
Reconstructing a Logic for Inductive Proofs of
Properties of Functional Programs

David Sabel and Manfred Schmidt-Schauß

Institut für Informatik
Johann Wolfgang Goethe-Universität

Postfach 11 19 32
D-60054 Frankfurt, Germany

{sabel,schauss}@ki.informatik.uni-frankfurt.de

Technical Report Frank-39

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

June 22, 2010

Abstract. A logical framework consisting of a polymorphic call-by-
value functional language and a first-order logic on the values is pre-
sented, which is a reconstruction of the logic of the verification system
VeriFun. The reconstruction uses contextual semantics to define the log-
ical value of equations. It equates undefinedness and nontermination,
which is a standard semantical approach. The main results of this paper
are: Meta-theorems about the globality of several classes of theorems in
the logic, and proofs of global correctness of transformations and deduc-
tion rules. The deduction rules of VeriFun are globally correct if rules
depending on termination are appropriately formulated. The reconstruc-
tion also gives hints on generalizations of the VeriFun framework: rea-
soning on nonterminating expressions and functions, mutual recursive
functions and abstractions in the data values, and formulas with arbi-
trary quantifier prefix could be allowed.

1 Introduction

Proving properties of recursively defined functions by induction is a powerful
method for validating properties of programs that operate on inductively defined
data structures. Some influential early work is [BM75,KM86]. There are a couple
of tools that are designed to perform this task automatically, or to give support
in constructing a proof. Such a system is VeriFun (see [WS05b,SWGA07,Wal94]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14507768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 David Sabel and Manfred Schmidt-Schauß

and [Ver]). The logical framework of VeriFun consists of a pure and strict func-
tional programming language and a logical component that allows to formulate
and prove lemmas about properties and the behavior of functions, usually by in-
duction. Since one is interested in the behavior of functions on data objects like
numbers, lists or trees, the focus of the logic and the system is to prove properties
of the functions on the data, like commutativity of addition (on Peano-numbers),
or associativity of the append-function on lists, or even more complex (encoded)
theorems like the undecidability of the Halting Problem (see [Ver] and [BM84]
for an early automated proof).

In general the system VeriFun requires that functions are proved to terminate
before any other lemma about the function can be proved. This also holds for
other prominent theorem provers like Isabelle/HOL [NPW02] and Coq [BC04].
Nevertheless, these systems provide special mechanisms to allow partial functions
(see e.g. [Kra06,BK08]), like the selector-functions head and tail for lists, which
are undefined for the empty list. In VeriFun these functions are seen as terminat-
ing since undefined expressions are seen as terminating. Details of this approach
in VeriFun can be found in [WS05b,WS05a,Sch07] and for different work on
the integration of partially defined functions into logics see e.g. [Far96,MS97].
The semantics of the logics of VeriFun in [WS05b,SWGA07,Ade09] is based on
term-algebras over the data constructors and on the other hand on evaluation
in a strict functional language. Undefined functional expressions are treated in
a non-standard way as having any value of an appropriate type, which vali-
dates the intuitively correct theorems, but also validates nonsense theorems like
tail(Nil) = tail(tail(Nil)) =⇒ tail(Nil) = Nil.

The main goal of this paper is to provide a reconstruction (and adjustment and
generalization) of the semantics of the logical system of VeriFun by treating un-
defined and nonterminating expressions in a standard semantics way. The goal is
to obtain a logical framework of general interest that is at least as expressive as
VeriFun and can handle partial functions and non-terminating programs. Our
reconstruction starts from a programming language semantics view: based on
the operational semantics of an ML-like core language which comprises poly-
morphic (and recursive) function definitions and data types, we use the well-
established notion of contextual equivalence as semantics for programs (see e.g.
[Plo77,BH99,Pit00,Pie02]). Contextual equivalence equates expressions if they
have the same observational behavior (i.e. termination) if they are plugged inside
any surrounding program context. An advantage is that contextual equivalence
smoothly integrates the semantics of higher-order functions. Partially defined
data-selectors are represented using case-expressions where nontermination is
the result instead of an “undefined” in the case that the result is not defined,
for example in tail(Nil).

For the logical level we use a two-valued logic of predicate logic formulas where
equalities between expressions are the atomic formulas. The semantics of these
equations is given by contextual equivalence. The formulas are monomorphic
where the quantification is over closed data values of the appropriate type.

A Logic for Functional Programs 3

An important observation is that only theorems are of interest that are invariant
under any extension of the program by further function definitions or data types,
i.e., conservativity is important. These theorems are called global, otherwise we
call the theorems local.
Our main results are (i) conservativity theorems showing that several forms of
local theorems are already global theorems; (ii) proofs of global correctness of
deduction and transformations of almost all rules employed in VeriFun. In par-
ticular, call-by-value (beta) and (case) reductions are globally correct (Theorem
5.6), almost all deduction rules of VeriFun are also globally correct with respect
to our semantics with the exception of call-by-name beta-reduction. In addition,
several deduction rules concerning undefined expressions are valid, which are
missing in VeriFun, and adapted call-by-name reductions and further deduction
rules are correct (Theorem 5.6). Also several classes of theorems are shown to
be conservative under extensions. An important class are universally quantified
equations (Theorem 6.3) and general monomorphic theorems if functions do not
occur in the data (Theorem 6.6).
A side effect of the reconstruction are the following generalizations: higher-order
values may also occur in data objects, in the logical level functions that may not
terminate on certain arguments are permitted, and mutual recursive function
definitions are possible on the top level.
To establish these results we introduce proof techniques for contextual equal-
ity in combination with polymorphic types (for a call-by-need calculus see also
[SSSH09]), which allow to prove a CIU-Theorem from context lemmas (for a
general approach see also [SSS10]), and an adaptation of the subterm property
of simply-typed lambda-calculi.
An interesting generalization of the logic expressiveness are polymorphic for-
mulas (the quantified type may have type variables). These are expressible in
VeriFun, provided the quantifier prefix is ∀∗. Conservativity of polymorphic
theorems is false in general. We conjecture that polymorphic theorems that are
universally quantified polymorphic equations also hold in extensions.
Structure of the Paper. In Sections 2 and 3 we define the syntax and semantics of
the polymorphic call-by-value functional language, its operational semantics and
the equality relation. Then we explain the different variants of the CIU-Lemma
(Section 4). We show in Section 5 that equality is conservative if programs are
extended by new function definitions and new data types, provided certain pre-
conditions hold. Finally, in Section 6 we explain the logic, its semantics and
analyze some conservativity properties and state open questions. Missing proofs
can be found in the appendix.

2 The Functional Language

There are two levels of the syntax: (i) terms and defined functions, and (ii) the
logical level. We focus now on (i), whereas (ii) is postponed to Section 6. Terms
(or expressions) as well as types are built over a signature (F ,K,D) where F is
a finite set of function symbols, K is a finite set of type constructors, and D is a

4 David Sabel and Manfred Schmidt-Schauß

finite set of data constructors. Type constructors K ∈ K have a fixed arity ar(K)
and for every K ∈ K there is a finite set ∅ 6= DK ⊆ D of data constructors cK,i

where cK,i ∈ DK comes with a fixed arity ar(cK,i). For different K1, K2 ∈ K it
holds DK1 ∩ DK2 = ∅ and D =

⋃
K∈KDK . Since terms are constructed under

polymorphic typing restrictions, we first define types, data and type constructors
and then the expression level.

2.1 Syntax of Types

Types T are defined by: T ::= X | (T1 → T2) | (K T1 . . . Tar(K)), where the
symbols X, Xi are type variables, T, Ti stand for types, and K ∈ K is a type
constructor. As usual we assume function types to be right-associative, i.e. T1 →
T2 → T3 means T1 → (T2 → T3). Types of the form T1 → T2 are called arrow
types, and types (K T1 . . . Tar(K)) are called constructed types. We also will use
quantified types ∀X .T , where T is a type, and where X is the set of all free type
variables in T . Let K be a type constructor with data constructors DK . Then the
(universally quantified) type typeOf (cK,i) of every constructor cK,i ∈ DK must
be of the form ∀X1, . . . , Xar(K).TK,i,1 → . . . → TK,i,mi → K X1 . . . Xar(K),
where mi = ar(cK,i), X1, . . . , Xar(K) are distinct type variables, and only the
variables Xi occur as free type variables in TK,i,1, . . . , TK,i,mi

.

2.2 Syntax of Expressions of P

The (type-free) syntax of expressions Expr over a signature (F ,K,D) is as fol-
lows, where f ∈ F means function symbols, K ∈ K is a type constructor, c, ci

are data constructors (i.e. elements of some set DK where K ∈ K), x, xi are
variables of some infinite set of variables, and Alt is a case-alternative:

s, si, t ∈ Expr ::= x | f | (s t) | λx.s | (ci s1 . . . sar(ci))
| (caseK s Alt1 . . . Altn) where n = |DK |

Alti ::= ((ci x1 . . . xar(ci)) -> si)

Note that data constructors can only be used with all their arguments present.
We assume that there is a caseK for every type constructor K ∈ K. The caseK-
construct is assumed to have a case-alternative ((ci x1 . . . xar(ci)) -> si) for every
constructor ci ∈ DK , where the variables in a pattern have to be distinct. The
scoping rules in expressions are as usual. We assume that expressions satisfy the
distinct variable convention before reduction is applied, which can be achieved
by a renaming of bound variables. We assume that the 0-ary constructors True,
False for type constructor Bool, and the 0-ary constructor Nil and the infix
binary constructor “:” for lists with unary type constructor List are among the
constructors.
Additionally we require the notion of contexts C, which are like expressions with
the difference that the hole [·] may occur at a subexpression position, and where
the hole occurs exactly once in C. The notation C[s] means the expression that

A Logic for Functional Programs 5

results from replacing the hole in C by s, where perhaps variables are captured.
E.g. for the context C = λx.[·] it holds C[λy.x] = λx.λy.x.
A value v is defined as v, vi ∈ Val ::= x | λx.s | (c v1 . . . vn), i.e. a variable,
an abstraction, or a constructor-expression (c v1 . . . vn), where the immediate
subexpressions are also values. For instance, λx.True : (λy.False : Nil) is a value
while the list ((λx.True) False) : Nil is not a value, since the subexpression
((λx.True) False) is not a value.
For an expression t the set of free variables of t is denoted as FV (t) and the set
of function symbols occurring in t is denoted as FS (t). An expression t is called
closed iff FV (t) = ∅, and otherwise called open.

Definition 2.1. A program P consists of

1. a signature (F ,K,D) where K 6= ∅.
2. a set of pairs {(f, df) | f ∈ F}, where df is a closed value called the def-

initional expression of f , and FS (df) ⊆ F . Usually, the pairs (f, df) are
written f = df .

Accordingly for a given program P we call the expressions P-expressions, the
values P-values, the contexts P-contexts, and the types P-types.

For instance, the identity function can be defined as id = λx.x where id ∈
F . Note that it is allowed that functions are defined mutually recursive. For
example, if map, head , bot ∈ F , these functions can be defined as:

map = λf, xs.caseList xs ((y : ys) -> (f y : map f xs)) (Nil -> Nil)
head = λxs.caseList xs (y : ys -> y) (Nil -> (bot Nil))
bot = λx. (bot x)

2.3 Typing of Expressions

We extend expressions now with type labels and distinguish between usual ex-
pressions and expressions in function definitions: We assume that the definitional
expressions df are polymorphically typed in a standard way, where every subex-
pression is annotated with a type, and that the P-expressions are monomorphi-
cally typed. For every f ∈ F the pair (f, df) is labeled with a perhaps quantified
type. We assume that occurrences of defined function symbol f are labeled with
an instance type of f . All the rules of the monomorphic system MonoTp are
standard (see Appendix A). For instance, for case-expressions the rule is

(caseK s :: S ((cK,1 x1,1 . . . x1,n1) :: S -> t1 :: T)
. . .
((cK,m xm,1 . . . xm,nm

) :: S -> tm :: T))

 7→ T

Definition 2.2. We say a program P ′ extends the program P (denoted with
P ′ w P), if P ′ is a program that may add type constructors, together with their
data constructors, and function symbols together with their definitions, and where
the type labels of the definitions of P are the same in P ′.

6 David Sabel and Manfred Schmidt-Schauß

(beta) R[((λx.s) v)] → R[s[v/x]] where v is a value

(delta) R[f :: T] → R[df] if f = df :: T ′ for the function symbol f
The reduction is accompanied by a type instantiation ρ(df), where ρ(T ′) = T

(case) R[(case (c v1 . . . vn) . . . ((c y1 . . . yn) -> s) . . .)]
→ R[s[v1/y1, . . . , vn/yn]] where v1, . . . , vn are values

Fig. 1. Standard Reduction Rules

3 Operational Semantics

For the definition of the standard reduction → we introduce reduction contexts.
For a fixed program P the P-reduction contexts R are defined by the grammar:

R ∈ R ::= [·] | (R s) | (v R) | caseK R alts | (c v1 . . . vi R si+2 . . . sn)

where s, si are P-expressions and v, vi are P-values.
Standard reduction rules are defined in Fig. 1 without mentioning all types.

Definition 3.1. The evaluation of an expression t is a maximal reduction se-
quence consisting of standard-reductions. We say that an expression s terminates
(or converges) iff s reduces to a value by its evaluation, denoted by s ↓. Other-
wise, we say s diverges, denoted by s⇑.

By induction on the term structure it is easy to verify that for every expression,
there is at most one standard reduction possible. One can also verify that reduc-
tion is type-safe: reduction of expressions preserves the type of the expressions,
i.e. t :: T and t → t′ implies that t′ :: T , and a progress lemma holds, i.e. every
closed and well-typed expression without reduction is a closed value.

3.1 Assumptions on Valid Programs

Assumption 3.2. We assume that for every (monomorphic) type T of every
program P there is at least one closed value of type T .

Remark 3.3. This excludes types like the type Foo with one constructor foo :
Foo → Foo. The only potentially closed value would be an infinitely nested
expression foo(foo(. . .)), which of course does not exist.

Assumption 3.4. We assume that for every program P and for every P-type
τ there is a closed diverging expression, denoted as ⊥τ .

The second assumption is satisfied if there is a single definition f = (λx.f x) ::
∀a, b.a → b. Then the expressions ⊥τ := (f v)τ do not converge, where v is
any closed value. This also allows us to construct values λx.⊥τ of any given
function-type. Thus the assumptions can easily be satisfied in a finite program.
The expressions⊥τ allow us to define partial functions. For instance, the function
tail could be defined as

tail = λxs.caseList xs (y : ys -> ys) (Nil ->⊥List).

A Logic for Functional Programs 7

3.2 Equivalence of Expressions

The conversion relation defined by applying (beta), (case) and (delta) in every
context is too weak to justify sufficiently many equations. E.g., only expres-
sions of the same asymptotic complexity class are equated (see [SGM02]). So we
will use contextual equivalence that observes termination in all closing contexts,
where we define a local (for P), and a global variant (for all extensions of P).

Definition 3.5. Assume given a program P. Let s, t be two P-expressions of
(ground) type T . Then s ≤P∀,T t iff for all programs P ′ that extend P, and all
P ′-contexts C[· :: T]: if C[s], C[t] are closed, then C[s] ↓ =⇒ C[t] ↓. We also
define s ∼P∀,T t iff s ≤P∀,T t and t ≤P∀,T s. If contexts C[·] are restricted to be
P-contexts, then we denote the relations as ≤P,T and ∼P,T .

It is easy to verify that ≤P,T and ≤P∀,T are precongruences, and ∼P,T and
∼P∀,T are congruences.

Example 3.6. Note that in call-by-value calculi there is a difference between
looking for termination in all contexts vs. termination in closing contexts.
The ≤P,T -relation defined for closing contexts is different from the relation
≤′P,T defined for all contexts: Assume the usual definition of lists, and let
s = Nil, t = (caseList x ((y : z) -> Nil) (Nil -> Nil)). Then s 6≤′P,T t, since
t does not converge: it is irreducible and not a value. However, it is not hard to
verify, using induction on the number of reductions, that s ∼P,T t.

A program transformation T is a binary relation on P-expressions, where (s, t) ∈
T always implies that s and t are of the same type. A program transformation
T is correct iff for all (s, t) ∈ T of type T the equation s ∼P,T t holds. T is
globally correct iff for all (s, t) ∈ T of type T the equation s ∼P∀,T t holds.

4 A CIU-Theorem

In this section we assume that P is a fixed program and argue that a so-called
CIU-Theorem (for other calculi see e.g. [MT91,FH92]) holds, which allows easier
proofs of contextual equivalence, i.e. it is sufficient to take only closed reduction
contexts and closing value substitutions into account, in order to show contextual
equality. In the subsequent section we will extend these results to all programs
extending the program P. The following theorem is formulated in stronger form
for F-free expressions and substitutions, which means that they may contain
⊥-symbols, but do not contain other function constants from F .

Theorem 4.1 (CIU-Theorem F-free). For P-expressions s, t :: T : R[σ(s)] ↓
=⇒ R[σ(t)] ↓ for all F-free P-value substitutions σ and for all F-free P-reduction
contexts R where R[σ(s)], R[σ(t)] are closed if, and only if s ≤P,T t holds.

In the appendix (Proposition B.11) we show:

8 David Sabel and Manfred Schmidt-Schauß

Proposition 4.2. The reductions (beta), (delta), and (case) are correct program
transformations in P. I.e., if s → t by (beta), (delta), or (case), then C[s] → C[t]
is a correct transformation.

Note that ordinary (i.e. call-by-name) beta-reduction is in general not correct, for
instance (λx.True) ⊥ is equivalent to ⊥ :: Bool, however, using a call-by-name
beta-reduction results in True, which is obviously not equivalent to ⊥. Note also
that in VeriFun call-by-name beta-reduction is used. This use is correct, since
the VeriFun-logic assumes termination of all functions.
We end this section by analyzing so-called Ω-expressions, i.e. terms that diverge
after closing them by an arbitrary value substitution.

Definition 4.3. We say an expression s is an Ω-expression iff for all value
substitutions σ where σ(s) is closed, σ(s)⇑ holds. The symbol Bot, labeled with
a type, is used as a representative (i.e., a meta-symbol) for any Ω-expression of
the corresponding type.

The property of being an Ω-expression inherits to reduction contexts, i.e. if
s :: τ is an Ω-expression, and R[· :: τ] a reduction context, then R[s] is also
an Ω-expression (see Appendix B.4, Proposition B.17). The CIU-Theorem also
implies that Ω-expressions are least elements w.r.t. contextual ordering, and that
Ω-expressions of the same type form a single equivalence class:

Corollary 4.4. Let s, t :: τ and let s be an Ω-expression. Then s ≤P,τ t. If also
t is an Ω-expression, then s ∼P,τ t.

5 Global Correctness of Program Transformations

This section proves criteria for equality of expressions that are easier to use than
the definition of contextual equality. In particular, it is shown that equality is
conservative w.r.t. extending programs.
We will show that the local CIU-equivalence, i.e. testing only P-value substitu-
tions, and P-reduction contexts which are additionally F -free, coincides with the
(global) contextual equivalence taking into account all extensions of programs.
As a first step we show that it is sufficient to take into account closed expressions:

Lemma 5.1. Let s, t be (open) P-expressions of type T . Then s ≤P,T t iff for
all closing P-value-substitutions σ: σ(s) ≤P,T σ(t).

Proof. If s ≤P,T t, then σ(s) ≤P,T σ(t) for closing value substitutions σ holds,
since beta-reduction is correct. The converse follows from the CIU-Theorem. ut

We provide criteria on contextual approximation for closed expressions:

Lemma 5.2. Let s, t be closed expressions of constructed type T . Then s ≤P,T t

iff s⇑, or s
∗−→ c v1 . . . vn and t

∗−→ c w1 . . . wn for some constructor c, and
vi ≤P,Ti wi for i = 1, . . . , n.

A Logic for Functional Programs 9

Proof. If s ≤P,T t, then either s⇑, or s↓, t↓. Since T is a constructed type, the
result is a closed value with constructor of type T . Using case-expressions and
the correctness of (case)-reductions, the claim follows. The other direction holds,
since ≤P,T is a precongruence and due to Corollary 4.4. ut

Proposition 5.3. For closed expressions s, t of function type T : s ≤P,T t iff
s⇑, or s

∗−→ λx.s′ and t
∗−→ λx.t′ and s′[v/x] ≤P,T t′[v/x] for all closed F -free

P-values v.

Now we are able to extend the CIU-Theorem to all extensions P ′ of P where
only F-free P-values substitutions and reduction contexts need to be taken into
account. Note that the difficult part of the proof (see Appendix C) is to show that
type and data constructors of the extended program P ′ need not be considered.
Then the local CIU-Theorem 4.1 implies the following theorem:

Theorem 5.4 (CIU-Theorem F-free and global). Let P ′ be an extension
of P. For P-expressions s, t :: T , the implication R[σ(s)]↓ =⇒ R[σ(t)]↓ holds
for all F-free P-value substitutions σ and F-free P-reduction contexts R, where
R[σ(s)], R[σ(t)] are closed if, and only if s ≤P′,T t holds.

Hence, on P-expressions the local and global contextual approximations coincide:

Theorem 5.5 (Local preorder is global). Let P be a program and s, t :: T
be P-expressions. Then s ≤P,T t iff s ≤P∀,T t.

Proof. This follows from Theorem 5.4, since the conditions mention only P-
expressions and substitutions independent of the extensions P ′ of P. ut

We end this section by proving (global) correctness of some program transfor-
mations. In Figs. 2, 3 and 4 the so-called VN-reductions are defined, where a
sequentializing construct is used as (s; r), called seq-expression, which means
((λ .r) s). Operationally, this means to first evaluate s and if it evaluates to a
value, then evaluate r and return its value.
These rules can be used as normalization rules for open expressions and val-
ues (see Appendix C), especially in the deduction system, but they are also
of interest as program transformations. In the following we will argue that the
VN-reductions and the reduction rules of Fig. 1 are globally correct. Using the
arguments above and the F-free CIU-Theorem 5.4, the following is obtained:

Theorem 5.6. The transformations (beta), (delta), and (case), i.e. the call-by-
value reduction rules, and the transformations in Figs. 2, 3 and 4 are globally
correct program transformations in P.

Proof. Global correctness of the call-by-value reduction rules follows from Propo-
sition 4.2 and Corollary 5.5. The other reductions are proved correct in the ap-
pendix (Theorem C.16). ut

10 David Sabel and Manfred Schmidt-Schauß

Bot s → Bot

s Bot → Bot

caseK s (p1 → Bot) . . . (pn → Bot) → Bot

(c . . . Bot . . .) → Bot

(t; Bot) → Bot

(Bot; t) → Bot

Fig. 2. Bot-reduction rules

seqlam ((λx.s); t) → t
seqx (x; s) → s
seqseq ((s1; s2); s3) → (s1; (s2; s3))
seqapp ((s1; s2) s3) → (s1; (s2 s3))

seqc ((c s1 . . . sn); s) → (s1; (. . . (sn; s) . . .))
caseseq (caseK (r; s) alts)→ (r; (caseK s alts))
VNbeta ((λx.s) t) → (t; s[t/x])

VNcase caseK (c s1 . . . sn) . . . (c x1 . . . xn) -> t . . .
→ (s1; (. . . (sn; t[s1/x1, . . . , sn/xn])))

Fig. 3. Adapted call-by-name-reduction rules

caseapp ((caseK t0 (p1 -> t1) . . . (pn -> tn)) r)
→ (caseK t0 (p1 -> (t1 r)) . . . (pn -> (tn r)))

casecase (caseK (caseK′ t0 (p1 -> t1) . . . (pn -> tn)) (q1 -> r1) . . . (qm -> rm))
→ (caseK′ t0 (p1 -> (caseK t1 (q1 -> r1) . . . (qm -> rm)))

. . .
(pn -> (caseK tn(q1 -> r1) . . . (qm -> rm))))

seqcase ((caseK t (q1 -> r1) . . . (qm -> rm)); r)
→ (caseK t (q1 -> (r1; r)) . . . (qm -> (rm; r)))

Fig. 4. Case-Shifting Transformations

6 The Logic and Induction

The syntax of monomorphic formulas (w.r.t. a program P) is:

atoms : A ::= True | False | (s = t)
formulas : F ::= A | F ∨ F | F ∧ F | ¬F | ∀x :: T.F | ∃x :: T.F

where T is a monomorphic P-type and s, t are P-expressions

6.1 The Semantics

Let P ′ be an extension of the program P and T be a P-type. The set MP′,T is
the set of all closed P ′-values of type T . Note that our assumptions imply that
for every T there is a value of this type and thus also MP′,T 6= ∅.

Definition 6.1. Let P be a program and P ′ w P. The interpretation function
IP′ w.r.t. P ′ of closed monomorphic P-formulas is defined as follows:

IP′(s = t) = True if s ∼P′,τ t for expressions s, t :: τ
IP′(s = t) = False if s 6∼P′,τ t for expressions s, t :: τ
IP′(A ∧B) = IP′(A) ∧ IP′(B)
IP′(A ∨B) = IP′(A) ∨ IP′(B)
IP′(¬A) = ¬IP′(A)
IP′(∀x :: τ.F) = True if for all a ∈MP′,τ : IP′(F [a/x]) = True
IP′(∃x :: τ.F) = True if for some a ∈MP′,τ : IP′(F [a/x]) = True

A Logic for Functional Programs 11

A closed monomorphic P-formula F is a P ′-tautology (P ′-theorem, monomor-
phic P ′-theorem) iff IP′(F) = True and it is a global tautology iff it is a P ′-
tautology for all extensions P ′ of program P.

Of course only global tautologies are of interest. However, a verifier cannot
compute all program extensions, and thus we will show that for a large set of
monomorphic formulas it is sufficient to only take the program P into account for
the (global) tautology proof. Since local and global equivalences coincide (The-
orem 5.5), it is promising to look for classes of formulas where it is sufficient to
test the values MP,T instead of all the values of MP′,T for every P ′ w P.

Example 6.2. Given appropriate definitions of the data type nat with two con-
structors 0, succ, where pred, defined as λx.casenat x (0 → ⊥) (succ y → y),
is a function that acts like a selector for succ, and where also addition + is re-
cursively defined, the formula ∀x :: nat.∃y :: nat.x + succ(0) = y is a tautology:
The closed formula ∃x :: nat.pred(0) = x is not a tautology, since only nat-
values for x are permitted, and since ⊥ 6∼ n for every nat-value n.
The formula ¬(∃x :: nat.pred(0) = x) is a tautology.

6.2 Universally Quantified Formulas: Conservativity

The following theorem shows that it not always necessary to consider all ex-
tensions of a program: Monomorphic formulas of the form ∀x1 :: T1, . . . , xn ::
Tn . s = t are global tautologies iff they are P-tautologies, i.e.:

Theorem 6.3. Let P be a program and F := ∀x1 :: T1, . . . , xn :: Tn . s = t be a
monomorphic P-theorem. Then for all P ′ w P, the formula F is also a theorem,
i.e., the formula is a global P-theorem.

Proof. The claim is equivalent to λx1, . . . , xn.s ∼P,T λx1, . . . , xn.t ⇐⇒
λx1, . . . , xn.s ∼P′,T λx1, . . . , xn.t, which holds by Theorem 5.4. ut

Thus universally quantified equations between (monomorphically typed) expres-
sions that hold for a program P are global (for P). This also holds for the cor-
rect program transformations (seen as equations) that we already exhibited in
Proposition 4.2 and 5.3. In the following we investigate extensions of Theorem
6.3. First we look for values without higher-order subexpressions, like Peano-
numbers, Booleans and lists of Peano-numbers.

Definition 6.4. A type T is a DT-type, if every closed value of type T is only
built from data constructors.

Lemma 6.5. Let P ′ be an extension of P. If v :: T is a P ′-value, where T is a
DT-type and a P-type. Then v is a P-expression.

Theorem 6.6. Let P be a program and F be a closed monomorphic formula,
such that all quantified variables have a DT-type. Then F is a P-tautology iff it
is a global P-tautology.

12 David Sabel and Manfred Schmidt-Schauß

Proof. This follows from the definition of DT-type: the sets MP,T do not change
when the program is extended, from Lemma 6.5, and from Theorem 5.4, which
among others shows that all closed ∼-equalities are global. ut

Proposition 6.7. Let P be a program such that every computable function on
DT-types can be expressed as abstraction using the functions of P and let P v P ′.
Then for every P ′-value v of P-type τ = τ1 → . . . → τn where all τi are DT-
types, there exists a local P-value w with v ∼P∀,τ w.

Proof. A P ′-value v of P-type τ1 → . . . → τn where all τi are DT-types defines a
computable function on DT-types, hence by assumption this can be programmed
in P, and the corresponding expression is such a P-value w. ut

Corollary 6.8. If there is a polymorphic fixpoint function fix : (α → α) → (α →
α) with fix = λf.λx.(f (λx.fix f x) x) in P then the expressivity-assumption in
Proposition 6.7 is satisfied and thus the claim of Proposition 6.7 holds.

Theorem 6.9. Let P be a program such that there is a fixpoint function as in
Corollary 6.8 and let F be a closed monomorphic formula, such that all quantified
variables have a DT-type or a type τ1 → . . . → τn, where all τi are DT-types.
Then F is a P-tautology iff it is a global P-tautology.

Proof. This follows from the definition of DT-types: the setsMP,T do not change
when the program is extended, and from Corollary 6.8. ut

We have to leave open the question whether every monomorphic P-tautology is
also a global P-tautology. The obstacle is that we could not prove that for any
closed P ′-value (where P ′ extends P) of P-type there is an equivalent P-value.

6.3 Conservativity by Adding Definedness

In this section we consider formulas which ensure that all expressions in equa-
tions are defined. The intention is to cover the monomorphic formulas which
are in scope of the VeriFun-system (where termination is an apriori require-
ment). Given a program P we define PD A P, including for every DT-type
T a binary function eqT :: T → T → Bool such that for all closed values
v, w :: T : v ∼ w =⇒ eqT v w

∗−→ True and v 6∼ w =⇒ eqT v w
∗−→ False.

Also, functions and , or ,not on the Boolean values True, False are defined in
PD. The function λxT .True, abbreviated as definedT , has the following prop-
erty: (definedT s) ∗−→ True for every converging expression of DT-type T . The
function never produces False, but does not terminate if the argument is not
terminating.

Definition 6.10. The translation B is defined as: B(∧) ≡ λx, y.and x y,
B(∨) ≡ λx, y.or x y, B(¬) ≡ λx.not x, and B(s =T t) ≡ eqT s t. A quantifier-
free formula F is translated into the equation (eqBool B(F) True).

A Logic for Functional Programs 13

The Boolean functions are defined to be symmetric in order to reflect the prop-
erties of the logical connectives ∨,∧ like correctness of double negation elim-
ination and deMorgan’s law. However, if an expression is undefined, then the
B-translation of a formula also evaluates to “undefined”, whereas the formula
Bot = Bot is interpreted as True. Thus, quantifier-free formulas can only be
correctly translated, if all expressions s, t in every equation s = t in the formula
evaluate to a closed value, since otherwise, the expression (eqT s t) does not
terminate and is equivalent to Bot. Special kinds of formulas that take care of
definedness can be translated correctly:
For a P-formula ∀x1, . . . , xn.F , where F is quantifier-free and every equation is
of a DT-type, let the definedness-formula (w.r.t. P) be ∀x1, . . . , xn.(Def (F) =⇒
F), where Def (F) is the formula defined(s1) = True∧ . . .∧ defined(sn) = True,
where si, i = 1, . . . , n are all the expressions that occur as top-expressions in
equations of F . We show that the theorems in the scope of VeriFun are global:

Theorem 6.11. Let P be a program and F be a quantifier-free formula, where
every equation in F is of a DT-type, and let ∀x1 :: T1, . . . , xn :: Tn .(Def (F) =⇒
F) be a closed monomorphic theorem. Then for all P ′ w P, the formula ∀x1 ::
T1, . . . , xn :: Tn.Def (F) =⇒ F is also a theorem; i.e. it is a global P-tautology.

Proof. The formula ∀x1 :: T1, . . . , xn :: Tn .Def (F) =⇒ F is a closed monomor-
phic theorem w.r.t. PD if and only if λx1, . . . , xn.B(Def (F) =⇒ F) ∼PD,T

λx1, . . . , xn.B(Def (F)): If σ(si) is equivalent to a value for all i, then the claim
is obvious. If some σ(si) is undefined, then the equation defined(s1) = True is
false under the interpretation, hence the whole formula is true. For the corre-
sponding substitution, both functions are equivalent to Bot. The claim is equiv-
alent to λx1, . . . , xn.B(Def (F) =⇒ F) ∼P′

D,T λx1, . . . , xn.B(Def (F)), which
holds by Theorem 5.4 for any extension P ′D of PD. The latter again implies that
∀x1 :: T1, . . . , xn :: Tn .Def (F) =⇒ F is a closed monomorphic theorem w.r.t.
P ′. Now the CIU-Theorem implies that the formula is a global P-tautology. ut

6.4 Polymorphic Formulas

In this section we consider polymorphic formulas and show that their conserva-
tivity does in general not hold. Then the section illustrates how to prove global
polymorphic theorems directly. Polymorphic formulas are like monomorphic for-
mulas, where type variables are permitted in the type of the quantified variables,
and the expressions are polymorphically typed (as in the defining values), poly-
morphic expressions are permitted in the formulas, where in equations s = t,
the expressions s, t must be of the same polymorphic type. The semantics has
to be extended as follows:

Definition 6.12. For a program P and an extension P ′ of P a polymorphic
P-formula F is a P ′-tautology (a polymorphic P ′-theorem), if for every P ′-type
substitution ρ that instantiates every type variable in F with a monomorphic
P ′-type, the formula ρ(F) is a global tautology. F is a global P-theorem, iff it
is a polymorphic P ′-theorem for all extensions P ′ of P.

14 David Sabel and Manfred Schmidt-Schauß

In general, not every polymorphic P-theorem is also global. E.g. let P be a
program where the data type Bool, Peano-numbers and lists are defined, but
no other data types. Then the following formula F is a polymorphic P-theorem:

F := ∀x1 :: a, x2 :: a, x3 :: a.((x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)
=⇒ ∃x :: a.x 6= x1 ∧ x 6= x2 ∧ x 6= x3),

which expresses that if there are three different values of a certain type, then
there is another value of this type. This is true in P. However, it is easy to
extend P to P ′ by adding a type T3 having the set {red, blue, green} as data
constructors. Then F is false in P ′. Hence, F is not a global theorem.
An example for a global polymorphic theorem is associativity of the append-
function on lists of any type:

F := ∀xs :: List a, ys :: List a, zs :: List a.
append(xs, (append(ys, zs))) = append(append(xs, ys), zs)

We sketch the tautology proof: Let F be a P formula and P ′ w P. For all P ′-type
substitutions ρ and for all u ∈MP′,ρ(a) and all r, s, t ∈MP′,List ρ(a) it holds

i) append(Nil, (append(s, t))) ∼P′,List ρ(a) append(append(Nil, s), t)
ii) append(r, (append(s, t))) ∼P′,List ρ(a) append(append(r, s), t)

=⇒ append(u : r, (append(s, t))) ∼P′,List ρ(a) append(append(u : r, s), t)

This follows by global correctness of the reduction rules where the proof never
computes the value of any ρ(T). Items i) and ii) are the usual parts in an induc-
tion scheme and thus for all P ′-type substitutions ρ and all r, s, t ∈MP′,List ρ(a)

it holds: append(r, (append(s, t))) ∼P′,List ρ(a) append(append(r, s), t).
Theorem 5.5 now shows that ρ(F) is a global monomorphic theorem for any
P ′-type substitution ρ. Hence, F is a global polymorphic theorem.
In summary this illustration shows that a universally quantified polymorphic
formula is a global theorem, if the induction and the induction measure are
“independent” of the type variables and only global P-theorems and globally
correct P-transformations are used to prove the induction base and hypothesis.
However, we have to leave open whether the following holds:

Let P be a program and F be a polymorphic P-theorem of the form
∀x1 . . . xn.s = t. Then for all P ′ w P, the formula F is also a P ′-theorem.

7 Conclusion

A reconstruction and adjustment of the logic and semantics used by the prover
VeriFun is presented. The analysis exhibits that a contextual semantics is only a
slight change in the intended semantics proposed by the developers yet permits
more correct program transformations that could also be used in the proof system
and permits also several generalizations like higher-order data and a treatment of
nonterminating expressions. Conservativity theorems are shown for interesting

A Logic for Functional Programs 15

classes of formulas, and also several open questions are formulated, like globality
of monomorphic theorems and globality of universally quantified polymorphic
equations which are local theorems. Besides working on the open questions, a
possible direction of future work is to apply the techniques to other systems of
typed functional programming languages.

References

[Ade09] Markus Axel Aderhold. Verification of Second-Order Functional Programs.
PhD thesis, Computer Science Department, Technische Universität Darm-
stadt, Germany, 2009.

[Bar84] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-
Holland, Amsterdam, New York, 1984.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[BH99] Lars Birkedal and Robert Harper. Relational interpretations of recursive
types in an operational setting. Inf. Comput., 155(1-2):3–63, 1999.

[BK08] Yves Bertot and Vladimir Komendantsky. Fixed point semantics and par-
tial recursion in Coq. In PPDP ’08: Proceedings of the 10th international
ACM SIGPLAN conference on Principles and practice of declarative pro-
gramming, pages 89–96, New York, NY, USA, 2008. ACM.

[BM75] Robert S. Boyer and J. Strother Moore. Proving theorems about lisp func-
tions. J. ACM, 22(1):129–144, 1975.

[BM84] Robert S. Boyer and J. Strother Moore. A mechanical proof of the unsolv-
ability of the halting problem. J. ACM, 31(3):441–458, 1984.

[Far96] W. M. Farmer. Mechanizing the traditional approach to partial functions.
In W. Farmer, M. Kerber, and M. Kohlhase, editors, CADE-13 Workshop
on the Mechanization of Partial Functions, pages 27–32, 1996.

[FH92] Matthias Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theoret. Comput. Sci., 103:235–271, 1992.

[Gor99] Andrew D. Gordon. Bisimilarity as a theory of functional programming.
Theoret. Comput. Sci., 228(1-2):5–47, October 1999.

[How89] D. Howe. Equality in lazy computation systems. In 4th IEEE Symp. on
Logic in Computer Science, pages 198–203, 1989.

[How96] D. Howe. Proving congruence of bisimulation in functional programming
languages. Inform. and Comput., 124(2):103–112, 1996.

[KM86] Deepak Kapur and David R. Musser. Inductive reasoning with incomplete
specifications (preliminary report). In Proceedings, Symposium on Logic
in Computer Science, 16-18 June 1986, Cambridge, Massachusetts, USA,
pages 367–377. IEEE Computer Society, 1986.

[Kra06] Alexander Krauss. Partial recursive functions in higher-order logic. In Ul-
rich Furbach and Natarajan Shankar, editors, Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings, volume 4130 of Lecture Notes in Computer Sci-
ence, pages 589–603. Springer, 2006.

[KTU93] A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. The undecidability of the
semi-unification problem. Information and Computation, 102(1):83–1018,
1993.

16 David Sabel and Manfred Schmidt-Schauß

[Man05] Matthias Mann. Congruence of bisimulation in a non-deterministic call-by-
need lambda calculus. Electron. Notes Theor. Comput. Sci., 128(1):81–101,
2005.

[MS97] Olaf Müller and Konrad Slind. Treating partiality in a logic of total func-
tions. Comput. J., 40(10):640–652, 1997.

[MSS10] Matthias Mann and Manfred Schmidt-Schauß. Similarity implies equiva-
lence in a class of non-deterministic call-by-need lambda calculi. Informa-
tion and Computation, 208(3):276 – 291, 2010.

[MT91] Ian Mason and Carolyn L. Talcott. Equivalence in functional languages
with effects. J. Funct. Programming, 1(3):287–327, 1991.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
2002.

[Pit00] Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Math. Structures Comput. Sci., 10:321–359, 2000.

[Plo77] G.D. Plotkin. LCF considered as a programming language. Theoret. Com-
put. Sci., 5:223–255, 1977.

[Sch07] Dirk Stephan Schweitzer. Symbolische Auswertung und Heuristiken zur Ver-
ifikation funktionaler Programme. PhD thesis, TU Darmstadt, Juni 2007.

[SGM02] David Sands, Jörgen Gustavsson, and Andrew Moran. Lambda calculi and
linear speedups. In The Essence of Computation 2002, pages 60–84, 2002.

[SSNSS08] Manfred Schmidt-Schauß, Joachim Niehren, Jan Schwinghammer, and
David Sabel. Adequacy of compositional translations for observational
semantics. In 5th IFIP TCS 2008, volume 273 of IFIP, pages 521–535.
Springer, 2008.

[SSS10] Manfred Schmidt-Schauß and David Sabel. On generic context lemmas for
higher-order calculi with sharing. Theoret. Comput. Sci., 411(11-13):1521
– 1541, 2010.

[SSSH09] David Sabel, Manfred Schmidt-Schauß, and Frederik Harwath. Reason-
ing about contextual equivalence: From untyped to polymorphically typed
calculi. In Stefan Fischer, Erik Maehle, and Rüdiger Reischuk, editors,
INFORMATIK 2009, Im Focus das Leben, Beiträge der 39. Jahrestagung
der Gesellschaft für Informatik e.V. (GI), 28.9 - 2.10.2009 in Lübeck, vol-
ume 154 of GI Edition - Lecture Notes in Informatics, pages 369; 2931–45,
October 2009. (4. Arbeitstagung Programmiersprachen (ATPS)).

[SWGA07] Andreas Schlosser, Christoph Walther, Michael Gonder, and Markus Ader-
hold. Context dependent procedures and computed types in verifun.
ENTCS, 174(7):61–78, 2007.

[Ver] VeriFun Website. www.inferenzsysteme.informatik.tu-darmstadt.de/verifun/.
[Wal94] Christoph Walther. Mathematical induction. In Dov M. Gabbay, Christo-

pher J. Hogger, J. A. Robinson, and Jörg H. Siekmann (Eds.), editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, vol-
ume 2, pages 127–228. Oxford University Press, 1994.

[WS05a] Christoph Walther and Stephan Schweitzer. Automated termination anal-
ysis for incompletely defined programs. In Franz Baader and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-
soning, 11th International Conference, LPAR 2004, Montevideo, Uruguay,
March 14-18, 2005, Proceedings, volume 3452 of Lecture Notes in Comput.
Sci., pages 332–346. Springer, 2005.

A Logic for Functional Programs 17

[WS05b] Christoph Walther and Stephan Schweitzer. Reasoning about incompletely
defined programs. In 12. LPAR ’05, LNCS 3835, pages 427–442, 2005.

18 David Sabel and Manfred Schmidt-Schauß

A Typing of Expressions

A.1 Type Derivation System

The type of unlabeled expressions is defined by using the inference system shown
in Fig. 5. The explicit typing of variables is placed into a type environment, i.e.
variables have no built-in type for this derivation system. An environment Γ is
a (partial) mapping from variables and function symbols f ∈ F to types, where
we assume that every function f is mapped to a type. The notation Dom(Γ) is
the set of variables (and function names) that are mapped by Γ . The notation
Γ, x :: τ means a new environment where x 6∈ Dom(Γ). Given a quantified type
∀X .T , a (type-)substitution ρ for ∀X .T substitutes types for type variables X,
such that ρ(T) is an (unquantified) type. We call ρ(T) an instance of type ∀X .T .
The types of function symbols in F may also have a quantifier-prefix.

Example A.1. Let T be the type ∀a, b.a → b. Then Int→ Int is an instance of
T , as well as a → Int, where the latter has a variable name in common with T .

(Var) Γ, x :: S ` x :: S

(Fn) Γ, f :: S ` f :: S for f ∈ F

(App)
Γ ` s :: S1 → S2 Γ ` t :: S1

Γ ` (s t) :: S2

(Abs)
Γ, x :: S1 ` s :: S2

Γ ` (λx.s) :: S1 → S2

(Cons)

Γ ` s1 :: S1 ; . . . ; Γ ` sn :: Sn

Γ, y :: typeOf (c) ` (y s1 . . . sn) :: T

Γ ` (c s1 . . . sn) :: T
if ar(c) = n

(Case)

Γ ` s :: K S1 . . . Sm

Γ, x1,1 :: T1,1, . . . x1,n1 :: T1,n1 ` t1 :: T
Γ, x1,1 :: T1,1, . . . x1,n1 :: T1,n1 ` (c1 x1,1 . . . x1,n1) :: K S1 . . . Sm

.
Γ, xk,1 :: Tk,1, . . . xk,nk :: Tk,nk ` tk :: T
Γ, xk,1 :: Tk,1, . . . xk,nk :: Tk,nk ` (ck xk,1 . . . xk,n1) :: K S1 . . . Sm

Γ ` (caseK s ((c1 x1,1 . . . x1,n1) -> t1) . . .) :: T

(Generalize)
Γ ` t :: T

Γ ` t :: ∀X .T

if X = FTV (T) \ Y
where Y =

S
x∈FV (t)

{FTV (S) | (x :: S) ∈ Γ}

(Instance)
Γ ` t :: ∀X .S1

Γ ` t :: S2
if ρ(S1) = S2 with Dom(ρ) ⊆ X

Fig. 5. The type-derivation rules

A Logic for Functional Programs 19

Definition A.2. Given a program, the types Γ of the functions in f are called
admissible, and all the functions are called derivationally well-typed, iff for every
f ∈ F and the type f :: T ∈ Γ , we have Γ ` df :: T .

Using the rules of the derivation system, a standard polymorphic type system
can be implemented that computes types as greatest fixpoints using iterative
processing. By standard reasoning, there is a most general type of every expres-
sion.

Example A.3. The polymorphic type of λx.x is ∀a.a → a. The type of the func-
tion composition λf, g, x.f (g x) is ∀a, b, c.(b → c) → (a → b) → a → c.

From a typing point of view, the derivation system and the type-labeling (see
Section 2.3) are equivalent mechanisms.
Note that typability using the iterative procedure is undecidable, since the semi-
unification problem [KTU93] can be encoded. Stopping the iteration, like in
Milner’s type system, leads to a decidable, but incomplete type system.

Assumption A.4. We assume that the polymorphic types of the function def-
initions can be verified by a polymorphic type system using a type derivation
system as given above.

A.2 Type Consistency Rules

In this section we will detail the assumptions on the Church-style polymorphic
type system that fixes the type also of subexpressions using labels at every
subexpression (see Section 2.3). We will define consistency rules that ensure
that the labeling of the subexpressions is not contradictory.
We assume that for every quantifier-free type T , there is an infinite set VT of
variables of this type. If x ∈ VT , then T is called the built-in type of the variable
x. This means that renamings of bound variables now have to keep exactly the
type.

Example A.5. This example shows a type-labeled expression that may appear
in the definition of a function symbol. The type of the composition is (.) ::
∀a, b, c.(b → c) → (a → b) → a → c. A type labeling (the types of some variables
are not repeated) for the composition may be:

(λf :: (b → c).(λg :: (a → b).
(λx :: a.(f (g x) :: b) :: c) :: (a → c)) :: ((a → b) → a → c))

:: ∀a, b, c.(b → c) → (a → b) → a → c

An illustration is as follows:

λ

uukkkkkkkkk

''NNNNNNNN :: ∀a, b, c.(b → c) → (a → b) → a → c

f :: b → c λ

wwoooooo

##GGGGGG :: (a → b) → a → c

g :: a → b . . .

20 David Sabel and Manfred Schmidt-Schauß

Application
(s :: S1 → S2 t :: S1) 7→ S2

Constructor expressions
(c :: (S1 → . . . → Sn → S) s1 :: S1 . . . sn :: Sn) 7→ S

Abstractions
(λx :: S1.s :: S2) 7→ S1 → S2

Case-expression
(caseK s :: S ((cK,1 x1,1 . . . x1,n1) :: S -> t1 :: T)

. . .
((cK,m xm,1 . . . xm,nm) :: S -> tm :: T))

9=; 7→ T

Fig. 6. Computation of MonoTp

Type-Constraints:

1. The type-label of a variable x ∈ VT is its built-in type T .
2. Function symbols f are labeled with a type that is an instance of the poly-

morphic type of the equation f = df .
3. The label S of a constructor c is an instance of the predefined type of c.
4. In the definition f = df , where ∀X .T is the type of the definition f = df ,

the type label of df is T and any symbol g in df can only have type variables
that also occur in X .

5. The type-label of every compound expression must be derivable using the
rules of MonoTp defined in Fig. 6 based on the type labels of the subexpres-
sions.

Definition A.6. If an expression t :: T satisfies all the type constraints above,
then we call the type labeling admissible, and the expression t :: T well-typed.

Note that for every expression, there is at most one standard reduction possible.
It is easy to see that reduction of expressions keeps the type of the expressions.
Hence reduction will not lead to dynamic type errors:

Lemma A.7 (Type Safety). Reducing t :: T by standard reduction leaves the
term well-typed and does not change the type. I.e. t → t′ implies that t′ is well-
typed and t′ :: T .

Lemma A.8 (Progress Lemma). A closed and well-typed expression without
reduction is a value.

Proof. Checking the rules, it is easy to see that for a closed expression t,
the only possibility for t to be irreducible, and not a WHNF is to be of the
form R[((c t1 . . . tn) t′)], where c is a constructor, R[caseK (λx.r) Alts], or
R[caseK (c t1 . . . tn) Alts] where c is a constructor that does not belong to data
type K. All these cases are ruled out, since they are not well-typed. ut

A Logic for Functional Programs 21

(s t)sub∨lr → (ssub t)

(vsub s) → (v ssub) if s is not a value

(c s1 . . . sn)sub∨lr → (c ssub
1 . . . sn)

(c v1 . . . vsub
i si+1 . . . sn) → (c v1 . . . vi ssub

i+1 . . . sn)

(case s alts)sub∨lr → (case ssub alts)

(let x = v in s)lr → (let x = v in slr)

Fig. 7. Searching the redex in the let-language Llet

B Proof of Theorem 4.1

In this section we prove Theorem 4.1. In order to prove a CIU-Lemma, we first
have to prove a context lemma for L extended with a let. In the following we
assume that a fixed program P is given. We are interested in the contextual
semantics of P-expressions. However, we will also look for extensions P ′ of P
and for the relation ≤P∀,T .

B.1 Context Lemma for a Sharing Extension

We consider the let-language Llet that is an extension of our language that shares
values using the expression syntax:

s, si, t ∈ Expr ::= x | f | (s t) | λx.s | (ci s1 . . . sar(ci))
| (caseK s Alt1 . . . Alt|DK |) | (let x = v in s)

Alti ::= ((ci x1 . . . xar(ci)) -> si)

where v is a value, i.e. v, vi ∈ Val ::= x | (c v1 . . . vN) | λx.s. The let-construct
is non-recursive, i.e. the scope of x in (let x = v in s) is only s. The type-
constraints for the let-construct are as follows: in (let x = v in s), the type
labels of x, v must be identical, and the type label of s is the same as for the
let-expression, i.e. only (let x :: T1 = v :: T1 in s :: T2) :: T2 is a correct typing.
We use a label-shift to determine the reduction position. For an expression s
the label-shift algorithm starts with slr and then exhaustively applies the shift-
ing rules shown in Fig. 7. During shifting we assume that the label is not re-
moved, however, in the right hand sides of the rules in Fig. 7 only the new
labels are shown. The two labels sub and lr are used to prevent searching inside
let-expressions which are below application and constructor applications. The
standard reduction rules for Llet are defined in Fig. 8, which can be applied after
performing the label shift algorithm where an additional condition is that rule
(cp) is only applicable if rule (caselet) is not applicable. We denote a reduction

as t
ls−→ t′ (standard-let-reduction), and write t

ls,a−−→ t′ if we want to indicate
the kind a of the reduction. With (lll) we denote the union of the rules (lapp),
(lrapp), (lcapp), and (lcase).
The answers of reductions are values – but not variables – that may be embedded
in lets. I.e., expressions of the form (let x1 = v1 in (let x2 = v2 in . . . (let xn =

22 David Sabel and Manfred Schmidt-Schauß

(betalet) C[((λx.s)sub v)] → C[let x = v in s]

(deltalet) C[f sub :: T] → C[df] if f = df :: T ′ for the function symbol f .
The reduction is accompanied by a type instantiation
ρ(df), where ρ(T ′) = T

(caselet) C[(case (c v1 . . . vn)sub . . . ((c y1 . . . yn) -> s) . . .)]
→ C[let y1 = v1 in . . . let yn = vn in s]

(cp) C[let x = v in C′[xsub]] → C[let x = v in C′[v]]

(lapp) C[((let x = v in s)sub t)] → C[(let x = v in (s t))]

(lrapp) C[(v1 (let x = v in t)sub)] → C[(let x = v in (v1 t))]

(lcapp) C[(c v1 . . . vi−1 (let x = v in si)
sub si+1 . . . sn)]

→ C[(let x = v in (c v1 . . . vi−1 si . . . sn))]

(lcase) C[(case (let x = v in s)sub alts)]
→ C[(let x = v in (case s alts))]

Fig. 8. Standard Reduction rules in the let-language Llet

vn in v) . . .)) where v is a value, but not a variable. We say an expression t

converges, denoted as t ↓ iff there is a reduction t
ls,∗−−→ t′, where t′ is an answer.

The contexts C that we allow in the language may have their holes at the usual
positions where an expression is permitted; if it is in v of (let x = v in t),
then the hole must be within an abstraction of v. Contextual approximation
and contextual equivalence for Llet are defined accordingly, where we use the
symbols ≤let,P,T and ∼let,P,T for the corresponding relations. Now we can show
the context lemma for Llet :
A reduction context R[·] for Llet is a context, where the sub-shifting will end
successfully at the hole. Note that the hole cannot occur as (let x = [·] in t).
For a reduction sequence RED the function rl(RED) computes the length of
the reduction sequence RED.

Definition B.1. For well-typed P-expressions s, t :: T , the inequation
s ≤let,P,R,T t holds iff for all ρ where ρ is a variable-permutation such that
variables are renamed, the following holds: ∀P-reduction contexts R[· :: T]: if
R[ρ(s)], R[ρ(t)] are closed, then (R[ρ(s)] ↓ =⇒ R[ρ(t)] ↓))

We require the notion of multicontexts, i.e. expressions with several (or no) typed
holes ·i :: Ti, where every hole occurs exactly once in the expression. We write
a multicontext as C[·1 :: T1, . . . , ·n :: Tn], and if the expressions si :: Ti for
i = 1, . . . , n are placed into the holes ·i, then we denote the resulting expression
as C[s1, . . . , sn].

Lemma B.2. Let C be a multicontext with n holes. Then the following holds:
If there are expressions si :: Ti with i ∈ {1, . . . , n} such that C[s1, . . . , si−1, ·i ::
Ti, si+1, . . . , sn] is a reduction context, then there exists a hole ·j, such that for all
expressions t1 :: T1, . . . , tn :: Tn C[t1, . . . , tj−1, ·j :: Tj , tj+1, . . . , tn] is a reduction
context.

A Logic for Functional Programs 23

Proof. Let us assume there is a multicontext C with n holes and there are
expressions s1, . . . , sn such that C[s1, . . . , si−1, ·i :: Ti, si+1, . . . , sn] is a reduction
context. Applying the labeling algorithm to the multi-context C alone will hit
hole number j, perhaps with i 6= j. Then C[t1, . . . , tj−1, ·j :: Tj , tj+1, . . . , tn] is a
reduction context for any expressions ti.

Lemma B.3 (Context Lemma). The following holds: ≤let,P,R,T ⊆ ≤let,P,T .

Proof. We prove a more general claim:
For all n ≥ 0 and for all P-multicontexts C[·1 :: T1, . . . , ·n :: Tn] and for all
well-typed P-expressions s1 :: T1, ..., sn :: Tn and t1 :: T1, ..., tn :: Tn:
If for all i = 1, . . . , n: si ≤let,P,R,Ti ti, and if C[s1, . . . , sn] and C[t1, . . . , tn] are
closed, then C[s1, . . . , sn]↓ =⇒ C[t1, . . . , tn]↓.
The proof is by induction, where n, C[·1 :: T1, . . . , ·n :: Tn], si :: Ti, ti :: Ti for
i = 1, . . . , n are given. The induction is on the measure (l, n), where

– l is the length of the evaluation of C[s1, . . . , sn].
– n is the number of holes in C.

We assume that the pairs are ordered lexicographically, thus this measure is
well-founded. The claim holds for n = 0, i.e., all pairs (l, 0), since if C has no
holes there is nothing to show.
Now let (l, n) > (0, 0). For the induction step we assume that the claim holds
for all n′, C ′, s′i, t

′
i, i = 1, . . . , n′ with (l′, n′) < (l, n). Let us assume that the

precondition holds, i.e., that ∀i : si ≤let,P,R,Ti
ti. Let C be a multicontext

and RED be the evaluation of C[s1, . . . , sn] with rl(RED) = l. For proving
C[t1, . . . , tn]↓, we distinguish two cases:

– There is some index j, such that C[s1, . . . , sj−1, ·j :: Tj , sj+1, . . . , sn]
is a reduction context. Lemma B.2 implies that there is a hole
·i such that R1 = C[s1, . . . , si−1, ·i :: Ti, si+1, . . . , sn] and R2 =
C[t1, . . . , ti−1, ·i :: Ti, ti+1, . . . , tn] are both reduction contexts. Let C1 =
C[·1 :: T1, . . . , ·i−1 :: Ti−1, si, ·i+1 :: Ti+1, . . . , ·n :: Tn]. From C[s1, . . . , sn] =
C1[s1, . . . , si−1, si+1, . . . , sn] we derive that RED is the evaluation of
C1[s1, . . . , si−1, si+1, . . . , sn]. Since C1 has n − 1 holes, we can use
the induction hypothesis and derive C1[t1, . . . , ti−1, ti+1, . . . , tn] ↓, i.e.
C[t1, . . . , ti−1, si, ti+1, . . . , tn] ↓. This implies R2[si] ↓. Using the precondi-
tion we derive R2[ti]↓, i.e. C[t1, . . . , tn]↓.

– There is no index j, such that C[s1, . . . , sj−1, ·j :: Tj , sj+1, . . . , sn] is a re-
duction context. If l = 0, then C[s1, . . . , sn] is an answer and since no hole is
in a reduction context, C[t1, . . . , tn] is also an answer, hence C[t1, . . . , tn]↓.
If l > 0, then the first normal order reduction of RED can also be used
for C[t1, . . . , tn]. This normal order reduction can modify the context C, the
number of occurrences of the expressions si, the positions of the expressions
si, and si may be renamed by a (cp) reduction.
We now argue that the elimination, duplication or variable permutation
for every si can also be applied to ti. More formally, we will show if

24 David Sabel and Manfred Schmidt-Schauß

C[s1, . . . , sn]
ls,a−−→ C ′[s′1, . . . , s

′
m], then C[t1, . . . , tn]

ls,a−−→ C ′[t′1, . . . , t
′
m], such

that s′i ≤let,P,R,T ′
i

t′i. We go through the cases of which reduction step is
applied to C[s1, . . . , sn] to figure out how the expressions si (and ti) are
modified by the reduction step, where we only mention the interesting cases.
• For a (lapp), (lrapp), (lcapp), (lcase), and (betalet) reduction, the holes
·i may change their position.

• For a (caselet) reduction, the position of ·i may be changed as in the
previous item, or if the position of ·i is in an alternative of case, which
is discarded by a (case)-reduction, then si and ti are both eliminated.

• If the reduction is a (cp) reduction and there are some holes ·i inside the
copied value, then there are variable permutations ρi,1, ρi,2 with s′i =
ρi,1(si) and t′i = ρi,2(ti). One can verify that we may assume that ρi,1 =
ρi,2 for all i. Now the precondition implies s′i ≤let,P,R,T ′

i
t′i.

• If the standard reduction is a (deltalet)-reduction, then si, ti cannot be
influenced, since within df , there are no holes.

Now we use the induction hypothesis: Since C ′[s′1, . . . , s
′
m] has a terminating

sequence of standard reductions of length l−1, we also have C ′[t′1, . . . , t
′
m]↓.

With C[t1, . . . , tn]
ls,a−−→ C ′[t′1, . . . , t

′
m] we have C[t1, . . . , tn]↓. ut

B.2 The CIU-Theorem

Now we use the context lemma for the let-language Llet and transfer the re-
sults to our language L using the method on translations in [SSNSS08]. Let Φ
be the translation from L to Llet defined as the identity, that translates ex-
pressions, contexts and types. This translation is obviously compositional, i.e.
Φ(C[s]) = Φ(C)[Φ(s)]. We also define a backtranslation Φ from Llet into L. The
translation is defined as Φ(let x = v in s) := Φ(s)[Φ(v)/x] for let-expressions
and homomorphic for all other language constructs. The types are translated in
the obvious manner. For extending Φ to contexts, the range of Φ does not consist
only of contexts, but of contexts plus a substitution which “affects” the hole, i.e.
for a context C, Φ(C) is C ′[σ[]] where C ′ = Φ

′
(C) where Φ

′
treats contexts like

expressions (and the context hole is treated like a constant).
With this definition Φ satisfies compositionality, i.e. Φ(C)[Φ(s)] = Φ(C[s]) holds.
The difference to the usual notion is that Φ(C) is not a context, but a function
mapping expressions to expressions.
The important property to be proved for the translations is convergence equiv-
alence, i.e. t ↓ ⇐⇒ Φ(t) ↓, and t ↓ ⇐⇒ Φ(t) ↓, resp.
By inspecting the (ls,lll)- and (ls,cp)-reductions and the Definition of Φ the
following properties are easy to verify:

Lemma B.4. Let t ∈ Llet and t
ls,lll−−−→ t′ or t

ls,cp−−−→ t′. Then Φ(t′) = Φ(t).

Furthermore, all reduction sequences consisting only of
ls,lll−−−→ and

ls,cp−−−→ are finite.

Lemma B.5. Let t be an expression of Llet such that Φ(t) = R[s], where (ls,cp)-
and (ls,lll)-reductions are not applicable to t, and R is a reduction context. Let

A Logic for Functional Programs 25

t be represented as t = let x1 = s1, . . . , xn = sn in t1 where t1 is not a let-
expression. Then there is some reduction context R′ and an expression s′, such
that t1 = R′[s′], R = Φ(σ(R′)), s = Φ(σ(s′)) and R[s] = Φ(σ(R′[s′]), where
σ = {x1 7→ s1} ◦ . . . ◦ {xn 7→ sn}. Furthermore, let x1 = s1, . . . , xn = sn in R′

is a reduction context in Llet.

Proof. It is easy to see that there exists a context R′ and an expression s′, such
that R = Φ(σ(R′)) and s = Φ(σ(s′)). We have to show that R′ is a reduction
context of Llet. Let M be a multicontext such that R′ = M [r1, . . . , ·, , . . . , rk]
such that ri are all the maximal subexpressions in non-reduction position of
R′. Since neither let-shifting nor copy reductions are applicable to t, we have
that Φ(σ(R′)) = R = M [Φ(σ(r1), . . . , ·, . . . , Φ(σ(rk)]. Since the hole in R is
in reduction position, this also holds for R′, i.e. R′ is a reduction context.
By the construction of reduction contexts in Llet it is easy to verify that
let x1 = s1, . . . , xn = sn in R′[] is also a reduction context. ut

Lemma B.6. Let t be an Llet expression such that no (ls,lll)-, or (ls,cp)-
reductions are applicable to t. If Φ(t) → s then there exists some t′ such that
t → t′ and Φ(t′) = s.

Proof. Since neither (ls,lll)- nor (ls,cp)-reductions are applicable to t,
the expression t is either a non-let expression t1 or of the form
let x1 = s1, . . . , xn = sn in t1 where t1 is a non-let expression. Let σ = {x1 7→
s1} ◦ . . . ◦ {xn 7→ sn} in the following.
We treat the (beta)-reduction in detail, and omit the details for (case)- and
(delta)-reductions, since the proofs are completely analogous. Hence, let Φ(t) → s
by a (beta)-reduction. I.e., Φ(t) = R[(λx.r) v] → R[r[v/x]] = s. Then there exists
a context R′ and expressions r0, v0, such that R = Φ(σ(R′)), r = Φ(σ(r0)),
v = Φ(σ(v0)). Since no (ls,cp)- and (ls,lll)- reductions are applicable to t we also
have that t = let x1 = s1, . . . , xn = sn in R′[(λx.r0) v0]. Lemma B.5 shows that
let x1 = s1, . . . , xn = sn in R′[] is a reduction context of Llet. The expression
v0 must be a value, since v is a value and no (ls,lll)- and no (ls,cp)-reductions
are applicable to t.
Hence, we can apply a (betalet)-reduction to t:

let x1 = s1, . . . , xn = sn in R′[(λx.r0) v0]
ls,betalet−−−−−−→ let x1 = s1, . . . , xn = sn in R′[let x = v0 in r0].

Now it is easy to verify that Φ(t′) = s holds. ut

Lemma B.7. The following properties hold:

1. For all t ∈ Llet: if t is an answer, then Φ(t) is a value for L, and if Φ(t) is

a value (but not a variable), then t
ls,∗−−→ t′ where t′ is an answer for Llet.

2. For all t ∈ L: t is a non-variable value iff Φ(t) is an answer for Llet.
3. Let t1, t2 ∈ Llet with t1

ls−→ t2. Then either Φ(t1) = Φ(t2) or Φ(t1) → Φ(t2).

4. Let t1 ∈ Llet with Φ(t1) → t′2. Then t1
ls,+−−−→ t2 with Φ(t2) = t′2.

26 David Sabel and Manfred Schmidt-Schauß

Proof. Part 1 and 2 follow by definition of values and answers in L and Llet and
the definitions of Φ, Φ. Note that it may be possible that Φ(t) is a value, but for
t some (ls,lll)- or (ls,cp)- reductions are necessary to obtain an answer in Llet.
3: If the reduction is a (ls,lll) or (ls,cp), then Φ(t1) = Φ(t2). If the reduction is a
(betalet), (deltalet), or (caselet), then Φ(t1) → Φ(t2) by the reduction with the
same name. Part 4 follows from Lemma B.4 and B.6. ut

Lemma B.8. Φ and Φ are convergence equivalent.

Proof. We have to show four parts:

– t ↓ =⇒ Φ(t) ↓: This follows by induction on the length of the evaluation of
t. The base case is shown in Lemma B.7, part 1. The induction step follows
by Lemma B.7, part 3.

– Φ(t) ↓ =⇒ t ↓: We use induction on the length of the evaluation of Φ(t). For
the base case Lemma B.7, part 1 shows that if Φ(t) is a (non-variable) value,
then t ↓. For the induction step let Φ(t) → t′ such that t′ ↓. Lemma B.7,

part 4 shows that t
ls,+−−−→ t′′, such that Φ(t′′) = t′. The induction hypothesis

implies that t′′ ↓ and thus t ↓.
– t ↓ =⇒ Φ(t) ↓: This follows by induction on the length of the evaluation

of t. The base case follows from Lemma B.7, part 2. For the induction step
let t

a−→ t′, where t′ ↓ and a ∈ {(beta), (delta), (case)}. If a = (delta) then

Φ(t)
ls,deltalet−−−−−−→ Φ(t′), and hence the induction hypothesis shows Φ(t′) ↓ and

thus Φ(t) ↓. For the other two cases we have Φ(t)
ls,a−−→ t′′, with Φ(t′′) = t′.

The second part of this proof shows that t′ ↓ implies t′′ ↓. Hence, Φ(t) ↓.
– Φ(t) ↓ =⇒ t ↓: This follows, since the first part of this proof shows Φ(t) ↓

implies Φ(Φ(t)) ↓, and since Φ(Φ(t)) = t. ut

The framework in [SSNSS08] shows that convergence equivalence and composi-
tionality of Φ imply adequacy, i.e.:

Corollary B.9 (Adequacy of Φ). Φ(s) ≤let,P,T Φ(t) =⇒ s ≤P,T t.

Lemma B.10 (CIU-Lemma). Let s, t :: T be two expressions of L such that
for all P-value substitutions σ and for all P-reduction contexts R, such that
R[σ(s)], R[σ(t)] are closed, the implication R[σ(s)] ↓ =⇒ R[σ(t)] ↓ is valid.
Then s ≤P,T t holds.

Proof. Let R[σ(s)] ↓ =⇒ R[σ(t)] ↓ hold for all P-value substitutions σ
and P-reduction contexts R, such that R[σ(s)], R[σ(t)] are closed. We show
that Φ(s) ≤let,P,R,T Φ(t) holds. Then the context lemma B.3 shows that
Φ(s) ≤let,P,T Φ(t) and the previous corollary implies s ≤P,T t.
Let Rlet be a reduction context in Llet such that Rlet [Φ(s)] and Rlet [Φ(t)] are
closed and Rlet [Φ(s)] ↓. We extend the translation Φ to reduction contexts: For
reduction contexts Rlet that are not a let-expression, Φ(Rlet) is defined anal-
ogous to the translation of expressions. For Rlet = let x1 = v1 in (let x2 =
v2 in (. . . (let xn = vn in R′let)))) where R′let is not a let-expression we define

A Logic for Functional Programs 27

Φ(Rlet) = Φ(R′let)[σ(·)], where σ := σn is the substitution defined inductively by
σ1 = {x1 7→ v1}, σi = σi−1 ◦ {xi 7→ vi}.
Since Rlet [Φ(s)] ↓ and Φ(Rlet [Φ(s)]) = R′[σ(Φ(Φ(s)))] = R′[σ(s)] where R′ is a
reduction context for L and σ is a value substitution, convergence equivalence of
Φ shows R′[σ(s)] ↓. Since R′[σ(s)] and R′[σ(t)] are closed, the precondition of the
lemma now implies R′[σ(t)] ↓. Since R′[σ(t)] = R′[σ(Φ(Φ(t)))] = Φ(Rlet [Φ(t)])
and since Φ is convergence equivalent, we have R[Φ(t)] ↓. ut

Proposition B.11. The transformation (beta), (delta), and (case) are correct
program transformations in L.

Proof. We use the CIU-Lemma B.10: Let a ∈ {(beta), (delta), (case)}. Let s
a−→ t,

R be a reduction context, and σ be a value substitution, such that R[σ(s)] is
closed. If R[σ(t)] ↓, then R[σ(s)] a−→ R[σ(t)] by a standard reduction, and thus
R[σ(s)] ↓.
For the other direction let R[σ(s)] ↓, i.e. R[σ(s)] → t1

∗−→ tn where tn is a value.
Since standard reduction is unique one can verify that then R[σ(s)] a−→ R[σ(t)] =
t1 must hold, i.e. R[σ(t)] ↓. ut

Theorem B.12 (CIU-Theorem). For P-expressions s, t :: T : R[σ(s)] ↓ =⇒
R[σ(t)] ↓ for all P-value substitutions σ and P-reduction contexts R where
R[σ(s)], R[σ(t)] are closed if, and only if s ≤P,T t holds.

Proof. One direction is the CIU-Lemma B.10. For the other direction, let
s ≤P,T t hold and R[σ(s)] ↓ for a P-value substitution σ = {x1 7→
v1, . . . , xn 7→ vn}, where σ(s), σ(t) are closed, and let R be a P-reduction
context. Since (beta) is correct, we have R[(λx1.xn.s) v1 . . . vn] ∼P,T

R[σ(s)]. Thus, R[(λx1.xn.s) v1 . . . vn] ↓ and applying s ≤P,T t we derive
R[(λx1.xn.t) v1 . . . vn] ↓. Correctness of (beta) shows R[σ(t)] ↓. ut

Applied to extensions P ′ of P, we obtain the following corollary, since every
P-expression is also an P ′-expression:

Corollary B.13. Let P be a program. For P-expressions s, t :: T : R[σ(s)] ↓
=⇒ R[σ(t)] ↓ for all extensions P ′ of P and all P ′-value substitutions σ and
P ′-reduction contexts R where R[σ(s)], R[σ(t)] are closed if, and only if s ≤P∀,T t
holds.

B.3 Local CIU-Theorems

In this subsection we show that the CIU-theorem can be made stronger by
restricting R and σ to be free of function symbols from F .
Let an F-free expression, value, or context be an expression, value, or context
that is built over the language without function-symbols, but where ⊥-symbols
of every type are allowed according to Assumption 3.4.
We will use the lambda-depth-measure for subexpression-occurrences s of some
expression t: it is the number of lambdas and pattern-alternatives that are
crossed by the position of the subexpression.

28 David Sabel and Manfred Schmidt-Schauß

Lemma B.14 (CIU-Lemma F-free). Let s, t :: T be two P-expressions of
L such that for all F-free P-value substitutions σ and all F-free P-reductions
contexts R such that R[σ(s)], R[σ(t)] are closed: R[σ(s)] ↓ =⇒ R[σ(t)] ↓. Then
s ≤P,T t holds.

Proof. We show that the condition of this lemma implies the precondition of the
CIU-lemma. Let s, t :: T be two expressions of L such that for all F-free value
substitutions σ and all F-free reductions contexts R where R[σ(s)], R[σ(t)] are
closed: R[σ(s)] ↓ =⇒ R[σ(t)] ↓. Let R be any reduction context and σ be any
value substitution such that R[σ(s)], R[σ(t)] are closed, and assume R[σ(s)] ↓.
Let n be the number of reductions of R[σ(s)] to a value. We construct F-free
reduction contexts R′ and F-free value substitutions σ′ as follows: apply n + 1
times a delta-step for every occurrence of function symbols in R and σ. As a last
step, replace every remaining function symbol by ⊥ of the appropriate type. Note
that a single reduction step can shift the bot-symbols at most one lambda-level
higher. By standard reasoning and induction, we obtain that R′[σ′(s)] ↓, by using
the reduction sequence of R[σ(s)] also for R′[σ′(s)], where the induction is by
the number of reduction steps. The assumption now implies that R′[σ′(t)] ↓, We
have R′[σ′(t)] ≤P,T R[σ(t)], since delta-reduction is correct and the insertion of
⊥ makes the expression smaller w.r.t. the contextual ordering. Hence R[σ(t)] ↓.
Then we can use the CIU-Theorem B.12. ut

We are now able to prove Theorem 4.1. The claim is:

For s, t :: τ ∈ L: R[σ(s)] ↓ =⇒ R[σ(t)] ↓ for all F-free P-value substi-
tutions σ and F-free P-reduction contexts R, where R[σ(s)], R[σ(t)] are
closed if, and only if s ≤P,τ t holds.

Proof (of Theorem 4.1). One direction is the F-free CIU-Lemma B.14. The other
direction is the same as in the proof of the local CIU-theorem B.12. ut

Corollary B.15. Let s, t :: τ ∈ L. If for all closing F-free P-value substitutions
σ, we have σ(s) ≤P,τ σ(t), then s ≤P,τ t.
If for all closing F-free P-value substitutions σ, we have σ(s) ∼P,τ σ(t), then
s ∼P,τ t.

Proof. Follows from the F-free CIU-theorem 4.1. ut

Corollary B.16. Let s, t :: τ ∈ L. If for all closing F-free P-value substitutions
σ, σ(s) and σ(t) standard reduce to the same value, then s ∼P,τ t.

Proof. Follows from the F-free CIU-theorem 4.1, since reduction of R[σ(s)] (re-
spectively R[σ(t)] first evaluates the expression σ(s) (respectively σ(t)). ut

B.4 Properties of Ω-Expressions

We show that the property of being an Ω-expression inherits to reduction con-
texts:

A Logic for Functional Programs 29

Proposition B.17. Let s :: τ be an Ω-expression. Then for every reduction
context R[· :: τ], the expression R[s] is an Ω-expression.

Proof. This follows by structural induction of R. If R is the empty context
then the claim obviously holds. For the induction step there exists a reduction
context R1 with R = R1[([·] t)], R = R1[(v [·])], R = R1[(case [·] alts)], or
R = R1[(c v1 . . . vi [·] si+1 . . . sn)].
It is easy to verify that for any closing value substitution σ the expression
σ(s t), σ(v s), σ(case s alts), or σ(c v1 . . . vi s si+1 . . . sn), respectively,
cannot be evaluated to a value, since σ(s)⇑. Hence, (s t), (v s), (case s alts), or
(c v1 . . . vi s si+1 . . . sn), respectively, is an Ω-expression. Thus, the induction
hypothesis can be applied to R1 which shows that R[s] is an Ω-expression. ut

Corollary B.18. Let s, t :: τ and let s be an Ω-expression. Then s ≤P,τ t. If
also t is an Ω-expression, then s ∼P,τ t.

Proof. We only prove s ≤P,τ t, since the other direction is symmetric. We use
the CIU-Theorem B.12: Let R be a reduction context, σ be a value substitution
such that σ(s), σ(t) are closed. Then σ(s) must be an Ω-expression, and by
Proposition B.17 R[σ(s)] is an Ω-expression, too. Thus R[σ(s)]⇑, and s ≤P,τ t
holds. The second claim follows by symmetry. ut

C Proof of Theorem 5.4

In the following we intend to show that ≤P,T and ∼P,T do not change, when
P is extended to P ′. The technique is to show a CIU-Theorem for P that only
uses P-reduction contexts and P-value substitutions.

In the following, we will add a sequentializing construct that always comes with
two arguments. The expression (s; t) can be seen as an abbreviation for ((λ .t)s),
where we assume that the seq-expressions are labelled such that they can be
distinguished from other applications. Note that the seq-construct will be used,
since we deal with subexpressions that contain free variables, and so the progress-
lemma is not applicable. E.g. ((λx. . . .) (case y . . .)) may be irreducible, but
not a value. However, for the lemma below it is necessary to be able to apply
a general kind of beta-reduction to this expression. We also permit the symbol
Bot, labeled with a type, for Ω-expressions. The extended set of VN-reductions
is in Figs. 2, 3 and 4.

Lemma C.1. Let P be a program and P ′ be an extension of P. Let v be a closed
F-free P ′-value of closed P-type T , and assume that v

VN ,∗−−−→ v′, where v′ is VN-
irreducible. Then v′ is a closed F-free value such that every subexpression of v′

has a P-type. In particular, v′ is a P-value.

Proof. We have assumed that there is a closed and VN-irreducible value v′ with
v

VN ,∗−−−→ v′. It is obvious that v′ is a value.

30 David Sabel and Manfred Schmidt-Schauß

Assume for contradiction that there is a subexpression s1 of v′ of non-P-type.
We choose s1 as follows: It is not in the scope of a binder that binds a variable of
non-P-type. This is possible, since if s1 is within such a scope, then we can choose
another s′1 as follows: if it is a lambda-binder, then we choose the corresponding
abstraction. If the binding comes from a pattern in a case-expression, then the
case-expression is of the form caseT s′1 (c x1 . . . xn) → r . . ., where T is a P ′-type
and s1 is contained in r. In this case we choose s′1 as the next one. This selection
process terminates, since the binding-depth is strictly decreased. We arrive at
an expression s1 of non-P-type that is not within the scope of a non-P-binder.

1. s1 cannot be an application. Assume otherwise. Then s1 = s′1 s′2 . . . s′n with
n ≥ 2, such that s′1 is not an application. Obviously, s′1 is also of non-P-type.
Now s′1 cannot be a variable, since all bound variables above s1 have P-type.
The expression s′1 can also not be an abstraction, Bot, a seq-expression, or a
case-expression, since v′ is irreducible. It cannot be a constructor application
due to typing. Hence this case is impossible.

2. s1 cannot be in function position in an application (s1 s2). Due to the pre-
vious item, s1 s2 must have a P-type, and s1 is not an application. Now s1

cannot be a variable, since all variables above s1 have P-type. The expression
s1 can also not be an abstraction, Bot, a seq-expression, or a case-expression,
since v′ is irreducible. It cannot be a constructor application, due to typing.
Hence this case is impossible.

Now we choose an s1 such that it has maximal size. Note that s1 is irreducible,
has a P ′-type, and it cannot be the top expression v′, since v′ has a P-type. We
check all the remaining cases for the location of s1:

– s1 cannot be an argument of a constructor due to maximality.
– s1 cannot be the body of an abstraction due to maximality.
– s1 cannot be the second argument in (r; s1) due to maximality, but may be

the first argument in the seq-expression.
– s1 cannot be an argument in an application due to maximality, and not in

function position as shown above.
– s1 cannot be the result expression of an alternative due to maximality, but

may be the first argument of a case.

Now we analyze the last cases:

1. s1 cannot be the first argument of a seq-expression: We scan all syntactic
cases of s1. Since v′ is irreducible, s1 cannot be a seq-expression, a case-
expression, a constructor-expression, Bot, an abstraction, nor a variable. An
application is not possible as shown above.

2. s1 cannot be the first argument of a case: We scan all syntactic cases of
s1. Since v′ is irreducible, s1 cannot be seq-expression, a case-expression, a
constructor-expression, Bot. Due to typing, an abstraction is impossible. A
variable is impossible since there are only P-scopes. An application is not
possible as shown above.

A Logic for Functional Programs 31

C.1 VN-reductions: Approximating the Values

The goal of this subsection is to show that P-values and P-reduction contexts
are sufficient to check global contextual equality of P-expressions. The argu-
ments require several steps. Since we did not a find a proof that VN-reduction
is strongly terminating, we use approximation-methods.
Note that our proof only works, since we need to take only F -free value substi-
tutions and F -free reduction contexts into account. Note also, that even if we
could prove termination of the VN-reduction, this would not imply that every
monomorphic P-theorem is a global tautology, since the object sets MP′,T may
also include non-F -free values.

Partial Termination of VN-Reduction We show that VN-reduction
without VNbeta- and VNcase-reductions terminates: Therefore we use the
following measure css of expressions:

css(case s (p1 → r1) . . . (pn → rn)) = 1 + 2css(s) + maxi=1,..,n(css(ri))
css(s t) = 1 + 2css(s) + 2css(t) css(s; t) = 2css(s) + css(t)
css(Bot) = 1 css(x) = 1
css(c s1 . . . sn) = 1 + css(s1) + . . . + css(sn) css(λx.s) = 1 + css(s)

Lemma C.2. Every VN-reduction sequence without the (VNcase)- and
(VNbeta)-reduction steps is finite.

Proof. We check that for every possible reduction rule, the measure is strictly
decreased:

– The reduction rules that reduce to Bot strictly reduce the measure.
– seqc: reduces the size by 2.
– seqlam,seqx: strictly reduce the size.
– seqapp: 4css(s1)+2css(s2)+1+2css(s3) > 2css(s1)+2css(s2)+1+2css(s3).
– seqseq: 4css(s1) + 2css(s2) + css(s3) > 2css(s1) + 2css(s2) + css(s3).
– caseseq: 4css(r) + 2css(s) + a > 2css(r) + 2css(s) + a.
– caseapp: 4css(t0) + 2max(css(ti)) + 2css(r) > 2css(t0) + max(2css(ti) +

2css(r)).
– casecase: 4css(t0)+2 max(css(ti))+max(css(ri)) > 2css(t0)+max(2css(ti)+

max(css(ri))).
– seqcase: 4css(t) + 2max(ri) + css(r) > 2css(t) + max(2css(ri) + css(r)). ut

Lemma C.3. All VN-reduction rules are (locally) correct.

Proof. Correctness of the bot-reduction-rules can be shown by using the CIU-
Theorem: Let s, t be P expressions of type T with s → t by a bot reduction, R
be a reduction context and σ be a closing value substitution for s and t. Then
it easy to verify that both, R[σ(s)] and R[σ(t)], diverge.
Correctness of the rules (seqlam), (seqx) follows from the
correctness of beta-reduction. Let s → t by a rule in

32 David Sabel and Manfred Schmidt-Schauß

(s t)VNS → (sVNS t) (s t)VNS → (s tVNS)
(s; t)VNS → (sVNS ; t) (s; t)VNS → (s; tVNS)
(case s . . .)VNS → (case sVNS . . .) (c s1 . . . sn)VNS → (c s1 . . . sVNS

i . . . sn)

Fig. 9. The VNS -label-shifting rules

{seqc, seqseq, seqapp, caseseq, caseapp, casecase, seqcase} then clearly
every evaluation of R[σ(s)] can be transformed into an evaluation of R[σ(t)]
and vice versa, where additionally the correctness of (beta) is needed.
Finally we consider the rules VNbeta and VNcase. Let s, t be P-expressions of
type T with s = (λx.s′) t′ and t = (t′; s′[t′/x]), i.e. s

V Nbeta−−−−−→ t. Let σ be a
closing value substitution for s, t. We distinguish two cases:

– σ(t′) is an Ω-expression. Then obviously σ(s), σ(t) are Ω-expressions, i.e.
σ(s) ∼P,T σ(t) by Corollary 4.4.

– σ(t′) is not an Ω-expression. Then there exists a value v such that
σ(t′) ∗−→ v. Correctness of the standard reduction rules implies v ∼P,T σ(t′).
Now we can transform σ(s) into σ(t) using (beta)-reductions: σ(s) =
(λx.σ(s′)) σ(t′) ∼P,T (λx.σ(s′)) v ∼P,T σ(s′)[v/x] ∼P,T σ(s′)[σ(t′)/x] ∼P,T

(σ(t′); s′[t′/x]).

We have shown that for all closing value substitutions σ: σ(s) ∼P,T σ(t). Hence
Corollary B.15 implies s ∼P,T t. Correctness of VNcase can be shown in a similar
way. ut

Now we want to show that infinite VN-reduction sequences for an expression
indicate that this expression can only be equal to Bot. Therefore, we define a
standard reduction that is usually applied to subexpressions of v, which are in
general open expressions.

Definition C.4. Let t be a (perhaps open) F-free expression. A VN-standard-
reduction of t is defined as follows: Apply the VNS-label-shift in Fig. 9 to t,
starting with tVNS and where no other subexpression is labelled VNS, and per-
form it exhaustively and also in all non-deterministic executions. The outermost-
leftmost VN-reduction according to Figs. 2, 3 and 4 is applied to a labelled redex,
where in case of a conflict the bot-reduction is preferred. The reduction is de-
noted as VNsr−−−→. If the VNsr-reduction is not a Bot-reductions, then it is denoted
as VNNBsr−−−−−−→.

Note that there may be multiple redexes with VNS -labels, but due to the above
priority rules, the VN-standard-reduction is uniquely defined.
The standard-reduction sr−→ treats the seq-expressions (s; t) as an application of
the lambda-expressions ((λ .t) s). For counting the length of reduction sequences,
we assume that this lambda-expression is labelled to distinguish it from other
abstractions. The seq-reduction (v; s) → s, where v is a closed value (which

A Logic for Functional Programs 33

seqcbv (v; s) → s if v is a value
betacbv ((λx.s) v) → s[v/x]) if v is a value
casecbv caseK (c v1 . . . vn) . . . (c x1 . . . xn) -> t . . .

→ t[v1/x1, . . . , vn/xn] if (c v1 . . . vn) is a value

Fig. 10. Call-by-value-reduction rules

corresponds to 1 beta-reduction) is not counted as a beta-reduction in the length
of standard-reductions, but as a seqlam-, seqx-, or seqc-reduction.
We repeat the reduction rules of our logic adapted to the seq-notation and
restricted to F-free expressions:

Definition C.5. The call-by-value reduction rules are the rules in Fig. 10. The
call-by-value reduction is denoted as cbv−−→. Note that a value v is defined as
v, vi ∈ Val ::= x | λx.s | (c v1 . . . vn), i.e. a variable, an abstraction, or a
constructor-expression (c v1 . . . vn), where the immediate subexpressions vi are
also values. We also need the parallel reduction of several cbv−−→-reductions, which
is defined like the 1-reduction in [Bar84], and is denoted as

par−−→.
The parallel reduction is used w.r.t. further restrictions. Let s be an F-free ex-
pression and σ be a value-substitution. Then the notation σ(s)

par ,s−−−→ r means
that the reduction is parallel as above, and that for all free variables x of s, the
reduction within the subexpressions σ(x) is the same.

Now we analyse in a series of lemmas the relation between call-by-value reduc-
tion and the VNsr-reduction for F-free expressions. Since the analysis can be
restricted to VNsr-reductions without Bot-reductions, we consider the VNNBsr-
reduction in the following lemmas.

Lemma C.6. Let s be an F-free expression and σ be a value-substitution. If
σ(s) is a value, then s is a value.

Proof. This follows from the possible structures of values.

We distinguish between internal and noninternal-reductions within the parallel
reduction: Let s be an F-free expression and σ be a value-substitution. A parallel
cbv-reduction of σ(s) is called s-internal if there is no position p in σ(s) that is

a prefix of the VNsr-redex of s. The notation is
par ,s,int−−−−−−→. This notation is also

extended to expressions s′ such that every position of s is also a position in s′.

Lemma C.7. Let s be an F-free expression and σ be a value-substitution. If
σ(s)

par ,s−−−→ r is not s-internal and is free of Bot-reductions, then the reduction

can be split into s
VNNBsr ,∗−−−−−−−→ s′ and σ(s′)

par ,s′,int−−−−−−→ r.

Proof. First we show that for a non-internal paralle reduction, thatthere is an

s′, such that s
VNNBsr−−−−−−→ s′ and σ(s′)

par ,s′

−−−−→ r: It is not possible that a position
in the parallel reduction is a proper prefix of the VNsr-redex position. If the
VNsr-redex position is also a position in

par−−→, then there are two possibilities:

34 David Sabel and Manfred Schmidt-Schauß

1. There is no VN-reduction at the position in s, i.e. s is VN-irreducible. This
is not possible if the cbv-reduction is a (seqcbv). In the cases of a (betacbv)
or a (casecbv), the subexpression at p is VNNBsr-irreducible. Hence this case
cannot occur.

2. There is VNsr-reduction at this position in s. Scanning all possibilities of
VNsr-reductions shows that in the case of VN-reductions there is some s′

with s
VNNBsr ,∗−−−−−−−→ s′ and σ(s′)

par ,s′

−−−−→ r.

Repeating this splitting will terminate, since the number of positions in
par ,s−−−→ is

properly decreased in every step, hence we will arrive at an internal reduction,

i.e.: s
VNNBsr ,∗−−−−−−−→ s′ and σ(s′)

par ,s′,int−−−−−−→ r.

Lemma C.8. Let s be an F-free expression and σ be a value-substitution. If

σ(s)
(par ,s,int),∗−−−−−−−−→ v, where v is a value, then s is VNNBsr-irreducible.

Proof. The
(par ,s,int),∗−−−−−−−−→-reduction does not remove s-positions: it only may

change the labels of the positions that are leaves in s. If s is VNNBsr-reducible,
then there is a position that is also cbv-reducible in all expressions that are
derived from σ(s), hence the final expression cannot be a value.

Now we inspect how internal parallel reductions on σ(s) and VNsr-reductions
on s can overlap using a diagram notation.

Lemma C.9. Let s be an F-free expression and σ be a value-substitution. If
σ(s)

par ,s,int−−−−−−→ r, then there is some s′ with s
par ,s,int−−−−−−→ s′, and a substitition σ′

such that σ(x)
par−−→ σ′(x) for all x, and r = σ′(s′).

Proof. This follows from the compatibility of the parallel reduction with the
substitution.

Lemma C.10. Let s1 be an F-free expression and σ be a value-substitution.
If σ(s1)

par ,s1,int−−−−−−→ σ′(s2), and s2
VNNBsr−−−−−−→ s3, then there is a reduction

s1
VNNBsr−−−−−−→ s4, and either σ(s4)

par ,s4,int−−−−−−→ σ′(s3) or σ(s4)
par ,s4,int−−−−−−→ s2, but

only if s1
VNNBsr−−−−−−→ s4 is not a VNbeta nor a VNcase. The diagrams are as

follows:

σ(s1)
par ,s1,int //

VNNBsr , (s1→s4)

���
�
�

σ′(s2)

VNNBsr (s2→s3)

��
σ(s4)

par ,s4,int //_____ σ′(s3)

σ(s1)
par ,s1,int //

VNNBsr , (s1 → s4)
not VNbeta,VNcase ���

�
�

σ′(s2)

VNNBsr (s2→s3)

��
σ(s4)

par ,s4,int
77oooooo
σ′(s3)

A Logic for Functional Programs 35

Proof. The position of the VNsr-redex in s is not influenced by
par ,s,int−−−−−−→-

reductions. Hence it is sufficient to check the VN-reductions. This is done in
the following for a selection of the rules, where we mention a selection of the
essential cases.
Rule (seqapp). Let s1 = (t1; t2) t3 where σ(t1) is a value. Let s2 = (t′2 t′3),

σ((t1; t2) t3)
par ,s1,int //

VNNBsr (s1→s4)

���
�
�

σ′(t′2 t′3)

σ(t1; (t2 t3))

par ,s4,int
55lllllll

Rule (VNbeta). Let s1 = ((λx.s) t), s2 = ((λx.s′) t′), s3 = (t′; s′[t′/x]), s4 =
t; s[t/x].

σ((λx.s) t)
par ,s1,int //

VNNBsr (s1→s4)

���
�
�

σ′((λx.s′) t′)

VNNBsr (s2→s3)

��
σ(t; s[t/x])

par ,s4,int //_____ σ′(t′; s′[t′/x])

The rule (VNcase) leads to a diagram similar to (VNbeta) and the rules (seqseq),
(caseapp),(casecase), (seqcase) lead to a triangle-diagram as above for (seqapp).

Lemma C.11. Let t be an expression. If for some closing value-substitution σ

the evaluation σ(t)
cbv,∗−−−→ v is valid for some value v, then the VNsr-evaluation

of t terminates, i.e., t
VNsr ,∗−−−−−→ t′ for some VNsr-irreducible t′ and σ(t′)

sr,∗−−→ v′

with v′ ∼ v.

Proof. Note that if the VNsr -reduction sequence of t includes a Bot-reduction,
then the final result will be Bot, and hence σ(t) cannot reduce to a value. Hence

no Bot-reduction could be used in any reduction sequence t
VNsr ,∗−−−−−→ t′.

The reduction σ(t)
cbv,∗−−−→ v can also be written as a sequence σ(t1)

par ,t1−−−−→
σ(t2)

par ,t2−−−−→ . . . σ(tn)
par ,tn−−−−→ . . . v. This needs some standard reasoning on the

length of reduction sequences: if in one of the subexpressions σ(x) a reduction
is applied, which is missing in the subepxresssions of the other subexpressions
σ(x) then all the others could also be reduced at the same position, and there
exists a cbv-reduction sequence to a value that is not longer than before.
We show by induction on the number of parallel reductions that there is a termi-
nating VNNBsr-reduction of t1. Lemma C.7 shows that the parallel reductions
can be split into a prefix of VNsr-reductions and a subsequent internal parallel
reduction.
Using Lemma C.10, we can show that the VNNBsr-reductions can be shifted to
the start of the sequence, where the induction ordering can be construted using
the number of parallel-reductions to the right of VNNBsr-reduction sequences.
The square-diagrams are well-behaved. For the triangle-diagrams, Lemma C.2

36 David Sabel and Manfred Schmidt-Schauß

shows that these cannot applied infinitely often. In this case the construction
can be illustrated as follows:

·
VNNBsr ��

// ·
VNNBsr��·

22eeeeeeeee

·

66nnnnnnnnnn
VNNBsr ��

·

99sssssssssss

VNNBsr ��
·

99s
s

s
s

s
s

s
s

s
s

s

The final situation is that of Lemma C.8, which tells us that the VNNBsr-
reduction sequence of the starting expression terminates with an VNsr-
irreducible expression. Since there also holds a standardization theorem for the
usual standard reduction, and reductions are correct, also the final claim of the
lemma holds.

Corollary C.12. If t has an infinite VNsr-reduction, then for every closing
value-substitution σ: σ(t)⇑, i.e. t is an Ω-expression.

Proof. Assume that for some σ: σ(t) ↓. Then Lemma C.11 shows that t has a
finite VNsr -reduction, which contradicts the assumption.

Now we can justify the following mathematical (non-effective) construction
ValueConstrn of a P-value for a P ′-value v of P-type, that, given a depth n
cuts the expressions at lambda-depth n by replacing subexpressions by Bot.

– ValueConstrn(t): Apply the VN-standard-reduction to t: if it does not ter-
minate, then the result is Bot. Otherwise, let t′ be the irreducible result of
the VN-standard-reduction sequence starting from t.

– Apply the same construction to the immediate subexpressions of t′ and re-
place these subexpressions with the results.

– If the abstraction-depth of the subexpression exceeds n+1, then replace the
subexpression by Bot not changing its type.

– Apply the same construction to the bodies of the maximal abstractions of t′

using parameter n− 1 and replace these subterms with the results.

Lemma C.13. Let P ′ be an extension of the program P. Given a P ′-value v of
P-type, the construction ValueConstrn(v) results in a P-value v′ with v′ ≤P′,T v.

Proof. The (mathematical) construction terminates and results in a value.
Lemma C.1 shows that the result is a P-value.

Lemma C.14. Let t be an expression. If for some closing value-substitution σ

the reduction σ(t)
sr,n−−→ v holds for some value v, and t′ is constructed from t

using ValueConstr for binder-depth n + 1, then σ(t′)
≤n,sr−−−−→ v′ ≤P′,T v.

A Logic for Functional Programs 37

Proof. This follows from Lemma C.11, and since the Bot-insertions are below
binder-depth n, and since Ω-expressions are smaller than other expressions w.r.t.
≤P′,T .

Lemma C.15. Let s, t be expressions, such that for all closing P-value substi-
tution and for all closed P-reduction contexts R the implication R[σ(s)] ↓ =⇒
R[σ(t)] ↓ holds. Then for all closing P ′-value substitutions σ′ and all closed
P ′-reduction contexts R′, also the implication R′[σ′(s)] ↓ =⇒ R′[σ′(t)] ↓ holds.

Proof. Let σ′ be a P ′-closing value substitution and R′ be a closed P ′-reduction
context, such that R′[σ′(s)] ↓ holds. If the type of R′ is a P ′-type, then we use
R′′ = (R′; True), where we w.l.o.g. assume that the type Bool with constructors
True, False is a P-type. Let n be the length of the reduction of R′′[σ′(s)],
let σ′ = {x1 7→ v′1, . . . , xm 7→ v′m}, and let r′ := λx.R′′[x]. Then for every v′i
construct vi := ValueConstrn(v′i), i.e. for depth n, and also construct r from
r′ for depth n, i.e. r = ValueConstrn(r′). Then with R[·] := r [·], we have
R[σ(s)] ↓, since every standard reduction step reduces the lambda-depth of the
approximating Bots at most by one, and by Lemma C.13. By the assumption,
we also have R[σ(t)] ↓, and since r ≤P r′ and σ(t) ≤P σ′(t), we also obtain
R′′[σ′(t)] ↓.

We are now able to prove Theorem 5.4. The claim is:

Let P ′ be an extension of P. For s, t :: T ∈ L, where T is a P-type, the
implication R[σ(s)] ↓ =⇒ R[σ(t)] ↓ holds for all F-free P-value substi-
tutions σ and F-free P-reduction contexts R, where R[σ(s)], R[σ(t)] are
closed if, and only if s ≤P′,T t holds.

Proof (of Theorem 5.4). This follows from the F-free CIU-theorem 4.1 and from
Lemma C.15.

The VN-reductions in Figs. 2, 3 and 4 are globally correct reductions:

Theorem C.16. The transformations in Figs. 2, 3 and 4, i.e. the Bot-
reductions, the adapted call-by-name reduction rules and the case-shifting trans-
formations, are globally correct program transformations in L.

Proof. Lemma C.3 shows that the transformations in Figs. 2, 3 and 4 are correct
if only P-reduction contexts and P-value-substitutions are used. Then Theorem
5.5 (which is a direct consequence of Theorem 5.4) shows that the transforma-
tions are also globally correct. ut

D Bisimulation

We show that equality of expressions can be determined by bisimulation. For
simplicity, we only prove the properties of a simulation. We assume that a pro-
gram P is fixed. The proof method is basically from Howe [How89], but since it

38 David Sabel and Manfred Schmidt-Schauß

is used here for a typed language, the adaptation of Gordon [Gor99] for PCF is
closer. A difference is that we have recursive polymorphic types and data con-
structors. The approach was also worked out for a call-by-need non-deterministic
calculi in a similar way in [Man05,MSS10].
A substitution σ that replaces variables by closed values (of equal type) and
that closes the argument expressions is called a closing value substitution. In
this section we assume that binary relations ν only relate expressions of equal
monomorphic type, i.e. s ν t only if s, t have the same monomorphic type. The
restriction of the relation µ to the type T is usually indicated by an extra suffix
T : i.e. µT . Typing is usually omitted, if it is clear from the context. We mention
typing only if it is necessary. This is justified, since types appear as labels, and
thus we can argue as in a simply typed system. Substitutions are also typed and
can only replace variables by expression of the same type.
Let ν be a binary relation on closed expressions. Then s νo t for any expressions
s, t iff for all closing value substitutions σ: σ(s) ν σ(t). Conversely, for binary
relations µ on open expressions, µc is the restriction to closed expressions.

Lemma D.1. For a relation ν on closed expressions, the equality ((ν)o)c = ν
holds. For a relation µ on open expressions: s µ t =⇒ σ(s) (µ)c σ(t) for all
closing value substitutions σ is equivalent to µ ⊆ ((µ)c)o.

For simplicity, we sometimes use as e.g. in [How89] the higher-order abstract syn-
tax and write τ(..) for an expression with top operator τ , which may be case,
application, a constructor or λ, and θ for an operator that may be the head of
a value i.e. a constructor or λ. Note that θ may represent also the binding λ
using θ(x.s) as representing λx.s. Abstract syntax expressions x.s only occur in
relational formulas, where we permit α-renaming and follow the convention that
x.s µ x.t means s µ t for open expressions s, t.
A relation µ is operator-respecting, iff si µ ti for i = 1, . . . , n implies
τ(s1, . . . , sn) µ τ(t1, . . . , tn).

Definition D.2. Let ≤b be the greatest fixpoint (on the set of binary relations
over closed expressions) of the following operator [·] on binary relations ν over
closed expressions: s [ν] t if s⇑ or s ↓ (c s1 . . . sn) and t ↓ (c t1 . . . tn) and si ν ti
for all i or s ↓ λx.s′ and t ↓ λx.t′ and s′ νo t′

The principle of co-induction for the greatest fixpoint of [·] shows that for every
relation ν on closed expressions with ν ⊆ [ν], we derive ν ⊆ ≤b. This obviously
also implies νo ⊆ ≤o

b .

Lemma D.3. ≤P ⊆ ≤o
b

Proof. Since reduction is deterministic, we have (≤P)c ⊆ [(≤P)c] and hence
(≤P)c ⊆ ≤b. This implies ≤P ⊆ ≤o

b .

Lemma D.4. For closed values (c s1 . . . sn), (c t1 . . . tn) of equal type, we have
(c s1 . . . sn) ≤b (c t1 . . . tn) iff si ≤b ti. For abstractions λx.s, λx.t of equal type,
we have λx.s ≤b λx.t iff s ≤o

b t.

A Logic for Functional Programs 39

Proof. These properties follow from the fixpoint property of ≤b.

Lemma D.5. The relations ≤b and ≤o
b are reflexive and transitive

Proof. Transitivity follows by showing that ν := ≤b ∪ (≤b ◦ ≤b) satisfies
ν ⊆ [ν] and then using co-induction.

The goal in the following is to show that ≤b is a precongruence. We will show
that this implies that ≤o

b = ≤c.

Definition D.6. The congruence candidate ≤̂o
b is a binary relation on open

expressions (ala Howe) and is defined inductively on the structure of expressions:

1. x ≤̂o
b s if x ≤o

b s.
2. τ(s1, . . . , sn) ≤̂o

b s if there is some expression τ(s′1, . . . , s
′
n) ≤o

b s with
si ≤̂o

b s′i.

The following is easily proved by standard arguments (for Howe’s technique).

Lemma D.7.

1. ≤̂o
b is reflexive

2. ≤̂o
b and (≤̂o

b)
c are operator-respecting

3. ≤o
b ⊆ ≤̂o

b .
4. ≤̂o

b ◦ ≤o
b ⊆ ≤̂o

b .
5. (s ≤̂o

b s′ ∧ t ≤̂o
b t′) =⇒ t[s/x] ≤̂o

b t′[s′/x]
if s, s′ are closed values, i.e. the substitutions [s/x], [s′/x] replace variables
by closed values.

6. ≤̂o
b ⊆ ((≤̂o

b)
c)o

Proof. The proofs of the first claims are by structural induction. The last claim
(6) follows from part (5) using Lemma D.1.

Lemma D.8. The middle expression in the definition of ≤̂o
b can be chosen as

closed, if s, t are closed: Let s = τ(s1, . . . , sar(τ)), such that s ≤̂o
b t holds. Then

there are operands s′i, such that τ(s′1, . . . , s
′
ar(τ)) is closed, ∀i : si ≤̂o

b s′i and
τ(s′1, . . . , s

′
ar(τ)) ≤

o
b s.

Proof. The definition of ≤̂o
b implies that there is a expression τ(s′′1 , . . . , s′′ar(τ))

such that si ≤̂o
b s′′i for all i and τ(s′′1 , . . . , s′′ar(τ)) ≤

o
b t. Let σ be the substitution

with σ(x) := vx for all x ∈ FV (τ(s′′1 , . . . , s′′ar(τ))), where vx is the closed value
for the type of x that exists by Assumption 3.2.
Lemma D.7 now shows that si = σ(si) ≤̂o

b σ(s′′i) holds for all i. The relation
σ(τ(a′′1 , . . . , a′′ar(τ))) ≤o

b t holds, since t is closed and due to the definition of an
open extension. The requested expression is τ(σ(a′′1), . . . , σ(a′′ar(τ))).

The proof of the following theorem is an adaptation of [How96, Theorem 3.1] to
closing value substitutions.

40 David Sabel and Manfred Schmidt-Schauß

Theorem D.9. The following claims are equivalent.

1. ≤o
b is a precongruence

2. ≤̂o
b ⊆ ≤o

b

3. (≤̂o
b)

c ⊆ ≤b

Proof. The claim is shown by a chain of implications.

“1 =⇒ 2”: Let ≤o
b be a precongruence. Then we show that s ≤̂o

b t implies
s ≤o

b t by induction on the definition of ≤̂o
b .

– If s is a variable, then s ≤o
b t.

– Let s = τ(s1, . . . , sar(τ)). Then there is some τ(s′1, . . . , s
′
ar(τ)) ≤o

b t

with si ≤̂o
b s′i for every i. By induction on the expression struc-

ture: ∀i : si ≤o
b s′i. Since ≤o

b is a precongruence by assump-
tion, we derive τ(s1, . . . , sar(τ)) ≤o

b τ(s′1, . . . , s
′
ar(τ)) and furthermore

τ(s1, . . . , sar(τ)) ≤o
b s by transitivity of ≤o

b .
“2 =⇒ 3”: From ≤̂o

b ⊆ ≤o
b we have (≤̂o

b)
c ⊆ (≤o

b)
c = ≤b.

“3 =⇒ 2”: From (≤̂o
b)

c ⊆ ≤b we have ((≤̂o
b)

c)o ⊆ ≤o
b by monotonicity.

Lemma D.7 (6) implies ≤̂o
b ⊆ ((≤̂o

b)
c)o ⊆ ≤o

b .
“2 =⇒ 1”: Lemma D.7 and ≤̂o

b ⊆ ≤o
b together imply ≤̂o

b = ≤o
b , thus

≤o
b is operator-respecting by Lemma D.7 and a precongruence. ut

D.1 Determining the Congruence Candidate

Lemma D.10. If s → s′, then s ≤o
b s′

Proof. This holds, since standard reduction is deterministic and by the definition
of ≤o

b .

Lemma D.11. If s ≤̂o
b t and t → t′, then s ≤̂o

b t′

Proof. Follows from Lemma D.10.

Definition D.12. We call ≤̂o
b stable, iff for all closed s, s′, t: s (≤̂o

b)
c t and

s → s′ implies s′ (≤̂o
b)

c t.

Proposition D.13. If ≤b is a precongruence, then ≤b = ≤P .

Proof. Let s ≤o
b t. Then for all closing value substitutions σ: σ(s) ≤b σ(t)

by definition of open extensions. This implies that for all closed contexts C
and all closing value substitutions σ: ∀C : C[σ(s)] ≤b C[σ(t)], since ≤o

b is a
precongruence. Hence s ≤P t. The other direction follows from Lemma D.3.

Lemma D.14. Let s, t be closed expressions such that s = θ(s1, . . . , sn) is a
value and s ≤̂o

b t. Then there is some closed value t′ = θ(t1, . . . , tn) with t
∗−→ t′

and for all i : si ≤̂o
b ti.

A Logic for Functional Programs 41

Proof. The definition of ≤̂o
b implies that there is a closed expression

θ(t′1, . . . , t
′
n) with si ≤̂o

b t′i for all i and θ(t′1, . . . , t
′
n) ≤b t. We use induction on

the structure of s:
If s = λx.s′, then there is some closed λx.t′ ≤o

b t with s′ ≤̂o
b t′. The relation

λx.t′ ≤o
b t implies that t

∗−→ λx.t′′. Lemma D.10 now implies λx.s′ ≤̂o
b λx.t′′.

Definition of ≤̂o
b now shows that there is some closed λx.t(3) with s′ ≤̂o

b t(3) and
λx.t(3) ≤b λx.t′′. The latter relation implies t(3) ≤o

b t′′, which also shows s′ ≤̂o
b t′′.

If θ is a constructor, then there is a closed expression c(t′1, . . . , t
′
n) with si ≤̂o

b t′i
for all i and c(t′1, . . . , t

′
n) ≤b t. By applying the induction hypothesis to si ≤̂o

b t′i
we obtain that t′i

∗−→ t′′i , where t′′i are values, and hence c(t′′1 , . . . , t′′n) is a value.
It follows that si ≤̂o

b t′′i by Lemma D.11 and c(t′′1 , . . . , t′′n) ≤b t, by arranging the
reduction c(t′1, . . . , t

′
n) ∗−→ c(t′′1 , . . . , t′′n) from left to right to obtain a standard

reduction. The definition of ≤b implies that t
∗−→ θ(t(3)1 , . . . , t

(3)
n) with t′′i ≤b t

(3)
i

for all i. By definition of ≤̂o
b , we obtain si ≤̂o

b t
(3)
i for all i.

Proposition D.15. If ≤̂o
b is stable, then (≤̂o

b)
c ⊆ [(≤̂o

b)
c]. Hence (≤̂o

b)
c ⊆ ≤b

and ≤o
b is a precongruence.

Proof. Let s, t be closed, such that s ≤̂o
b t. Let s ↓ θ(s1, . . . , sn). Then

θ(s1, . . . , sn) (≤̂o
b)

c t by stability. There is some θ(t1, . . . , tn), such that t ↓
θ(t1, . . . , tn) and ∀i : si ((≤̂o

b)
c)o ti. This means that (≤̂o

b)
c ⊆ [(≤̂o

b)
c].

By co-induction and Lemma D.11, the relation (≤̂o
b)

c ⊆ ≤b, and hence also
≤̂o

b ⊆ ((≤̂o
b)

c)o ⊆ ≤o
b hold.

Theorem D.16. If ≤̂o
b is stable, then ≤̂o

b = ≤o
b = ≤P .

Proof. Lemma D.11, Propositions D.15, D.13 and Theorem D.9 show the claim.

It remains to show stability:

Proposition D.17. Let s, t be closed expressions, s ≤̂o
b t and s −→ s′ where s

is the redex. Then s′ ≤̂o
b t.

Proof. Let s, t be closed expressions, s ≤̂o
b t and s −→ s′ where s is the redex.

The relation s ≤̂o
b t implies that s = τ(s1, . . . , sn) and that there is some closed

t′ = τ(t′1, . . . , t
′
n) with si ≤̂o

b t′i for all i and t′ ≤o
b t.

– For the (beta)-reduction, s = s1 s2, where s1 = (λx.s′1), s2 is a closed value,
and t′ = t′1 t′2. Lemma D.14 shows that t′1

∗−→ λx.t′′1 with λx.s′1 ≤̂o
b λx.t′′1

and also s1 ≤̂o
b t′′1 . From s2 ≤̂o

b t′2 and since s2 is a value, we obtain the next
part of the standard reduction t′2

∗−→ t′′2 with s2 ≤̂o
b t′′2 . From t′

∗−→ t′′1 [t′′2/x]
we obtain t′′1 [t′′2/x] ≤b t. Lemma D.7 now shows s′1[s2/x] ≤̂o

b t′′1 [t′′2/x]. Hence
s′1[s2/x] ≤̂o

b t, again using Lemma D.7.

42 David Sabel and Manfred Schmidt-Schauß

– Similar arguments apply to the case-reduction.
– Suppose, the reduction is a δ-reduction. Then s ≤̂o

b t and s is a function
name. By the definition of ≤̂o

b , this means s ≤o
b t. Since s → s′ means also

s′ ∼o
b s, we also have s′ ≤o

b t. By Lemma D.7, this implies s′ ≤̂o
b t.

Proposition D.18. Standard reduction is stable in surface contexts

Proof. We use induction on the structure of contexts. The base case is proved
in Proposition D.17. Let S[s], t be closed, S[s] ≤̂o

b t and S[s] −→ S[s′],
where we assume that the redex is not at the top level. The relation
S[s] ≤̂o

b t implies that S[s] = τ(s1, . . . , sn) and that there is some t′ =
τ(t′1, . . . , t

′
n) ≤o

b t with si ≤̂o
b t′i for all i. If sj −→ s′j , then by induction hy-

pothesis, s′j ≤̂o
b t′j . Since ≤̂o

b is operator-respecting, we obtain also S[s′] =
τ(s1, . . . , sj−1, s

′
j , sj+1, . . . , sn) ≤̂o

b τ(t′1, . . . , t
′
j−1, t

′
j , t

′
j+1, . . . , t

′
n).

Theorem D.19. The following equalities hold: ≤̂o
b = ≤o

b = ≤P .

Proof. Follows from stability of ≤̂o
b using Propositions D.17, D.18 and from

Theorem D.16.

