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Abstract 

 

  Until now, the NW Indian Ocean was sparsely covered with coral proxy 

records, and records from the Maldives Archipelago do not exist. The first such coral 

proxy record from the central Maldives is presented in this study. It originates from a 

massive Porites lutea (Quoy and Gaimard, 1833) colony that was sampled March 

2007 in the lagoon of Rasdhoo Atoll (4°N/ 73°W), which is located in the central 

Maldives. The record spans a period of 90 yrs and reaches back to 1917 AD with 

monthly to bimonthly resolution. This study investigates temporal variations of the 

skeletal stable oxygen (δ18O) and carbon (δ13C) isotopes, the strontium-to-calcium 

(Sr/Ca), and the annual extension-rates, and their relationship to historical climate 

variations 1917-2007.  

Annual extension-rates show an increase over the 20th century, and are 

correlated with instrumental sea surface temperatures (SST). The interannual 

variation of the extension-rates within 2.5-4 years is driven by the El Niño-Southern 

Oscillation (ENSO). The amount of skeletal extension during the summer months is 

triggered by variations in the strength of the SW monsoon. Interannual and decadal 

variability in monsoon current activity (18-19 yrs) and rainfall over India are an 

expression of the summer monsoon strength. This is the reason why a statistical link 

between coral extension-rates and precipitation over India can be established. This 

implies that annual extension-rates in corals can be used as a new proxy for Indian 

monsoon variability on decadal resolution.  

The δ18O record exhibits the 20th century warming trend that is influenced by 

the effect of monsoon-induced cooling. δ18O also reveals interannual ENSO triggered 

variability, which is due to ENSO-forced variations in SST and sea surface salinity 

(SSS). A decadal variation at 12-14 yrs cannot be linked to SST variations in the NW 

Indian Ocean, but with decadal variations of SSS. They could be caused by ENSO- 

forced variations of the monsoon currents during the mature phase of ENSO 

teleconnections in the Indian Ocean in boreal winter.  

The Sr/Ca record does not indicate a significant warming, in spite of the 

observed SST rise at the sampling site. Changes in seawater Sr/Ca cannot be 

excluded. Nevertheless, interannual ENSO forcing is still evident. Evidence for the 

Pacific Decadal Oscillation (PDO) is found during 1917-1955. Afterwards, the Sr/Ca 

data indicate the disappearance of PDO forcing. By the combination of Sr/Ca and 



 

  

δ
18O it is possible to detect ~80% of historical El Niño and La Niña events at the 

sample site. This study confirms the notion that interannual to multi-decadal climate 

fluctuations in the Pacific play a crucial role for climate variability in the Indian Ocean. 

 

 

Kurzfassung 

 

Bis jetzt gibt es im nordwestlichen Indischen Ozean nur sehr wenige Arbeiten, 

die historische Klimavariabilität mit Korallenarchiven rekonstruieren. In dieser Arbeit 

werden die ersten Korallenproxy-Aufzeichnungen von den Malediven vorgestellt. Sie 

stammen aus einem Kern einer massiven Koralle der Art Porites lutea (Quoy und 

Gaimard, 1833), welche in der Lagune von Rasdhoo (4°N/73°W), eines Atolls im 

zentralen Bereich des Archipels, im März 2007 beprobt wurde. Die Zeitreihe umfasst 

90 Jahre, und reicht mit monatlicher bis zweimonatlicher Auflösung zurück bis in das 

Jahr 1917. Diese Arbeit untersucht die zeitlichen Variationen der stabilen 

Isotopenverhältnisse von Sauerstoff (δ18O) und Kohlenstoff (δ13C), und des 

Strontium/Calcium (Sr/Ca)-Verhältnis im Skelettmaterial, sowie der jährlichen 

Wachstumsraten (jährliche Dicke eines Inkrements) zwischen 1917-2007 und stellt 

diese in den Bezug zu historischen Klimavariabilität im nordwestlichen Indischen 

Ozean. 

 Die jährlichen Wachstumsraten nehmen über die Beobachtungszeit zu, was 

mit der Erwärmung des Meerwassers im nordwestlichen Indischen Ozean im 20. 

Jahrhundert erklärt werden kann. Es kann gezeigt werde, dass die 

zwischenjährlichen Variationen des Wachstums des Korallenskeletts innerhalb der 

Periodizität von 2.5-4 Jahren durch Variationen des Klimaphänomens El Niño-

Southern Oscillation (ENSO) gesteuert werden. Ein Zusammenhang zwischen dem 

Korallenwachstum während des Sommermonsuns und dem Niederschlag über 

Südindien konnte gefunden werden, da das Wachstum in den Sommermonaten von 

der Stärke der Monsunströmungen gesteuert wird. Zwischenjährliche und 

dekadische Variabilität von Monsunniederschlägen und -strömungen sind Ausdruck 

der Monsunstärke. Die Ergebnisse zeigen daher, dass die jährliche Wachstumsrate 

der Koralle als neues Archiv für dekadische und zwischenjährliche Variationen der 

Sommermonsunstärke verwendet werden kann.  



 

  

Die Zunahme der Meerwassertemperaturen über das 20. Jahrhundert zeigt 

sich auch in der Zeitreihe von δ
18O, welche einen Trend zu leichteren 

Isotopenverhältnissen aufweißt. Der Effekt der windinduzierten Kühlung durch den 

Monsun im nordwestlichen Indischen Ozean hat einen Einfluss auf den Langzeittrend 

von δ18O. Außerdem unterliegt δ18O ebenfalls zwischenjährlichen Schwankungen, 

die vom ENSO System gesteuert werden. Sie wurden durch die Variationen in den 

Meerwassertemperaturen (SST) und der Salinität verursacht. Es kann gezeigt 

werden, dass ein dekadisches Signal mit der Periodizität von 12-14 Jahren nicht 

temperaturgesteuert ist, sondern von dekadischen Schwankungen des Salzgehaltes 

herrührt, möglicherweise verursacht durch ENSO-gesteuerte Variationen der zonalen 

Strömungen während der Wintermonsunzeit.  

Die Sr/Ca-Daten zeigen keinen Langzeittrend, wie man es eigentlich erwarten 

sollte, da eine signifikante Zunahme der SST durch die instrumentellen Klimadaten 

und δ18O angezeigt wird. Es ist nicht auszuschließen, dass das Sr/Ca-Verhältnis im 

Meerwasser während des letzten Jahrhunderts variiert hat. Trotzdem zeigt die Sr/Ca 

Zeitreihe zwischenjährige Variabilität, die mit ENSO verbunden werden kann, und 

Hinweise auf die Pazifische Dekadische Oszillation (PDO), ein Klimaphänomen, 

welches die Klimavariabilität im Indio-pazifischen Bereich steuert. Die Sr/Ca-Zeitreihe 

zeigt, dass dieses Phänomen nach 1955 das Klima in den zentralen Malediven nicht 

mehr beeinflusst. Mit der Kombination von Sr/Ca und δ18O ist es möglich, 80% der 

historische El Niño- und La Niña Ereignisse auf den Malediven zu rekonstruieren. 

Diese Arbeit bestätigt die Annahme, dass zwischenjährige bis dekadische 

Klimavariationen im Pazifik eine wichtige Rolle für Variabilität der SSTs im Indischen 

Ozean spielen. 
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1. Introduction 

 

 Coral proxy records serve as excellent recorders of paleo-environmental 

conditions in tropical and subtropical near-shore waters (Gagan et al., 2000, Lough, 

2004; Grotolli and Eakin, 2007). Isotopic and trace elements signatures vary in a 

predictable way as a result of environmental variations, such as SST, SSS, ocean 

circulation, precipitation and cloud cover. Multi-century climate records from tropical 

and subtropical oceans are either sparse or non-existent, or have various limitations 

(Reynolds et al., 2002; Rayner et al., 2003; Smith and Reynolds, 2004; Thompson et 

al., 2008). Due to relative short instrumental records, which do not reach back 

beyond the 18th century, the understanding of long-term climate variability requires 

the extension of climate records prior the 19th century. The investigation of coral 

records as high resolution climate archives is thus highly valuable for the 

understanding of recent climate variations and teleconnections in the tropics and 

beyond.  

The W and NW Indian Ocean are sparsely covered with long multi-decadal to 

centennial coral isotopic records (Figure 1). Until the last decade, most climate proxy 

studies have been conducted in the Pacific Ocean (for locations and references see 

Gagan et al. [2000], and Grotolli and Eakin [2007]). The Pacific is the origin of 

interannual to multi-decadal climate variations, such as El Niño-Southern Oscillation 

(ENSO), and the Pacific Decadal Oscillation (PDO), which are influencing climate 

variability in the tropics and beyond. The Pacific Ocean is thus the “classical” field for 

historical proxy climate reconstructions. 

The Indian Ocean is nevertheless also subject to interannual, decadal and 

multi-decadal climate forcing. The predominant climate phenomenon north of 10°S is 

the Indian Monsoon system, which is characterized by seasonal reversals of the 

surface wind system and a distinct seasonality of precipitation. The understanding 

and prediction of decadal and interannual variations of the Indian Monsoon are of 

high socio-economic interest. It is driven by the seasonal shift of the Inter-Tropical-

Convergence Zone (ITCZ), due to differential heating of the Eurasian subcontinent 

and the Indian Ocean. The last decades of research showed that huge portions of 

climate variability in the Indian Ocean are mainly triggered by the Pacific. The Indian 

Ocean climate is affected by the ENSO phenomenon, centered in the tropical E 

Pacific. It forces the Indian monsoon as well as the monsoon system of East Africa 
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during years with ENSO anomalies (Hastenrath, 1988; Torrence and Webster, 1999). 

SST of the central equatorial Indian Ocean is clearly influenced by interannual ENSO 

variability via reversal of the Walker circulation pattern. Due to its connection to the 

western Pacific warm pool, warmest SSTs are found in non-El Niño years in the 

eastern part of the Indian Ocean. El Niño-events in the Pacific lead to a turnaround in 

the large-scale Walker circulation. The result is the reversal of zonal wind stress, and 

therefore in zonal SSTs. Hence, strong El Niño years cause higher-than-normal 

SSTs in the western equatorial Indian Ocean (Webster et al., 1999). ENSO is phase-

locked to the annual cycle of the Indian monsoon. Its mature phase is found during 

the NE monsoon in the winter months (Webster and Yang 1992; Hung et al., 2004). 

An ENSO-like decadal climate mode in the Indian Ocean is proven to originate in the 

Pacific as well (Cobb et al., 2001, Pfeiffer and Dullo, 2006). On a multi-decadal 

timescale, the Pacific Decadal Oscillation (PDO) modulates climate in the Pacific and 

remotely in the Indian Ocean (Mantua et al., 1997). It is not proven yet that the PDO 

modulates ENSO variability but it seems to strengthen both El Niño – and La Niña 

states during PDO warm or cold phases, respectively (Mantua et al., 1997; Linsley et 

al., 2008). The definition of a PDO index is based on SST records in the N Pacific: a 

“cool” PDO regime prevailed from 1890-1924 and again from 1947-1976, while 

“warm” regimes dominated the remaining periods (Mantua and Hare, 2002). It is 

likely that the Indian Dipole is also driven by external Pacific forcing by the Pacific 

(e.g., Charles et al., 2003), despite the fact that some studies indicate an internal 

mode of climate atmosphere-ocean interaction unique to the Indian Ocean, (e.g., Saji 

et al., 1999; Webster et al., 1999). SST variations restricted to the in the equatorial 

Indian Ocean, and independent of Pacific forcing, are suggested to be one reason for 

decadal monsoon variability (Kucharski et al., 2006). 

Coral proxy studies conducted in the NW and W Indian Ocean made important 

contributions to the understanding of Indian Ocean climate variability. The genus 

Porites is the common coral used for proxy-climate studies in the Indo-Pacific realm. 

The most common proxy for coral climate reconstructions is coral stable oxygen 

(δ18O). It is principally a function of variations of SST and SSS, i.e. seawater δ18O. 

Studies from the Seychelles (Charles et al., 1997), Kenya (Cole et al., 2000), Eritrea 

(Klein et al., 1997), La Réunion (Pfeiffer et al., 2004b), and the Chagos Archipelago 

(central tropical Indian Ocean, Pfeiffer et al., 2004a) revealed ENSO-driven 

interannual and decadal climate variability. Zinke et al. (2004) were able to detect in 
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the SW Indian Ocean several phases of stronger and weaker ENSO teleconnection 

since the mid of the 17th century with a record from Madagascar. Pfeiffer and Dullo 

(2006) found for the first time evidence for the impact of the Indian monsoon system 

by the detection of monsoon-wind induced cooling in a coral proxy record from the 

Seychelles. Until now, none of the coral records successfully tracked the temporal 

variability of the monsoon system. Recently, evidence for PDO-related oscillations in 

the Indian Ocean was found in a coral proxy record from the southern hemisphere 

(Madagascar and La Réunion, Crueger et al., 2009). Zinke et al. (2009) 

reconstructed with coral indices that were based on the published coral records from 

the Seychelles, Kenya, and Mayotte, teleconnections between SST variability, 

precipitation and surface air temperatures over East Africa and western India.  

Interannual and decadal variations of δ18O in coral proxy records are often 

dominated by variations in SST and/or SSS. The Sr/Ca in coral skeletons, negatively 

correlated to ambient SST, was introduced as a salinity-independent SST proxy 

(Corrège, 2006). High-resolution calibration studies for the genus Porites at different 

sites in the Indo-Pacific revealed its significant SST-dependence (e.g., Beck et al., 

1992; Alibert and McCulloch, 1997; Corrège et al., 2000; Fallon et al., 2003). These 

studies usually cover relative short periods of several years to one decade. The 

accuracy of Sr/Ca as a thermometer underlies, however, on a variety of processes. 

This is best seen in the fact that for every single location, different Sr/Ca-SST 

calibrations are published (Corrège, 2006). The precondition of long-term historical 

SST reconstructions is the invariance of the seawater Sr/Ca ratio (e.g., Beck et al., 

1992). Several studies have challenged the postulate of invariance of the Sr/Ca ratio 

in space and time (e.g., De Villiers, 1999; Sun et al., 2003; De Dekker et al., 2004). 

This subverts the idea of the application of coral Sr/Ca as a seawater independent 

SST proxy. Skeletal chemistry is influenced by physiological processes (e.g., Cohen 

et al., 2001, 2002; Meibom et al., 2003, 2006; Sinclair et al., 2006), and early 

diagenesis or calcite-filled borings in live-collected corals (Nothurft et al., 2007). 

Finally, heterogeneties in the distribution of Sr in coral skeletons (e.g., Allison et al., 

2005; Cohen et al., 2001; 2002) also limit the accuracy of Sr/Ca as a SST proxy.  

However, due to the ambiguous nature of coral δ18O, coral Sr/Ca is still an 

important proxy for past SST reconstructions (Corrège et al., 2006). In combination 

with δ18O, Sr/Ca was successfully used to separate the seawater δ18O component 

from δ18O, and to reconstruct past SSS trends and variations (McCulloch et al., 1994; 
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Gagan et al., 1998; Hendy et al., 2002; Felis et al., 2009). Marshall and McCulloch 

(2001) used a decadal coral Sr/Ca record from the Indonesian Outflow region, in 

order to affirm the notion that the Pacific is triggering climate variations in the Indian 

Ocean. Long-term Sr/Ca records in the NW Indian are still missing. Pfeiffer et al. 

(2006) published the first short Sr/Ca record spanning 45 yrs from Peros Banhos, 10° 

to the south of Rasdhoo Atoll in the central Indian Ocean (Chagos Archipelago, 

5°20’S/71°55’N). These authors were able to reconstruct strong El Niño events for 

1950-1995. Pfeiffer et al. (2009) found significant correlations of three Sr/Ca records 

of the same location with gridded SST data. Higher correlations with a record of air 

temperatures of a local climate station demonstrate that the access on local climate 

data improves climatologic interpretations of coral records. First evidence for the 

PDO in coral proxy records from the NW and central Indian Ocean was found by 

Pfeiffer et al. (2009). They were able to track the shift from “cool” to “warm” PDO 

regime during the mid-1970s. 

 Until now, no coral proxy records from the Maldives archipelago, the largest 

reef area in the Indian Ocean, have been published. This study presents the first 

coral proxy record (δ18O, δ13C, Sr/Ca and extension-rates) from this area, covering 

the period 1917-2006 AD. The location of the Maldives has the potential to allow the 

investigation of the effect of wind-induced cooling in the vicinity of monsoon wind 

reversals. This study attempts to reconstruct monsoon-related SST patterns in the 

NW Indian Ocean and interannual to decadal climate variability in the Maldives. Coral 

extension-rates are often disregarded in proxy climate studies, and the investigation 

of annual extension in P. lutea as an archive for ENSO and/or monsoon-forced 

interannual to decadal climate variability is one focus of this study. The new multi-

proxy record emphasizes the potential of corals for climate reconstructions in 

general, and of climate variability in the NW Indian Ocean in particular 
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2. Regional Setting 

 

2.1. Geomorphology 

  

The Maldives Archipelago in the NW Indian Ocean is amongst the largest 

carbonate platforms in the world (Figure 1). It is about 1.000 km long and up to 150 

km2 wide, encompassing an area of 107.500 km2. In total, about 0.3% of this area is 

represented by some 1.300 small islands, only 10 of which are larger than 2 km2. The 

maximum land elevation is 5 m above present seal level. The Maldives Archipelago is 

bounded bathymetrically by the 2.000 m contour, i.e., it rises steeply from the 

surrounding Indian Ocean seabed. Geomorphologically, the archipelago forms a 

double row of a total of 22 atolls, with the two rows separated by the up to 450 m deep 

Inner Sea basin (Figure 2). Rasdhoo Atoll (alternative diction “Rasdu”, sometimes also 

called “Ross Atoll”; 4°N/73°W) is located in the western row of the Maldivian Atolls. It is 

an almost circular atoll with a maximum diameter of 9.25 km and a size of 62 km2 

(Figure 3). The marginal reef is continuous and surface-breaking, and three channels 

through it connect the interior lagoon with the open ocean. The reef rim surrounds a 40 

m-deep lagoon with numerous coral patch reefs. The fore reef slope is very narrow 

except on the western side of the atoll. The slope ends in an almost vertical drop-off 

(Gischler et al., 2008). The coral study of Scheer (1974) reported 99 coral species at 

Rasdhoo. For comparison, Pillai and Scheer (1976) list a total of 241 species for the 

entire archipelago. 

 

 

2.2. Climate and hydrology 

 

 The central Maldives are located in the vicinity of the Indian monsoon system. 

The climate is dominated by the seasonal reversal of the monsoon winds (Figure 4a 

and b). Over the Indian Ocean north of 10°S, they generally blow from SW during 

May-September (summer monsoon) and from NE during November-February (winter 

monsoon). Hence, the wind speed record (Figure 4c) shows a bimodal seasonal 

pattern with highest values in May and October/November at the onset and the end of 

the wet SW monsoon (sources, references and abbreviations of all used climate data 

sets are given in Table 1). The seasonal reversal of the monsoon winds force the 



 

 6  

reversal of sea surface currents at the central Maldives (Figure 4d). The monsoon 

currents are the predominant oceanographic characteristic of the N Indian Ocean 

(Shankar et al., 2002; Figure 5). The SODA zonal current record, as an indicator for 

the strength of the monsoon currents, is used here due to the closeness to the 

equator. It is strongly correlated with the meridional current record (r = 0.97, p < 

0.0001). In May and October/November the ITCZ moves over the central Maldives 

during its seasonal displacement. In these months the outgoing longwave radiation 

(OLR) is lowest, while it is highest January/February (Liebmann and Smith, 1996). The 

ITCZ movement is also reflected in the bimodal pattern of precipitation (Figure 6a). 

Salinity (SSS) fluctuates between 34.4 (February/March) and 35.4 psu (September) in 

the instrumental SSS record, does not exhibit a bimodal pattern and is not in phase 

with precipitation (Figure 6b). The relationship between SSS and precipitation in the 

seasonal cycle illustrates the decoupling of atmosphere and hydrological cycle in this 

region. This may be due to the forcing of seasonally reversing circulation in the upper 

ocean, caused by the seasonally reversing monsoon winds over the northern Indian 

Ocean (Schott and McCready, 2001; Shankar et al., 2002). With the onset of the 

summer monsoon, the currents introduce upwelled, saltier waters of the western 

Arabian Sea at the central Maldives. After the collapse of the summer monsoon 

currents, the winter monsoon currents influence the central Maldives by the 

introduction less salty waters from the Bay of Bengal (Eigenheer and Quadfasel, 1999; 

Figure 5). Additionally, wind stress evaporation during the SW monsoon in summer 

may also contribute to higher salinity during the wet summer monsoon season. 

  The maximum monthly SST is lagging maximum SSS by 6 months, and 

minimum monthly SST is lagging minimum SSS by 1-2 months (Figure 6b and c). The 

seasonal SST cycle shows the importance of the effect of monsoon-induced cooling in 

the NW Indian Ocean. Maximum SSTs occur in April, during the transition phase 

between the monsoons, shortly before the onset of the SW monsoon and average 

29.5 °C. Minimum SSTs occur in January, in the dry NE monsoon season, and 

average 27.8 °C (ERSST dataset). Continuous long-term SST records from Rasdhoo 

Atoll are not available. Short in situ SST measurements were conducted at Rasdhoo 

for the period April 2005 to March 2006 by a SST logger installed at the reef slope of 

Kuramathi (8.7 m depth). Highest monthly SST occurred in this time span in April 2005 

(30.4 °C) and lowest in January 2006 (27.3 °C). The timing of both events is in 

agreement with the instrumental record, but the seasonal cycle of 3.1 °C in this single 



 

 7  

year was significant higher than observed in the gridded SST dataset though (2.2 °C; 

ERSST and HadlSST1). 

SST observations for the 2°x2° grid box surrounding the central Maldives show 

a mean seasonality of 1.7 °C (ERSST dataset, Figure 6c), in agreement with the 1°x1° 

gridded HadISST1 dataset. The close link between ENSO variations and SST 

variability throughout the Indian Ocean and in the central Maldives is illustrated in 

Figure 7. In this study, the Niño 3.4 index is used as a reliable proxy for the strength of 

ENSO, and is based on SST (ERSST) anomalies in the central Pacific (Figure 7a; 

Trenberth, 1997). The field correlation in Figure 7b shows the strong and significant 

positive correlation between SST variability and Niño 3.4 in the interannual band. The 

cross-spectral analysis between gridded SST of the central Maldives and Niño 3.4 

reveals the typical modes of ENSO forcing in the interannual range of the SST 

spectrum. No significant coherence is found for SST and Niño 3.4 in the decadal band 

(ERSST, Figure 7c). 

 SST exhibit a significant long-term trend since 1917 (r = +0.79, p < 0.0001, 

e.g. ERSST). The ERSST and HadlSST1 datasets indicate a SST rise of +0.7 °C 

since 1917. Available SODA SSS data since 1958 indicate a weak freshening trend 

(r = -0.32, p < 0.001), while the precipitation record of Male International Airport (70 

km E of Rasdhoo) since 1975 does not show a secular trend.  

 No data on the isotopic composition of the precipitation on a seasonal time-

scale is available. However, perennial monthly measurements in the northwestern 

and central Indian Ocean have been carried out at few locations, e.g., at Diego 

Garcia (7°20’S/72°25’E) with a mean annual range between -2 and -5‰ for δ18O 

(reported relative to Vienna Standard Mean Ocean Water [VSMOW], Global Network 

of Isotopes in Precipitation [GNIP] database, International Atomic Energy Agency 

1994). Ten measurements of seawater δ18O composition in the lagoon and fore reef 

of Rasdhoo (sampled February 2009) show a mean δ18O of 0.52‰ (+/- 0.12‰ SD, 

Table 2).  
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3. Material and methods 

 

3.1. Sampling and measurements 

 

 Searching for and finding an appropriate Porites colony in Rasdhoo Atoll was 

quite lengthy and difficult because more than 90 % of the very large colonies were 

dead as a consequence of the 1998 bleaching event in the central Maldives (Wilkinson 

et al. 1999; Schuhmacher et al. 2005). A 95 cm long core (C1) was recovered from a 

colony of P. lutea in March 2007 on Rasdhoo Atoll. The colony is living on a patch reef 

in the central area of the lagoon. The coral head is 1 m high with the top between 0.5 

and 1 m below sea level. The core was drilled parallel to the dominant axis of growth 

from the top of the head using a pneumatic drill device (Figure 8).  

 Slices with a thickness of five millimeter were cut from the core and cleaned in 

an ultrasonic bath of deionised water. X-ray radiographs were prepared from the 

slices in order to reveal growth directions, density variations and annual banding 

(Figure 9). Thin sections from the top, the middle and the bottom were visually 

analyzed in order to rule out the existence of diagenetic effects, such as 

recrystallization and/or non-skeletal growth of aragonite. No evidence for 

mineralogical alteration and secondary cementation is found. Coral slices were dried 

and then sampled by milling about 250 µg from the surface with a dental drill along 

the maximum axis of growth. The sampling resolution was 11-13 samples per cm 

along axis, i.e., a sample every 0.7 to 0. 9 mm on average was taken. This provides 

an almost monthly resolution due to an annual extension-rate of ~1 cm.  

 Powdered subsamples (60-120 µg) were reacted with 100 % H3PO4 at 72 °C 

using a Gas Bench II (Thermo Finnigan) according to the method outlined by Spötl 

and Vennemann (2006). Samples were analyzed for δ18O and δ13C at the Institute for 

Geosciences, University of Frankfurt on a Thermo Finnigan MAT253 mass 

spectrometer. The analytical error was 0.08‰ for δ18O and 0.06‰ for δ13C, 

respectively. All coral isotope data are reported relative to the Vienna Peedee 

Belemnite (VPDB).  

All Sr/Ca analytical work was done at the IFM GEOMAR, Universty of Kiel and 

samples were submitted in three charges (batches). The sample powder as obtained 

from micro-drilling and submitted in three sample charges was weighed into 

polycarbonate tubes and dissolved overnight with 1 ml 2% (v/v) subboiled nitric acid. 
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An aliquot from this digest solution was transferred to polypropylene tubes and made 

up to 10 ml 2% (v/v) nitric acid resulting in an approximate concentration of 10 (4-12) 

mg l-1 Ca. Multi-element stock solutions were gravimetrically prepared from SPEX 

Specpure grade single element standard solutions, acidified to 2 % (v/v) with 

subboiled nitric acid (quartz distilled), and stored in PFA (perfluoralkoxy) flasks. While 

Ca was kept at constant concentrations of approximately 10 mg l-1 in all calibration 

solutions Sr was added to 160, 180, 200, 220 µg l-1 covering the natural range of 

Sr/Ca (7.3-10.1 mmol/mol) ratios in biogenic carbonates and seawater. Two 

laboratory blank solutions with and without 10 mg l-1 Ca were included in the 

calibration series. We could not see any matrix effect from 10 or 50 mg l-1 Ca on the 

background signal of the other analyses. All sample preparation work and storage of 

measuring solutions in the autosampler during analysis were under Class-100 clean 

bench conditions. Only all-plastic labware was used for handling and treatment of the 

samples. The subsequent measurements were performed by ICP optical emission 

spectrometry (ICP-OES) using a CIROSCCD SOP instrument with radial viewing of the 

plasma (Spectro Analytical Instruments, Kleve, Germany). The instrument was 

equipped with a MicroMist™- 200 micro-nebulizer with nominal 200 µl min-1 sample 

uptake and a water-cooled (4°C) Cinnabar™ cyclonic spraychamber (Glass 

Expansion, Australia). The wavelengths Ca: 317.933 nm and Sr: 407.771 nm were 

selected for quantitative analysis, and Ar: 597.159 nm was used as a monitor line for 

plasma temperature. The detector read-out was forced to be real simultaneous. Raw-

data (in counts per second, cps) from 5 individual acquisitions per sample were 

exported to secondary spreadsheet software for further data reduction. We applied 

an intensity ratio calibration strategy as outlined by De Villiers et al. (2002) with a 

linear least-square regression function for the calculation of molar ratios (in 

mmol/mol) from intensity ratios (in cps/cps). The results were then externally 

normalized to our in-house coral standard “Mayotte 5a” with Sr/Ca = 8.819 

mmol/mol). This standard was re-analyzed as a bracketing standard for every set of 

6 unknown coral samples. It was also used for a step-wise drift correction (e.g., 

Schrag, 1999). More than 10% of samples were re-analyzed for the estimation of 

analytical precision. Every tenth sample was re-analyzed after one hour, and some 

samples were analyzed both at the beginning and end of an analytical session, and 

with the next sample batch after a month or so. The analytical error (1sigma) of the 

Sr/Ca measurements as estimated from these replicate measurements was 0.09% 
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RSD within-sample batch and 0.11% RSD between sample batches, or better than 

0.01 mmol/mol Sr/Ca.  

Between each of the charges an offset between of 0.02-0.03 mmol/mol exists. 

The Sr/Ca data are therefore given in zero mean values, in order to remove this 

discontinuity. 

 

 

3.2. Coral chronology  

 

 Cyclic variation in the δ18O record is assumed to be annual, with each cycle 

spanning around 1 cm. Sub-annual dating is based on the annual δ18O cycles, where 

the most positive δ18O value is assigned to be the coldest average month, which, for 

the central Maldives, is January. This introduces a noncumulative error of +/- 1-2 

months in any given year due to variations in the timing of the lowest winter SSTs. 

Since δ18O is a composite signal of both SST and seawater δ18O, the observation 

that SST minima lag precipitation and salinity minima by 1-2 months on average may 

induce further inaccuracy in the fixing of the anchor points. The chronology is thus 

tied to one anchor month January within each year. The δ18O and δ13C were 

interpolated to equidistant, monthly resolved time-series using the AnalySeries 

2.0.4.2 software package (Paillard et al., 1996). The banding is caused by density 

variations in the skeleton with dense layers being formed during the summer months 

and less dense layers during winter. The proxy data chronology has been cross-

checked with the dense bands; heavier δ18O values clearly matched the winter layers 

in most cases. Skeletal portions with unclear density banding pattern (i.e. heavy 

stress bands) exist. Unclear annual banding is not necessarily a problem for the age 

model of a coral chronology. For instance, most equatorial Pacific Porites corals do 

not even reveal annual density bands, and the chronologies are established using 

the annual cycles in δ13C (oral communication with Dr. Thomas Felis, MARUM, 

University of Bremen). The chronology is thus based on the proxy data. Prerequisite 

of this age model is constant linear extension within a given year. 
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3.3. Statistical treatment 

 

 For the spectral analyses of the coral and instrumental climate data the 

software AnalySeries 2.0.4.2 is used. Prior to spectral analyses, the individual time-

series were detrended by removing the linear trend and normalizing to unit variance. 

The Blackman Tukey method was used (Blackman and Tukey, 1958), which is the 

classical method for spectral analyses. This procedure is very robust to spurious 

spectral features. The algorithm computes first the autocovariance of the data, and 

then applies a window (Barlett), and finally Fourier-transforms the covariance 

functions to compute a power spectrum (Paillard et al, 1996). The chosen window 

should not considerably affect the results for typical short and noisy time series. A 

further advantage of this method is the possibility to apply cross spectra for two time-

series. This method provides the statistical tool to detect correlations between two 

time-series in the spectral range, when ordinary least square correlations are not 

significant. In order to improve statistical significance, all time-series analyses were 

repeated by applying the high-resolution Multi-taper Method and the Maximum 

Entropy Method, provided by the same software package (not shown).  
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4. Results 

 

4.1. Oxygen isotopes 

 

The monthly δ18O of C1 is plotted in Figure 10a. The record of annual mean 

values shows a long-term trend towards more negative isotope values that is highly 

significant (r = -0.51; p < 0.001), the absolute offset since 1917 is -0.17‰. The 

annual mean δ18O is -4.92‰ and the record fluctuates between -4.81 and -5.10‰ 

(Table 3). The δ18O record exhibits a clear seasonality (defined as the difference of 

maximum and minimum value in a given year) with a mean value of 0.39‰.  

Within the mean seasonal cycle (not to be confused with seasonality), lowest 

monthly δ18O occur in August (Figure 11a). In comparison, the mean seasonal SST 

cycle of the gridded datasets indicates highest monthly SST in April, before the onset 

of the summer monsoon cooling. 

The correlation between monthly δ18O and ERSST is weak, but significant          

(r = -0.31, p < 0.001), and stronger than for HadISST1 (r = -0.22, p < 0.001). Higher 

correlations between annual mean δ18O and gridded SST data were found. Again, 

δ
18O exhibits a stronger correlation with ERSST than HadISST1 (Table 4). A 

regression equation between δ18O and SST yields a best fit line with highest slope         

(-0.13 ‰/°C) for the δ18O-SST relationship, when the ERSST dataset is used (Table 

5). This slope is not consistent with published estimates (between -0.18 and -0.22 

‰/°C for Porites corals (e.g., Lough, 2004). Figure 12a compares the annual mean 

coral δ18O of C1 with gridded SST from the ERSST datasets for the period of 1917-

2006. When the linear trends in both records are removed, no significant correlation 

between annual mean δ18O and SST exists. Coral δ18O and SST follow the long-term 

warming trend in the central Maldives. Consequently, the correlation between proxy 

and SST is highest, when applied for the whole record. A correlation between annual 

mean δ18O and SSS since 1958 is not significant (Table 4).  
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4.2. Strontium-to-calcium ratio 

 

The monthly Sr/Ca record fluctuates between -0.07 and +0.07 mmol/mol (zero 

mean values, Figure 10b). The coral Sr/Ca record shows no long-term trend towards 

lower (”warmer”) values (Figure 12b). The absence of a long-term trend in Sr/Ca 

disagrees with the SST rise in this region, since gridded instrumental SST data 

indicate a significant warming, accelerated since 1955. The records of annual mean 

δ18O of C1 also show a long-term trend (Figure 10a). Since every single charge of 

the Sr/Ca record does not show an inherent long-term trend, it is unlike to address 

this discrepancy to an analytical artifact. The correlation between annual mean Sr/Ca 

and instrumental SST is therefore weaker (e.g., ERSST: r = -0.21; p = 0.05) than 

after removing the long-term trend (e.g. ERSST: r = -0.34, p < 0.01). It is stronger in 

the lower part of the record until 1955 (Table 6, Figure 12b). The correlation between 

annual mean Sr/Ca and Niño 3.4 is weak, but significant (r = -0.28, p < 0.01). 

The mean seasonality is 0.13 mmol/mol. The range of published Sr/Ca-SST 

calibration slopes is wide and varies from 0.05-0.08 mmol/mol °C-1 (Corrège, 2006). 

With an averaged value of 0.06 mmol/mol °C-1 (Corrège, 2006), we would receive 

mean seasonal fluctuations of ~2.2°C at the sampling site. This value is higher than 

SST fluctuations observed in the gridded SST datasets (+1.7°C), and could indicate 

stronger site-specific SST variability. The mean seasonal Sr/Ca cycle shows most 

positive (“coldest”) values in January and most negative (“warmest”) values in August 

(Figure 11a), and corresponds to the seasonal cycles of δ18O (Figure 11b). Both 

coincide in the timing of coolest and warmest months. The Sr/Ca record confirms the 

age model based on the assumption that heaviest δ18O values are assigned to the 

January.  

 

 

4.3. Carbon isotopes 

 

 The long-term trend of coral δ13C shows a significant decrease towards lighter 

values since 1917 (Figure 13). The monthly record ranges between 0 and -2‰ and 

shows a distinct seasonality of 0.71‰ (+/- 0.26‰ SD). The seasonal cycle is in 

phase with δ18O and, hence, responsible for a significant correlation between both 

records, even when long-term trends are removed (r = 0.25; p < 0.001). Most positive 
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coral δ
13C values are developed during the winter monsoon season in 

January/February in any given year, and highest values in August (not shown). A 

correlation between annual mean time-series of δ13C and δ18O is insignificant.  

 

 

4.4. Annual extension-rates 

 

The coral growth-rate refers in the literature sometimes either to the growth 

characteristic linear extension-rate, or to calcification-rate. To avoid confusion, the 

term “extension-rate” is used here instead of “growth-rate” for the distance between 

two δ18O maxima in the seasonal cycle. The annual extension-rate in C1 is 9.9 mm/yr 

(+/- 2.1 mm/yr SD, Figure 14a). This value falls within the lower range of 6-16 mm/yr, 

observed for Porites corals (Lough and Barnes, 2000). 

C1 shows a significant trend towards higher annual mean extension-rates 

throughout the record (r = +0.37, p < 0.001, if described linearly, Figure 14b). The 

absolute increase since 1917 is 3 mm/yr). The correlation of linear extension-rates 

with both instrumental SST datasets is similar and significant (r = +0.48, p < 0.001). 

In the lower part of the record, i.e., during the period between 1920 and 1955, the 

extension-rates exhibit a concave shape that resembles the SST record in this period 

at first glance (r = +0.69, p < 0.0001). Years with decreased extension-rates down to 

5 mm/yr are found in especially in the upper part of the record, in 1982, 1992 and 

1997-1998 may reduce the strength of the correlation after 1955 (r = +0.45; p < 

0.001).  
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5. Discussion 

 

5.1. Annual extension-rates 

 

5.1.1. Trend and SST reconstruction 

 

The annual extension-rates are based on the age model applied on the δ18O 

record. The discussion is started with annual extension-rates, since they are later 

used in the discussion of geochemical proxies. The annual extension-rate record of 

C1 follows the warming trend of 0.7°C evident in the instrumental record. The 

positive correlation between the extension-rate record of C1 and SST for 1917-2006 

is in agreement with the observation of Lough and Barnes (2000), who found a 

significant SST-dependence of annual calcification and extension in massive Porites 

corals. The absolute increase of annual mean extension since 1917 is about 3 

mm/yr. This would roughly correspond to an increase of 4 mm/yr for each one-

degree rise in SST. Lough and Barnes (2000) found for each one-degree rise in SST 

along the Great Barrier Reef a comparable increase of 3 mm/yr for individual Porites 

colonies. Hence, the significant long-term trend of the annual extension-rates can be 

explained as a consequence of the warming in the central Maldives. Years with 

decreased extension-rates reduces the correlation and should be linked to ecological 

stress. These events cannot be explained by SST anomalies alone (Chapter 5.4.).  

In order to demonstrate the SST-sensitivity of annual extension-rates in 

Porites corals, Lough and Barnes (2000) compared mean annual extension-rates of 

44 records from reef sites in the Indo-Pacific with the corresponding mean SST. The 

correlation between mean annual extension-rate is strong (r = +0.91, p < 0.0001; 

Figure 15). If the dominant factor of annual mean extension in C1 was SST (28.7 °C 

for 1917-2006; ERSST), both values should plot next to the regression graph in 

Figure 15. A temperature of 28.7 °C should correspond, following Lough and Barnes 

(2000), to an annual mean extension-rate of about 18 mm/yr in C1. This is significant 

higher than 9.9 mm/yr in C1. For comparison, Pfeiffer et al. (2004a) found in their 

coral proxy study with P. lutea an annual mean extension-rate of 14-15 mm/yr for the 

period 1875-1996. The annual mean SST at Peros Banhos (Chagos Archipelago) is 

28.0 °C (1°x1°; Had1SST1 Hadley1SST dataset). Extension-rate record and SST 

plot in this case near the line of best fit in Figure 15. 
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This discrepancy between SST and expected annual mean extension-rate can 

be explained by the fact that the mean annual extension-rate in Porites depends, for 

a given period, not only on SST, but also on other environmental parameters, such 

as turbidity (Tomascik et al., 1994) and hydraulic energy (a measure of water motion 

due to waves and tidal currents, Scoffin et al., 1992). Turbidity is only important in 

shelf environment with continental influence. Evidence for strong water motions in the 

lagoon of Rasdhoo Atoll was found by Gischler (2006). This author revealed tidal 

currents as crucial controlling factor for sediment deposition at Rasdhoo Atoll. Fine 

sediment is winnowed by strong tidal currents in the eastern part of the atoll adjacent 

to channels through the marginal reefs, leading to an asymmetric distribution of 

modern carbonate sediments at this site (Figure 16). It is therefore likely that the 

hydrological conditions described by Gischler (2006) permanently affected the growth 

strategy of the coral colony, which thus sacrificed extension for increased skeleton 

density to produce a more robust skeleton.  

This example implies that mean annual extension-rate of pre-instrumental 

Porites records cannot be used without the knowledge of past environmental 

conditions as a proxy or “paleothermometer” for the calculation of past ambient SST. 

Due to the prevailing site-specific conditions at Rasdhoo Atoll, one would 

consequently estimate a ~2.5° lower mean SST for the recorded period at the 

location, as given in the gridded SST records.  

The empirical relationship between annual mean extension-rates and skeleton 

density for the Indo-Pacific locations is negative; the increase of annual mean 

extension causes the decrease in skeleton density (Lough and Barnes, 2000). 

Following this relationship, one could estimate a mean skeletal density of 1.4 g/cm3 in 

C1.  

 

5.1.2 Interannual and decadal climate variability 

 

The Indian Ocean SSTs are externally forced by the ENSO, centered in the 

central Pacific (Webster et al., 1998; Murtugudde et al., 2000). The extension-rate 

record shows at first glance a high interannual variability (Figure 14). Since the 

annual extension-rates are influenced by ambient SST variations, one could expect 

also evidence for ENSO signature in this record. A cross-spectral analysis reveals 

several spectral peaks from sub-decadal to interannual range (Figure 17), centered 
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at ~3.7 yrs, ~3.1, ~2.8 and 2.3 yrs. These peaks are the typical modes of the ENSO-

driven interannual variability, which are also evident in the gridded SST record of the 

central Maldives (compare with Figure 7c). The cross-spectrum (lower panel of 

Figure 17) demonstrates significant spectral coherence between annual extension-

rates and the annual mean Niño 3.4 index for these peaks. The ENSO mode of 5-6 

yrs, found in the SST spectrum, is only evident with lower spectral coherence in the 

cross-spectrum. The ENSO mode of ~3.7 yrs is the strongest interannual mode in 

the extension-rate record, i.e., yielding the largest amount of spectral power. This is 

in agreement with the dominance of this period in the SST record. Figure 18 

illustrates the strong in-phase relationship between extension-rates and SST within 

the band of 3-4 yrs. Both time-series reveal the amplification of the 3-4 yrs band after 

ca. 1950, and the weakening of this mode towards the end of the record. Weaker 

ENSO driven teleconnections at the central Maldives agrees with the observation 

that the state of the ENSO system was weaker for 1920-1950, and as a 

consequence, the ENSO teleconnection into remote areas such as the Indian Ocean 

thus degraded (Kumar et al., 1999). The significant in-phase relationship also implies 

the accuracy of the applied age model. 

The extension-rate record reveals a phase shift of about 6 months to one year 

to ENSO-forced SST anomalies in the central Pacific. This effect can be 

demonstrated by the application of field correlations between the extension-rate 

record of C1 and gridded SST for the Indo-Pacific realm (Figure 19). The “center 

action” of the ENSO system is the Eastern Pacific, but Yu and Reinecker (1999) and 

Murtugudde et al. (2000) reported that towards the end of ENSO events, such as the 

1997/98 event and earlier events, warming propagated from west to east, resulting in 

extreme SST anomalies in the E Indian Ocean. This could be seen as part of the 

propagating ENSO wave described by Tourre and White (1997) and White and 

Cayan (2000). In the analysis of Figure 19 the extension-rate record and SST 

datasets were high-pass filtered in order to eliminate slow variations or trends. If the 

extension-rate record lags the SST fields by one year, the correlations throughout the 

NW Indian Ocean and the geographical center of ENSO forcing in the eastern 

equatorial Pacific is negative (Figure 19a). This does not agree with the empirical 

relationship between annual extension of Porites corals and SST. In the reversed 

case, i.e., if SST lags the extension-rate record by one year, SST fields with positive 

correlation are produced in parts of the NW Indian Ocean, but not in the Pacific 
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(Figure 19b). A lag of 6 months between SST and extension-rate produces fields with 

positive correlation throughout the whole Northern Indian Ocean between extension-

rates and SST fields in central eastern equatorial Pacific (Figure 19c).  

Studies investigating climate-induced variations in coral growth are relatively 

rare. ENSO-related growth variability was also found in a Porites head in the “center 

of action” in the central Pacific (French Polynesia, Bessat and Buigues, 2001), in this 

case for the annual calcification-rate. Interannual ENSO signature is also found in a 

coral record from the Arabian Sea (Tiwari and Rao, 2001). ENSO-forced interannual 

variability outside the Indo-Pacific has been found, however, not for Porites, in an 

endemic coral taxon in the southwestern-south Atlantic (Evangelista et al., 2007),  

The period of ~2.3 yrs in the Blackman Tukey spectrum is the typical mode of 

the Quasi-biennial oscillation (QBO), a phenomenon that was originally observed 

between westerly and easterly equatorial stratospheric winds (Reed et al., 1961; 

Baldwin et al., 2001). The QBO significantly influences the Indo-Pacific realm and is 

found in a variety of meteorological records of precipitation, rainfall, wind-speed and 

SST (Conversi and Hammed, 1998). The exact nature of the connection between the 

stratospheric and atmospheric QBO remains unresolved (Dean and Kemp, 2004). 

The QBO yields periods between 2.1 and 2.4 yrs and is also evident in other climate 

archives, such as varved sediments and tree rings (Dean and Kemp 2004). Tiwari 

and Rao (2001) found the QBO of 2.3 yrs in an extension-rate record from the Gulf of 

Kutch (Northern Arabian Sea). A QBO modulation was also reported by Charles et al. 

(1997) in the coral δ18O record from the Seychelles. Local Rainfall and gridded wind 

speed records from the central Maldives also yield a QBO signature. 

ENSO forcing explains only fluctuations in the interannual band of the 

extension-rate record. The extension-rate record reveals furthermore spectral power 

in the quasi-decadal range at ~8.6 yrs. This signal can be explained by SST 

variations, since both records share spectral coherence in this range (Figure 20), and 

are in phase with each other (Figure 21). This period within 8-9 yrs appears to be an 

“endemic” pattern of climate variability in the NW Indian Ocean. It should not been 

associated with the Indian Ocean Dipole, since it is suggested that this mode is 

principally a product of strong ENSO-like teleconnections over the Indian Ocean 

(Charles et al., 2003). A coral-based Dipole index established by these authors and 

based on coral δ18O records yields a period of 12-13 yrs.  
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5.1.3. Monsoon current variability  

 

SST-driven interannual and quasi-decadal variability is only one characteristic 

of the extension-rate record. The extension-rate record yields a clear variability in the 

decadal to multi-decadal rang at first glance (Figure 14). After 1958, a significant 

decadal variability centered at ~18.3 yrs, and a period centered at ~6.6 yrs is evident 

in the power spectrum. Both periods are not found in the earlier part of the time-

series (Figure 22). They do not belong to the typical ENSO modes found in the 

record, and are supposed to be not connected to SST variability at the central 

Maldives. Beside SST variations, the annual extension might also be affected by 

variations in hydraulic energy at the sampling site (Scoffin et al., 1992). The SODA 

zonal currents record (0.5°x0.5) for 1958-2004 illustrates the seasonal reversion of 

the zonal currents for the NW and SW monsoons in the central Maldives including 

Rasdhoo Atoll (Figure 23). The dataset indicates a two-time higher current velocity 

during the SW monsoon. Variations in the monsoon current activity should be 

stronger in the lagoon of Rasdhoo Atoll due to the strong tidal currents and the 

limited space in the lagoon. Interannual and decadal variations in the hydrological 

energy in the lagoon, especially in the summer months, might have consequences 

for the coral growth.  

In order to demonstrate that coral growth is affected by variability of the 

summer monsoon currents, cross correlations were applied for the annual extension-

rate record with (1) the mean NE monsoon (November-February) current record, (2) 

the SW monsoon (May-September) current record, and (3) the difference between 

NW and SW monsoon currents as an intra-annual gradient. This analysis led to two 

conclusions: 

(1) No link between NE monsoon currents and extension-rates. Expectedly, 

the spectrum of the annual mean NE monsoon record does not share spectral 

coherence with the extension-rates for the signals within 18-19 yrs and 6-7 yrs 

(Figure 24a). Spectral coherence is found for periods centered at ~4.5 and ~2.9 yrs, 

but cross-phase analysis shows that the current record lags the extension-rate record 

for these periods by 2 yrs, which disproves causality (not shown).  

(2) and (3) Link between SW monsoon and extension-rates. The cross-

spectrum between the time-series of the SW monsoon current and the extension-rate 

record reveals both spectral alignment and significant coherence for the periods 
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centered at ~18 yrs and in the interannual range (Figure 24b). The generated time-

series of seasonal differences between summer and winter-monsoon shows stronger 

spectral coherence at 18-19 yrs (Figure 25a). Almost 80 % of the variance of annual 

extension in this range can be explained by the variance in this generated dataset 

within the range of ~18.3 yrs. Weaker spectral coherence at ~6.6 yrs could be due to 

the fact that this band is also part of interannual SST variability, and both parameters 

could interfere with each other. No temporal lag between both time-series is found 

(Figure 25b and c). 

Stronger current velocities during the SW monsoon and consequently a higher 

level of hydraulic energy imply enhanced ecological stress for the coral. Signals at 

~18.3 yrs and ~6.6 yrs are suggested to be modulated by variations in formation of 

the growth band during summer. Coral growth responds to phases with higher SW 

monsoon currents with the production of denser summer layers, and as the 

consequence, reduced seasonal extension. This is especially the case, when 

summer months with higher-than normal SW currents follows winter monsoon with 

weak monsoon current activity. The same analysis repeated with mean winter/spring 

SST, and summer/autumn SST reveals no significant differences to the cross 

spectrum in Figure 20 (not shown). Solar radiation is also seen as an important 

environmental parameter that promotes the seasonal timing of intra-annual growth. In 

P. lutea colonies, the sub-annual extension- and calcification-rate are positively 

correlated with changes in seasonal solar radiation (Sun et al., 2008). No statistical 

link to winter/spring OLR is found with the extension-rates (both not shown). This is in 

agreement with Lough and Barnes (2000), who showed that light availability is of 

minor importance for annual mean growth in Porites corals. This implies that that the 

strength of the SW monsoon currents is the principal factor, which determines annual 

growth in C1.  

Shallow water lagoon environments may enhance broad-scale environmental 

variations. SST and current variations in the lagoon of Rasdhoo are likely larger than 

indicated by gridded instrumental climate records. These records average over a 

wider geographical range including different marine settings. However, since long-

term in-situ SST and current measurements are not available, this is still speculative. 

Extension-rate records from corals thriving in lagoon environments with weak or 

steady current activity might be better suited for the reconstruction of pre-

instrumental SST variability. Otherwise one has to expect the interference of non-
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SST signals. For instance, Tiari and Rao (2001) found no monsoon-related decadal 

or interannual spectral peaks in their time-series analysis of extension-rates and 

described their ENSO signals to be driven by SST. However, these authors used a 

coral of the genus Favia as climate archive and did not give a description on the 

sampling site. A different growth strategy of this coral and possible different 

environmental conditions should be considered. 

An example for the successful application of extension-rates for the 

reconstruction of multi-decadal SST variations is the study of Saenger et al. (2009). 

These authors used a Siderastrea coral to reconstruct the strength of Atlantic 

Multidecadal Oscillation beyond instrumental times. It was even possible to calibrate 

extension-rates with SST and to calculate absolute SST values for pre-instrumental 

times. Gischler et al. (2009) published Pleistocene extension-rate records for the 

genus Montastraea, Florida Keys, which also yield multi-decadal to interannual 

variations, possibly linked to climate oscillations.  

For further ecological and environmental interpretations of the long-term 

growth trend in C1, the annual mean calcification-rate (product of skeleton density 

and annual extension) would be of interest. It depends on a variety of environmental 

parameters (Sun et al., 2008), and is in the focus of reef research, since its reaction 

to global warming and ocean acidification is crucial for the health of reef systems 

(Bessat and Buigues, 2001; De’ath et al., 2009). Long-term changes in the 

calcification-rate in corals could be caused by the progressive acidification of the 

oceans due to the release of anthropogenic CO2 by combustion of fossil fuels (De’ath 

et al., 2009). Due to the increase of annual mean extension, a potential decrease of 

the calcification-rate in C1 throughout the last decades could have been 

accompanied by the progressive decline in skeletal density. This trend is likely 

modified by the decadal, monsoon-induced variations in annual extension. 

Acidification and the decline of calcification could favor bioerosion in reef systems in 

the future. Corals could loose their commonness in these ecosystems (De’ath et al., 

2009). 
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5.1.4. Reconstruction of rainfall over India 

 

Both predominant periods, centered at 18-19 yrs and 6-7 yrs in the spectrum 

of extension-rates, are associated with variations in the strength of the monsoon 

system. Decadal variations in the strength of the Indian monsoon system are forced 

by endemic Indian Ocean SST variations, rather than by ENSO (Kucharski et al., 

2006). Monsoon Current variations are an expression of this dynamics. The All Indian 

Monson index (AIR, Sontakke and Singh, 1996; Figure 26a) is a further parameter, 

which is triggered by the strength of the monsoon system. It is a reliable indicator for 

the strength of the SW monsoon over the Indian subcontinent (Sontakke and Singh, 

1996). A cross-spectral analysis between AIR and the extension-rate reveals 

significant coherence within 18-19 yrs and 6-7 yrs (Figure 26b). The extension-rate 

record shares with the annual mean May-September AIR index almost 92% of 

variance within the band of 18-19 yrs, and 85 % within 6-7 yrs. Annual extension-

rates lags the AIR index by 2 yrs within 18-19 yrs indicating a short response time 

between SW monsoon current variability and rainfall over India (Figure 26c). This 

demonstrates that C1 recorded the strength of the monsoon-system, by the 

sensitivity of coral growth to current variability during the summer months.  

Since the extension-rate record shows a statistical link to AIR, a field 

correlation is applied with land precipitation datasets. In order to remove background 

noise, a high-pass filter was applied prior to analysis (Figure 27a). These correlations 

are negative over fields on the Indian subcontinent, the Arabian Peninsula, and in 

Africa north to the Ethiopian highlands. The extension-rate record can therefore be 

used as a proxy of rainfall variability for these regions, shown exemplarily for the 

Ghats region, southern India (Figure 27b). The correlation is strong and significant for 

1958-2006. The negative correlation is in agreement with the proposed mechanism 

of teleconnection: periods of stronger summer monsoon causes higher rainfall in the 

Ghats region, and higher monsoon current activity in the central Maldives. Higher 

hydraulic energy in the lagoon during summer reduced growth in C1. In contrast, 

precipitation fields over Kenya are positive correlated with C1 and reveal a dipole 

character to the Indian subcontinent. This characteristic between equatorial Africa 

and Indian reflects the temporal variations in the strength of the ITCZ. Phases of 

higher monsoon strength over the Indian subcontinent are accompanied with drier 

conditions over equatorial Africa (Janicot, 2009). Beside precipitation, C1 shows no 
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correlation to air temperatures over India. For comparison, Zinke et al. (2009) 

succeeded a statistical link between a constructed coral δ18O index (Seychelles, 

Kenya, Mayotte) land temperatures, beside and rainfall, over India, equatorial East 

Africa and southeast Africa.  

 

5.1.5. Sub-annual extension 

 

The mean seasonal cycles of δ18O, Sr/Ca yield an annual mean cycle, which 

shows coolest SST in January and warmest SST in July and August. Based on linear 

sub-annual growth, both proxies do not indicate the effect of monsoon-induced 

cooling within their seasonal cycles, which leads to a decline of SST after April/May. 

This creates actually a lag of, on average, 3 months between the reconstructed and 

instrumentally measured warmest month in the seasonal cycle. This offset (indicated 

with an arrow in Figure 28) is the result of non-linear skeletal extension on sub-

annual scale, with accelerated monthly extension during winter and spring and 

slowed monthly extension during the remaining time. This temporal difference 

enables the conduction of a rough estimation of summer and winter extension-rates, 

since it is assumed that the Sr/Ca seasonal cycle is principally driven by SST. If it is 

assumed that the Sr/Ca minimum, which is assigned to August by the model of linear 

annual growth, is rather formed on average in April/May, the offset implicates that the 

mean sub-annual extension-rates between January and April/May is twice as high as 

in the remaining year. This effect explains the weak correlation between monthly 

Sr/Ca, δ18O and gridded SST. This observation underlines the significance of the 

current activity on the growth of C1 on sub-annual scale during the SW monsoon.  

 

 

5.2. Oxygen isotopes 

 

5.2.1. Interannual and decadal climate variability 

 

The extension-rate record demonstrates the presence of ENSO forcing in the 

coral time-series. Since coral δ18O depends on interannual variations of both SST 

and SSS, this could reduce the sensitive of δ18O for ENSO variability, due to possible 

overlay of both parameters. ENSO reaches its mature phase in boreal winter 
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between November and February (e.g., Hung et al., 2004). A cross-spectrum of 

November-February δ
18O and Niño 3.4 reveals distinct spectral peaks and 

corresponding coherence centered at 12-14 and ~2.8 yrs (Figure 29). Weaker 

spectral peaks are found in the typical ENSO modes of ~5.3, ~3.7 and ~2.8 yrs. This 

interannual variability illustrates again the strong coupling between the Pacific and 

the Indian Oceans. Additionally, significant coherence within 12-14 yrs between δ18O 

and Niño 3.4 suggests Pacific climate forcing in this decadal band. This is consistent 

with the finding of Cole et al. (2000), Cobb et al. (2001) and Pfeiffer and Dullo (2006). 

This decadal signal cannot be explained by ENSO forced SST variations. SST does 

not yield this signal in the power spectrum (Figure 7). 

The presence of an ENSO-like decadal variation in the power spectrum of 

δ
18O is the result of the fact that δ18O is also influenced by SSS variations. Since 

annual mean δ18O only weakly correlates with annual mean gridded SST (r = -0.41, p 

< 0.001; ERSST), δ18O must also be affected by SSS variability of ambient seawater. 

Indeed, coral δ18O shows stronger variations that cannot explained SST variations in 

the gridded dataset. The lagoon of Rasdhoo was definitely subject of stronger SST 

variations than evident in the broad-scale averaged SST record, but the onset of 

decadal fluctuations after ca. 1950 is remarkable (Figure 12a). This is also 

demonstrated by a wavelet-analysis, in which a decadal signal started to occur after 

this year (Figure 30). 

The nature of the ENSO-like variability of 12-14 yrs in coral δ18O can be 

illustrated with the application of a cross-spectrum between this proxy and gridded 

SST and SSS. For 1958-2004, for which the SSS data are available at SODA, no 

spectral coherence is expectedly found between δ18O and SST in the decadal ENSO 

band of 12-14 yrs (Figure 31a). Moreover, spectral coherence is found between δ18O 

and SSS within this range (Figure 31b). This relation between δ18O and ENSO 

variability is confirmed by repeating this analysis for the Niño 3.4 index, SST and 

SSS records (Figure 31c and d). This analysis indicates that SSS is the driver for the 

12-14 yrs fluctuations in δ18O. In the interannual range, δ18O and both instrumental 

records show analogue peaks centered at ~5.3 yrs and ~3.7 yrs, matching the 

dominant ENSO modes.  

Since the annual extension-rates in C1 are subject to interannual and decadal 

variability, one could speculate that growth-related metabolism effects could be the 

origin of climate signals in coral δ18O. However, several reasons argue against a 
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predominant role of growth-effects for the origin these signals in coral δ18O. First, 

studies conducted with the genus Porites show that δ18O can be influenced by annual 

mean extension-rate below a critical threshold level of 6 mm/yr (Felis et al., 2003). 

The annual mean extension-rate in C1 is 9.9 mm/yr and significantly higher than this 

value. Second, a linear correlation between annual mean δ18O and extension-rates is 

insignificant (r = -0.17, p = 0.31), and no spectral coherence is found between both 

records in the interannual range (not shown). Finally, the ENSO-like signal of 12-14 

yrs is not found in the extension-rate record (Figure 17). No correlation between 

annual mean δ13C and δ18O indicates that metabolic effects did not exert control on 

δ
18O (Guilderson and Schrag, 1999). 

 The lack of the decadal ENSO-like variation in the extension-rate record 

supports the idea that this signal is not forced by SST. The origin of this oscillation is 

subject of debate (e.g., Latif and Barnett, 1994; Pierce et al., 2000; Evans et al., 

2001; Timmermann et al., 2003). The decadal mode of ENSO variability is not 

connected with SST anomalies in the eastern equatorial Pacific (Latif et al., 1997). 

Cobb et al. (2001) found a clear coherence between coral δ18O records from the 

Seychelles and Palmyra (central Pacific) in the range of this ENSO mode. Pfeiffer 

and Dullo (2006) speculated that interactions between trade and monsoon winds in 

the Indian Ocean are the origin of this ENSO-like signal on a decadal scale. Reason 

et al. (1996) showed that decadal variations in the wind over the Pacific may 

introduce decadal variations in the Indian Ocean via the Indonesian Throughflow. 

Climate models and instrumental records indicate that wind stress and the monsoon 

current are strongly varying with ENSO variability in the Indian Ocean along the 

equator (Manghnani et al., 2003). Consequently, both the record of COADS wind 

speed (2°x2°) and SODA zonal currents (0.5°x0.5°) for November-February reveal 

an ENSO-like period of 12-14 yrs (not shown). Possibly decadal SSS and 

consequently coral δ18O variations could be linked to decadal wind driven changes in 

the strength of the winter monsoon current by ENSO. Evidence for ENSO-forced 

variability of Indian Ocean currents is also found in a coral δ18O record from La 

Réunion, SW Indian Ocean. There, La Niña events are triggering the strength of 

inflow of the Southern Equatorial Current are found as interannual signals in the 

record (Pfeiffer et al., 2004b). 
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5.2.2. Long-term SST trend and monsoon-induced cooling 

 

A link between decadal monsoon variability and Indian Ocean δ18O proxy 

records was not possible to establish in the previous studies. Coral δ18O records from 

Kenya (Cole et al., 2000), and the Seychelles (Charles et al., 1997, 2003) showed a 

clear influence by ENSO, Cole et al. (2000), Charles et al. (1997) and Charles et al. 

(2003) relied on AIR as a measure for monsoon strength. Charles et al. (1997) 

claimed that decadal variations in their coral δ18O record from the Seychelles should 

be explained by variations of the Indian monsoon strength, since the AIR index also 

yields variations in the decadal range (Chapter 5.1.4.). Stronger rainfall over the 

Indian subcontinent could be associated with more positive δ18O (i.e., cooler SST). 

Enhanced convection over Indian should lead to stronger low-level winds and 

increased cooling of the W Indian Ocean through evaporation and wind-induced 

mixing (Charles et al., 1997). In contrast, Cole et al. (2000) found no statistical link 

between their own δ18O record from Kenya and the δ18O record of Charles et al. 

(1997) from the Seychelles with AIR. However, Webster and Yang (1992), and 

Vinayachandran (2004) showed that rainfall indices are not the best measures to 

characterize the monsoon-strength in the NW Indian Ocean, due to the complex 

atmosphere-ocean interactions. Felis et al. (2000) showed a counterexample for a 

coral δ18O record outside of the NW Indian Ocean, which shows a relationship to the 

AIR index. These authors found a connection between AIR and δ18O in the 

interannual range in a Porites coral from the northern Red Sea, which can be 

explained by the monsoon-desert mechanism of Rodwell and Hoskins (1996), where 

variations in the strength of the Asian monsoon via teleconnections are proposed to 

have a control on Saharan and Mediterranean subsidence and therefore aridity. 

A good measure for the decadal variations of monsoon strength in the Indian 

Ocean is instead the SW monsoon current variability (Chapter 5.1.3). But decadal 

variations in the SW monsoon strength are not recorded by the coral δ18O record of 

C1 (Figure 29). A significant correlation between the AIR index and the coral δ18O 

record of C1 from the central Maldives does therefore not exists, similar to the δ18O 

record of Pfeiffer and Dullo (2006) from the Seychelles, and no spectral coherence in 

a cross-spectrum between both time-series was found (not shown). Instead of relying 

on rainfall indices as a measure for the strength of the Indian monsoon in the Indian 

Ocean, Pfeiffer and Dullo (2006) found a clear link between a coral proxy record from 
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the Seychelles and the monsoon wind system. The strength of the δ18O-climate 

correlation depends on the annual cycle of the monsoon year; their record primarily 

reflects wind-induced cooling of the SW monsoon season. 

The secular depletion in δ18O can be explained with the SST rise at the 

sampling site. Monsoon wind-induced cooling could affect the secular warming trend 

found in coral δ18O of C1. The absolute decrease of ~0.17‰ during 1917-2006 

corresponds to a warming of ~0.7 °C in the gridded SST dataset of the central 

Maldives. Reduced correlation between δ18O with SST (r = -0.41, p < 0.001) is 

addressed to interannual SSS variations. This explains the relative low slope of          

0.13 ‰/°C for the empirical δ18O-SST relationship.  

In order to show that the long-term trend of δ18O is affected by monsoon-

induced cooling, a field correlation between the monthly anomalies of the δ18O record 

and SST datasets in the Indian Ocean is applied. It reveals strongest correlations 

and, in particular, lowest p-values in an area that approximately corresponds to the 

area of the seasonal wind reversals (Figure 32a). An averaging of several records of 

an area may diminish effects of site-specific or region-specific SSS fluctuations, and 

enhance the significance of the long-term trend. In order to proof this, published 

monthly δ18O records of Porites colonies from the Seychelles (Charles et al., 1997) 

and Kenya (Cole et al., 2000), locations in the central and western vicinity of the 

monsoon wind field, are combined (by averaging the monthly values for the period 

1917-1995 ) with C1 to coral indices. Figure 32b illustrates the result of a field 

correlation between the coral index of C1 and the Seychelles record. An elongate 

SST-field in direction of the monsoon-winds is found off of E Africa. The 

corresponding field of p-values again maps a circular area, which is associated with 

the area of monsoon-induced upwelling in the southwest Arabian Sea. The index 

consisting of C1, Seychelles and Kenya maps the predominant wind fields during the 

SW and NE monsoons in the entire N Indian Ocean (Figure 32c). Highest p-values 

are found off of E Africa and the Arabian Peninsula. 

This analysis suggests that the δ18O record from the Maldives follows the long-

term warming trend of this monsoon-influenced area in the NW Indian Ocean, 

despite of its location in the vicinity of this area. With the construction of the 

combined coral proxy record, it was possible to improve the proxy-climate correlation. 

Hence, it was even possible to reconstruct the rudimentary orientation of the 

seasonal wind field and to track the area of cold upwelled waters. The Arabian Sea is 
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cooled by monsoon winds by wind-induced evaporation and upwelling (Rao and 

Sivakumar 2000; Vinayachandran 2004). This demonstrates that information about 

monsoon-induced cooling is also inherent in the long-term trend of coral proxy 

records. This example illustrates the potential of corals to reconstruct broad scale 

SST trends. Coral indices are thus a reliable recorder for long-term SST trends, 

especially when existing SST records are unreliable, such as during the 1940-60s 

(Pfeiffer et al., 2008, Thompson et al., 2008). 

 

 

5.3. Strontium-to-calcium ratio 

 

5.3.1. Seasonal cycle and long-term trend 

 

The mean seasonality of 0.06 mmol/mol corresponds to a seasonality of 

~2.2°C in the lagoon of Rasdhoo Atoll. This indicates that the seasonal SST 

variations at this site are sufficiently captured by gridded SST datasets. This is 

supported by the fact that in-situ SST measurements at Kuramathi showed a clearly 

higher SST variation during 2005/2006. The seasonality of Sr/Ca should not be 

reduced by decelerated growth during the SW monsoon season, since lowest and 

highest monthly SST occurs January and May. The mean seasonal cycle of δ18O is 

more obtused than that of Sr/Ca, which is likely caused by the fact that δ18O is also 

influenced by seasonal variations in rainfall and SSS. 

Compared to δ18O and extension-rates, no long-term trend in Sr/Ca is found. 

The correlation with SST is best 1917-1955, and weaker afterwards (Table 6). This 

suggests that Sr/Ca is also influenced by non-temperature effects. Longer 

instrumental records of local ambient temperatures (either air or seawater) are, 

however, not available. We have already excluded diagenetic effects or secondary 

calcite-filled micro-holes caused by boring activity (Nothdurft et al., 2007, Chapter 3). 

The effect of coral growth on the incorporation of Sr2+ in the skeleton is believed to 

be negligible in Porites in most conducted studies (e.g., Alibert and McCulloch, 1997; 

Wei et al., 2000; Mitsugushi et al., 2003; Corrège et al., 2004; Allison and Finch, 

2004). Effects of coral growth in C1 can be likely ruled out, since correlation between 

annual extension-rates and annual mean Sr/Ca is insignificant. Additionally, no 

spectral coherence is found between both time-series (not shown). Several studies 
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have challenged the postulate of invariance of Sr content in the world oceans (e.g. 

De Villiers, 1999; De Deckker et al., 2004). Sun et al. (2003) showed that calibrations 

between SST and coral Sr/Ca are better, when the Sr/Ca-ratio of the ambient 

seawater is involved in the empirical equations. This effect may explain 

discrepancies between coral Sr/Ca records from different parts of the ocean (De 

Villiers, 1999). It is suggested that Celestite (SrSO4)-secreting Acantharia (suborder 

of the Radiolaria) are one reason for the invariant Sr distribution in the seawater (De 

Deckker, 2004). They are common in the upper 400 m at low latitudes of the oceans, 

and are most abundant between 14°-25° S (De Dekker, 2004). They contribute 

substantially to changes in seawater Sr/Ca by extracting Sr+ for the formation of their 

skeleton. In the deeper ocean, the organisms dissolve and the Sr/Ca of seawater 

regains its conservative nature (De Villiers, 1999; De Dekker, 2004). In order to proof 

this suggestion, however, temporal and spatial abundance analysis of Acantharia in 

the region would be necessary.  

Quinn et al. (2005) addressed discrepancies between the long-term trends in 

Sr/Ca and δ18O to variable Sr/Ca ratios in the ambient surface-water in a Porites 

coral at a site in the W Pacific (Rabaul, Papua New Guinea). The Sr/Ca ratio in the 

study of Quinn et al. (2005) suggested an unrealistic cooling of 0.7 °C, but still 

revealed clear connections to ENSO variability. The possibility of short-term changes 

in seawater Sr was also suggested by Smith et al. (2006), who addressed 

interannual variation in skeletal Sr/Ca in a coral record from South Florida to 

variations of ambient seawater. Monthly resolution records of the 87Sr/86Sr ratio in 

Porites cores from southern Taiwan indicate a stronger mixing between surface and 

subsurface waters during El Niño years. This is caused the intrusion of a branch of 

the Kuroshio Current during these phases (Liu et al., 2009). Hydrological dynamics 

become a crucial aspect in the understanding of Sr/Ca variations in corals (Hu et al., 

2009). These examples show that variations of seawaterSr/Ca at the sample site 

cannot be excluded. Since current variability plays an important role at the sampling 

site, a correlation between the coral Sr/Ca record and the monsoon current records 

was applied. A significant link to current variability was, however, not found.  

Since a weak but significant correlation with annual mean SST (ERSST) 

exists, it is suggested that a SST component is still involved in the formation of the 

Sr/Ca signal. Based on this, the potential of Sr/Ca as a recorder for climate variability 

will be tested. 
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The correlation between the annual mean Sr/Ca record and δ18O of C1 (also 

when the linear trend is removed) is also weak and insignificant. This could be also 

addressed to the strong interannual variations of salinity and SST at the location site. 

 

5.3.2. Interannual Sr/Ca variability 

 

The annual Sr/Ca spectrum reveals typical interannual ENSO peaks within the 

range at 2.7-3.0 yrs and in the typical ENSO band of 3.5-3.7 yrs, found in SST, 

extension-rates and δ18O (Figure 33a). The decadal signal at 10-12.5 yrs slightly 

rising over the low resolution spectrum and is found neither in SST, nor in δ18O and 

annual mean extension-rates datasets, and is possibly of non-SST origin. Highest 

coherence between the Sr/Ca record and Niño 3.4 at ~3.7 yrs demonstrates the 

sensitivity of Sr/Ca to capture the predominant mode of SST variability at the 

sampling site (Figure 33b). The evidence for interannual ENSO forcing can also be 

illustrated by the application of correlation between the interannual variability in Sr/Ca 

and in SST fields in the Indo-Pacific realm (Figure 34). The proxy record maps the 

“center of origin” of the ENSO system in the eastern tropical Pacific. 

 

5.3.3. Pacific Decadal Oscillation 

 

The predominant characteristic of the Sr/Ca record is its concave shape 1917-

1955 (Figure 12). This pattern resembles the instrumental SST record at first glance; 

a correlation of annual mean Sr/Ca and SST (not de-trended) is obviously stronger 

than for the whole record (Table 6). The regression slope between gridded SST 

(ERSST) and Sr/Ca is -0.18 mmol/mol °C-1, which is three-times lower than the mean 

regression slope of -0.06 mmol/mol °C-1 (Corrège, 2006; Figure 35). This could 

indicate a higher sensitivity of SST variations at the sampling site compared to the 

gridded SST dataset. One possible origin for varying slopes for the Sr/Ca-SST 

regression reported in coral proxy studies is indeed the choice of SST datasets 

(Corrège, 2006). Gridded SST datasets provide sometimes arguable SST records 

(e.g., Thompson et al., 2008). Differences between the ERSST and HadlSST1 

records for the central Maldives are obvious, when one regard the r-values for the 

correlation between Sr/Ca and SST for 1917-1953 (Table 6). Still, the lowest reported 
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regression slope value is -0.08 mmol/mol °C-1 (Allison and Finch, 2004), which could 

also indicate the presence of a non-SST effect. 

The gridded SST follows the PDO index during 1917-1955 at first glance 

(Figure 36). The annual mean Sr/Ca record consequently resembles the annual 

mean PDO index in 1917-1955 (Figure 37a). In the mid-1950s, the PDO signature 

disappeared similar to the gridded SST record, after the transition of the positive 

(warm) into the negative (cool) PDO regime at the end of the 1940s (Mantua et al., 

1997). The multi-decadal peak (34-35 yrs) in the spectral-analysis should be 

addressed to the PDO signature during 1917-1950 (Figure 33).  

The weakening of PDO-forcing in the central Maldives after 1950s can be 

illustrated in Figure 38 by the synopsis of field correlations applied for the PDO index, 

the coral Sr/Ca record and gridded SST for the central Maldives (ERSST), and SST 

fields in the Indo-Pacific realm. The impact of PDO is evident 1917-1955, but not 

afterwards (Figure 38a). Reversely, no or only few SST fields in the Pacific Ocean 

with significant correlation to Sr/Ca and central Maldivian SST are evident after the 

1950s (Figure 38b and c). The permanent characteristic for both periods is the 

meridional dipole structure in the N and S Pacific, caused by the opposite SST 

development during PDO “warm” and “cold” phases (Mantua et al., 1997). During 

1917-1955, the field correlation of Sr/Ca and SST reveals the spatial characteristic of 

the dipole in the N Pacific (Figure 38b). High correlations are found between Sr/Ca 

and SST in the coastal area off of North America and in the N Pacific. The dipole 

nature is also found for the SST dataset of the central Maldives in these decades 

(Figure 38c). Pfeiffer et al. (2009) also found for their combined Sr/Ca record from 

Chagos (71°E, 5°S) similar PDO-related SST fields in the Pacific, in their case for the 

period 1950-1995.  

Beside SST, the PDO also reveals a strong linkage to sea level pressure 

(SLP) and precipitation in the Pacific (Deser et al., 2004). During 1917-1955, the 

PDO index reveals a significant correlation with SLP fields in the N Pacific, which can 

be reconstructed by the Sr/Ca record in this period (Figure 38). This underlines the 

interpretation of PDO forcing in the lower part of the time-series. 

This climate link between the central Maldives and the Pacific for 1917-1955 

can also be shown by using climate archives only. Beside our Maldivian Sr/Ca 

record, we used a Geoduck clam record (Panopea abrupta) deriving from the NE 

Pacific (122°W/48°N), which is a valuable SST proxy from the “center of action” of 
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PDO variability (Strom et al., 2004). Both records reveal a significant correlation for 

1917-1955, while afterwards this correlation disappeared (Figure 37b). Pfeiffer et al. 

(2009) found a significant correlation between their combined Sr/Ca record and the 

same growth index for the period 1950-1995 at Chagos Archipelago. 

The absolute amount of the transition in Sr/Ca would indicate a SST decline of 

~2 °C (assuming a Sr/Ca-SST slope of -0.06 mmol/mol°C-1) between 1942 and 1949. 

The two gridded SST datasets indicate, however, a drop of ~0.8 °C. Since in situ 

SST data of this period are missing, this discrepancy is difficult to resolve. Pfeiffer et 

al. (2009) found in their Sr/Ca records for the PDO shift in the mid-1970s at Chagos 

also discrepancies in the estimation of the amount of SST rise. Only one record 

indicates a warming, which is consistent with gridded SST.  

 

 

5.4. The relationship between PDO, Indian Monsoon variability, and decadal 

ENSO-like variability in the coral record 

 

The combination of the coral proxies Sr/Ca, extension-rates, and δ18O can be 

used to demonstrate changes of climatic teleconnections with the Pacific in the 

decadal range. These proxy records reveal three conspicuous aspects: First, the 

coral record experienced PDO variabilty 1917-1955, which is confirmed by coral 

Sr/Ca. A correlation between extension-rates and Western Ghat precipitation is 

weaker during this interval than afterwards. PDO disappeared after the mid-1950s, 

and the correlation between annual extension-rate and Western Ghat Precipiation 

increased.  

The annual extension-rates (Figure 40) benefited during the warm PDO phase 

1922-1945 by warmer conditions. No correlation exists between the PDO index and 

the extension-rates in this period. This lack of correlation could be caused by the 

interactions of both SST and SW monsoon current variability. This should also be the 

origin for the weaker correlation between annual extension and rainfall over South 

India until 1955 (Figure 27). The shift from PDO to non-PDO dominance in the 

extension-rate record may explain the rise of years of reduced extension, observed 

for instance in 1982, 1992 and 1999 (Figure 40a). Most of these events coincide with 

more rain over the Western Ghat region (Figure 40b). Years with accelerated 

excursions occur in the majority of the cases in phases of weaker rainfall over the 
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Indian subcontinent. This is exemplary for the years with strong SW monsoon rainfall 

1955-1995, where no positive excursion is found (Figure 40a).  

Krishnan and Sugi (2003) found signatures of PDO on the summer monsoon 

over India. Their finding suggests an inverse relationship between the strength of 

PDO variations associated with the strength of monsoon rainfall. The majority of dry 

monsoon events appear during the PDO warm phases (Krishnan and Sugi, 2003), 

and the majority of wet monsoon events during the PDO cool phases. Sen Roy 

(2006) found also a negative relationship between PDO and rainfall during the dry 

NE monsoon.  

The PDO disappears in the mid-1950s in the proxy and SST records during 

the period of the onset of decadal ENSO-like variation in δ18O (Figures 12a, 30, 36). 

This could be a hint for changed teleconnection patterns between the NW Indian 

Ocean and the Pacific. The causes and mechanism of multi-decadal teleconnections 

originating in the Pacific associated with the PDO are still being investigated (e.g., 

Deser et al., 2004; D’Arrigo and Wilson, 2006). Evidence for remote PDO-forcing of 

SST and SLP by the flow of the South Equatorial Current and the flow through the 

Mozambique Channel is found in δ18O records from Madagascar and La Réunion 

(Crueger et al., 2009). It is speculated that the proposed disappearance of PDO 

signature at the central Maldives is due to temporal changes in the influence of the 

dynamics of the Indonesian Throughflow and the Equatorial Currents. Changes in the 

hydrodynamics may also cause a change in seawater Sr/Ca after 1955 (Figure 12b). 

To address this question, more proxy records from C1 are needed, such as 

radiocarbon (Δ14C) and boron isotopes that can be applied as tracer for ocean 

circulation and water masses (see Grotolli and Eakin [2007], and references therein; 

Hönisch et al., 2004). 

The temporal variability of the spatial pattern of the PDO in the N Indian 

Ocean is poorly understood (D’arrigo and Wilson, 2006). Still, Pfeiffer et al. (2009) 

found PDO signature in coral Sr/Ca records of the central Indian Ocean (Chagos 

Archipelago), and D’arrigo and Wilson (2006) found evidence for PDO teleconnection 

for 1870-1988 between a tree-ring record from Asia and the coral-proxy record from 

Kenya (Cole et al., 2000).  
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5.5. Reconstruction of ENSO events  

 

The combination of Sr/Ca and δ18O is usually used to reconstruct the seawater 

component of δ18O, which is correlated to SSS (Corrège, 2006). Two things are 

necessary for the reconstruction of past SSS: long in-situ SST data from the lagoon 

in order calibrate Sr/Ca with SSS, and the proof that Sr/Ca is not biased by non-SST 

effects. Both pre-conditions are not fulfilled. The combination of Sr/Ca and δ18O, 

however, could be used as detectors for historical ENSO events at the NW Indian 

Ocean, since Sr/Ca features an interannual component that is driven by SST 

(Figures 33 and 34).  

El-Niño events lead to a warming of 0.5 °C-1.5 °C in the NW Indian Ocean 

(Reason et al., 2000). The magnitude of interannual ENSO anomalies is small, and 

the signal to noise ratio relative low (Annamalai et al., 1999). Therefore, Sr/Ca and 

δ
18O were filtered using a Hamming filter to remove the decadal components, short 

period noise and to highlight interannual variability in the ENSO band of 2.5 to 7 yrs. 

For the period 1917-2006, 21 La Niña and El Niño events were identified in 

agreement with SST (Figure 41). The 1997/98 El Niño event and the subsequent La 

Niña event of the following year show strong positive and negative excursion in the 

Sr/Ca record. Two possible events in the lower part of the record are not noted in the 

ENSO tabulation of Kousky and Bell (2000), and three are noted and detected in 

SST, but not found in both proxies. The strong El Niño event in 1982/83 was not 

identified with the proxy records. In total, about 80% of historical ENSO events were 

detected with in the coral proxies.  

This confirms the notion of a SST component in the Sr/Ca record, but also the 

usefulness of δ18O, which depends on SST and SSS, as a proxy for historical SST 

variations. The band-passed filtered records of Sr/Ca and δ18O indicate three-time 

higher SST fluctuations in the lagoon than the gridded SST record (Table 7). Higher 

SST fluctuations could be expected for the lagoon environment, but the influence of 

SSS fluctuations in the lagoon on δ18O, and the impact of non-SST effects on Sr/Ca 

are unknown. Therefore, a fluctuation (twice standard deviation) of 1 °C for the 

ENSO band SST variability in the lagoon could be overestimated. 

The infrequency of ENSO events in the period 1920-1950 can be explained by 

weaker ENSO teleconnections during this period than in later decades (Kumar et al., 

1999).  
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5.6. Carbon Isotopes 

 

 Although the primarily focus of this study are the extension-rates, coral δ18O 

and Sr/Ca, it is important to briefly discuss the δ13C. Both δ18O and δ13C are in the 

seasonal cycle in phase with each other. Most positive coral δ13C values are 

developed during the winter monsoon season in January/February in any given year, 

when SST is lowest and the seasonal solar radiation highest. Heavier δ13C probably 

reflect the level of highest photosynthetic activity of the hosted zooxanthellae 

coincident with the most enriched 13C portions of the coral skeleton (e.g., Swart 1983; 

Sun et al. 2008). It is likely that a major portion of the seasonal δ13C cycle can be 

addressed to seasonal differences in light availability. Lighter δ13C occur in August 

and not in early spring as indicated by OLR, as a consequence of the sub-annual 

slowing of skeletal extension (Chapter 5.1.5). The long-term trend towards lighter 

values in δ
13C is usually attributed to the Suess effect, i.e., the steady 

anthropologically induced release of lighter CO2 into the atmospheric reservoir via 

combustion of fossil fuels (Figure 42).  

Coral δ13C depends on a variety of abiotic and biotic factors (e.g., Grotolli, 

2002; Maier et al., 2003). Therefore, δ13C records have always been considered to 

allow a less-straight forward environmental interpretation than δ18O. However, since 

ENSO is significantly influencing the ambient environment it is expectable to detect at 

least a weak ENSO signature in δ13C. A cross spectrum of mean November-

February δ18O and δ13C reveals spectral alignment and coherence for the typical 

interannual ENSO mode centered at ~3.7 yrs (not shown). Similarities of both isotope 

proxies in the interannual or decadal range are not uncommon for coral proxy 

records (Lough, 2004). Following Lough (2004), this pattern can be addressed either 

to a direct climatological or an indirect biological origin, such as ENSO-triggered light 

availability caused by variations of interannual cloud coverage, or by coral growth-

rates kinematics. An example for the latter process is the fact that coral δ13C features 

variability within 8-9 yrs in the power spectrum. This signal yields spectral coherence 

with the annual extension-rates in this band (Figure 43). This proxy thus indirectly 

reflects the quasi-decadal SST variations at the sampling site. 

 Finally, coral δ13C can also be influenced by δ13C of the water column 

dissolved inorganic carbon (DIC, Lamb and Swart, 2008). Between equatorial 

upwelling and monsoon-driven circulation, the coral may be exposed to different 
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isotopic signatures in DIC. No link between monsoon current variability and Spectral 

peaks in δ13C resembling spectral peaks in the SW and NE monsoon spectrum is, 

however, evident. 
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6. Summary and conclusion 

 

This study used annual extension-rates, δ18O, Sr/Ca and δ13C to reconstruct 

historical climate variations for the period 1917-2006 (Table 8). Since no coral proxy 

record from the Maldives exists, this study fills this gap in the Indian Ocean 

Because of its vicinity to the monsoon system, the Maldives are affected by the 

seasonal reversals of monsoon currents and winds. Due to strong hydraulic energy 

of the ambient seawater, the mean annual extension is comparably low.  

A significant increase in the annual extension-rates can be linked to the warming 

in the NW Indian Ocean. The annual extension-rates are triggered by SST variations 

in the interannual range that are linked to the ENSO forcing. Variations with a 

periodicity of 8-9 yrs are caused by Indian Ocean SST variations.  

Decadal variability with a period of 18-19 yrs in the extension-rate record is an 

expression of the variability of the Indian monsoon system, but cannot be linked to 

Pacific climate variability. Phases of stronger Indian monsoon cause higher-than-

normal-rainfall anomalies over the Indian subcontinent, and stronger SW monsoon 

current activity. These currents affect the skeletal extension in the summer months. 

Corals likely sacrifice extension for calcification in order to obtain a more robust 

skeleton in phases of stronger SW monsoon currents. Due to this causality, it is 

possible to reconstruct rainfall over southern India.  

This study thus underlines the potential of extension-rates, to reconstruct past 

climate variations. Extension-rate records are usually disregarded in proxy climate 

studies, since it is believed that they are affected by a variety of effects. The principal 

environmental factors are, however, SST (Lough and Barnes, 2000) and current 

variability (Scoffin et al., 1992), which is confirmed by this study. The application of 

annual extension-rates as a proxy for the monsoon variability was feasible because 

of two factors: the geomorphology of Rasdhoo Atoll and the position of the coral 

colony in the lagoon. For the interpretation of fossil extension-rates, this implies that 

information on the coral habitat and the geomorphology is needed. Lagoon habitats 

may amplify decadal and interannual SST and current variations. In terms of 

Rasdhoo Atoll, one could suggest the existence of “climate facies”. The dominance of 

SST-driven interannual and decadal variability in extension-rate records could be 

found in coral records deriving from the mudstone facies, where hydraulic energy is 

negligible or weak. The habitat of the investigated colony of this study might be an 
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intermediate area, with both SST and current forcing (Figure 44). The hard bottom 

area adjacent to the tidal channels might be dominated by the decadal variations of 

the monsoon currents. This idea is still highly speculative and introduces a two-

dimensional approach on coral proxy studies. More studies on coral records from 

individual lagoons are needed in order to establish extension-rate records in Porites 

as a proxy for climate variations beyond the onset of instrumental climate records. 

Coral δ18O reveals an overall depletion trend in the 20th century. This proxy also 

yields an interannual ENSO variability, and a decadal ENSO-like signal of 12-14 yrs, 

which is driven by SSS variability. It is suggested that variations in the strength of the 

winter monsoon currents are responsible for this variation. The effect of monsoon-

induced cooling is found in the long-term trend of δ18O.  

In contrast, coral Sr/Ca does not feature a long-term trend. This could be 

explained by a non-climatologic effect. This proxy also features an interannual ENSO 

signature, and show PDO forcing 1917-1955. The disappearance of PDO signature 

after the mid-1950s reveals temporal variability of the spatial PDO component in the 

NW Indian Ocean, or at least, at the central Maldives. A warm PDO phase is 

suggested to lead to more favorable conditions for coral growth in the investigated 

core. Afterwards, coral growth is more affected by phases of higher-than normal SW 

monsoon strength.  

By the combination of Sr/Ca and δ18O, it is possible reconstruct past ENSO 

events at the central Maldives. The correlation with SST is strong during this time, 

but disappeared afterwards. Because non-SST factors are inherent, and long in situ 

SST datasets of the lagoon are not available, it is not possible to reconstruct past 

SSS variability. 

Coral δ13C records a long-term depletion trend, which is addressed to the Suess 

effect. This signal reflects the impact of the anthropogenic combustion of fossil fuels 

on the atmospheric and oceanic carbon reservoir.  
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7. Zusammenfassung und Schlussfolgerung 

 

Diese Arbeit präsentiert Korallenproxy-Zeitreihen von den Malediven, einer der 

größten rezenten Karbonatplattformen der Welt. Da bisher keine historischen 

Korallenaufzeichnungen von diesem Archipel existieren, versucht diese Arbeit, die 

bestehende Lücke zu füllen. Als Klimaarchiv wurde die Korallenart Porites lutea  

verwendet, eine massive Korallenspezies, welche häufig für die Rekonstruktion 

historischer Klimavariationen im Indo-Pazifik Verwendung findet. Der Korallenkern 

stammt von Rasdhoo (4°N/73°E), einem kleinen Atoll aus dem zentralen Bereich des 

Archipels. Die Länge der Aufzeichnungen ist 90 Jahre, von 1917 bis März 2007, mit 

monatlicher bis zweimonatlicher Auflösung. Diese Arbeit beschreibt und diskutiert die 

zeitlichen Muster der geochemischen Proxies δ18O, Sr/Ca und δ13C, sowie der 

jährlichen Wachstumsrate (Dicke eines Inkrements) während dieser Zeit und setzt 

sie in Beziehung zu historischer Klimavariabilität im nordwestlichen Indischen Ozean.  

Mit der Untersuchung und Diskussion der jährlichen Wachstumsraten versucht 

diese Arbeit, einen Beitrag für das bessere Verständnis der zeitlichen Variation 

dieses Parameters in Porites Korallen zu leisten. Daher wird versucht, eine weitere 

Lücke zu schließen, denn Wachstumsraten in Korallen als Indikator für 

Klimavariationen wurden bisher in Korallenproxy-Studien kaum beachtet. Es gibt 

wenige Arbeiten, die mit den jährlichen Wachstumsraten Klimavariabilität zu 

rekonstruieren versuchen. Die mittlere Wachstumsrate 1917-2006 im untersuchten 

Korallenkern ist mit 9.9 mm/Jahr relativ niedrig für einen Standort in den Tropen mit 

einer mittleren Jahrestemperatur von 28,7 °C, im Vergleich zu anderen publizierten 

Studien (Lough und Barnes, 2000). Da dieser Wert außerhalb des empirischen 

Zusammenhangs zwischen Wachstumsrate und mittlerer SST von 44 

Korallenkolonien im Indo-Pazifik liegt (Lough und Barnes, 2000), muss ein anderer 

Faktor auch auf das Korallenwachstum wirken. Scoffin et al. (1992) fand einen 

Zusammenhang zwischen Wachstumsraten und hydraulischer Energie des 

Meerwassers am Standort von Porites Korallen in Thailand. Je höher die 

Strömungen, desto geringer der Wachstum der Korallen. Die Koralle erhöhte 

wahrscheinlich die Kalzifikationsrate und daher Robustheit des Skeletts auf Kosten 

des jährlichen Wachstums. Über den genauen Verlauf und der Stärke der 

Gezeitenströmungen in der Lagune von Rasdhoo Atoll ist nichts bekannt, aber 

aufbauend auf der karbonatfaziellen Arbeit von Gischler (2006) kann angenommen 
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werden, das der Standort der beprobten Koralle sich noch im Einflussbereich der 

Gezeitenströme befindet. Der Einfluss der hydraulischen Energie auf das Wachstum 

vermindert aber nicht die Fähigkeit der Korallen, Temperaturtrends und 

Temperaturvariabilität aufzuzeichnen. Als Folge der Erwärmung im nordwestlichen 

Indischen Ozean seit 1917 kann man die Zunahme der Wachstumsraten 

beobachten. Außerdem ist es möglich, mit Spektralanalysen zu zeigen, dass 

zwischenjährliche Schwankungen, die einer Periodizität von 3-4 Jahren aufweisen, 

durch das ENSO - System gesteuert werden, welches die Temperaturen des 

Indischen Ozeans im zwischenjährlichen Bereich steuern. Damit zeichnet die Koralle 

Klimavariationen auf, die ihr Zentrum im östlichen Pazifik haben. Daneben reflektiert 

das Wachstum der Koralle auch eine Variabilität im Bereich von 8-9 Jahren, welche 

nicht auf ENSO zurückgeführt werden kann, und eher einer internen Klimavariabilität 

im Indischen Ozean entspricht.  

 Da gezeigt wurde, dass Wasserenergie ein wichtiger Faktor für das 

Wachstum der untersuchten Korallen ist, sollte es wahrscheinlich sein, dass die 

Korallen Variationen der Strömungsenergie in der Lagune speichern. Das 

Korallenwachstum zeigt für die Periode 1958-2004, für welche es Daten der 

Monsunströmungen gibt (SODA Datenbank, Carton et al., 2005), einen 

Zusammenhang mit der Variabilität der Stärke des Sommermonsunströmungen. 

Beide Zeitreihen zeigen eine deutliche spektrale Kohärenz innerhalb der Periodizität 

von 18-19 Jahren und eine innerhalb von 6-7 Jahren. Es ist denkbar, dass die 

Fähigkeit der Koralle, Monsunvariabilität aufzuzeichnen, auf die besondere Lage der 

Koralle in der Lagune und der besondere Geomorphologie des Atolls mit ihren zwei 

Gezeitenkanälen zurückgeführt werden kann. Entsprechend den Sedimentfazies, 

welche von Gischler (2006) in der Lagune von Rasdhoo kartiert worden sind, 

könnten die Klimasignaturen in den Wachstumsraten der Korallenkolonien eine 

Standortabhängigkeit zeigen, da die Sedimentfazies an der jeweiligen Lokalität die 

hydraulische Energie anzeigen. Daher sollte die Karbonatfazies bei der 

Untersuchung vorindustrieller Porites Kerne bekannt sein, bevor Wachstumsraten 

und andere Wachstumsparameter untersucht werden. 

Die Variabilität der Monsunströmungen ist ein Ausdruck der Variabilität des 

Monsunsystems. Dies gilt auch für den Regenfall über Indien, welcher gewöhnlich 

als Indikator für die Stärke des Monsuns gilt (Sontakke und Singh, 1996). Daher 

besteht ein Zusammenhang zwischen Niederschlag über Südindien, Südarabien, 
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Nordostafrika und Kenia, und dem Wachstum der Koralle. Am Beispiel der 

Aufzeichnung des Sommermonsunniederschlags in der westlichen Ghat Region in 

Südindien kann gezeigt werden, das die Korrelation zwischen beiden Zeitreihen 

oberhalb des zwischenjährlichen Bereichs stark und signifikant ist, besonders ab der 

Mitte der 1950er Jahre.  

Damit ist es in dieser Arbeit das erste Mal gelungen, zeitliche Variabilität des 

Monsunsystems im Indischen Ozean mit einer Korallenzeitreihe zu erfassen. Es 

wurde gezeigt, dass die Monsunstärke in Form der Strömungsvariabilität in der 

Koralle aufgezeichnet werden kann. Die dekadischen Variationen des Monsuns 

können dagegen mit δ18O-Aufzeichnungen von Korallen aus verschieden Lokalitäten 

im nordwestlichen Indischen Ozean nicht rekonstruiert werden (siehe Cole et al., 

2000; Pfeiffer und Dullo, 2006). Diese Arbeit bestätigt, dass δ18O-Zeitreihen nicht 

dazu verwendet werden können, die zeitliche Variabilität des Indischen Monsuns zu 

rekonstruieren. Die atmosphärischen-ozeanischen Wechselwirkungen sind zu 

komplex, und der Regenfall über Indien spiegelt diese Dynamik nur unzureichend 

wieder (Webster und Yang, 1992; Vinayachandran, 2004). Dagegen ist es möglich, 

mit der δ18O-Zeitreihe Gebiete der Monsunkühlung zu rekonstruieren. Dazu wurde 

eine Feldkorrelation mit geografisch gemittelten SST im Indo-Pazifik durchgeführt. 

Eine Kombination mit publizierten Korallenzeitreihen von den Seychellen (Charles et 

al., 1997) und Kenia (Cole et al., 2000) zu einem Korallenindex erhöht die Korrelation 

mit SST Feldern im nordwestlichen Indischen Ozean und zeichnet den Bereich der 

Monsunkühlung deutlicher nach. Es wird spekuliert, dass der Langzeittrend der SST 

der Monsunkühlung unterworfen ist.  

Die relative niedrige Korrelation von δ18O und instrumentellen SST für die 

1917-2006 zeigt, dass die Salinität eine wichtige Rolle in der Variabilität von δ18O in 

der Koralle spielt. Die δ
18O-Zeitreihe zeigt zwischenjährliche und dekadische 

Variabilität im Varianzspektrum auf, die im Zusammenhang mit SST- und 

Salinitätsschwankungen stehen, die durch ENSO verursacht wurden. Die bereits 

bekannte zwischenjährliche Variabilität von 3-4 Jahren tritt auf, sowie eine 

dekadische Schwankung von 12-14 Jahren, die nicht mit Variationen der SST erklärt 

werden können. Diese Variation ist im Bereich der typischen Periodizität der 

dekadischen ENSO Signals, und könnte durch Variationen der 

Wintermonsunströmungen verursacht worden sein, welche vom Pazifik über die 
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Passatwinde angetrieben wird. Die dekadische Variabilität tritt ab den 1950er Jahren 

in Erscheinung.  

Das Sr/Ca-Verhältnis zeigt eine signifikante Korrelation mit SST zwischen 

1917-1955. Nach 1955 ist die Korrelation schwach und folgt die der Erwärmung in 

der Region. Es kann nicht ausgeschlossen werden, dass das Sr/Ca Verhältnis im 

Meerwasser variiert hat. Räumliche Variationen des Sr/Ca-Verhältnisses in der 

obersten Wassersäule wurde in verschiedenen Studien beschrieben (de Villiers, 

1999; Sun et al., 2003; De Dekker, 2004; Smith et al., 2005; Quinn et al., 2005). 

Neueste Arbeiten bringen Variationen des Sr/Ca Verhältnisses mit der Hydrodynamik 

in Verbindung (Hu et al., 2009). Trotz der geringen Korrelation mit SST zeigt die 

Sr/Ca-Zeitreihe zwischenjährliche Variationen, die mit ENSO verbunden werden 

können. Der Sr/Ca-Verlauf zeigt eine deutliche Korrelation mit dem PDO Index 1917-

1955. Dies kann durch Feldkorrelationen bestätigt werden, welche außerdem die 

Dipolstruktur der PDO im nördlichen Pazifik rekonstruiert. Sr/Ca und SST zeigen 

außerdem, dass dieses Phänomen nach 1955 in den zentralen Malediven nicht mehr 

präsent ist. 

Die Existenz der PDO in den zentralen Malediven bis 1955 könnte erklären, 

warum die Korrelation mit dem Regenfall über Südindien bis 1955 niedriger ist. Das 

Wachstum der Koralle könnte in dieser Zeit von der PDO Warmphase (1922-1947) 

profitiert haben, denn wärmere SST könnten dem Effekt stärkerer 

Monsunströmungen während der Sommermonsunzeit entgegengewirkt haben. Nach 

1955 kommt es mehrmals zu Jahren, in denen der Wachstum rapide abnahm. Diese 

Jahre fallen häufig in Phasen, in welchen der Niederschlag über Indien während des 

Sommermonsuns hoch, dass heißt die Aktivität des Indischen Monsuns, höher war.  

Die Kombination von Sr/Ca und δ18O kann benutzt werden, um historische 

ENSO Ereignisse zu rekonstruieren. ENSO-Ereignisse in den zentralen Malediven 

sind definiert als Hoch- und Tiefpunkte (El Niño- und La Niña- Ereignisse) im ENSO 

Index Nino 3.4 und im instrumentellen SST Datensatz. In Kombination mit Tabellen 

über ENSO Ereignisse können ca. 80% dieser Ereignisse mit beiden geochemischen 

Proxies rekonstruiert werden. 

Die Zeitreihen von Sr/Ca, δ18O und der Wachstumsrate zusammengenommen 

geben möglicherweise den Hinweis darauf, dass sich die Stärke der PDO- 

Komponente im Indischen Ozean und damit die Art des Einflusses der Pazifischen 

Klimavariabilität in den zentralen Malediven verändert hat. Es ist auffällig, dass die 
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dekadischen ENSO Variabilität Mitte der 1950er Jahre beginnt, in der Zeit, in welcher 

die PDO Signatur in Sr/Ca und SST sich verliert. Es wird spekuliert, ob diese 

Beobachtungen mit der Aktivität und Dynamik der Äquatorströmungen im 

Zusammenhang steht.  

Der Proxy δ13C zeigt einen Langzeittrend hin zu leichterer Isotopie. Dieser 

Trend wird häufig in karbonatischen Klimaarchiven der letzten 100 Jahre beobachtet 

und mit der deutlichen Zunahme der Verbrennung fossiler Brennstoffe durch den 

Menschen seit der industriellen Revolution in Verbindung gebracht. Durch den 

vermehrten Eintrag von isotopisch leichterem 12CO2 kommt es zur Veränderung des 

δ
13C der Atmosphäre und folglich des Ozeans, aus welchem die Koralle ihr 

Kohlenstoff für den Aufbau des Korallenskeletts bezieht.  
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Figures 

 
 
 

 

 

Figure 1: Geological setting of the Indian Ocean, with the location of the Maldives in the NW 

Indian Ocean (modified from Gischler, 2006). Grey circle: central Maldives. Black circles: 

Locations of published historical coral proxy records (longer than 30 yrs) in the NW and W 

Indian Ocean. 1: Kenya (Cole et al., 2000); 2: Seychelles (Charles et al., 1997; Pfeiffer and 

Dullo, 2006); 3: Chagos Archipelago (Pfeiffer et al., 2004a; 2006; 2009); 4: La Reunion 

(Pfeifer et al., 2004b); 5: Madagascar (Zinke et al., 2004), 6: Mayotte (Zinke et al., 2005). 
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Figure 2: The Maldives Archipelago including predominant wind directions. Rasdhoo Atoll is 

located in the central area of the archipelago. Modified from Purdy and Bertram (2003).  
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Figure 3: Position of the sampled colony C1 in the lagoon of Rasdhoo Atoll 

(latitude/longitude: 04°17’’97N/72°58’49’’), water depth of the colony: 1 m. Note that the fore 

reef on the eastern side is too narrow to show on figure. Maps are redrawn after Gischler et 

al. (2008). 
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Figure 4: (a) and (b) Schematic representations of the seasonally reversed monsoon wind 

field for January and July, respectively. Redrawn after Shankar et al. (2002), black dot: 

central Maldives, (c) two mean seasonal cycles of the monthly gridded COADS wind speed 

record since 1977 (Woodruff et al., 1998), (d) two mean seasonal cycles of monthly gridded 

SODA zonal currents record since 1958. Note that positive velocities correspond to zonal 

velocity vectors orientated towards east, predominant during the NE monsoon season, while 

negative velocities accordingly correspond to vectors orientated towards west, predominant 

during the SW monsoon season. Thin lines indicate standard deviation. 
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Figure 5: Monsoon currents in the Northern Indian Ocean for (a) January during the NE 

monsoon and (b) July during the SW monsoon. Current system redrawn after Shankar et al. 

(2002), EC: Equatorial Current; SECC: South Equatorial Counter Current: SEC: South 

Equatorial Current. Grey ellipsoid represents Maldives-Laccadive Ridge. 
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Figure 6: Mean seasonal cycle and time-series of (a) precipitation, (b) SSS and (c) 

HadISST1 and ERSST datasets. Shaded areas indicate SW monsoon season. References, 

sources and gridded area climate records are given in Table 1. 
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Figure 7: (a) Monthly and annual record of the ENSO index Niño 3.4 (based on ERSST). (b) 

R-values of running correlations between the 12-months averaged high-pass filtered (year-

on-year difference) record of Niño 3.4, and SST fields (based on ERSST) in the Indo-Pacific, 

based on a grid of 2°x2° for the period 1917-2007. Black circle indicates the central 

Maldives. A high-pass filter (year-on-year difference) was used in order to highlight the 

interannual variability by removing trends or slow variations. Correlations stronger than r = 

+0.4 or r = -0.4 are significant at 99%, based on a two-sided student t-test. P-values < 0.2 

have been masked out. Analysis was run with the KNMI climate explorer web application 

(van Oldenborgh and Burges, 2001; http://climexp.knmi.nl). (c) Blackman-Tukey cross-

spectrum between annual mean Niño 3.4 and gridded SST (ERSST) from the central 

Maldives including Rasdhoo Atoll for the period 1917-2006. The top panel shows the 

variance spectra for both records, and the bottom panel shows the coherence (the 

correlation coefficient as the function of frequency between the records). Thin line on the 

bottom panel indicates the one sided lower error at 90%. Coherence values > 0.8 indicate 

that over 64% (0.82) of the variance at these periods is linearly correlated. Shaded area 

indicates the period of highest spectral coherence. Numbers are given in years. The 

bandwidth is 0.04 (number of lags: 41). The criteria for this are that the variance peaks are 

aligned (in the top panel) and that the corresponding coherence exceeds the 80% confidence 

level (CL).  
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Figure 8: Sampling of core C1 with a pneumatic drill device in the lagoon of Rasdhoo March 

2007. The top of the Porites colony is 1 m below sea level. 
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Figure 9: Radiograph of core C1 including the sampling transects.  
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Figure 10: Synopsis of (a) monthly and annual mean δ18O (bold) and (b) monthly and annual 

mean (bold) Sr/Ca (record is scaled with zero mean). 
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Figure 11: (a) Two mean seasonal cycles on monthly resolution for δ18O and Sr/Ca. Values 

of each month are averaged for the period 1917-2006. Standard deviation for δ18O is 0.13‰, 

and for Sr/Ca 0.06 mmol/mol. (b) Correlation between mean monthly δ18O and Sr/Ca of the 

seasonal cycle. 
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Figure 12: (a) Comparison of mean annual δ18O with mean annual SST (ERSST) for the 

period of 1917-2006. Additionally, the correlation between time-series is given.                        

(b) Comparison of mean annual Sr/Ca with mean annual SST (ERRST). Correlations are 

given for the periods 19-17-1955 and 1955-2007, respectively. Note that in (a) δ18O is scaled 

after the empirical δ18O-SST relationship of -0.20 ‰/°C (e.g., Grotolli and Eakin, 2007). 
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Figure 13: Monthly and annual mean (bold) record of δ13C for the period 1917-2006 in C1. 
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Figure 14: (a) Distance of each January value (i.e., δ18O maxima in a seasonal cycle) from 

the top of core C1. Grey: Graph through the 89 time-distance points. Black: Interpolation by 

linear regression. The absolute value of the linear regression slope is the mean annual 

extension-rate of the record. (b) Annual extension-rate record, grey line indicates 5-yrs 

running mean average. 
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Figure 15: Scatter diagram of growth data averaged over colonies of the 46 Indo-Pacific 

reefs, and C1 versus annual average SST. Black circles: reefs from the Hawaiian 

Archipelago (Grigg, 1981); white circles: Great Barrier Reefs; grey circle: reef from Phuket, 

Thailand (Scoffin et al., 1992). PB: coral record from Peros Banhos, Chagos Archipelago 

(Pfeiffer at al., 2004a). Regression line is shown showing the statistically significant link. This 

figure is redrawn from Lough and Barnes (2000).  
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Figure 16: Facies map of Rasdhoo Atoll, including sediment dynamics and the location of C1. 

Dark grey area: hard bottom facies, medium grey area: mollusc wackestone-packestone 

facies, light grey area: mudstone facies. Redrawn after Gischler (2006): his figures 10 and 

12. 
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Figure 17: Cross spectrum between annual extension-rates of C1 and annual Niño 3.4 for 

the period 1917-2006. Shaded areas indicate periods of statistical significance. Numbers are 

given in years. See Figure 7c for legend. 
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Figure 18: Three to four years band-passed filtered (Gaussian filter) extension-rate and SST 

records, in order to highlight in-phase relationship between both records and the 

synchronous developing of their amplitudes through 1917-2006. Shaded area indicates 

mean sampling resolution of 0.08 mm. Bandwidth is 0.02. 
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Figure 19: R-values of field correlations between 12-months averaged annual extension-

rates and SST (ERSST). (a) The extension-rate record lags SST by 12 months, (b) SST lag 

extension-rate by 12 months, (c) SST lag extension-rate by 6 months. Black circle indicates 

Rasdhoo Atoll. A high-pass filter was applied in order to highlight the interannual variability 

by removing trends or slow variations. Correlations stronger than r = +0.4 or r = -0.4 are 

significant at 99%, based on a two-sided student t-test. R-values with p >0.10 are masked 

out. Analysis was run with the KNMI climate explorer web application (van Oldenborgh and 

Burges, 2001; http://climexp.knmi.nl). 
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Figure 20: Cross spectrum between annual extension-rate and SST (ERSST) for the central 

Maldives for 1917-2006. Numbers are given in years. Significant spectral coherence is 

highlighted by grey shading. See Figure 7c for legend. 
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Figure 21: Eight to nine years band-passed filtered (Gaussian filter) extension-rate and SST 

records, in order to highlight in-phase relationship between both records and the 

synchronous developing of their amplitudes through 1917-2006. Shaded area indicates 

mean sampling resolution of 0.08 mm. Bandwidth is 0.02. 

 



 

 75  

 

 

Figure 22: Blackman-Tukey spectra of annual extension-rates for (a) 1918-1968, and (b) 

1968-2007. The bandwidth is 0.04 (number of lags: 41). The background (grey) was 

calculated as a low-resolution spectrum with a bandwidth of 0.3 (5 lags). Grey shaded areas 

highlight peak found, which are found (b) but not in (a). Predominant SST peaks are 

indicated.  
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Figure 23: SODA time-series of 0.5°x0.5° gridded mean NE monsoon (November-February) 

and SW monsoon (May-September) zonal currents for the central Maldives. Light grey: 

current velocity during SW monsoon; dark grey: current velocity during NE monsoon; dashed 

line: mean annual current velocity; black: annual current gradient (difference between mean 

summer and winter current velocity for a given year). Note that positive velocities correspond 

to zonal velocity vectors orientated towards west, predominant during the NE monsoon 

season, while negative velocities accordingly correspond to vectors orientated towards east, 

predominant during the SW monsoon season. 
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Figure 24: (a) Cross-spectral analysis between the extension-rates and mean winter 

monsoon current velocities from SODA for 1958-2006. Light grey shaded areas indicate 

spectral coherence between both time-series. (b) The same analysis for extension-rates with 

mean summer monsoon currents for the same period. Grey shading indicates spectral 

coherence. Numbers are given in years. See Figure 7c for legend. 
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Figure 25: (a) Cross-spectral analysis between the annual current gradient record (ACG; 

difference between mean summer and winter monsoon current velocity from SODA), and 

annual extension-rates for 1958-2006. Grey shaded areas indicate spectral coherence 

between both time-series. Numbers are given in years. See Figure 7c for legend. (b) 

Enlargement of the coherence spectrum between the ACG record and extension-rates for 

the frequencies band of 0-0.5/yr, including Blackman-Tukey phase analysis (dashed line). 

Grey shaded areas indicate spectral coherence between both time-series. (c) Sixteen to 

eighteen years Gaussian band-pass filtered records of extension-rate and ACG. Note that 

the absolute values of the velocities were used. Note also the inverse axis of the ACG 

record. Shaded area indicates mean sampling resolution of 0.08 mm. 
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Figure 26: (a) Mean May-September All India Rainfall index (AIR; Sontakke and Singh, 1996) 

for the period 1917-1998. Bold line indicates 5-yrs running mean time-series. (b) Cross-

spectral analysis between extension-rates of C1 and mean May-September AIR index, 

significant spectral coherence is highlighted by grey shading. Numbers are given in years. 

See figure 7c for legend. (c) Enlargement of the coherence spectrum between May-Sept. 

AIR index and extension-rates for the frequencies band of 0-0.5/yr, including Blackman-

Tukey phase analysis (dashed line). Grey shaded areas indicate spectral coherence 

between both time-series. 
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Figure 27: (a) R-values of field correlations between the extension-rate of C1 and May-

September CRU TS3 precipitation on land (old world; grid:0.5°x0.5°) for 1922-2006. A low-

pass filter (five years average) was applied in order to remove interannual variability. 

Correlations stronger than r = +0.4 or r = -0.4 are significant at 99%, based on a two-sided 

student t-test. R-values with p >0.10 are masked out. Blue areas mean strong negative and 

red strong positive correlation. Analysis was run with the KNMI climate explorer web 

application (van Oldenborgh and Burges, 2001; http://climexp.knmi.nl). Black dot indicates 

central Maldives. Rectangle indicates mean Western Ghat region. (b) Five-years running 

mean record of Western Ghat precipitation (CRU TS3; gridded over 73°E-76°E/13°-15°N) for 

1922-2006. Note that correlation is negative and reversed y-axis of precipitation. 
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Figure 28: Comparison between two mean seasonal cycles of Sr/Ca and SST (ERSST, 

1917-2006). Mean standard deviation is for Sr/Ca 0.06 mmol/mol, and for SST 0.2 °C. Black 

arrows indicate the temporal offset between Sr/Ca minima and SST maxima. 
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Figure 29: The results of Blackman-Tukey cross-spectral analysis between mean November-

February δ18O and Niño 3.4 for the interval 1917-2006. Note that the right axis of spectral 

density is chosen to be of logarithmic scale. Numbers in the variance spectrum are given in 

years. See Figure 7 for legend. Bandwidth is 0.04, number of lags = 41.  
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Figure 30: Wavelet power spectrum for the monthly δ18O record for 1917-2007. Upper panel 

shows the detrended and normalized time-series without reversed scale. Thick black line 

indicates the 5 % level of significance. Black line indicates the cone of influence. The Morlet 

wave function was chosen. This analysis was conducted with the                        

Matlab software package performing cross wavelet transformation at 

http://www.pol.ac.uk/home/research/waveletcoherence. Note that the field of highest 

significance reaches out of the cone of influence. 
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Figure 31: The results of Blackman-Tukey cross-spectral analyses for (a) annual mean δ18O 

and SST (ERSST), (b) annual mean δ18O and SSS, (c) annual mean SST and Niño 3.4, (d) 

annual mean SSS and Niño 3.4 for the period 1958 – 2004, for which SODA SSS data are 

available. Bandwidth = 0.04, number of lags = 41. See Figure 8 for legend. Dark grey 

shading indicates continuous spectral coherence above 80% CL in (a) and (c), and (b) and 

(d) respectively. Light grey shading indicates uncontinuous spectral coherence above 80% 

CL. See Figure 7c for legend. 
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Figure 32: Field correlations of annual mean δ18O records with 2°x2° gridded instrumental 

SST records (ERSST) in the NW Indian Ocean for the time span 1917-1995 (12-month 

running correlation) for (a) C1, (b) a combined record of C1 and the δ18O record from the 

Seychelles (Charles et al., 1997), (c) a combined record of C1, Seychelles record, and δ18O 

record from Kenya (Malindi, Cole et al., 2000). Left: r-values field; right: corresponding p-

values field, circle indicates the location of the central Maldives, square the location of the 

Seychelles, and triangle the location of Malindi, Kenya. Correlations at or stronger than r = -

0.4 are significant at the 99% confidence level based on a two-sided student t-test. The 

seasonal cycles were removed prior to analysis. Analysis was run with the KNMI climate 

explorer web application (van Oldenborgh and Burges, 2001; http://climexp.knmi.nl). P-

values < 0.1 have been masked out. Arrows in the p-value fields indicate the predominant 

orientation of the wind field vectors during SW monsoon. 
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Figure 33: (a) Blackman-Tukey variance spectrum for the annual mean coral Sr/Ca record 

spanning the years 1917-2006. The high-resolution spectrum was calculated using 41 lags 

and a bandwidth of 0.04. The low-resolution noise background spectrum was calculated 

using 5 lags and a bandwidth of 0.3. Those peaks of the spectrum that rise over the low-

resolution spectrum by a distance greater than the one-sided confidence interval at the 80% 

level (indicated by grey line) are marked in black. Those peaks below this level are marked in 

grey. Numbers are given in years. (b) Blackman-Tukey cross-spectrum between annual 

mean Sr/Ca and Niño 3.4 for the period 1917-2006. Shaded area indicates the period of 

highest spectral coherency. Both axes of ordinates are of logarithmic scale. The bandwidth is 

0.04 (number of lags: 41). See Figure 7c for legend. 
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Figure 34: Field correlations of coral Sr/Ca records with (a) 1°x1° gridded instrumental SST 

records (HadISST1) and (b) 2°x2° gridded instrumental SST records (ERSST) in the Indo-

Pacific realm for the time span 1917-2006 (12-months running correlation). A high-pass filter 

(year-on-year-difference) was used in order to highlight the interannual variability by 

removing trends or slow variations. SST datasets lack Sr/Ca by 6 months. Analysis was run 

with the KNMI climate explorer web application (van Oldenborgh and Burges, 2001; 

http://climexp.knmi.nl). P-values < 0.1 have been masked out. The seasonal cycles were 

removed prior to analysis. Black dot indicates the central Maldives, and dashed line the area 

of strongest interannual ENSO-forced SST variability. Compare with Figure 7. 
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Figure 35: Linear regression between annual mean SST (ERSST) and coral Sr/Ca for the 

period 1917-1955. The correlation is significant, but the calculated regression slope is 

outside of the range of published regression slopes for the empirical Sr/Ca-SST relationship 

(between 0.04 and 0.08 mmol/mol °C-1; Corrège, 2006). If the regression slope was within 

0.04 and 0.08 mmol/mol °C-1, and regression line ran through 0 mmol/mol at 28.4 °C, the 

linear regressions would be situated in the dark grey sector. Note that Sr/Ca values are given 

in zero mean values. 
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Figure 36: Time-series of annual mean PDO index (solid line; ERSST based), and SST from 

the central Maldives. Bold line indicates 5-years running mean average. Dashed line: 5-years 

detrended running mean SST (ERSST) for the central Maldives. Grey shaded areas indicate 

the warm modes after Mantua et al. (1997). 
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Figure 37: Annual mean records of coral Sr/Ca with (a) the PDO index (based on ERSST) 

and (b) a growth record of a Geoduck archive (122°W/48°N; 1917-1997) from Strom et al. 

(2004). Grey shaded areas indicate the warm modes after Mantua et al. (1997).. Note that in 

(b) the correlation between both time-series is only significant in the lower part of the record. 
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Figure 38: R-values of field correlations between 12-month running-averaged (a) annual 

mean PDO index (ERSST based) and SST records, (b) annual mean Sr/Ca from the 

Maldives (black dot) and SST records, and (c) SST from the central Maldives (3°-5°N/72°-

74°E) and SST records. ERSST is used to represent SST fields. Correlations stronger than r 

= +0.4 or r = -0.4 are significant at 99%, based on a two-sided student t-test. R-values with p 

>0.10 are masked out. The seasonal cycles were removed prior to analysis. Analysis was 

run with the KNMI climate explorer web application (van Oldenborgh and Burges, 2001; 

http://climexp.knmi.nl).Yellow square in (b) indicates the site of the Geoduck clam growth 

record (Strom et al., 2004). Note that for the Sr/Ca values the positive sign was inverted for 

better comparison. 
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Figure 39: R-values of field correlations between 12-month running-averaged (a) annual 

mean PDO index (ERSST based) and SLP, and (b) annual mean Sr/Ca from C1 and SLP. 

Correlations stronger than r = +0.4 or r = -0.4 are significant at 99%, based on a two-sided 

student t-test. R-values with p >0.10 are masked out. In order to remove interannual noise, a 

low-pass filter was applied (3-yrs mean) in order to improve the signal to noise ratio. The 

seasonal cycles were removed prior to analysis. Analysis was run with the KNMI climate 

explorer web application (van Oldenborgh and Burges, 2001; http://climexp.knmi.nl). Field 

correlations were conducted with the HadSLP2 dataset of the MET Office Hadley Centre on 

a grid basis of 5°x5° (Allan and Ansell, 2006). Black dot indicates the position of the central 

Maldives. 
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Figure 40: (a) Comparison between mean annual PDO index and annual extension-rates of 

C1 for 1918-2006. Bold thick line indicates 5-yrs mean average. Black and grey asterisks: 

negative and positive excursions of annual extension below 7 or above 12 mm (thin dashed 

line), which do not follow the pattern described in (b). (b) Comparison between 5-yrs means 

records of Western Ghat Precipitation and extension-rates. In comparison to Figure 27, the 

rainfall record is not reversely scaled. Black arrows: Years of slow extension (< 7 mm/yr) 

from (a), in most cases coinciding with stronger monsoon activity. Grey arrow: Years with 

faster extension (> 12 mm/yr), coinciding with weaker monsoon activity. 
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Figure 41: Band-pass filtered records (Hamming filter) of (a) gridded monthly SST (ERSST) 

and Niño 3.4, (b) monthly Sr/Ca and the Niño 3.4, and (c) monthly δ18O and the Niño 3.4 to 

highlight the interannual ENSO band of 2.5-7 yrs. Red and blue shading indicate identified El 

Niño and La Niña events. Criteria for the identification of an ENSO event are the alignment of 

a positive anomaly in the proxy with a negative anomaly in Niño 3.4 (La Niña), and vice versa 

(El Niño), and the existence of a contemporaneous SST anomaly in the gridded SST record 

of the central Maldives (ERSST). Arrows indicate ENSO events, which are noted in the 

ENSO tabulation of Kousky and Bell (2000), and evident in gridded SST, but not in Sr/Ca 

and δ18O, or in only one of them. Question mark indicates possible ENSO events which are 

not mentioned by Kousky and Bell (2000). For the events after the year 2000, the climate 

page of the Department of Geoscience, University of Washington 

(www.atmos.washington.edu) was used. A temporal lag of ~6 months between Pacific and 

Atlantic is neglected.  
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Figure 42: Comparison of δ13C data for C1 (3-yrs average), a coralline sponge record from 

Jamaica (5-yrs mean average, Ceratoporella nicholsoni, Böhm et al., 2002), and a Porites 

coral from Flinders Reef in the W Pacific (5-yrs mean average, Pelejero et al., 2005).  
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Figure 43: The result of a Blackman-Tukey cross-spectral analysis for annual extension-rate 

and annual mean δ13C. Grey shading highlights significant spectral density. 
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Figure 44: The proposed hypothesis of habitat-dependent “climate facies” for coral records. 

Dark grey area: hard bottom facies; medium grey area: mollusc wackestone-packestone 

facies; light grey area: mudstone facies. Redrawn after Gischler (2006): his figures 10 and 

12. 
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Tables 

Table 1: Instrumental records of SST, SSS, precipitation and OLR, used in this study. 

Abbreviations used here and in the text: ERSST: Extended Reconstructed SST; HadISST1: 

Hadley Centre Global Sea Ice and Sea Surface Temperature; SODA: Simple Ocean Data 

reanalysis project; COADS: Comprehensive Ocean Atmosphere Dataset. CRU: University of 

East Anglia Climate Research Unit. 

 

record grid time period reference 
ERSSR v.3. 2°x2°; 

72°-74°E/ 
3°-5°N 

 1917-2007 Smith and Reynolds 
2004; 
http://www.ncdc.noaa
.gov 

HadlISST1 1°x1°; 
73°-74°E/ 
4°-5°N 

 1917-2007 Rayner et al., 2003; 
http://metoffice.gov.u
k/hadobs 

SSS 0.5°x0.5°; 
73°-73.5°E/ 
4°-4.5°N 

 1958 - 2004 SODA, Carton et al., 
2005; 
http://apdrc.soest.ha
waii.edu/ 

Precipitation 
(4°10 N, 73°50E, 
2 m; Hulhule 
Airport) 

70 km west of 
Rasdhoo Atoll 1975-2007 

Meteorology 
Department Male 

Wind speed 2°x2°; 
73°-74°E/ 
4°-5°N 1977-2007 

COADS, Woodruff et 
al., 1998; 
http://www.cdc.noaa.
gov/ 

Zonal surface 
currents 

0.5°x0.5°; 
73°-73.5°E/ 
4°-4.5°N 

 1958 - 2004 SODA, Carton et al., 
2005; 
http://apdrc.soest.ha
waii.edu/ 

OLR 2.5° x2.5°; 
72°x74.5°E/ 
3.75°-6.25°N 

1974-2007 Liebmann and Smith, 
1996; 
http://www.cdc.noaa.
gov/  

Precipitation 
South India 

3°x2°; 
73°E-76°E/ 
13°-15°N 

1917-2007 Mitchel and Jones, 
2005 
http://badc.nerc.ac.uk
/data/cru 
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Table 2: δ18O of ten measured water samples (depth: 1 m), collected on 9th February 2009 in 

the lagoon (3, 7, 8, 9, 10) and fore reef (1, 2, 4, 5, 6) of Rasdhoo Atoll. The standard 

deviation of the 10 samples is 0.12‰. The measurement of the δ18O composition of seawater 

samples collected at Rasdhoo Atoll follows the method described by Swart et al. (2000). The 

standard deviation for each single measurement is 0.07‰, and the data are reported relative 

to VSMOW.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sample 
number δ18O 

 Location 

1  0.52 

 4°18’0/72°56’0 

2 0.75 

 4°17’8/73°00’1 

3 0.62 

 4°17’8/72°58’8 

4 0.62 

 4°16’7/72°58’1 

5 0.50 

 
4°16’8/73°00’0 

6 0.33 

 
4°16’5/72°56’7 

7 0.42 

 
4°17’2/73°00’7 

8 0.53 

 
4°16’2/72°58’4 

9 0.50 

 
4°18’0/72°57’1 

10 0.43 

 
 4°18’3/73°00’6 

mean 0.52   
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Table 3: Basic statistics of the monthly and bimonthly coral δ18O record. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 Mean SD 
monthly -4.92 0.14 
min -5.10 0.11 
max -4.71 0.11 
seasonality 0.39 0.13 
annual mean -4.92 0.09 
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Table 4: Summary of correlation coefficients (r-values) of annual mean coral δ18O and annual 

mean climate records. Correlations with SSS are for the period 1958-2004. Bold: 

Significance at 95 %.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  C1 ERSST HadleySST SODA SSS 
C1 1 … … … 

ERSST -0.42 1 … … 
HadleySST  -0. 31 0.93 1 … 
SODA SSS -0.02 -0.41 -0.38 1 
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Table 5: Regression analyses for annual mean δ18O and SST datasets for the period 1917-

2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Regression equation r (R2) p 
ERSST (2°x2°) δ

18O = -0.13 * SST -1.49 -0.42 (0.20) <0.0001 
HadISST1 (1°x1°) δ

18O = -0.10 * SST -2.41 -0.31(0.10) <0.0001 
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Table 6: Correlations (r-values) between annual mean Sr/Ca, HadISSST1, ERSST, and PDO 

index for the period 1917-1955, and .1955-2006, respectively. All correlations are significant 

at the 95 % level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1917-1955 Sr/Ca HadISST1 ERSST 
Sr/Ca 1 ... ... 
HadISST1 -0.39 1 ... 
ERSST -0.53 0.91 1 
    
1955-2006 Sr/Ca HadISST1 ERSST 
Sr/Ca 1 ... ... 
HadISST1 -0.21 1 ... 
ERSST -0. 30 0.90 1 



 

 104 

Table 7: Twice standard variation of gridded SST in the interannual ENSO band of 2.5-7 yrs. 

Lower and upper limit are indicating the range of estimated SST fluctuations for relative low 

and high published slopes for the proxy-SST relationship (δ18O: 0.22 ‰/°C and 0.18 ‰/°C, 

Grotolli and Eakin, 2007; Sr/Ca: 0.08 mmol/mol °C-1 and 0.05 mmol/mol °C-1, Corrège, 

2006). As mean slopes 0.20 ‰/°C and 0.06 mmol/mol °C-1 were used (Grotolli and Eakin, 

2007; Corrège, 2006). Twice standard deviation for Sr/Ca was 0.06 mmol/mol °C-1, and for 

δ
18O 0.05 ‰/°C. 

 

 lower limit (°C) mean (°C) upper limit (°C) 
SST  0.3  
δ

18O 0.4 0.5 0.6 
Sr/Ca 0.9 1.0 1.6 
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Table 8: Summary of climate variability and non-climatic trends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proxy Climate signals and trends 
Extension-rate QBO, ENSO-forced interannual variability, Indian Ocean SST 

variability within 8-9 yrs, decadal and interannual monsoon 
variability, warming trend 

δ
18O ENSO-forced interannual variability, ENSO-like decadal variability, 

monsoon-induced cooling, warming trend 
Sr/Ca ENSO-forced interannual variability, PDO 1917-1955, secular 

seawater Sr/Ca variations (?) 
δ

13C Suess effect 
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