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Abstract

One of the mogt interesting domains of feedforward networks is the processing of sensor sgnas. There do
exig some networks which extract most of the information by implementing the maximum entropy principle for
Gaussan sources. Thisis done by transforming input patterns to the base of eigenvectors of the input autocor-
relation matrix with the biggest eigenvaues. The basic building block of these networks is the linear neuron,
learning with the Qjalearning rule.

Neverthdess, some researchers in pattern recognition theory claim that for pattern recognition and classifi-
cation clustering transformations are needed which reduce the intra-class entropy. This leads to stable, reliable
features and is implemented for Gaussan sources by a linear transformation using the eigenvectors with the
smallest egenvaues.

In another paper (Brause 1992) it is shown that the basic building block for such a transformation can be
implemented by a linear neuron using an Anti-Hebb rule and restricted weights. This paper shows the analog
VLS design for such abuilding block, usng standard modules of multiplication and addition

The mogt tedious problem in this VLS-gpplication is the design of an anaog vector normalization circuitry.
It can be shown that the standard gpproaches of weight summeation will not give the convergence to the eigent
vectors for a proper feature transformation. To avoid this problem, our design differs sgnificantly from the
standard approaches by computing the real Euclidean norm.

Keywords: minimum entropy, principa component andyss, VLS, neurd networks,
surface gpproximation, cluster transformation, weight normalization circuit.

INTRODUCTION

For many purposes the necessary processing of sensor input signds is redized by using a syssem which im-
plements the maximization of the trandanformation from the input to the output of the system. For determinidic
systems, this corresponds to the maximization of the output entropy (maximum entropy principle). In pattern
recognition theory, it is well known that for Gaussian distributed sources this corresponds to the minimization
of the mean square error of the output. For linear systems, thisis done by alinear transformetion to the base of
the elgenvectors of the autocorrelation matrix (Fukunaka 1972). Furthermore, we can compress (encode) the
input information by using only the base vectors (eigenvectors) with the biggest eigenvaues. Neglecting the
ones with the smalest eigenvaues (m<n, see Fig.1) results in the smallest recongtruction error on the encoded
input (Fukunaga 1972). Generdly, this gpproach can be used for sensor signa coding such as picture encod-
ing, see e.g. (Jayant and Noll 1984).
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Figure 1 The festure Sgnd information

The neura network models of this approach use linear neurons, where each neura weight vector corresponds
to one eigenvector. Examples of those architectures are the Oja subspace network (Oja 1989, Williams
1985), the Sanger decomposition network (Sanger 1989) and the latera inhibition network of Foldidk (1989)
or Rubner and Tavan (1989). The first mentioned networks decompose sequentially the input vector x, see
figure 2. They use as a basic building block the linear correlation neuron which learns the input weights by a
Hebb-rule, restricting the weights w¥aw, .
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Figure 2 The sequentia learning of the eigenvectors

The input for each stage is obtained by subtracting sequentidly dl the projections of the weight vectors
on the input pattern

Z = ii—l_yivvl iozx

As Oja showed (Oja 1982), this learning rule let the weight vector of the first neuron convergence
to the eigenvector of the expected autocorrelation matrix C of the input patterns X with the biggest

dgenvauel ma:

w, ® e withl y=max|;andCie; =1 e with C; = <ii_1>~<f_1>
|

The subsequent neuron learns the eigenvector with the biggest eigenvaue of the autocorrelation
matrix of the remaining input: The egenvectors remain the same as before, but in this system | ¢ be-
comes zero and the second eigenvalue becomesiin fact the biggest one.

The whole network is used in two modes: in the learning mode, where the input is propagated se-
quentidly through the units, and in the transforming, filtering nmode, where the input is presented to the
neuronsin parald, see figure 3. The basic building block of these networks is the linear neuron, learn
ing with the Oja learning rule (Oja 1982, Sanger 1989); the same as in other asymmetric networks
with additiondl laterd inhibition (Rubner and Tavan 1989, Foldiak 1989).

Nevertheless, some researchers in pattern recognition theory (Tou and Gonzaes 1974) clam that
for pattern recognition and classfication clugtering transformations are needed which reduce the intra-



class entropy. This leads to stable, reliable features and is implemented for Gaussian sources by alin
ear transformation using the eigenvectors with the smallest eigenvaues.

Additiondly, the well-known, important problem of gpproximeating randomized, disturbed measures
of hypersurfaces can be solved by minimizing the tota least square error (TLSE) of an approximation
surface. It can be shown that the approximated surface coefficients can be dotained by the minor
components (eigenvectors with the smdlest egenvaues) of the observed data (Xu,Oja and Suen
1992).

In another paper (Brause 1992) it is shown that the basic building block for such a transformation
can be implemented by alinear neuron using an Anti-Hebb rule and restricted weights. More formdly,
the transformation of n input variables (x;,..,X,) = X to m output variables (y,..,.ym) = Y is made by a
linear trandformation. For one output variable y the transformation can be implemented by a formd
neuron. For each neuron, the input is weighted by the weights w = (w;,..,w,) and summed up to the
activation z of the neuron

yi=z(t) = é WX, = w'x linear activation @
j=1
which is expressed as the scalar product of x and the transpose of w. Additiondly, the transforma-
tion coefficientsw; are locally learned on chip by the stochastic version of the Hebbian law

W (t+) = w() — o) X () y(0) Anti-Hebb-Rule )

w(t+1)

andwttl) = —————— Normalization 3
(& W, (¢ +D)7
j

This paper shows the VLS design for such a building block, usng standard modules of multiplication
and addition for Eqq(l) and (2). Additionaly, the normdlization of Eq. (3) is covered by specid cir-
cuitry, described in the last section.

THE SYSTEM DESIGN

One of the most interesting objectives for a VLSl design is a fas, redl-time oriented architecture de-
sgn. The neurd network paradigm of small, parald processors dlows an efficient, pardld implemen-
tation of the proposed transformation. For such a system, the layout in figure 3 shows how the input
vector of n sensor linesisfed in pardld to dl m neurons viaan input bus.
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Figure 3 Signd transformation by forma neurons
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Each neuron performs a projection of the input to aweight vector by equation (1). The output bus
consgts of the m output lines of the m neurons.

Additionally, the weights w; are updated according to Egs. (2) and (3) in such away that they will
converge to the eigenvector of the autocorreation matrix with the smalest eéigenvaue. This is reflected
by the principd system design for one neuron in figure 4.
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Figure 4 The principal system structure of one neuron

Neverthdess, to achieve a complete eigenvector decomposition necessarily an interaction between
the neurons has to exis. There are severd possihilities to congtruct such a network, see Brause
(1992). Since the interactions consist of smple multiplications and additions (see eg. first section),
they are not shown in figure 3 and we concentrate on the basic implementation features for one neuw
ron.

Modeling the weights by voltages w; at capacitors G;, each input sgnal x is fird multiplied by the
weight w; in the MUL module and the resulting current is summed up in SUM, generating the output
sgnd after Eq. (1). The learning according to Eq. (2) takes place in module HEBB, whereas the nor-
madlization of Eq.(3) isdonein NORM.

Note that we do not use EEPROMS, floating gate transistors or other permanent means for the
dorage of the weight values. Thus, the learning takes place in pardld to the norma signd processing
of Eq.(l) and reflects therefore the red datidtics of a short time period of the input signd, not the
prefixed ones of one agpplication. Therefore, the design is salf-adaptive in respect to the application
problem gatigtics. In the case where you do not know the gpplication properties (one chip for dl
goplications) thisyields an optima transformation. Nevertheess, when the satistics are well known the
design can be smplified by canceling the learning mechanisn (HEBB and NORM modules) and
implementing the well known, congtant weights directly.

Let us discuss now the implementation of the various modules.

THE BUILDING BLOCKS

There dready do exist some "standard” building blocks for the purpose of neurd networks which are
cited in severd papers (Card and Moore 1989, Mead 1989, Vittoz 1989). Nevertheless, we do not



use some of them for certain reasons; others are modified and there are some new building blocks in
this paper. In this section, al building blocks are discussed in detall.

The standard building blocks

One of the best known bulding blocks in figure 4 is the multiplication module MUL. When the input
voltage % is smdler than the weight voltage w;j, the circuit for positive and negative multiplication might

consds of just one FET (linear region) (Weste and Eshraghian 1985, Card and Moore 1989), see
figure 5aon the left hand sde.
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Figure 5 Multiplication circuits

Very often, the input sgnd is bigger than the weight Sgnd and the transstors leaves the ate of
week inversgon, resulting in nortlinear current. Therefore, we propose the linear region of the well-
known Gilbert four-quadrant multiplier circuit (Gilbert 1968, Gilbert 1974) or awide-range verson of
it (e.g. Mead 1989) shown in figure 5b on the right hand side for the multiplication w;x; in the MUL
building block. This is dso true for the other multiplication xy; of Eq.(2) in the HEBB building block.
Here, we charge the capacitor G; by a current proportional to the product w;x; (see e.g. Card and
Moore 1989).

Another important action is the generd SUM building block, which exists only once per neuron and
implements the sum of Eq.(l). Here we do not use the virtud ground circuit, proposed for instance by
Vittoz (1989), because it also automaticaly scales the input which leads to false results in our case.
Ingtead, we relay on a smple current adder, followed by an amplifier in figure 6.

There remains the mogt interesting building block, the normaization block which implements Eq.(3).

Up to my knowledge, there do not yet exist propositions for an implementation of it. Thisis covered
by the next section.
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Figure 6 The sum drcuit

The normalization block

The basic idea for the mechanism of the learning agorithm used in this paper is the restriction of the
resources, the weights. The redtriction or side-condition congsts of a congant length of the weight
vector which is fixed at al iteration steps according to . (1.3). To achieve this, the normdization
block uses three non-linear circuits

The mog tedious problem in this VLS -gpplication is the design of this vector normdization circuitry.
It can be shown that the standard gpproaches of weight normdization (Mead 1989, Vittoz 1989,
Card and Moore 1989)

O W(t+1)
W) = é W, (t+1)

J

(4)

will not give the convergence to the eigenvectors for a proper feature transformation because the
weights are only normdized in the Ly norm sense. To avoid this problem, our design differs Sgnifi-
cantly from the standard gpproaches by computing the L, norm the red quadratic Euclidean norm of
Eq.( 3).

The weights signd levds are transformed to squared signals (see figure 7) and then, by a current
mirror, induce a proportiona current in a Kirchhoff network which is supplied by a constant current.
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Figure 7 The normalization block schema

The rdlative currents in al branches will be balanced according to the relative values of the squared
input Sgnds, such implementing the normdization rdaions. The normalized currents are then read out



by a current mirror, squeezed by aroot circuit and fed back to the input where they control the factor
g of Eq. (2) by regulating the output resistance of the root amplifier building block. Thus, the weight
ggnds are normdized. More formdly, this can be shown asfollows.

Assume that for a certain weight vector w dl currents of the constant current network have a cer-
tain vaue |; such that

loons = @ |; and 1 ~ w2 (5)
i

Now, let us further assume that in time step t+ each component of w has changed independently by a
factor of g

W, (t+1) = gwi(t) (6)

Thesignd W, (t+1) is converted to its square W, (t+1)? and induces proportionally a conductance L =
1/R; inthe branch I; . With the increase of each conductance

Li(t+) = a°Ly(®) (7
the conductance L of al branches becomes
L(t+) = S Lit+) = S a’Li(t) = a L) )

witha = (S; a%L;(t)) / L(t)

Since the product of the voltage V and the conductance L, the current source lonst = V (t)%.(t), iS con-
gant, we know with (8) and
leong = V(t+1) L(t+1) = V(t+D)aL(t) = V()L () 9
that the voltage V (t) becomes
V(tH) = V(t)/a (10)
By (7) and (10), the current in the j-th branch becomes
l(t+1) = V(t+1)L;(t+1) = V(t)a°L(t)/a = 1i(tHg%/a (12)
and therefore, the j-th component of the weight vector
wi(t+1)* = wi(t)’a%a (12)
becomes scaled by the factor of Eq.(6). Additiondly, the whole vector is scaled in length by afactor
of a which resultsin alength of
[o]
2_ 0 2_ 9 2.2 a W,—(t)zasz(t)
t+1)° = (t+D° = (t)?a’/a= -
\N( ) aJWJ( :D aJWJ() aJ a éajzl_](t)
j

andwith  Lj(t) = owy(t)?, L(t) = S Li(t) = S; ow;(t)® = ¢ w(t)? with aproportional factor ¢




é w(t)%a’

we get wW(t+1)* = c w(t) é TG =w(t)

Thus, the length of the vector w will remain fixed, only determined by the fixed vaue of the constant
current.

The next figures will cover the rest of the nontlinear circuits. The nonlinear, over proportiond
square effect is achieved by a kind of feed-back circuit, origindly proposed by Degrauwe et d.
(1982), shown in figure 8 on the left hand sde.
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a) The square circuit (after Vittoz 1989)  b) the square root circuit (after Mead 1989)

Figur e 8 Expanding and compressing circuits

The nontlinear square root circuit is covered by asmple current-mirror design, described for instance
in Mead (1989) and shown on the right hand side of figure 8.

Neverthdess, for ared VLS implementation of this gpproach some analog detail problems must
be solved. One of them is the question, how the coupling of the non-linear normalization feed- back
block to the Hebb-learning unit should be designed.

On the one hand, when a normdlization of the weight Sgnd is obtained, the ratio of the output resis-
tance of the Hebb-circuit to the output resistance of the root circuit must be high to highly influence the
weight sgnd. Obvioudy, asmdl error due to the finite ratio will be left.

On the other hand, this error voltage isjust the one which can influence the normdization circuit and
will change the direction of the weight vector. So, the error should not be made too smdl. Current re-
search is done to overcome this problem.

CONCLUSION

The paper shows how the linear transformation of multidimensona sgnd festures to the ogptima
feature set, the base of eigenvectors implemented by formal neurons, can be accomplished. Themain
contribution of this paper to the andlog VLSl design of formal neurons consists in a system concept for
such a transformation and an analog vector normdization mechanism proposed for the firgt time. The
desred properties of this mechanism is proven on the macro unit level.

A neuron with such a normdization mechanism can be used in a network ether for coding pur-
poses and signa decorrelation (maximum entropy network) or for cluster transformation, classfication
preprocessing or surface fitting (minimum entropy network).
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