case: the unknown best shape of the extrusion metal mask) for an acceptable rubber

product after relaxation. Up to now, due to the nonlinear nature of the macromolecular

mixture this task can not be solved analytically. Instead, specialized people estimate the

profile of the original metal mask by their experience with the subject and correct their

estimates after experience. This gives a trial-and-error turn-around production cycle.

This kind of production causes severe disadvantages for the production business. For the

management:

• the start for a new product is delayed by the time for 2-3 turn-arounds, each one taking

4-5 days to make a new mask, install it on the extruder, make an extrusion try,

measure the obtained rubber profile and estimate a new metal mask,

• this delay does not only wastes time, money and natural resources, but also increase

the production overhead and impedes therefore the production flexibility severely,

• in the case of illness of an employee or a change to another enterprise, the knowledge

is no longer accessible. This causes mayor obstacles for the production.
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Also from the employee's point of view, this kind of production is not satisfactory:

• The experienced employees are tied to this job (which is judged as „boring“) without

the possibilit y of a change within the enterprise. The only possibilit y for a job change

is to change to another enterprise which is often not possible due to many economical

and personal reasons. Thus, motivation and identification with the job is severely

impeded.

In conclusion, there are very attractive benefits of a possible solution to this problem, both

on the economical and the human labor side.

1.2 Adaptive Process Control

Now, this kind of parameter estimation problems can be overcome by adaptive process

control methods. Generally, these methods are interesting in one of the following situations

in industrial process control:

• The process control is analytically not solved. So, until now only crude human

estimations or outdated practices are available,

• In principle the problem can be solved analytically, but it is too expensive, or there is

not enough time to do this for every variant of the problem, or there are no quali fied

people available to do this,

• In principle the problem can be solved analytically and there are people ready and time

available to do this, but the necessary internal parameters of the process can not be

measured because either the measuring device will i nfluence the process and therefore

the measurements itself, or the measurement is technically not feasible, or it is too

difficult, or it is too expensive.
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Contrary to the exact analytical solution, the adaptive methods will only update the

parameters by an iteration process based purely on the final, measured outcome data.

Adaptive control methods are used in many industry branches, especially for system control

and identification, see (White 1992) and (Narendra 1986).

Neural
Network

Process

Learning

actuator signals

sensor signals

parameterscommands

Fig. 2 The main layout for adaptive control. The control commands are
mapped to the actuator signals (e.g. to pumps, levers and motors) by a neural
network. The parameters controlling the network itself are updated by an
adaptive algorithm which uses the results of the actuator signals (the sensor
signals) and the control commands as input. The preprocessing of the sensor
signals and the learning may also be done by extra specialized neural
networks.

This method is often used in conjunction with the paradigm of Artificial Neural Networks,

see e.g. (Haykin 1994) and Fuzzy Control (Buckley 1992).

In this paper we will show how this kind of approach can be done for the concrete problem

of tire production. In the following we consider the problem of approximating the necessary

shape of the metal mask by the means of an artificial neural network.

2 Approximating the extrusion process parameters

In order to apply adaptive parameter approximation algorithms we have to model the

industrial process, in our example the tire production. As it is described in the previous

section, the main task consists of estimating the profile of a metal mask which extrudes the

profile of a rubber band. This band is then cut into stripes of the perimeter length of a tire and
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then glued to the casing. The raw tire is then „baked“ in a metal tire form for 20 minutes,

which gives the preliminary profile its ultimate form.

2.1 Modeling the process

 Although the extruded rubber profile is a temporary form its desired accuracy is 0.1 mm.

This settles the upper limit for our approximation error. In Fig. 3 a sample profile is shown.

Fig. 3 A rubber profile and the corresponding metal mask. In the upper
figure, a cut through the rubber band is shown, whereas in the lower figure
the cutout of the metal mask bar is shown in the front view. The dotted line
denotes the (carved) edges of the opening. This is also visualized in the
vertical cut of the metal mask on the right hand side.

The upper profile is the desired rubber profile, the lower one shows the corresponding

rectangular metal mask. On the right hand side a cut through the metal (shaded area) shows

the form of the opening (not shaded). The profile has a wider opening where the rubber

flows in. This corresponds to the dotted line which encircles the profile opening in the metal

mask.

The modeling has to reflect the following facts:

• The profile of the extruded rubber band principally depends on the volume of the

extruded rubber. The rubber expansion pressure and flow within the profile heavily

depends on whether there is „a huge amount of rubber“  , i.e. the neighbor parts of the
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profile have a high level, or if we have „very few rubber around“, i.e. the neighbor

parts are low-leveled. This causes the rubber profile to be also a function of the profile

height of the neighbor points,

• Additionally, the extruded rubber profile heights depend nonlinearly on the rubber

mixture composition G, pressure P by the screw conveyor, temperature T and extruder

type E,

• By the nonlinear form of the screw conveyor the pressure along the profile mask

(along the axis of abscissae in fig. 3) decreases nonlinearly from the right to the left.

This depends on the extruder machine type and on the profile type. Therefore, the

rubber profile height does also depend on the absolute position on the axis of abscissae

of the metal mask.

Nevertheless, the whole system is deterministic: the same rubber mixture G with the same

mask g(x), temperature T and pressure P result in the same rubber profile r(x) on a different

extruder machine of the same type E

G, T, P, E

g(x)     r(x)

The analytical treatment of the nonlinear dependencies is very diff icult. Conventional

assumptions about energy (i.e. enthalpy) conservation are not valid here, because the system

is not closed and shows non-linear molecule behavior. Also the direct measurement of the

process parameters like temperature and pressure in the profile are practically limited. The

sensors have to incorporated in such a way that they do not constitute obstacles themselves,

otherwise the pressure conditions will be immediately changed and give different results.

This is practically impossible or very expensive.
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In contrast to this, our adaptive approach models the system as a whole, avoiding all

differential equations and constants which are hard to devise and to measure. Especially the

model of a neural network with only locally distributed input for each neuron underlines the

local character of the modeling.

We devided the whole profile, depending on the tire width, into 170-270 points which are

placed in the regular distance of δ mm. For the comparison of profiles with different width,

the centers of the profiles were lined up and treated as the common middle point of the grid.

Each point on the grid has a desired rubber profile height r(i). Since the profile data initially

contain only points of profile change (x1,r(x1), x2, r(x2), ..) the intermediate points are

generated by interpolation, see Fig. 4.

     r(x)
                   r(x1)          r(x4)

       r(x5)        r(x6)        r(x9)

                       r(x2)  r(x3)                               r(x7) r(x8)

x

Fig. 4 The interpolation of the rubber profile. The intermediate points are
obtained by equidistant points and are denoted by dotted lines.

Since the influence of the neighborhood  is limited to a certain number s of sample points for

a certain rubber profile height r(i) we have only to consider k=2s+1 influencing sample points

as parameters for the unknown metal mask function g(x)

g(x) = F(ri-s,...,ri,...,ri+s, i, G, E, P,..) ≡ F(x1, ..., xn)

In this model we implement a neighborhood window which uses k=2s+1 sampling points

around location i. All values rk for the sampling points outside the profile limits are set to

zero.



10

3 The approximation network

In this section we want to derive an algorithm for approximating the exact extruder metal

mask profile f(x) at location x = (x1, ..., xn) by a neural network, implementing the

approximation function F(x). The metal mask will in turn produce the desired rubber profile

r(x). It is well known that a two-layer neural network can approximate any continuous

function to any degree of accuracy, provided that we have enough neurons in the first layer,

see (Hornik,  Stinchcombe, White, 1989) and (Xu, Krzyzak, Yuille, 1994).

3.1 The activity network

Now, for our purpose let us assume a two-layer network like the one in figure 5.

x1

x2

••
X   ••

••
xn

•
•
•

y1

ym

F(x)

Fig. 5 The activity approximation network. The input lines x=(x1,..,xn) are
processed by special RBF-units, denoted as black circles. Their outputs yi are
linearly weighted, added together and form the network output F(x). All
units with the same function are grouped vertically in one layer. Thus, we
have two layers: m RBF-units in the first layer and one unit as the second
layer.

Each layer is composed of computational units called „neurons“. Each neuron computes a

function S(x,w) of its input x and its parameters w.

Let us define the activity y = (y1, ...,ym) of the first layer by the activity of the i-th unit

yi = Si (x,ci) = e di− 2

       i=1..m (1)

and the activity of the second layer by the linear function

F(x) = F(y(x)) = w yj j
j

m

=
∑

1

 = wTy         y0≡ 1, w0 ≅ ‘bias’ (2)
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This models the approximation function F(x) as a linear superposition (weighted sum) using

m nonlinear basis functions Si that depend only on the ‘Mahalanobis distance’ di between the

input x and a ‘neuronal center’ ci.

Si(|x-ci|) = Si(di) d2= |M (x-c)|2 = (x-c)T MT M (x-c)

The fact that the activity S(.) depends only on the distance (radius) |x-ci| from a center gave

them the name radial basis functions RBF.

For adapting and scaling the ellipsoidal input field controlled by the matrix M, we used the

scaling equation

 MNEW = (I - γ(1-α)(aaT)) MOLD            a = (x-c)/ |x-c| (3)

with the scaling factor α and the learning rate γ, see (Pietruschka, Brause 1996).

There are principally two approaches to train the network parameters: either we train the

two layers separately or as a whole.

The approach of treating the two layers separately, clustering the input space first and

then optimizing the weights of the second layer, is fast, but it has some flaws. This gives us

a high sample density of output values where we have clusters of input samples, not where

the output error is high.

Therefore, we optimize both layers at the same time. To avoid the computational

problems of the backpropagation (Rumelhart, Hinton, Willi ams 1986) approach we choose a

different strategy. We start with the lowest possible complexity of the network and gradually

increase the number of neurons in the first layer until the error is suff iciently reduced. This

was already proposed for RBF nets, for example by (Schioler, Hartmann 1992). We insert

the neuron at location xk, the k-th sample with the maximal error, that has to be compensated

by the new m-th neuron. We have to design the width Mm such that it fits the new basis

function in the context of all neighboring neuron basis functions. In contrast to the approach
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of (Platt, 1992) we do not use gradient descend technique to rearrange all other neurons and

adapt all their receptive fields: this is computionally intensive and is the source of new

errors. Instead, we stop the adaption process of the new neuron by the criterion of non-

significant activation on a data point. Additionally, we reduce the long distance

neighborhood influence by a learning rate γ(d) which drops with increasing distance from cm,

that is with decreasing activity level, see (Pietruschka, Kinder 1995).

The whole growing and initialization learning algorithm, called GGRBF (growing

generalized RBF), can be formulated in pseudo code. With the maximal tolerated Error

TolErr and the maximal number mmax of neurons we get

GGRBF:

m:=0; Errset(Trainingset):=f(Inputset);

WHILE ( max(Errset)>TolErr ) AND (m<m
max
) DO

  x = coord(max(Errset)) (* location of maximal error *)

  InsertNeuron(x)

  AdaptTo1stNeighbor(Mm
); (* Eq.(3) *)

     level:=1; γ:=1; (* start with high activation level*)

     WHILE level> 0.01 DO

    FOR i:=1 TO TrainingSet DO 

        IF Sm(xi)>level THEN AdaptToNeighbor(γ, xi
,Mm

)END

    ENDFOR

     γ := γ ∗0.87; (∗ diminuate learning rate ∗)

     level:=level-inc; (* lower the attention level *)

   ENDWHILE
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   m:=m+1 (* new neuron installed *)

   computeErrset(TrainingSet); (* ⇒ new error landscape *)

ENDWHILE

4 Simulation results

The algorithm above was implemented and the approximation was simulated with real process

data. An important key for the simulation performance turned out to be the two parameters:

k, the number of neighborhood sampling points, and δ, the distance between the sampling

points. The proper choice is determined by balancing the counteracting influences:

• If we choose δ too small, we increase the number of necessary sampling points for a

certain neighborhood and increase therefore the dimension of the input space. Since

we have only a small limited number of training samples, the training becomes very

difficult since the input space becomes very sparse. On the other hand, if we choose δ

too big, important information can be lost due to undersampling the dependency

function,

• If we choose k too big, we encounter the same problem of dimension inflation and

training difficulties due to the sparseness of the training samples in the input space.

Additionally, by increasing too much context information, the generalization ability of

the network will be limited. On the other hand, if we limit the window too much,

necessary context information which helps to distinguish between different situations

is ignored, resulting in a unnecessarily randomized training .

From the theoretical point of view, this is an interesting situation. Nevertheless, we are not

yet aware of an applicable method of determining the optimal δ and k to solve the problem
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of optimal training. Therefore, we decided to simulate different configurations in order to

get an acceptable choice for the parameters.

We generated the training set by shifting a window (determined by δ and k) by an

increment of 1 mm over the profile data of 5 profiles with the same values of G, E and P.

This generated 1346 training patterns. The sixth profile was used for the generation of test

set of 271 test points. Our multi-dimensional approximated function became

g(i) = F(ri-s,...,ri,...,ri+s, i, w)

with w being the weight per meter of the extruded rubber band. The simulation results

generally showed only a very small influence of the position i. So, let us consider other

dependencies.

For the expected absolute error for 100 neurons we got different results. The best

performance converged by training to the following expected absolute error, depending on

the number of sampling points k and the interpoint distance δ. In Fig. 6, this is shown for

k=7,9,11 for each of the intersample distances of δ=3,4,5 mm.

7 9 11

3

4

5

7 9
11

7 9
11

7 9 11

0

0,05

0,1

0,15

0,2

0,25

er
ro

r

7 9 11

3

4

5

k [samples]

δδ [mm]

Fig. 6 The error development for different parameter values of δ and k
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It is interesting to see that the error does not automatically decrease when we increase the

number of sampling points. This is also valid if we consider instead the window size implied

by the neighbor sample set size and the intersample distance δ, see figure 7.

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50345 0

0,1

0,2

0,3

erro
r

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50345

window   size [mm]

d

Fig. 7 The error development and the window size

There is a configuration of the parameters where the balance is roughly met and the error

becomes quite small. The best results are observed by k=9 and δ=4 mm which corresponds

to a window size of 32 mm. In Fig. 8 the test profile, the result of the network and the

resulting error is shown for this configuration. The expected absolute error was 0.16 mm,

the maximal absolute error 0.56 mm. The y-axis is scaled up by the factor of three to

enhance the visibility of the errors.

error

estimated mask profile

desired profile

Fig. 8 The desired profile and the profile produced by the net for k=9, δ=4.
For visualization purposes, the y-axis (the profiles and the error) scaling is
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enlarged 3 times compared to the x-axis. One can clearly see that error is
especially increased in the neighborhood of strong changes in the profile.

Now, why is there still such a big error? For example, let us regard the center of a profile.

When we scale up the error, the drawing in Fig. 9 arises. The size of the sampling window is

32 mm whereas the width of the profile hill i s 34 mm. Here, we can observe the typical

influence of the sampling window: Since in the other training profile samples in the average

there are no valleys (gaps) on the right and left hand side of the center outside the sampling

window, the net „assumes“ the expansion pressure of more rubber from the right and left

hand side. This would increase the profile at the center. But here, this is not the case, so

without the anticipated rubber neighbor pressure the desired height in the center is not

reached and an error occurs.

��� � � � ��� � � � � 	 
 ���  � � 	�� ������� � �

32 mm
�

34 mm
� �

Fig. 9 The error and the sampling window size (k=9, δ=4). When the
sampling window is too small, the deep ridges at the left and right hand side
are not seen by the system and the prediction assumes too much rubber
volume flow from the sides to the middle. This results in faulty estimation of
the necessary metal profile in the middle.

In order to get rid of this effect, we have to enlarge the window and include the neighbor

information about the desired gap, i.e. about the lack of rubber material in the neighborhood.

If we do this, we have experienced: the error will go up also. Why?

This can be explained by the following. All samples r(j) near the point i of estimation in the

profile are not completely independent of the value r(i): the profile does not consist of random
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data. Thus, when we add more or less correlated samples we do not automatically add

information  to the training. Instead, the interdependencies ‘confuse’ the learning system. We

have a sparse input space: if we enlarge the input space (by adding additional variables)

without filli ng it with training patterns, the whole system learns less. This problem is known

as the „curse of the dimensions“ (Huber 1985). The only remedy for this problem is either the

augmentation of the number of training patterns (which is not available) or the appropriate

deletion of unnecessary input lines, i.e. variables. The current neural methods for the latter

concept include weight pruning (see e.g. Huberman, Rumelhart, Weigend  1991) or

dimension reduction techniques by Kohonen maps (see e.g. Bruske, Sommer 1997).

Nevertheless, to our knowledge there exist no analytical method yet for a proper selection of

the distances and related numbers of the necessary sample points.

5 Discussion and outlook

In the previous sections we have presented an adaptive solution for the problem of unknown

process parameters in tire production. The proposed neural network learns the function which

estimates the form of the metal profile for the extrusion of a rubber band when the rubber

profile is given as a goal.

The learning algorithm uses no internal process variables or other intrinsic knowledge but

only the measurable external process parameters as the weight per meter and the resulting

rubber profile. In Fig. 10 the layout of the adaptive control and the control migration from the

human subject to the automatic system is shown.
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          profile-laserscan

measured
      data

profile
specification   specification

           production

            prognosis

           neuro-net

•
•
•

Fig. 10 The principal feedback lines in the profile specification. The
specification is initially tied to the human operator who estimates the
parameters for the conversion of the desired rubber profile to the metal mask
profile. The produced rubber profile is then scanned and measured by a laser
scan unit. This reveals an estimation error which is corrected by the human
operator. With a neural network system, the estimation and correction
process is automatic. According to the performance error and the obtained
accuracy, the migration of the profile specification from the operator (solid
arrow) to the neural system (dotted arrow) can be controlled by the operator
himself.

In our case, the migration from the hand-made mask specification to the automatic, net

generated version can be made gradually and smooth, leaving the control over the whole

migration process always in the hand of the human

In the beginning the neural network profile prognosis is only used by the human operator

as an additional information source. In Fig. 10 this is shown by a solid arrow. When the net

has learned sufficiently and the prognostic error has decreased, the switch to the automatic

profile generation (dotted line in Fig. 10 ) can be made. The human operator has always the

full control over the usage of the adaptation process which is a strong source of human

acceptance for all automation projects.

This approach has many technical advantages:
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• There is no intrinsic system knowledge necessary like non-linear dependencies or

differential equations for modeling,

• The same adaptive program can be used even when the parameters change due to a

change in the non-modeled system background context,

• There is the theoretical possibility to obtain all necessary estimation parameter values

for a new rubber mixture just by training with one standard profile. By the usage of a

generalized adaptation the initial parameters will determine the correct metal mask for

all possible desired profiles.

This results in solid economic advantages

• By involving a computer-based adaptive learning, the knowledge is automatically

collected,

• The start for a tire production can be scheduled in a short time interval. This makes the

production more flexible and competitive,

• Last not least, the minimization of the trial-and-error cycles saves a lot of money and

resources,

• The better profile estimations save also rubber material. It is estimated that saving

1mm of rubber material on each profile will result in a save of about 0.8 Mill. $ per

year. This is also interesting from the environmental point of view,

• The introduction of high-tech tires which contain multi-layer rubber profiles is a new

challenge for the human designers. Here, the automatic adaptive estimation technique

can help a lot to produce high quality tires with a short setup period only.

Also the human operator profits by the system:
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• The task becomes less boring,

• The human operators are no longer tied exclusively to this production step.

Our work also shows that there are still several problems to be solved, for instance a method

to overcome the "curse of dimensions" by a proper method to select independent input

sample points for the network.
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