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1 Introduction and aims 
 

Macromolecules are dynamic, and their motions are critical for their functions.1 The 

first evidence of a conformational change was reported in 1938 by Felix Haurowitz.2 

His startling discovery showed that native hemoglobin adapts different conformations 

during and as part of its functional cycle. Since then, many examples illustrating 

relationship between molecular motions and functions have been reported. For 

example, conformational changes are required for the functioning of transport 

proteins,3,4 catalytic processes of enzymes,5,6 molecular mechanism of protein 

regulations,7-9 and working of motor proteins.10,11 Important conformational changes 

upon ligand binding have also been observed in several proteins, e.g., HIV-1 

protease,12 aldose reductase,13 adenylate kinase,14-16 tyrosine phosphatase,17,18 and 

calmodulin.19,20 These conformational changes range from side chain fluctuations to 

reorientations of domains and partial unfolding and refolding.21,22 

Several different models have been proposed to explain conformational changes upon 

ligand binding to a protein. Assuming rigid receptor and shape complementarities of 

the binding partners, “lock-and-key” was proposed in the nineteenth century by Emil 

Fischer.23 Later on, it was found incompatible with the evidences of conformational 

changes observed in binding partners during binding processes. Consequently, the 

“induced fit” model was proposed24  to account for the plasticity in receptor proteins. 

This model assumes that substrate binding induces a conformational change to a 

receptor. Thus, a geometric fit is ensured only after the structural rearrangement of the 

receptor caused by the binding interactions. However, the extent to which the 

conformational changes are literally induced is questionable. For example, Bosshard25 

has reported that induced fit is possible only if the match between the interacting sites 

is strong enough to provide the initial complex enough strength and longevity so that 

induced fit takes place within a reasonable time. In recent years, the “conformational 

selection/preexisting equilibrium” model26-29 has emerged as an alternative for 

induce-fit. Here, it is proposed that proper conformations are “picked” by a ligand 

from the ensembles of rapidly interconverting conformational species of the unbound 
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molecules. This is supported by experimental evidence for the presence of 

conformational variability of binding partners prior to their association.30,31 

Furthermore, it explains as to why a single protein can bind multiple unrelated ligands 

at the same site.32  

Despite the conceptual differences between “induced fit” and “conformational 

selection”, it should be noted that both models at least agree with regard to the 

statement that in every complex, the conformation of both binding partners has to be a 

specific one for both to fit.  It has also been suggested33-36 that conformational 

selection and induced fit are not two mutually exclusive processes  and that induced 

fit requires some prior molecular match to provide sufficient affinity,25 which is likely 

provided by a conformational selection mechanism. The question is then to assess the 

extent of each mechanism. A recent study in this direction investigates the interplay 

between the two mechanisms and concludes that strong and long-range ligand-protein 

interactions favor induced-fit mechanism whereas weaker and short-range interactions 

favor a conformational selection mechanism.37 

The understanding of ligand binding and mechanisms of conformational changes is 

important in the development of structure-based drug design (SBDD).38-40 Initially, 

SBDD approaches relied on the validity of the “lock and key” model,41 although this 

assumption leads to clear limitations.40,42,43 There are considerable efforts nowadays 

to incorporate the influence of (changes of) protein flexibility and mobility into recent 

drug design approaches.38,39,44 These efforts are grounded on the “induced-fit” and 

“conformational selection” models of ligand binding to proteins. In these lines, 

incorporating protein mobility information, in terms of multiple structures from X-

ray, NMR or MD simulations,  has been proven to enhance protein-protein 

docking,40,45,46 protein-ligand docking 47-49 and pharmacophore models.50  

It is important to mention that one needs to distinguish between two different but 

related concepts, i.e., flexibility and mobility, in order to understand and model 

conformational changes. Flexibility is a static property that only determines the 

possibility of a motion, whereas nothing actually moves.51 Mobility in turn describes 

actual movements in terms of directions and amplitudes. Flexibility is not necessarily 

a prerequisite for mobility, as rigid parts of a biomolecule (e.g., domains or helixes) 
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can well move as a whole when connected by hinges. However, mobility provides the 

origin for receptor plasticity, which enables binding partners to conformationally 

adapt to each other.  

Knowledge about protein mobility can be obtained from different experimental 

approaches.52 X-ray crystallography is the major source of structural information; 

however, it provides the static picture of a single conformation.53 The underlying 

protein dynamics can be interpreted using B-factor values or using multiple 

conformations crystallized in different conformational states. This is, however, 

restricted to a limited conformational space due to a limited number of available 

conformations.54 By contrast, NMR spectroscopy usually provides more direct 

dynamics information, for example in terms of order parameters and relaxation rates; 

however, it is restricted to proteins of  a limited size.55 

Different computational approaches targeting the modelling of protein flexibility and 

plasticity are promising in this context. Molecular dynamics (MD)56-58 simulation is 

one of the most widely applied and accurate computational techniques currently being 

used. However, despite immense increase in computer power, MD simulations are 

computationally expensive and explore limited conformational space due to slow 

barrier crossing on the rugged energy landscape of macromolecules.59,60 Therefore, 

the MD approach provides only a restricted solution to the challenges posed by 

protein plasticity in SBDD, for example in generating multiple conformations for 

flexible docking or high throughput docking approaches.40,61 

Hence, there have been efforts to develop alternative approaches that are 

computationally efficient in exploring conformational space. For example, a simple 

geometry-based approach CONCOORD generates conformations by satisfying 

distance constraints derived from a stating structure of proteins.62,63 Another, 

geometry-based approach FRODA generates conformations by diffusive motions of 

flexible regions and rigid clusters of proteins.64 In contrast to MD, these approaches 

do not provide the time evolution of the molecular movements. However, these 

approaches are promising due to their efficiency and applicability in SBDD.65,66 So 

far, these geometry-based approaches do not use any directional guidance for 
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sampling the biologically relevant conformations, which can be helpful, taking into 

account the complexity of conformational space available to macromolecules. 

Coarse-grained normal mode (CGNM) approaches, e.g., elastic network model 

(ENM) and rigid cluster normal mode analysis (RCNMA), have emerged recently. 

They provide the directions of intrinsic mobility of biomolecules in terms of harmonic 

modes (also called normal modes).67,68 These normal modes can be viewed as 

possible deformations of proteins and can be sorted by their energetic costs of 

deformations. More importantly, in agreement with the “conformational selection” 

model, the conformational changes upon ligand binding of many proteins have been 

found to occur along a few low-energy modes of unbound proteins calculated using 

CGNM approaches.67-71 For example, the directions of conformational changes in 

tyrosine phosphatase and adenylate kinase upon ligand binding overlap with one of 

the low-energy modes of the corresponding unbound conformations calculated by  the 

RCNMA approach, as shown in Figure 1.1.68 Furthermore, the calculations of these 

modes only take seconds for these proteins and, therefore, can be applied to large 

macromolecules as well as can be applied iteratively. Realizing the potential of these 

CGNM approaches, different approaches have utilized these directional information, 

e.g., in steering MD simulations,72-74 incorporating receptor flexibility in docking 

approaches,75-77 flexible fitting of molecular structures,78-81  and efficient generation 

of pathways of conformational changes.82-84 
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Figure 1.1: Superimposition of open (blue) and closed (green) conformations of 

tyrosine phosphatase (panel a) and adenylate kinase (panel b). In addition, 

the amplitudes and directions of motions as predicted by the modes most 

involved in the conformational changes, respectively, are depicted as red 

arrows. In both cases, the amplitudes of the motions were scaled for best 

graphical representation (Figure adopted from Ahmed et al.
68

). 

Assuming that the low-energy deformation directions of proteins obtained from these 

CGNM approaches can be helpful in exploring the intrinsic mobility of proteins, the 

following aims were set for this thesis:  

• To validate the directional information obtained from the CGNM approaches 

on a large dataset of proteins and to study the strengths and limitations of these 

approaches in capturing the essential motions of proteins. 

• To design and develop an efficient geometry-based approach (termed 

NMSim), utilizing the directional information from a CGNM approach for 

exploring the intrinsic mobility of proteins.  

• To compare and study the usefulness and limitations of different geometry-

based approaches, i.e., NMSim, FRODA, and CONCOORD.  

• To study the usability of the NMSim approach in exploring the intrinsic 

mobility of proteins, and in describing ligand induced conformational changes 

and conformational change pathways. 



Introduction  6 

 

Keeping these aims in perspective, a large-scale comparative study is performed 

between principal directions of proteins observed in MD simulations85,86 and normal 

modes obtained from CGNM approaches for a large dataset of 335 diverse proteins in 

section 5.1. A multi-scale approach, termed Normal Mode based Simulation 

(NMSim), is then developed in this study (chapter 3). The idea behind is to 

incorporate directional information in a geometry-based simulation technique, in 

order to sample biologically relevant conformational space, which distinguishes this 

approach from the previously reported geometry-based simulation approaches 

CONCOORD62and FRODA.64 In order to analyze the usefulness and the limitations 

of the different geometry-based approaches, in general, and the NMSim approach, in 

particular, a methodological comparative study is performed on hen egg white 

lysozyme in section 5.2. The applicability of the NMSim approach for describing 

ligand-induced conformational changes is presented in section 5.3. Furthermore, 

NMSim-generated conformational change pathways from the apo structure to the 

ligand bound structure of adenylate kinase are compared with previous studies87-89 

and the different crystal structures which lie along the generated pathway are 

identified in section 5.4.  
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2 State of the art 

The dynamics of biological macromolecules have been of considerable interest since 

internal motions of proteins were recognized1 to play an important role in protein 

function. Different computational approaches targeting the modelling of protein 

flexibility and mobility are promising in this context. These include force field-based 

methods, like molecular dynamics;56 harmonic analysis-based methods like standard 

normal mode analysis,90 and elastic network models;67 and graph-theoretical and 

geometry-based methods, like FIRST,91 ROCK,92 FRODA,64 and CONCOORD.62 

 

2.1 Molecular dynamics (MD) 

Molecular dynamics (MD) simulation is one of the most widely applied and accurate 

computational techniques currently being used in the field of macromolecular 

computation.56-58 MD simulation is based on Newtonian dynamics, where 

instantaneous forces present in the molecular structure are numerically integrated to 

generate a trajectory through phase space.60 MD simulations are computationally 

expensive and limited to the nanosecond or microsecond timescale for most of the 

systems.57,58 MD has been applied to a variety of applications, for example, protein 

folding,93,94 structure based drug design,95-97 protein-protein interactions,98 and protein 

design.99  

MD has been utilized successfully for the investigation of receptor plasticity, 

consequently enhancing structure based drug design (SBDD). For example, a recent 

MD study100 of HIV-1 integrase showed an intermittent opening of an unknown 

favorable binding trench adjacent to the catalytic site, which was experimentally 

validated later on.101 Subsequent docking studies of novel ligands with the potential to 

bind to both regions showed greater selectivity when interacting with the trench.100 

Similarly, dynamic pharmacophore models to compensate for the inherent plasticity 

of an active site have been developed derived from MD conformations.50 



State of the art  8 

 

Improvements in MD simulation techniques and increased computational power have 

recently allowed performing MD simulations on unbound protein states that clearly 

show a potential for generating conformations that mimic bound states. These 

conformations may well be used subsequently in flexible docking approaches. For 

example, an artificially low solvent viscosity used in a MD simulation of HIV-1 

protease enabled a comprehensive sampling of the conformational space, which 

shaded light on the flap dynamics of the protein.102 Although the overall dynamics of 

the unliganded protease was found to be predominantly populated by semiopen 

conformations, with closed and fully open structures being a minor component of the 

overall ensemble, these results strongly support the “conformational selection” model. 

In another MD study103 starting from the unbound form of aldose reductase a set of 

distinct conformational substates that may prove useful as alternative structural 

templates in virtual screening/docking for new inhibitors was identified. Along these 

lines, 41 proteins that form protein-protein complexes have been simulated in order to 

investigate the extent to which conformational fluctuations lead to novel 

conformational states.104  Starting again from the unbound structures, it was found 

that fluctuations take some parts of the molecules into regions of conformational 

space closer to a bound state, although simulation times of 5 ns were not sufficient in 

any case to sample the complete bound state. 

Atomic MD simulations provide a detailed picture of the dynamics of biomolecules. 

However, due to the requirement to choose integration time steps on the order of 1 fs, 

it is computationally expensive and impractical to reach long time scales (> 1 

microsecond) for large and complex systems.105  To deal with this limitation, coarse-

grained models have been developed to study large systems, which enables the use of 

longer time steps (e.g., ~40 fs).106 For example, a one-bead model (each amino acid is 

represented as a single particle) has been applied to study the ribosome, revealing the 

principal direction of motions and the correlations between these motions.107  

Several efforts have also been made to overcome the problem of restricted sampling 

in MD due to slow barrier crossing over the rugged energy landscape of 

biomolecules.108,109 For example, these includes conformational flooding,110 replica-

exchange molecular dynamics (REMD),111,112  and targeted molecular dynamics 



State of the art  9 

 

(TMD).113,114 However, these methods still lack the required efficiency needed for 

high throughput approaches.61 

 

2.2 Normal mode analysis (NMA) 

Normal mode analysis (NMA) alternatively provides an analytical description of a 

dynamic system. It was first applied to proteins in the early 1980’s.90 NMA is a 

harmonic analysis that assumes that, over the range of thermal fluctuations, the 

conformational energy surface can be characterized by a parabolic approximation to a 

single energy minimum.115 It starts with creating a harmonic potential well at a local 

minimum and then finding all possible harmonic modes within this potential well. For 

molecules, this is usually accomplished by taking an experimentally determined 

atomic configuration (usually obtained from the Protein Data Bank). The potential 

energy of the molecule can be calculated for this structure, using well established 

force fields. Having reached a stationary point after energy minimization, the 

potential energy surface is then approximated by a parabola, where the shape of the 

parabola is defined by the Hessian matrix. The elements of this matrix are the second 

derivatives of the potential energy function with respect to the coordinates of the 

system. Normal modes are then obtained by diagonalizing the 3N-dimensional 

Hessian matrix for the system of N atoms. Each normal mode represents the direction 

of vibration and the relative displacement of the atoms in that mode. Therefore, it is 

also termed harmonic or vibrational mode. Each mode is orthogonal to all others, 

which greatly simplifies the analysis of motion. Every atom in a normal mode vibrates 

with the same frequency, which represents the energetic cost of displacing the system 

by one length unit along the eigenvector direction. Hence, normal modes can be 

viewed as possible deformations of a protein according to their energetic cost, where 

low-energy deformations correspond to collective or delocalized deformations and 

high-energy modes are localized deformations. The 3N normal modes obtained from 

the analysis also include the 6 global motions (three translations and three rotations), 

having no energetic cost. They are usually of no interest and ignored in the analysis. It 

has also been shown that mostly the lowest-frequency (energetic cost) modes (having 
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frequencies up to 30 cm-1) are responsible for conformational changes and, thus, are 

considered to be biologically important .116 

NMA has been successfully applied for the investigation of important conformational 

changes: For example, to study the hinge-bending motions in human lysozyme117,118 

and citrate synthase,119 and to study the large-scale conformational changes in 

allosteric proteins in GroEL chaperonin120 and aspartate transcarbamylase.121-123 

NMA have also been used as basis vectors for approximate molecular dynamics 

simulation124 or refinement of X-ray125 or NMR data.126 Furthermore, NMA has also 

been applied to investigate DNA and RNA dynamics.127-129 Initially, NMA was 

applied to only small proteins (approximately up to 500 atoms)90,130 but advancements 

in computer hardware and recent efficient approximations to the method now make it 

possible to analyze large molecular systems as well.131 

Although the method is straight forward and easy to implement, there are some 

limitations to it. Despite these limitations, the method seems to work well in 

describing the conformational changes and predicting internal dynamics.132 First of 

all, the method is based on a harmonic approximation of the potential energy surface. 

However, there are many observations that this approximation breaks down for 

proteins at physiological temperatures, i.e., by crossing energy barriers of various 

heights and visiting multiple minima.133 Even if the energy minimum of a single 

conformation is considered representative of the motion within all energy minima (as 

appears to be the case),134,135 barrier crossing events would be expected to have an 

even greater influence on the overall motion of the molecule, with no obvious relation 

to the motion within individual minima. In view of this approximation, the relative 

success of the normal mode analysis is surprising.136 The second limitation is that the 

NMA is performed in vacuo, whereas the molecule is usually found in solvent, which 

has a great influence on its dynamic. Typically, proteins are well known to fold and 

function in water environment, within a narrow range of pH, temperature, and ionic 

strength. However, NMA ignores the effect of solvent or any other environment 

around the system.  

Apart from these approximations, there are a few practical limitations to the standard 

NMA while computationally performing the analysis. As an input, the method takes a 



State of the art  11 

 

minimized structure of a protein, which requires an expensive energy minimization of 

the structure. This method also has the trivial problem of high memory requirement 

and being computationally slow. These make it impossible to analyze even medium 

size (i.e., approx. 5000 atoms) proteins on current desktop computers.  However, 

recent efficient approximations to the method now make it possible to analyze 

molecular system of the size of the whole ribosome on a single desktop computer, 

which contains approximately 128,000 atoms.131 However, this approach only 

considers translation and rotation degrees of freedom for a residue. 

  

2.3 Elastic network model (ENM) 

Standard normal mode analysis (NMA), using an atomic force-field representation of 

the macromolecules, is computationally expensive, which makes it impossible to 

analyze large proteins with this method. To overcome this limitation, simplified 

alternatives in the form of elastic network models (ENM) have emerged recently, 

triggered by the development of simplified force-fields137 and coarse-grained models 

of macromolecules: the Gaussian network model (GNM)138,139 and the Anisotropic 

network model (ANM)67,70,140,141 Here, a protein is modeled as an elastic network; the 

all-atom representation used in NMA is replaced with a reduced representation by 

considering, e.g., only Cα atoms between which simplified potentials in terms of 

Hookean springs of equal strength act (Figure 2.1).137,138 Hence, the system can be 

seen as a collection of bodies connected by springs of the same strengths. Further 

coarse-graining in ENM has also been reported assuming structural rigidity based on 

secondary structure,142 rigidity of sequentially consecutive residues,142-144 or using a 

rigid cluster decomposition by FIRST.68 That way, the method can be applied to even 

macromolecular assemblies.145-148  
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Figure 2.1: ENM representation of barnase. Between Cα atoms (connected by a tube) 

springs (represented as sticks) of equal strength act (Figure adopted from 

Gohlke et al.
51

) 

ENM has been applied to a vast range of problems concerning flexibility/mobility of 

proteins and other large macro-molecules.106,136,149,150 In agreement with the 

“conformational selection model”, the conformational change captured by ligands is 

found for most of the proteins to occur along the lowest energy (frequency) modes 

calculated by normal mode analysis of the unbound protein. These modes usually 

involve hinge-bending, large-amplitude, and correlated motions.70,142 Along these 

lines ENM has been mostly applied as a posteriori analysis in combination with 

experimental studies, e.g., for examining functional dynamics in E. coli adenylate 

kinase, HIV-1 reverse transcriptase, and influenza virus hemagglutinin,151-153 

cooperative and allosteric dynamics in tryptophan synthase154 and binding effects in 

HIV-1 reverse transcriptase.155 Moreover, several studies showed an efficient 

conformation and pathway generation by ENM-based techniques, which can be 

exploited for docking studies.75,82,83,156 

Apart from a large-scale dynamical analysis, a residue level analysis has also been 

successfully applied.157-160 This is surprising, considering the simplicity and coarse-

graining of the underlying model. For example, high frequency modes of GNM have 

been shown to be important for the identification of binding “hot spot” residues,159 

catalytic residues,158 and protein-binding sites.157 Catalytic sites were found to be 

colocalized with global hinge centers predicted by GNM, whereas the ligand binding 

sites were found to be enjoying flexibility near the catalytic site.158 In SBDD, these 
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studies can be exploited for efficiently identifying binding hotspot and catalytic 

residues.  

The ENM approach, due to its simplicity and efficiency in predicting large-scale 

conformational changes, has been found successful when combined with methods that 

provide atomic detail such as MD. In this respect MD/NMA hybrid methods have 

been proposed72-74 that amplify collective motions along normal mode directions in a 

conventional MD. This method was successfully used for docking in the case of HIV-

1 protease.73 

Loop motions are hard to predict but play an important role in accommodating ligands 

in binding pockets. Cavasotto et al.75 introduced a measure of relevance of normal 

modes to desirable important loop conformational changes upon ligand binding and 

found that only a few low-frequency modes (< 10 but not usually the first low-

frequency modes) are critical and sufficient to represent binding pocket mobility in 

protein kinases. Using these relevant modes, an ensemble of alternative conformations 

for holo and apo structures of cAMP-dependent protein kinase, which exhibit 

backbone rearrangements in two independent loop regions close to the binding 

pocket, was generated. Considerably improved docking results were observed when 

docking this ensemble. In my recently work, it was also shown that the coarse-

graining of ENM using FIRST can lead to the accurate prediction of loop 

movements.68 This can be explained by the fact that the appropriate coarse-graining 

removes irrelevant modes of the system (without losing the important functional 

modes), whereas, the modes related to flexible regions became more emphasized. 

The success of the ENM approach is based on a reduced protein representation and 

inherent coarse-graining. This exploits the fact that one is mostly interested in low-

frequency modes that are insensitive to atomic level details.67 Thus, modeling 

macromolecules at a coarse-grained level instead of an atomic level will still capture 

the low-frequency motions. This allows predicting surprisingly accurately large 

conformational changes, which is difficult with force field based methods like MD. 

However, the ENM approach inherits the same limitations as the standard NMA 

approach, regarding harmonic approximations and not considering solvent effects.  
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2.4 FIRST, ROCK and FRODA 

Modeling proteins as constraint networks and using graph-theoretical techniques, the 

flexible regions and rigid clusters in the structures can be identified.91 This has 

already been applied for analyzing rigidity in structures of covalent network glasses161 

and engineering structures that consists of struts and joints.162 For proteins, first, the 

network corresponding to the protein structure is built such that forces between atoms 

are transformed into connections between nodes. A fast combinatorial algorithm, the 

“pebble game”, then identifies the flexible (under-constrained), rigid (constrained), 

and over-rigid (over-constrained) regions by counting bond-rotational degrees of 

freedom in the network. This algorithm has been implemented into the FIRST 

(Floppy Inclusion and Rigid Substructure Topology) approach.91 The outcome of the 

method is a decomposition of the protein structure into rigid and flexible regions 

(Figure 2.2). Notably, this approach allows identifying rigid and flexible regions from 

a single (static) structure in almost no computational time; a FIRST analysis of a 

molecule of several thousand atoms just takes a few seconds. 

 

Figure 2.2: Rigid cluster decomposition of adenylate kinase (PDB code: 4ake) 

obtained from the FIRST approach.
91

 Rigid clusters are colored in blue, 

cyan, black, yellow, red, and green. (Figure adopted from Ahmed et al.
68

) 

FIRST analyses have been used to accurately identify rigid regions as well as 

collectively and independently moving regions in a series of proteins.91,163 An 
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interesting feature of the FIRST analysis is that changes in the flexibility of the 

binding partners due to complex formation can be investigated in detail. In the case of 

a protein-protein complex formation,164 additional interactions across the interface led 

to a propagation of rigidity through the binding partners. This demonstrates the long 

range aspect to rigidity percolation. Moreover, the FIRST approach has been applied 

in combination with MD for investigating the flexibility of prolyl oligopeptidase.165 

Recently, the FIRST approach has also been extended for analyzing flexibility in 

RNA structures166 and has been applied to investigate the statics of the ribosomal exit 

tunnel of large ribosomal subunits.167  

Flexibility information from FIRST, which leads to a natural coarse-graining of 

macromolecules based on rigid regions,51 has been further exploited for simulating 

protein mobility using constrained geometric simulation.64,92,168 The ROCK (Rigidity 

Optimized Conformational Kinetics) approach explores the rigidity-restricted 

conformational space by satisfying ring closure equations.92 The FRODA (Framework 

Rigidity Optimized Dynamic Algorithm) approach makes use of a more efficient 

algorithm that moves flexible and rigid parts by ghost template rearrangements.64 

FRODA moves flexible parts of a molecule through stereochemically allowed regions 

of conformational space using random Brownian type (Monte Carlo) dynamics, 

whereas atoms in rigid clusters are moved collectively.  

The ROCK generated structures have been used in flexible docking for the drug 

targets cyclophilin and estrogen receptor.169 FRODA has been shown to predict the 

mobile regions in barnase and qualitatively predict the observed displacements 

between open and close form in maltodextrin binding protein.51,64 Docking studies of 

the multi-subunit protein complex photosystem I, which make use of FRODA 

conformations and aim at exploring alternative approaching pathways, have also been 

reported.66 Furthermore, FRODA has recently been used to flexibly fit an X-ray 

crystal structure of the bacterial chaperonin GroEL to two different cryo-EM maps.170 

The ROCK and FRODA approaches completely rely on the flexibility information 

provided by the FIRST approach in order to explore the conformational space of 

proteins. In cases where proteins are relatively flexible, these approaches may not be 

efficient or may not capture the conformational space available to the proteins. 



State of the art  16 

 

 

2.5 CONCOORD  

CONCOORD (from CONstraint to COORDinates) is another geometry-based method 

that generates conformations by satisfying constraints.62 Starting from a random 

structure, conformational space is captured by fulfilling a set of upper and lower 

interatomic distance bounds that are derived from the experimental structure of the 

protein. The differences between upper and lower distance bounds depend on the 

strengths of interactions, with stronger interactions leading to smaller deviations. 

Repeating this correction procedure several times leads to an ensemble of structures 

as a representation of the conformational space, which takes only a few hours of CPU 

time.  

The novel use of CONCOORD generated structures has been to get eigenvectors of 

essential dynamics; whether it is docking to multiple eigenstructures,65 analyzing 

conformational changes in macromolecular assemblies,171 or exploring different 

biological mechanisms.172-175 CONCOORD can generate conformations very 

efficiently; therefore, it is well suited for larger systems. In the case of hyaluronate 

lyase,172 whose size precludes the application of MD to investigate biologically 

relevant time scales, flexibility (allosteric) information and functional implications 

were derived from CONCOORD. Two ED modes of motion were identified: the first 

motion describes an opening and closing of a catalytic cleft, and the second motion 

demonstrates the mobility of a binding cleft, which may facilitate the binding of the 

negatively charged hyaluronan to the enzyme.  Mustard and Ritchie65 showed that 

docking to multiple eigenstructures (obtained by an ED study following a 

CONCOORD run) generates better docking predictions than docking only to unbound 

or model built structures.  

In a CONCOORD-generated ensemble, each structure is independent from the 

previous one. On the one hand this implies that no information is obtained about the 

path along which two conformations are connected and possible energy barriers 

between them. On the other hand, this approach enables crossing of even high energy 

barriers and finding other possible conformations. Hence, the CONCOORD approach 

does not suffer from a sampling problem. However, the sampling completely relies 
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and is sensitive to the inter-atomic distances of the starting structure.  Therefore, 

CONCOORD may not be suitable for large-scale conformational transitions which 

require change in the distance constraint network (e.g., due to making or breaking of 

hydrogen bonds). Realizing this limitation, recently, a reimplementation of the 

original CONCOORD62 approach has been reported which allows the prediction of 

conformational transitions as well and therefore has been termed as tCONCOORD.63 

This approach rests on an estimate of the stability of interactions observed in a 

starting structure, in particular, those interactions that change during a conformational 

transition.  
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3 Theory and implementation 
 

Recently, coarse-grained normal mode approaches based on elastic network 

theory67,137 have emerged as efficient alternatives for investigating large-scale 

conformational changes.136,149,150  Different studies71,116 have shown that the low 

frequency modes, which are also found to be involved in functionally important 

conformational changes of proteins, are robust and insensitive to higher coarse-

graining of the elastic network.143,176,177 Pursing this direction, some high-coarse-

graining strategies have been proposed recently.142-144 RCNMA68 was proposed to 

achieve high coarse-graining level, by identifying rigid clusters in protein structures 

using the FIRST approach91 and subsequently assuming no internal motion in those 

rigid clusters, without loosing accuracy.  

In this study, a three-step approach for multi-scale modeling of macromolecular 

conformational changes is developed to further utilize the low frequency modes from 

RCNMA in order to sample low energy conformational space. The first two steps are 

based on recent developments in rigidity and elastic network theory.68 Initially, static 

properties of the macromolecule are determined by decomposing the macromolecule 

into rigid clusters using the graph-theoretical approach FIRST91 at an all-atom 

representation of the protein. In a second step, dynamical properties of the molecule 

are revealed by the rotations-translations of blocks approach (RTB)178 using an elastic 

network model representation of the coarse-grained protein, i.e., in this step, only 

rigid body motions are allowed for rigid clusters while links between them are treated 

as fully flexible. 

In the final step, the recently introduced idea of constrained geometric simulations of 

diffusive motions in proteins64 is extended. New macromolecule conformers are 

generated by deforming the structure along low-energy normal mode directions 

predicted by RCNMA plus random direction components. Here, backbone motions 

are biased in the low frequency normal mode space, and side-chains have attractive 

basins derived from a rotamer library.179 The generated structures are then iteratively 
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corrected regarding steric clashes or constraint violations. This module is termed 

NMSim. Constraints to be satisfied include torsions of the main and side-chains, 

distances and angles of covalent and non-covalent interactions such as hydrogen 

bonds or hydrophobic interactions and the preservation of planar groups. In total, 

when applied repetitively over all three steps, the procedure generates efficiently 

series of conformations that lie preferentially in the low energy subspace of normal 

modes. The pictorial overview of RCNMA/NMSim approach is shown in Figure 3.1. 

 

 

Figure 3.1: Overview of the RCNMA/NMSim approach. In the first step, the FIRST 

analysis is applied, which provides the rigid cluster decomposition (RCD). 

In the second step, the RCD is utilized by RCNMA for the calculation of 

coarse-grained normal mode directions. In the third step, these normal 

mode directions are then used by the NMSim approach to generate stereo-

chemically allowed conformations. In order to generate an NMSim 

trajectory, step two and three are repeated using the previously generated 

structure. 
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3.1 Rigid Cluster Normal Mode Analysis (RCNMA) approach 

The basic idea behind the RCNMA approach68 is the use of structural 

flexibility/rigidity information of a molecule prior to the prediction of its dynamic 

behavior. This is done by a two-step modeling approach. In the first step, a flexibility 

analysis is performed using a graph theoretical technique, which uses an all atom 

representation of the protein.91 In the second step, the information of block formation 

obtained form the previous step is used to generate a coarse grained model as input 

for the Block Normal Mode (BNM) approach.178 A rigid cluster is modeled as a block 

whereas flexible regions are modeled as fine-grained (one-residue per block). In 

addition, an elastic network model (ENM) representation is used for the normal mode 

calculations. An overview of RCNMA is given in Figure 3.1. 

 

3.1.1 Elastic Network Model (ENM)  

ENM has been successfully applied to the calculations of coarse-grained normal 

modes.136,149,150 Here, based on a simplified representation of the potential 

energy,137,138,180 the proteins are described as 3D elastic networks. Each amino acid, 

i.e., usually the Cα atom, acts as a junction in the network. Interactions between these 

particles are modeled by Hookean springs based on a harmonic pairwise potential,137 

resulting in a total potential energy of the system given by 

( )( )∑∑ −−=
i j

ijijijc rrrrV
200

2
θ

γ
, ( 3.1) 

where rc is the cutoff up to which interactions between the Cα atoms are taken into 

account. rij and rij
0 are the instantaneous and equilibrium distances between atoms i 

and j, respectively. θ (x) is the Heaviside step function that accounts for the cutoff 

effect of the interaction; it is 1 if x > 0 and 0 otherwise. γ  is a phenomenological force 

constant assumed to be the same for all pairwise interactions. 

According to the elastic network model,67 the elements of a 3N×3N Hessian matrix H 

(where N is the number of Cα atoms) are then obtained from the second derivatives of 
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V with respect to the Cartesian coordinates of atoms i and j. H is then diagonalized to 

obtain the normal modes. 

 

3.1.2 Coarse-graining in RCNMA 

The RCNMA approach 68 adds another level of coarse-graining to ENM by 

identifying rigid clusters and flexible regions within protein structures using the 

FIRST approach.91 The all-atom representation of proteins needed for the FIRST 

analysis is reduced to a Cα-only representation in the next step. Each rigid cluster, 

obtained from FIRST approach, forms a block in the subsequent rotations and 

translations of block (RTB) approach,142,178 and flexible regions are modeled on a 

one-residue-per-block basis (in which case only translational motions of the “block” 

are considered). Interactions between these blocks are modeled as in ENM (Eq. 3.1). 

The 3N×3N matrix H is therefore reduced to a 6n×6n dimensional matrix Hsub by 

projecting H into the subspace spanned by translation/rotation basis vectors of n 

blocks according to: 

HPPH t

sub = , (3.2) 

with P being an orthogonal 3N×6n projection matrix of the infinitesimal 

translation/rotation eigenvectors of each block. This leads to a reduction of the 

memory requirement proportional to (N/n)² and computational time proportional to 

(N/n)³, respectively. Diagonalization of the resulting matrix Hsub yields the normal 

modes Usub and eigenvalues Λ: 

Λ= subsubsub UUH  (3.3) 

Finally, atomic displacements can be obtained by expanding back the eigenvectors 

Usub from the subspace spanned by translation/rotation basis vectors of the blocks to 

the Cartesian space (U). 

subPUU =  (3.4) 
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The 3N×6n dimensional U matrix, thus obtained, contains 6n normal modes kC
v

. The 

k
th normal mode direction for j

th Cα atom is given by [ ]kzkykx

k

j UUUC ,,, ,,=
v

 where 

23 −∗= jx , 13 −∗= jy , and jz ∗=3 . 

 

3.2 Normal Mode Simulation (NMSim) approach 

By combining RCNMA with geometric simulation techniques, a multi-level approach 

termed Normal Mode based Simulation (NMSim) was developed in this study which 

was then used for efficient generation of macromolecular conformations. Here, 

backbone motions are biased in the low frequency normal mode space, and side-

chains have attractive basins derived from a rotamer library. An efficient constraint 

correction approach is applied to generate stereo-chemically allowed conformations. 

In addition to covalent and non-covalent bonds like hydrogen bonds and hydrophobic 

interactions, ψϕ  favorable regions are also modeled as constraints.  

A schematic diagram of the whole procedure is shown in Figure 3.2. The procedure 

starts with the structural rigidity analysis of the input protein structure (in PDB format 

and protonated using the program Reduce181) by the FIRST approach,91 which defines 

a rigid cluster decomposition (RCD) and a covalent/non-covalent bonded network. 

The RCNMA module is used to calculate normal modes for the input structure, and 

the NMSim module is used to generate stereo-chemically allowed conformations 

based on the input parameter set, the input structure, the calculated normal modes, and 

the bond network. The NMSim module initially distorts the structure in the low 

frequency normal mode space, and a stereo-chemically allowed conformation is then 

generated using that distorted structure (in the structure correction module).  
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Figure 3.2: A scheme showing the program flow and the different modules of the 

NMSim approach. The modules in light orange color are further expended 

on their right.  Here, BB stands for backbone, and SC stands for side-

chain. 

 

The RCNMA and NMSim modules are alternatively called in simulation cycles. In 

each RCNMA call, a new set of normal modes are calculated using the previously 

generated structure in the NMSim module. In each NMSim call, the input set of 

normal modes is used to generate multiple structures iteratively in NMSim cycles 

using different linear combinations. In this section, the different components in the 

NMSim module are explained in detail.  

 

3.2.1 Mode extension techniques 

As described above, normal modes from RCNMA/ENM give the direction for Cα 

atoms only. To move all atoms of the structure, some directions should be given to the 

remaining non Cα atoms. This extension of the Cα based modes to all-atoms based 

modes is accomplished by merging two different techniques, called Cα direction and 

random direction. The idea behind is that the side-chains are allowed to randomly 
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explore the stereo-chemically allowed conformational space whereas the backbone 

motions are directed in the normal mode space. 

Cαααα direction  

Since Cα atom is the representative of whole residue in RCNMA/ENM based modes, 

it is a good approximation to use the representative Cα direction for all atoms in that 

residue. However, using this approach limits the side-chain mobility because of the 

lack of internal movements in the side-chains.  

Random direction 

The alternative to the Cα direction approach is to use random directions for all non Cα 

atoms so that side-chains can randomly sample internal motions.  However, this 

would be another extreme, since side-chain positions are also dependent on the 

backbone motions. Therefore, a combination of Cα direction and random direction 

would be need for modeling side-chain distortions.  

Distance dependent Cαααα  and random direction 

The extension of Cα based modes to all-atoms based modes is modeled by merging 

the above two approaches. As a criteria for mixing the distance of atoms from their 

representative Cα atoms is used, i.e., the atoms in a side-chain that are closer to their 

representative Cα atom have large Cα direction components, whereas, the atoms at the 

tail region of a side-chain have large random components. This distance dependent 

mixing assures a smooth transition of directionality from Cα to random direction, such 

that the side-chain conformations can be randomly explored in the stereo-chemically 

allowed space, and the backbone conformations can be explored in the normal mode 

space. 

To model the above concept, a random unit vector iR
v

 for every atom i  in 3-

dimensional space is generated and scaled by the magnitude of the representative Cα 

atom direction jC
v

 of residue j  plus a random component, which is controlled by the 

parameter RANDSCALING. The resulting random vector iE
v

 for every atom i  is 

given by  
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( )( )jii CGRANDSCALINrandRE
vvv

+∗∗= , (3.5) 

where, rand  is a uniformly distributed random number between 0 and 1, and the 

default value for RANDSCALING is empirically set to 0.3 Å. Increasing this value 

causes higher fluctuations in the side-chain regions. The representative Cα atom 

direction jC
v

 of residue j  is a normal mode direction as calculated in Eq. 3.5. 

A distance dependent weighting factor iF  is used to merge the random direction and 

the Cα direction of each atom. The iF  is calculated for every atom i  of residue j  by 

calculating the distance 
iD  between atom i  and the Cα atom of j , and then 

normalizing with the maximum distance maxD  found in residue j .  

maxD

D
F i

i =  ( 3.6) 

Finally, the all-atom normal mode vector 
iΡ
v

 for every atom i  in residue j  is obtained 

by linearly mixing its representative Cα normal mode direction jC
v

 with the random 

vector direction 
iE
v

 using the distance dependent weighting factor 
iF . 

( ) jiiii CFEFP
vvv

∗−+∗= 1  ( 3.7) 

For the representative Cα atom, the weighting factor iF  in Eq. 3.6 is zero and thus no 

random component is added. For the atom which is farthest away in the residue j  

from its representative Cα atom, the weighting factor iF  is one in Eq. 3.6 and thus no 

Cα direction component is added. This procedure is repeated for each mode k  and, 

thus, k  all-atom based normal mode vectors kiP ,

v
 are obtained. 
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3.2.2 Mode combination techniques 

Linear combination of modes in freely-evolving NMSim 

All-atom based normal mode vectors kiP ,

v
 obtained for each mode k  and atom i  in 3-

dimentional space are linearly combined. The coefficients of the linear combination of 

kiP ,

v
 vectors are the ratios of a random number 

kO  to a factor 
kω . The resulting 

normal mode linear combination vector 
iV
v

 is defined as 

∑
=

=
m

k

ki

k

k
i P

O
V

7
,

vv

ω
, ( 3.8) 

where kO  is a uniformly distributed random number between -1 and 1, and kω  is 

related to eigenvalues 
kΛ (as calculated in Eq. 3.3) by kk Λ=ω . The low-frequency 

normal modes are used for the linear combination (default 56=m , unless stated 

explicitly), ignoring first 6 zero-frequency normal modes. 

Normal modes are harmonic and can have positive or negative phase (which is not 

known). Therefore, the sign of a random number kO  assigns the missing phase to a 

normal mode, whereas the magnitude of a random number emphasizes/de-emphasizes 

a normal mode randomly in the linear combination. Hence, during the freely-evolving 

NMSim, each trajectory follows a different path in the low-frequency normal mode 

space.  In addition, the normal modes are emphasized based on their energy of 

deformation using 
kω , which gives highest weight to the lowest frequency mode and 

the second highest weight to the second lowest frequency mode and so on.  

Linear combination of modes in target-directed NMSim 

Since normal modes are harmonic and decoupled, low frequency normal modes are 

linearly and randomly combined in NMSim to explore the low energy conformational 

space. This results in a random walk behavior in stereo-chemically allowed low 

energy space. If the target structure is known, then a pathway leading to the target 

structure can be traced either by using the best linear combination or by selecting the 

best overlapping mode with the conformational change direction. It is important to 
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note however that the pathway to the target structure is still restricted in the space 

spanned by the low frequency normal modes. This type of simulation is termed as 

target-directed NMSim.  

In target-directed NMSim, the conformational change vector 
oc rrr
vvv

−=∆  is used to 

guide the trajectory towards the target structure cr
v

 from the starting/intermediate 

structure or
v

. The vectors cr
v

 and or
v

 are the Cα atomic coordinates of the two different 

conformations. The coefficient kO  for each mode k  is calculated by the scalar 

projection of the conformational change vector r
v

∆  onto the normal mode vector kC
v

.  

( )k

k CrO
vv

⋅∆=  ( 3.9) 

Subsequently, the coefficient kO  of each mode k  is either used to select the best 

overlapping mode or to calculate the target guided linear combination vector V
v

 in Eq. 

3.8.  

 

3.2.3 Structure distortion in normal mode directions 

The current structure in each iteration is distorted in low frequency normal mode 

space using the linear combination vector V
v

. The magnitude of V
v

 is adjusted which 

accounts for the step-size in NMSim. In geometric simulations RMSD can be used as 

a step-size of a trajectory. The parameter RMSDSTEPSIZE (in Å, see Appendix A) is 

used for scaling V
v

 in NMSim. This can be achieved by  

V

V
MZERMSDSTEPSIQ v

v
v

∗∗= 2/1 , (3.10) 

where, M  is the number of atoms in the structure. The current structure when 

distorted with the displacement vector Q
v

 causes the distortion of RMSDSTEPSIZE. 

And thus the distortion in the structure is constant at every NMSim cycle. The default 

value for RMSDSTEPSIZE is set to 0.5 Å. 
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3.2.4 Structure correction module 

General overview 

Studies from ultrahigh resolution crystallography of small molecules have shown 

strict equilibrium values for bond lengths and angles between constituent atoms of 

amino acids.182  The principal degrees of freedom in proteins arise from the dihedral 

angles, which show a pattern of preferences. For example, ψϕ  dihedral angles show 

preferences in different regions of the Ramachandran map,183,184 χ -angles show 

preferences in terms of different rotamer states,179 and backbone and side-chain planar 

groups have strict dihedral angles. Moreover, hydrogen bonds, salt bridges and 

hydrophobic interactions further restrict the available degrees of freedom in a protein. 

All these factors need to be considered in a geometry-based structure correction 

approach. 

Constraint types and modeling 

Distortions in an intermediate structure, caused by moving atoms in the normal mode 

directions with random components, are efficiently corrected using the geometry-

based constraints correction approach. A network of constraints is built from the 

protein bonding network where different chemical bonds are modeled as constraints. 

In addition to covalent and non-covalent bonds ψϕ  favorable regions are also 

modeled as constraints. For χ -angles, a knowledge-based approach is applied by 

forcing side-chains into the closest favorable rotamer state during structure correction. 

Backbone and side-chain chirality and planarity are ensured and steric clashes 

between atoms are corrected. 

Three different types of constraints are used to model the above mentioned chemical 

bonds and properties: distance, dihedral and planar constraints. Most of the 

constraints are distance based, which was the preferred type for modeling due to its 

simplicity and efficiency in correction. All covalent bonds, non-covalent bonds, steric 

clashes, as well as ψϕ  dihedrals are modeled as one or a combination of distance 

constraints. These constraints are corrected based on equality, lower limit (as in steric 

clashes) or upper limit (as in hydrophobic constraints) of the ideal distances. To 

model the strength of the different interactions or the variability of the different 
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dihedral angles, the model is empirically parameterized for different adjustment 

factors of the constraints as given in Table 3.1. The adjustment factor is the strength 

to which constraints are restored during the correction cycles. For rotamer and 

backbone/side-chain planarity the dihedral and the planar constraint types are used, 

respectively. A dihedral constraint satisfies a specific dihedral angle by rotating atoms 

around dihedral bonds. A planar constraint moves all atoms of the disturbed side-

chain/backbone planar group towards an imaginary superimposed plane.  

Covalent bonds 

All covalent bonds (single bond, double bond, or disulphide bridges) in a protein are 

recognized and modeled as distance constraints between the covalently bonded atoms. 

Additionally, all possible angles (1-3 connections) in the covalent bond network are 

recognized and modeled as distance constraints. Ideal distances for distance 

constraints are taken from the input structure assuming a valid input structure. A 

covalent bond network of distance constraints for an Ala-3 system is shown in Figure 

3.3. 

 

Figure 3.3: A covalent bond network of distance constraints for an Ala-3 system. 

Covalent bonds (red) and bond angles (blue) are modeled as distance 

constraints. 
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Non-covalent bonds 

Non-covalent bonds are modeled explicitly and include hydrogen bonds, salt-bridges, 

and hydrophobic interactions. These are recognized from the input starting structure at 

the beginning of the program using the FIRST approach91 and kept throughout the 

simulation (assuming no breaking or making of bonds during the simulation). 

Each hydrogen bond (salt-bridges are modeled similarly) is modeled by three distance 

constraints: between donor and acceptor, neighboring acceptor and donor, and 

neighboring donor and acceptor atoms involved in the hydrogen bond (see Figure 

3.4). It is important to note that, in general, hydrogen atoms are not considered in the 

NMSim simulations for efficiency reasons. These constraints ensure that no hydrogen 

bond breaks or weakens but allows rotations around the D-A constraint.  

 

Figure 3.4: A hydrogen bond is modeled using three distance constraints (doted lines) 

between related atoms. Covalent bonds between donor (D) and 

neighboring donor (ND) atoms and acceptor (A) and neighboring 

acceptor (NA) atoms are shown as solid lines.  

Hydrophobic interactions are also recognized from the input starting structure using 

the FIRST approach.91 Each carbon-carbon, carbon-sulfur, or sulfur-sulfur atoms pair 

is recognized as a hydrophobic interaction if the atoms in the pair are within a certain 

cutoff (default cutoff value is 0.35 Å) plus the sum of their van der Waals radii. Each 

hydrophobic interaction is then modeled as single distance constraint between the 

interacting atoms. In contrast to the other constraints, a hydrophobic constraint is only 

restricted by the maximum distance between the two atoms, which allows the atoms 

to slide with respect to each other yet not pull apart.  
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Steric clashes 

At every structure correction cycle, steric clashes between atoms are checked and 

corrected. Every atom within a certain cutoff (default value used is 8 Å) of every 

other atom is connected by a distance constraint, excluding those pairs which are 

already connected by covalent or non-covalent constraints (except for hydrophobic 

interactions). Atomic van der Waals (vdW) radii, determined by Tsai et al.,
185 are 

used to assign minimum allowed distance for each vdW constraint. These radii 

consider the hybridization states of heavy atoms and thus allow implicit hydrogen 

atom modeling in NMSim.  

Each vdW distance constraint is satisfied to assure a minimum distance which is the 

sum of the vdW radii of the connected atoms. The vdW tolerance values (in fraction 

of the sum of vdW radii) are parameterized (see Table 3.1) to allow a certain overlap 

in vdW interactions. Distinctions are made between 1-4 vdW constraints (i.e., atoms 

pairs that are three covalent bonds apart) and the rest of the vdW constraints. A higher 

tolerance of 0.2 is set for a 1-4 vdW constraints, which accounts for a higher allowed 

overlap between these atoms, as compared to 0.07 for the rest of the vdW constraints 

(see Table 3.1)  

 Phi/psi (ϕϕϕϕ /ψψψψ) modeling  

Ramachandran et al. in 1963 have shown183 that local steric clashes between atoms 

restrict the allowed range of ψϕ  angles. An electrostatics effect further contributes 

to the most-favorable (core) regions in the Ramachandran plot.186 A study shows that 

around 82 % of the ψϕ  angles in a dataset of experimentally determined structures 

lie in core regions, which accounts for only 11 % of the total area in the 

Ramachandran plot.187 To model this electrostatic effect, ψϕ  angles were explicitly 

modeled (see section 3.3 for model testing) using distance constraints. 

Three basins of attraction of each core region, i.e., Lα , Rα , and β  (see Figure 3.5) are 

created using the Ramachandran plot described by Morris et al.
187 During the 

structure correction, the ψϕ  angles that lie in allowed or generously-allowed regions 

feel attraction towards the center of the core regions. This attraction is in terms of 
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adjusting distance constraints between atoms (see Figure 3.5); such that if these 

distance constraints are fully satisfied would move ψϕ  angles in the center of a core 

region. The strength of the attraction is controlled by the adjustment factor of the 

ψϕ  distance constraints (see Table 3.1). 

 

Figure 3.5: The Ramachandran plot with the three basins of attraction for each core 

region, i.e., Lα , Rα , and β . The coloring on the Ramachandran plot 

represents the different regions described by Morris et al.,
187

 i.e., most-

favorable or core (light green), allowed (light brown), generously-allowed 

(yellow) and disallowed (white). The centers of each core regions (blue 

filed circles) are selected as the basins of attraction.  

Following the above scheme, each ψϕ  angle combination in a protein (excluding 

Gly residues) is modeled by four distance constraints: for each non-Gly residue r , 

two distance constraints are used for modeling ϕ  angle, i.e., between 1−rC  and rC , 

and between 1−rC  and rCβ  atoms, and the remaining two distance constraints are 

used for modeling ψ  angles, i.e., between rN  and 1+rN , and between rN  and rCβ  

atoms (see Figure 3.6). Ideal distances for these constraints are set based on the 

selected basin of attraction (blue filled circles in Figure 3.5), i.e., the distances of the 

constraints when the ψϕ  lie at the basin of attraction. It is important to note that, 
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these ψϕ  constraints are used to bias ψϕ  angle towards the core regions. 

Therefore, these constraints are only slightly adjusted during the structure correction 

cycles. This is achieved by using a small adjustment factor (see Table 3.1 and Eq. 

3.11) of 0.005 (represents the correction of 0.01 times the distance deviation from an 

ideal distance at every correction cycle). This parameter is set after empirical fitting 

and testing to ensure a limited biasing.  

 
 
Figure 3.6: The distance constraints used in ψϕ  modeling are shown for an Ala-3 

system. Each ψϕ  combination is modeled as four distance constraints 

i.e., the two distance constraints for modeling the ϕ  angle (blue dotted 

lines between 1−rC  and rC , and between 1−rC  and rCβ  atoms) and the 

remaining two distance constraints for modeling the ψ  angle (red dotted 

lines between rN  and 1+rN , and between rN  and rCβ  atoms). Ideal 

distances for these constraints are set based on the selected basin of 

attraction.  

 

Rotamer modeling 

Following a similar approach as used for ψϕ  angles, it has been shown that protein 

side-chain conformations tend to exist in a limited number of conformational states, 

usually called rotamers.188,189 Consequently, with the increasing amount of 

experimental data, many rotamer libraries have been published.179,190,191 In this study, 

the Penultimate rotamer library179 is used, which is based on high resolution crystal 

structures.191 
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A side-chain in the NMSim approach explores conformational space randomly at the 

structure distortion/movement step. Subsequently attractive basins derived from the 

rotamer library are created during the structure correction step. The randomization of 

the side-chains ensures a proper sampling of conformational space. Furthermore, the 

biasing during the structure correction step ensures that a side-chain conformation is 

pushed towards the nearest rotamer state. The state is reached if possible under 

existing constraints. More rotameric states were sampled during the NMSim 

simulations than without biasing (see section 3.3). However, the rotamericity of side-

chains does not reach 100 % in a protein ensemble, and therefore here it is modeled as 

such. A study shows that a substantial number of side-chains are under strain: around 

5-30 % of the side-chains do not correspond to any rotameric state.192 

During the structure correction (after initial 50 correction cycles), the nearest rotamer 

state is selected for each residue r . This is done in two steps: 

1) A candidate rotamer list is made for each residue r , i.e., candidates are those 

rotamers that have all χ -angles within a chi-limit (default 

CHIDEV_SELLIMIT = ±60°) of the corresponding χ -angles of the residue 

r . 

2) The nearest rotamer is selected from the candidate rotamer list based on the 

smallest RMSD from residue r . 

During the remaining correction iterations (between 50-500 cycles) every χ -angle of 

every rotamer-assigned residue r  is slightly adjusted towards the corresponding 

selected rotameric χ -angle. This is done by rotating the nearest χ -angle dependent 

atom around its χ -angle torsion axis. The angle of rotation depends on the χ -angle 

deviation from the selected rotameric χ -angle and the related adjustment factor (see 

Table 3.1). A small adjustment factor of 0.001 (representing the correction of 0.001 

times the χ -angle deviation from the selected rotameric χ -angle at every correction 

cycle) is used, after empirical fitting and testing, to ensure a limited biasing and 

structural stability. 
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Backbone and side-chain planarity and chirality  

Atoms should lie in or near a plane if they are attached to a 
2sp  carbon (or 

equivalent) or in a delocalized aromatic or conjugated system. In the protein 

backbone, peptide bonds between carboxyl and amino group are planar, i.e., the ω -

angle is near 0° for a cis-peptide and near 180° for a trans-peptide. In addition, nine 

out of 20 natural amino acids (i.e., Arg, Asp, Asn, Glu, Gln, His, Phe, Tyr and Trp 

residues) also contain a planar group in their side-chain.193 To achieve planarity in 

MD simulation a suitable set of improper torsion angles are used. An improper torsion 

is a rotation around an axis between two atoms that are not bonded to each other. In 

constraint based correction, all possible 1-4 constraints between atoms of the planar 

groups can be used to restrict the rotation around any of the torsion angles. However, 

a small deviation of a 1-4 distance constraint from its ideal value could still result in a 

large deviation from planarity, which might not be acceptable: according to Procheck 

criteria, the RMS distance of atoms must be within 0.03 Å and 0.02 Å for rings and 

others planar groups, respectively.194  

To acquire better planarity in NMSim, especially for side-chains, a superimposition 

method was used during the iterative constraint correction procedure. Corrected 

planar groups are superimposed onto their respective distorted planar groups. Since 

other distance constraint corrections, as discussed above, would distort the planarity 

again, an iterative superimposition and constraint correction procedure is applied until 

convergence, i.e., satisfying both the distance constrains and planarity.  

In contrast to a side-chain planar group, a peptide bond shows a higher degree of 

distortion from ideal planarity. Deviations from planarity can be tolerated with a 

standard deviation of up to 6° from an ideal angle of 180° for a trans-peptide.195 

However, in some cases, tension in the region might cause an even higher non-

planarity  (e.g., ω =153.7° was also observed196). To model the backbone planarity in 

NMSim, the same procedure is used as for side-chain planarity, but with a relaxed 

adjustment factor, i.e., every atom in the distorted planar group is moved only a small 

fraction (i.e., adjustment factor = 0.02 times the ω -angle deviation from an ideal 
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angle of 180° for a trans-peptide at every correction cycle) towards the superimposed 

plane (see Table 3.1). This allows variability in the peptide planarity, which depends 

on the tension level in the molecular environment.  

Chirality is another important property. Most amino-acids have an S configuration of 

their chiral centers.187 During the NMSim simulation, it is assured that the chirality of 

the Cα atom in the backbone and the Cβ atoms in Thr and Ile side-chains does not 

change. Here hydrogen atoms attached to the chiral centers are also included in the 

simulation to avoid any chirality change. 

Table 3.1: The different constraints used in NMSim modeling with their parameters. 

Constraints 
a)
 

 

 

Adjustment 

factors
  b)
 

Tolerances
 c)
 

Bond/Angle 0.5   0.005 Å 

Hydrogen bond 0.2   0.05 Å 

Hydrophobic 0.1   0.05 Å 

Phi /psi 0.005 0.05 Å 

Van der Waals 1-4  0.4 0.20 (fraction of vdW sum)  

Van der Waals except 1-4 0.4 0.07 (fraction of vdW sum) 

Backbone planarity 0.02 1.0° (from ideal ω -angle ) 

Side-chain planarity 1.0  0.001 Å (from ideal planarity) 

Rotamer 0.001 10° (from each rotameric χ -angle) 

a) The different constraints used in NMSim. All constraints are distance-based except 
backbone/side-chain planarity and rotamer constraints which have planar and angular 
type respectively. b) An adjustment factor defines the strength of a constraint by 
which it is restored to its ideal distance/angle in every structure correction cycle. 
Maximum (full restoration in every structure correction cycle) is achieved at 0.5 for 
distance based constraints (see Eq. 3.11) and 1 for planar and angular based 
constraints. c) The tolerance allowed from ideal distances/angles for each constraint. 
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Constraint adjustment 

An iterative approach is applied to satisfy the constraint network, which is built by the 

above described modeling of the different covalent and non-covalent bonds and the 

stereo-chemical properties. In every structure correction cycle, every constraint that is 

unsatisfied is adjusted using respective adjustment factor values (see Table 3.1 for 

adjustment and tolerance values). A schematic diagram for a distance constraint 

correction is shown in Figure 3.7. Here, two atoms i  and j , connected by a distance 

constraint having an ideal distance of ijd , are distorted (by moving atoms in the 

normal mode direction) to new positions ( a
v

 and b
v

), respectively. Now, the distance 

is ijd '  between them. The constraint is corrected by adding vectors ijG
v

 and jiG
v

, 

respectively, to the current position vectors a
v

 and b
v

 to get new coordinate position 

vectors 'i
v

 and 'j
v

, respectively. 

 

Figure 3.7: A schematic representation of distance constraint correction. Any two 

atoms i  and j , connected by a distance constraint having ideal distance 

of ijd , are  distorted to new positions ( a
v

 and b
v

), respectively. The 

constraint is corrected by adding vectors ijG
v

 and jiG
v

 respectively to the 

current position vectors a
v

 and b
v

, resulting in new coordinate position 

vectors 'i
v

 and 'j
v

 for atoms  i  and j . 

The constraint would be adjusted only if the absolute change in ideal and current 

distances is more than the tolerance value i.e., if Tolerancedabs ij >∆ )( given 
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ijijij ddd '−=∆  (The criterion for vdW distance constraints is 

Toleranced ij >∆ and for hydrophobic distance constraints is 

Toleranced ij >∆− ). The correction vector ijG
v

 is calculated by  

orAdjustFactd
u

u
G ijij **∆= v

v
v

, (3.11)

where, u
v

 is defined as bau
vvv

−=  and the correction vector ijji GG
vv

−= . 

The orAdjustFact  for a distance constraint can have a maximum value of 0.5, which 

means the constraint would be fully satisfied by moving both connected atoms 

midway along the line joining the two atoms. 

The different types of constraints are satisfied in the sequence shown in the structure 

correction module in Figure 3.2. The exit criterion for the structure correction cycle is 

checked every 50th iteration. The criterion is reached when the ratio of the number of 

unsatisfied covalent distance constraints to the total covalent distance constraints is in 

the given tolerance value (i.e., by default MISS_SLOPE_TOL=0.01). Additionally, a 

limit on the maximum number of correction cycle is also considered (i.e., by default 

SHAKE_ITER=500). 

The correction procedure described above was found to be very efficient, e.g., Hen 

egg white lysozyme structure, which contains 129 residues, needed 5-10 seconds of 

structure correction time (when distorted with default settings, i.e., step-size = 0.5 Å) 

on a normal desktop computer. The resulting structure is found to be stereo-

chemically valid using Procheck analysis.194  

 

3.2.5 Pathway selection in ROG-guided NMSim 

A search for a ligand bound conformation of a protein can be drastically improved if 

some structural properties of the complex are incorporated in order to tailor the 

trajectory towards those properties. In case of large-scale conformational changes, 
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like domain closures in proteins upon ligand binding, it is well known that the 

compactness of the protein structure increases upon the ligand binding.197,198 The 

radius of gyration ( gR ) is often used to describe the compactness of a protein, e.g., 

during the folding process from a denatured state to the native state. Experimentally, 

small-angle X-ray scattering has been used to measure the effects of ligand binding on 

gR , and the decrease in gR  is used as evidence to domain closure.197,199 gR  is 

defined by 

∑
=

−≅
n

i

cig Rr
n

R
1

22 )(
1 vv

, (3.12) 

where 
cR
v

is the center of mass, 
ir
v

 is the atomic position of atom i  and n  is the 

number of Cα atoms. Here only Cα atoms are considered. 

In a ROG-guided (Radius Of Gyration-guided) simulation, the trajectory can be 

tailored towards the bound structure by selecting the pathway that leads to a decrease 

in the gR , assuming that ligand binding would result in domain or loop closures. It is 

important to note here that the conformations are still generated by random linear 

combinations of low frequency normal modes and therefore the pathway still goes 

though the low energy space. In fact, two or more conformations are generated 

without any biasing during a simulation cycle (i.e., by calling NMSim module for 

each conformation). Then the conformation with the lowest gR  is selected for further 

trajectory exploration in the next simulation cycle. In other words, one of the 

pathways is selected at every simulation cycle.  

 

3.3 Model testing 

The program CONCOORD uses a similar constraint based correction approach as the 

one described above for NMSim. However, NMSim additionally incorporates explicit 

modeling of hydrogen bonds, ψϕ  dihedrals, and a rotamer library in a simple 

constraint based approach. These components are individually tested for their 
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effectiveness and suitability of their relevant parameters. Modeling hydrogen bonds 

explicitly, instead of rigidifying secondary structures as in CONCOORD, is not only a 

more natural approach but also a step towards modeling hydrogen bond breaking and 

forming. The ψϕ  angle and rotamer modeling is a new addition to a geometry-based 

simulation approach and thus will be discussed below in detail. 

 

3.3.1 Testing the ϕϕϕϕ/ψψψψ model on an Ala-6 system 

Conformational changes in the protein backbone arise mainly due to changes in the 

ψϕ  dihedral angles. Local steric clashes between atoms restrict the allowed range of 

ψϕ  dihedrals as shown by Ramachandran et al. in 1963.183 Additionally, ψϕ  

dihedrals are restricted due to a dense hydrogen bond network in secondary structures 

like α-helices and β-sheets. However, ψϕ  dihedrals in loop regions and those 

forming hinges are critical and need to be modeled correctly in constraint based 

approaches that lack electrostatic forces. 

In NMSim, explicit modeling of ψϕ  was applied as described above and was tested 

by analyzing the Ramachandran plots of different NMSim generated Ala-6 

conformations with and without ψϕ  modeling. Simple alanine systems have been 

previously used for testing and parameterization, for example, in improving MD force 

fields.200 To fully explore the available ψϕ  space, a fully random NMSim 

simulation was applied for Ala-6, where an Ala-6 structure is randomly distorted and 

then corrected using the NMSim module. By switching off the steric clashes 

correction (i.e., by setting VDW_DIST_TOL=1.0 and VDW_ONE4_DIST_TOL 

=1.0) and the ψϕ  correction in a random NMSim simulation, evenly distributed 

ψϕ  dihedrals were found (see Figure 3.8-a). The core, allowed, generously-allowed 

and disallowed regions are occupied to 10, 28, 30, and 32 %, respectively. This is in 

agreement with the respective area of these regions.187  

By applying the steric clashes correction in the above simulation, no steric clashes in 

the generated structures were found by Procheck.194 The effect of steric clashes 
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correction in NMSim can be seen in Figure 3.8-b, which shows a restriction towards 

certain ψϕ  regions in Ramachandran map. As expected, the biasing towards a ψϕ  

core region was found to be imperfect: core, allowed, generously-allowed and 

disallowed regions are occupied by 18, 54, 19, and 9 % respectively. This emphasizes 

the need for explicit ψϕ  modeling. Almost the entire disallowed region and the part 

of generously-allowed region were restricted due to steric clashes (see Figure 3.8-b). 

However, a small cluster of ψϕ  angles ( o50≅ϕ  and o100−≅ψ ) was found in the 

disallowed region: further investigation of the conformations in this cluster shows that 

the distance constraints around these ψϕ  angles are stressed which indicates that 

this ψϕ  region represents a high energy minimum in NMSim. However, this ψϕ  

region is only accessible by crossing high energy barriers: this ψϕ  region was only 

observed in random NMSim simulations, where each structure is independent of the 

other and not in default NMSim simulations, where a trajectory follows a low-energy 

path. 

 In ψϕ  modeling, a biasing towards the core region was applied as describe above. 

The Ramachandran plot obtained from NMSim conformations of Ala-6 using ψϕ  

modeling is shown in Figure 3.8-c.  Here, core, allowed, generously-allowed and 

disallowed regions are occupied by 64,26,5 and 5 %, respectively. Thus a high ψϕ  

distribution shift towards the core region.  

A default NMSim simulation (i.e., normal based simulation with default step-size) is 

also run on an Ala-6 (Figure 3.8-d). Here the core and allowed regions are occupied 

around 88 % and 12 %, respectively, with no ψϕ  pairs in the generously-allowed 

and disallowed regions. This is comparable to 82 % and 15 % found in experimental 

structures.187 Due to a small biasing value for ψϕ  it is assumed that, in a stressed 

molecular environment, ψϕ  combination can lie in generously-allowed or 

disallowed regions. 
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a) b) 

c) d) 

Figure 3.8: The Ramachandran plots for 500 Ala-6 conformations, having 2000 ψϕ  

pairs, obtained from different simulations are shown. The conformations 

generated from random NMSim simulation (i.e., randomly distorted Ala-6 

structure and corrected with NMSim correction module) with no steric 

clashes correction and no ψϕ  modeling (in panel a), with steric clashes 

correction and no ψϕ  correction (in panel b), with steric clashes 

correction and ψϕ  correction (in panel c) and conformations generated 

from a default NMSim simulation (in panel d) are shown. The random 

NMSim simulation with no steric clashes correction shows evenly 

distributed ψϕ  pairs (in a) whereas the disallowed regions are restricted 

due to steric clashes correction (in b). The explicit ψϕ  modeling is 

applied to bias ψϕ  pairs in the core region in random NMSim simulation 

(in c) and default NMSim (in d). 
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3.3.2 Testing the rotamer model on lysozyme 

As describe above, a biasing towards the nearest selected rotamer of every residue 

(excluding Gly, Ala, Pro) is applied during the structure correction. This forces side-

chain conformations into the nearest rotameric state. In order to test this model, Hen 

egg white lysozyme (HEWL) was simulated with and without applying rotamer 

biasing. The resulting side-chain conformations over the trajectories were analyzed in 

detail for rotamericity and heterogeneity measures. Here, the rotamericity of a residue 

in a protein sequence is defined as the ratio of the total number of occurrences of the 

residue in any of the possible rotamers to the total number of conformers in the 

ensemble. The heterogeneity measure of a residue in a protein sequence is defined as 

the ratio of the total number of distinct rotamer states of the residue observed in an 

ensemble to the total number of available rotamer states for that residue in the rotamer 

library.179 Rotamericity measures the quality of side-chain conformations of an 

ensemble in terms of rotamers. The heterogeneity, in contrast, measures the 

conformational sampling of a residue in terms of rotamers. 

On average, an increase in rotamericity was observed, without trapping in one or few 

rotameric states, when rotamer biasing was applied in NMSim: in the case of HEWL, 

the average rotamericity of all residues increases from 0.57 to 0.70. Notably, the 

biasing applied does not influence the exploration of side-chain conformational space 

available to each residue: the average value for heterogeneity, which was around 0.46 

without biasing doest not change when biasing is applied. 

A comparison of these values with different constraint based methods, i.e., 

CONCOORD and FIRST, and with MD simulations shows that the MD simulation 

explores rotamer states better than any of the constraint based methods, however, 

NMSim is the closest to MD among the compared methods (see Table 5.5 and section 

5.2.4). CONCOORD does not explore enough rotameric states, i.e., an average 

heterogeneity value of 0.23 was observed. Higher rotamericity values in 

CONCOORD are an effect of getting trapped in one or a few of the rotamer states.  

The difference in the rotamericity between HEWL trajectory with and without 

rotamer modeling is shown in Figure 3.9, which gives a qualitative picture of the 
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increase/decrease in rotamericity for each residue. Except for a very few cases, an 

overall increase in rotamericity can be observed (i.e., positive change in the plot) 

which is as high as 0.6. Among 103 residues (excluding Gly, Ala, and Pro) nearly half 

of the residues (i.e., 47 residues) show a considerable increase above 0.1 in their 

rotamericity values, whereas, only 4 residues show a considerable decrease below 0.1. 

 

Figure 3.9: Differences in the rotamericity values (defined as the ratio of the total 

number of occurrences of the residue in any of the possible rotamers to the 

total number of conformers in the ensemble), obtained from the two 

ensembles, i.e., the NMSim trajectory of HEWL with and without rotamer 

modeling, is shown. A positive value represents an increase in rotamericity 

in the case of HEWL trajectory due to explicit rotamer modeling, whereas 

a negative value represent a decrease in rotamericity due to the rotamer 

modeling.  
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4 Materials and methods 

 

4.1 Comparative study of ENM and ED 

The study aims at comparing essential dynamics (ED) modes of proteins observed in 

MD simulations with normal modes obtained from coarse-grained normal mode 

methods (CGNM) for a large dataset of 335 diverse proteins. As for MD simulations, 

the first five ED modes for each protein were obtained from the Molecular Dynamics 

Extended Library database (MoDEL).85,86 There, the modes have been extracted from 

MD trajectories of 10 ns length. Coarse-grained normal modes were calculated using 

ENM and RCNMA68 approaches (see section 3.1). The three sets of modes were 

compared in terms of overlap of directions, correlation of relative magnitudes of 

motions, and spanning coefficients. The CATH classification201 of protein structures 

was used in order to investigate the influence of protein structure 

similarity/dissimilarity on mode similarities/dissimilarities. For a smaller protein 

subset, ED, ENM, and RCNMA modes were also compared against experimentally 

observed conformational changes. 

 

4.1.1 ED modes and protein data set 

ED modes were obtained from the MoDEL database (http://mmb.pcb.ub.es/MODEL, 

version as of May 2006)85,86 The MoDEL database stores information derived from 

MD simulations for more than 400 proteins. The MD simulations were performed 

with the Amber8 suite of programs at 300 K in the NPT ensemble, and the parm99 

force field was used together with TIP3P as a water model. The length of each MD 

trajectory is 10 ns.  

The first five available ED modes of 418 proteins were downloaded from the MoDEL 

database. Here, ED modes are calculated using all atoms; however, for comparison 

only Cα directions were used. PCA is applied on 5-10 ns trajectories containing 
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snapshot every ps. The corresponding experimental structures were obtained from the 

RCSB Protein Data Bank.202 For the sake of compatibility, heavy atoms in the ED 

modes files were compared with heavy atoms in the PDB files using the PDBParser 

module of Biopython.203 Where possible, inconsistencies between the two sets were 

corrected manually. However, 83 out of 418 cases were removed from the dataset due 

to deviating numbers of atoms/residues, empty or corrupt ED modes files, Cα-only 

structures, bad structural quality or inconsistency with the standard amino acid 

library, or problems in processing by FIRST.91 Finally, this resulted in a dataset of 

335 protein structures. The PDB structures were then protonated using Amber. 

Disulfide-bridges involving cysteine residues and protonation states of histidines were 

adopted from the ED mode files. All structures were then aligned to their respective 

MD average (reference) structure using Cα atoms. 

In order to reduce the influence of stereochemical inaccuracies in MD average 

structure due to the averaging process, minimization was performed. Average MD 

structure was minimized in the gas phase by using the conjugate-gradient method with 

a distance-dependent dielectric of 4r (to approximately account for solvation effects, 

with r being the distance between two atoms) until the root-mean square of the 

elements of the gradient vector is  < 10-4 kcal mol-1 Å-1. 

The dataset of 335 protein structures is diverse with respect to protein size, function, 

origin, sub-cellular localization, and structure determination method. The proteins 

contain on average 121 residues, with a minimum of 20 and a maximum of 349 

residues. The size distribution of the dataset is shown in Figure 4.1. The distribution is 

positively skewed with a peak in the range of 60 to 80 residues. 
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Figure 4.1: Frequency distribution of the protein size, in terms of the residue number, 

for the dataset of 335 proteins. 

 

4.1.2 RCNMA and ENM parameters used 

RCNMA (as described in section 3.1) is  performed  using the default parameter set 

which is in accordance with the previous study.68 Flexible and rigid regions of 

proteins are identified by FIRST,91 which identifies and counts the bond-rotational 

degrees of freedom in a molecular framework of atoms connected by covalent and 

non-covalent constraints (hydrogen bonds, salt bridges, hydrophobic interactions) 

based on rigidity theory.91,161,204 Parameters used for FIRST analysis, i.e., hydrogen 

bond energy cutoff (i.e. Ecut = -1.0 kcal mol-1) and distance cutoff for hydrophobic 

interaction (i.e. 0.25Å), are also consistent with a previous study.68 No profound 

change in the results was observed by changing these parameters. 

The all-atom representation of proteins needed for the FIRST analysis is reduced to a 

Cα-only representation in RCNMA. Each rigid cluster forms a block in the subsequent 

rotations and translations of block (RTB)142,178 approach, and flexible regions are 

modeled on a one-residue-per-block basis (in which case only translational motion of 

the “block” is considered). Interactions between these particles are modeled as in 
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ENM (Eq. 3.1), and the same parameters, for both ENM and RCNMA, are used:  

interactions cutoff between the Cα atoms, i.e., rc = 10 Å and phenomenological force 

constant, i.e., γ = 1 kcal mol-1 Å-2 (see section 3.1).  

 

4.1.3 ED and CGNM comparison 

The directions and relative magnitudes of motions described by the first five ED 

modes were compared with CGNM results. As done previously,68,70 the overlap of 

mode directions and the correlation of magnitudes of motions (see Eq. 4.1 and Eq. 

4.2) between two sets of modes were calculated for each structure in the protein 

dataset. Distributions of maximal overlap, maximal correlation, and the mode number 

involved in maximal overlap between the two sets of modes were analyzed for the 

dataset. It was further analyzed how well the subspace spanned the first 5 ED modes 

is described by the 10 %, 25 %, and 50 % lowest frequency CGNM modes by 

calculating the “spanning coefficient” (see Eq. 4.3). In order to analyze the coarse-

grain level achieved by RCNMA based on the rigid cluster decomposition from 

FIRST, the dimensionality reduction of H (see Eq. 4.4) was calculated. 

The overlap Iin
119 of the ith CGNM mode iu

v
 with the nth ED mode nv

v
 (n = 1, 2, … 5) 

was calculated according to: 

( ) ( ) 2/12/1
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vvuu
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I vvvv

vv

⋅⋅⋅

⋅
=  ( 4.1) 

An overlap of 1 indicates that the directions of the collective atom displacements 

along the ED mode and the CGNM mode are identical. For each protein structure 

only the CGNM mode with maximal overlap was considered for further analysis. 

Similarly, a correlation coefficient inC
70 of the ith CGNM mode iu

v
 with the nth ED 

mode nv
v

 was calculated according to: 
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= , ( 4.2) 
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where iA
v

 and nB
v

 are the vectors of mean centered amplitudes of atomic 

displacements as determined from vectors iu
v

 and nv
v

. A correlation coefficient of 1 

indicates that the relative magnitudes of atomic displacements along the ED mode and 

the CGNM mode are identical. 

The “spanning coefficient” k

nS
205 was computed as the sum of the square of the 

expansion coefficients: 

( )
2

∑ ⋅=
k

i

ni

k

n vuS
vv

 ( 4.3) 

Here, the sum over the first k CGNM modes was computed in order to determine the 

lowest percentage of normal modes needed for describing each of the first five ED 

modes. A spanning coefficient of 1 indicates that the subspace spanned by the ED 

mode can be completely described by the subspace considered by the k CGNM 

modes. 

The dimensionality reduction D was calculated based on the reduction of the H matrix 

dimension due to considering rigid blocks in RCNMA: 









−
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636
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N
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D , ( 4.4) 

where n is the number of blocks of size > 2 and m is the number of blocks of size 1 

(note that for simplicity blocks of size of 2 are not considered per se in the Hsub matrix 

and are decomposed into two blocks, each of size one). A dimensionality reduction of 

1 indicates that all Cα atoms are in one rigid block, whereas 0 indicates that every 

block is of size 1. In that case RCNMA becomes equal to ENM. 
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4.1.4 Similarities/dissimilarities in classes/folds: ED and ENM 
modes 

In order to analyze dynamic similarity within different protein classes or folds, the 

dataset of proteins was classified according to the CATH classification. Out of 335 

proteins, 320 proteins were found in the CATH database.201 Overlap and correlation 

results were sorted for these proteins according to different protein classes and folds 

(Class and Topology levels in CATH), and mean values and standard deviations were 

calculated accordingly. 

Additionally, in order to analyze locality or collectivity of motion within different 

classes, the collectivity index (Eq. 4.5) was used, which describes the number of 

atoms that are affected by a mode (or conformational change). The collectivity index 

proposed by Bruschweiler206 is calculated according to: 

)logexp(
1

1

22∑
=

∆∆−=
N

i

ii rr
N

vvκ , ( 4.5) 

where N is the number of atoms, ir
v

∆  is the relative displacement of the mode or the 

difference in Cartesian coordinates of atom i if an experimentally determined 

conformational change of the protein is considered. All values of 
ir
v

∆  have been 

scaled consistently such that 1
1

2 =∆∑ =

N

i ir
v

. κ = 1 indicates a mode or conformational 

change of maximal collectivity, i.e., all ir
v

∆  are identical. Conversely, if only one atom 

is affected by the mode or conformational change, κ reaches the minimal value of 

1/N. 
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4.2 NMSim and methodological comparisons 

In order to analyze the usefulness and the limitations of the NMSim approach, it was 

compared with different counterpart approaches on a test case: the Hen Egg White 

Lysozyme (HEWL) protein. The HEWL conformations207 from a state of the art 

MD56-58 and different experimental structures are compared with the conformations 

obtained form the most efficient geometric based methods i.e., FRODA,64 

CONCOORD62,63 and NMSim. 

 

4.2.1 Analysis of MD, NMSim, FRODA, CONCOORD and 
experimental HEWL ensembles 

The MD trajectory was taken from a recent study by A. Koller et al.,
207 where a 100 

ns MD simulation of HEWL (PDB code 1hel)208 was performed with AMBER9 under 

periodic boundary conditions in the NVT ensemble. The Amber force-field 99SB was 

used with TIP3P water model at 300 K. This simulation took approximately 4 month 

on 4 CPUs on a linux cluster. Here, 1,000 equal-spaced conformations were selected 

from the trajectory, which forms the MD ensemble used in this study. 

The NMSim program was applied to the same starting structure with the default 

parameter set (see Appendix A). In total 10,000 conformations were generated using a 

simulation cycles of 1,000 and an NMSim cycle of 10. This simulation took 30 hours 

on a 64-bit desktop computer. Every 10th structure was then selected for the NMSim 

ensemble. 

The FRODA64 simulation with the latest available version 6.2 was performed using 

the default parameter set. However, the hydrophobic cutoff –c is set to 0.35Å, because 

the default cutoff of 0.5Å resulted in a highly rigid protein with no relative motions. 

For the other parameters the default values were used. In total, 10 million 

conformations were generated, and every 1000th conformation was saved during the 

simulations. A total of 10,000 conformations were saved from the simulations. For the 

analysis, every 10th conformation was selected from the saved conformations, which 
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forms the FRODA ensemble of 1000 conformations. This simulation took 6 days on a 

64-bit desktop computer. Here it is important to note that, despite of generating 10 

millions of conformations and using approx. 6 days of computational time, the 

FRODA trajectory was less explorative in terms of RMSD from the starting structure 

as compared to the NMSim trajectory. The average backbone and heavy atom RMSD 

of every structure to its previous structure in the FRODA ensemble are 0.25 Å and 

0.5 Å, respectively, as compared to 0.4 Å and 0.6 Å in the NMSim ensemble. 

The latest available version of the CONCOORD62 2.0 program was run with the 

default parameter set. As recommended on the CONCOORD home page, van der 

Waals parameters “yamber2” and bonded parameters “Engh-Huber” were used. 

CONCOORD is a pure conformation generation method with no 

pathways/trajectories of the simulations. Every conformation is generated using the 

starting structure distortion and correction procedure, and, hence, does not depend on 

simulation time; therefore, only 1000 structures were generated for the ensemble. The 

generation of the 1000 conformation only took 53 minutes on a 64-bit desktop 

computer.  

In order to compare the conformations generated from the different approaches with 

the experimentally observed conformations of HEWL, an ensemble of experimental 

structures was made. The experimental structures, which show 100 % sequence 

similarity with the sequence of the starting structure of HEWL (PDB code 1hel)208 

were downloaded from the RCSB Protein Data Bank.202 In case of NMR structures, 

each model was treated separately. The structures that were closest to the starting 

structure with a Cα RMSD less than 0.5 Å were removed. The experimental ensemble 

contains 130 different X-ray crystal structures and NMR structures.209 These 

structures are listed in Appendix B. 
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4.2.2 Rotamer states and derived measures: rotamericity, 
heterogeneity, and occupancy 

 

To compare side-chain conformational sampling in different methods, the Penultimate 

rotamer library179 was used in this study. A side-chain conformer was assigned to a 

rotameric state if every χ -angle of that residue falls within ±30° of the corresponding 

χ -angle of any of the rotameric states available to that particular residue. Different 

rotamer derived measures were then used for the analysis.  

The rotamericity measure is used to compare the quality of side-chain conformations 

in different ensembles. The rotamericity of a residue in a protein sequence is defined 

as the ratio of the total number of occurrences of the residue in any of the possible 

rotamers to the total number of conformers in the ensemble. It is important to note 

here that the rotamericity of each residue in the sequence is calculated in this study. 

This is in contrast to the rotamericity of each amino acid of protein, used by 

Schrauber et al.
192 The rotamericity of amino acids has been used previously, for 

example to show that a substantial number of side-chains are under strain192 and that 

ligand binding induces non-rotamericity.210 

To analyze the potential of different methods in sampling different rotamer states, 

different measures are introduced. The heterogeneity measure of a residue in a protein 

sequence is defined as the ratio of the total number of distinct rotamer states of the 

residue observed in an ensemble to the total number of available rotamer states for 

that residue in the rotamer library.179 This measure defines how well the different 

methods explore the available side-chain conformational space. 

The heterogeneity is normalized with the available rotamer states of a residue. 

According to the Penultimate rotamer library,179 some long side-chains like Arg and 

Lys have 34 and 27 rotamer states respectively, whereas, side-chains like Cys and Ser 

have only 3 rotamer states. These uneven normalization factors need to be considered 

for the heterogeneity measure. Therefore, the occupancy measure was also 

introduced, i.e., the heterogeneity measure without normalization. The occupancy 

measure of a residue in a protein sequence is defined as the total number of distinct 

rotamer states of the residue observed in an ensemble. Furthermore, the occupancy 
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vector is introduced, which is simply a vector containing the occupancy value of 

every residue in a protein. The correlation coefficient between the occupancy vectors 

is then calculated to compare the patterns of rotamers sampled in the different 

ensembles. 

 

4.2.3 Structure quality using Procheck 

The quality of a subset of the structures obtained from the different types of methods 

was analyzed using the Procheck194 program. Here, 100 equal-spaced structures were 

taken from the ensemble of every method for the analysis. To better judge the 

structure quality, 100 high resolution crystal structures from Richardson’s lab211 (here 

named as EXPTOP) were also used for the analysis, in addition to the 130 

experimental structures of HEWL. The averages and the standard deviations were 

calculated for the different properties obtain from Procheck.  

The G-factor provides a measure of how normal a given stereo-chemical property is. 

In Procheck, it is computed for dihedrals angles (i.e. ψϕ −  combination, 

21 χχ −  combination, 1χ  torsion for those residues that do not have a 2χ , 

combined 3χ  and 4χ  torsion angles, ω  torsion angles) and covalent geometry (main-

chain bond lengths, main-chain bond angles). The G-factor is a log-odd score based 

on the observed distributions of these stereo-chemical parameters. A low G-factor 

indicates that the property corresponds to a low-probability conformation.  

 

4.3 NMSim and biological applications 

 

4.3.1 The proteins in the dataset 

The NMSim approach was applied to a dataset of eight proteins, where important 

conformational changes have been observed upon ligand binding, and where two 

crystal structures are available, the unbound (open) and the ligand bound (close) 

conformations. In order to analyze the usefulness and the limitations of the NMSim 

approach, the dataset is subdivided into two categories, Domain and Loop, based on 
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the types of the conformational changes observed upon ligand binding. The dataset is 

listed in Table 4.1 along with the PDB codes and relevant information. The proteins in 

the dataset have been used previously in different normal mode studies68,70,75,212 and 

show both “ligand-induced” and “conformational selection” types of conformational 

changes.37,213  

Table 4.1: The protein dataset used in NMSim study.  

Proteins
 a)
 Open 

structure
b)
 

Close 

structure
b)
 

No. of 

residues
c)
 

Interesting regions 
d) 
 

Domain:     

Adenylate kinase 
(ADK) 

4ake (A) 1ake 214 Core: 1-28, 80-112, 
173-214; ATP: 119-156; 
NMP: 31-72 

Aspartate 
Aminotransferase 
(AST) 

9aat (A) 1ama 388 Large: 42-322; 
Small:15-33, 330-356, 
362-410 

Calmodulin 
(CLM) 

1cfd (A) 1ckk 148 C-term. Domain: 82-
146;  
N-term. Domain: 5-75 

Citrate synthase 
(CTS) 

5csc (A,B) 6csc 860 Large: 3-55, 66-272, 
330-335, 382-433; 
Small: 56-63, 284-327, 
338-378 

LAO binding 
protein (LAO) 

2lao (A) 1lst 238 Lobe I: 1-88 and 195-
238 Lobe II: 93-185   

Loop:     

Tyrosine 
phosphatase 
(TYP) 

1ypt (A) 1yts 278 β7-α4 loop: 350-360 

Triosephosphate 
isomerase (TIM) 

8tim (B) 1tph 245 Loop 6: 166-176 

CAMP-dependent 
protein kinase 
(CAPK) 

1jlu (E) 1fmo 336 Glycine-rich loop: 50-
55 

a) The protein dataset is further divided into Domain and Loop dataset. b) The PDB 
codes for unbound (open) and ligand bound (close) structures. The PDB chain ID 
used is in brackets. c) 13 residues (SER3-ASP15) in AST were removed, as they were 
found highly fluctuating. Two and three residues were removed, respectively, from 
TIM and CAPK to equalize the number of atoms with the close structure. d) The 
residue numbers for domain20,213,214 and important loop regions.  
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4.3.2 The NMSim run: parameters and ensemble generation 

In order to explore the extent to which experimentally observed conformational 

changes can be achieved in NMSim, the method was applied to the open 

conformation of proteins in the dataset (see Table 4.1). Three different types of 

simulations were performed using NMSim approach, i.e., freely-evolving, radius of 

gyration (ROG)-guided and target-directed.  

The freely-evolving NMSim is performed with no information of the target 

conformation, and therefore a random linear combination of normal modes (see 

section 3.2.2) is used to freely evolve a trajectory in the normal mode space. In 

general, the freely-evolving NMSim is run with the default parameter set (see 

Appendix A). As default for freely-evolving NMSim, 5000 conformations are 

generated in a trajectory (using 500 simulation cycles and 10 NMSim cycles). Every 

10th conformation is then selected for analysis. However, in the Domain dataset, the 

first five normal modes and a smaller side-chain randomization parameter (i.e., 

RANDSCALING = 0.05 Å) are used in order to explore large-scale backbone 

conformations. These minor changes in the default parameter set are suited for the 

large-scale exploration of the conformational space of a protein. Furthermore, 10 

different freely-evolving trajectories for each protein in the Domain dataset are run, 

however, generating 500 conformations in each trajectory (using 500 simulation 

cycles and one NMSim cycle). This also results in 5000 conformations from 10 

different trajectories of each protein in the Domain dataset. For these 10 trajectories, 

NMSim takes around 2 days of computational time for a normal size adenylate kinase 

(having 214 residues) on a 64-bit desktop computer.  

The ROG-guided NMSim is performed with the assumption that the close structure 

has smaller radius of gyration ( gR ) than the open structure (see section 3.2.5). 

Consequently, the path which leads to lowering gR  is selected. The 3 different 

conformations are generated in each simulation. And then the conformation with the 

lowest gR  is selected (among the 3) for further trajectory exploration in the next 

simulation cycle. As default settings in ROG-guided NMSim, 1500 conformations are 

generated in total (using 500 simulation cycles and one NMSim cycle). However, the 

pathway is represented by the selected 500 conformations.  
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The target-directed NMSim is performed by using the close conformation 

information, and hence the best combination of modes (see section 3.2.2) is used at 

every step of the trajectory. As default settings in target-directed NMSim, 500 

conformations are generated (using 500 simulation cycles and one NMSim cycle).  

 

4.4 NMSim and the pathways of conformational change 

Pathways of conformational changes from the open to the close structures were 

generated for ADK using two different types of simulation, i.e., the target-directed 

NMSim (section 3.2.2) and the ROG-guided NMSim (section 3.2.5). The default 

parameter set (see Appendix A) for both types of simulations was used. However, 

each intermediate conformation was generated using the single best mode instead of 

using a linear combination of modes. For target-directed NMSim, out of 50 modes, 

the best overlapping mode (i.e., the mode having the best overlap with the 

conformational change direction) was used at each NMSim cycle (as described in 

section 3.2.2). For ROG-guided NMSim, 10 structures in either direction of the first 5 

modes were generated and the structure with the lowest radius of gyration was 

selected for further exploration of the pathway, at each NMSim cycle.  

In order to analyze the order of the domain closure in ADK, the reaction coordinates 

described by Whitford et al.
89 were used. The reaction coordinates CORELIDR −  is 

defined as the distance between the LID domain and CORE domain centers of mass 

and CORENMPR −  is defined as the distance between the NMPbind domain and CORE 

domain centers of mass. In order to further verify the NMSim pathway, the generated 

intermediate structures were compared with 11 different X-ray crystal structures87 of 

ADK in terms of Cα RMSD.  The X-ray structures which lie along the pathway from 

open to close conformation of ADK were identified, by selecting a crystal structure 

with the lowest RMSD to each intermediate structure along the generated pathway, 

and compared with a similar study by Maragakis and Karplus.87 
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5 Results and discussions 

This chapter is subdivided into four parts: In the first part, a validation of coarse-

grained normal mode approaches in describing essential space explored during MD 

simulations is reported. Furthermore, questions regarding the parameterization of 

NMSim approach are addressed. In the second part, the usefulness and the limitations 

of the different geometry-based approaches, in general, and the NMSim approach, in 

particular, are analyzed on a test case, i.e., the Hen Egg White Lysozyme. The 

generated conformations from different geometry-based approaches are compared 

with state of the art molecular dynamics (MD) simulations and experimental 

conformations. In the third part, the usability of the NMSim approach in exploring the 

intrinsic dynamics of a protein and in describing conformational changes due to 

ligand binding is presented. The approach is applied to a dataset of proteins where 

conformational changes have been observed experimentally either in domain or 

functionally important loop region. In the last part, NMSim generated pathways of 

conformational change in adenylate kinase are compared with previous studies.87-89 

Furthermore, the possibility of pathway generation without knowing the target 

structure is explored.  

 

5.1 A large scale comparative study of ENM and ED  

The need for a large-scale comparative study between essential dynamics (ED)215,216 

and elastic network models (ENM)67 was felt, which investigates the validity and 

applicability of coarse-grained normal mode approaches. Although ENM has been 

found successful in describing protein conformational changes,136,150 a recent study71 

has shown that the success of ENM in describing experimental conformational change 

(from an unbound to a bound conformation) strongly depends on the collectivity of 

the conformational change. In order to investigate the successes/limitations of ENM 

in describing the intrinsic dynamics of a protein, a comparison with ED modes 

derived from MD simulation is performed here.  
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Different studies have previously135,215,217-219 shown the striking similarities between 

normal modes derived from all-atom force-field potentials130,220 and ED modes from 

MD simulations. These early studies have used one or a few proteins with limited 

simulation size and have focused on the comparisons of frequency spectra.90,130,135 For 

example, Hayward et al.
135 have used a 200-ps MD trajectory of bovine pancreatic 

trypsin inhibitor for such studies. In ENM, however, it has been argued136 that the 

information provided by the eigenvectors for the directionality of biologically relevant 

conformational changes has wider applications than the eigenvalues. This is also 

reflected by the applications and developments of ENM based approaches in recent 

years.79,80,82,221,222 In this view, this study focuses on comparing directions of essential 

protein movements from atomistic MD simulations and coarse-grained normal mode 

analysis. This analysis was performed on a large dataset of 335 diverse proteins. To 

our knowledge, a similar study85 has been reported recently, however, on a relatively 

small dataset of 30 proteins. 

In this section, important questions that are assumed to guide a further development of 

normal mode-based approaches are addressed. The validity of the coarse-grained 

normal mode approaches in describing essential space explored during MD 

simulations is reported. Furthermore, the extents of similarities/dissimilarities 

between essential directions obtained from the two different methods are presented by 

comparing overlap of directions, correlation of relative magnitudes of motions, and 

spanning coefficients between modes. The influence of protein structure 

similarity/dissimilarity on mode similarities/dissimilarities is analyzed using the 

CATH 201 classification of protein structures. In view of recent223-225evidences 

regarding evolutionary conservations of vibrational dynamics, modes were compared 

for proteins within the same fold class, for representative cases, where considerable 

differences were observed between ENM and ED modes. Here we start with the 

discussion of the influence of using different reference structures in ENM and the 

influence of using natural coarse-graining in RCNMA as compared to residue-based 

ENM. 
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5.1.1 Influence of the reference structure: Average vs. open 

ED modes215 are based on a reference structure, i.e., the structure obtained by 

averaging all conformations along the trajectory, which can be conformationally 

different from the experimental starting (also termed “open”) structure and might 

have stereochemical inaccuracies. In contrast, CGNM analyses usually use 

experimental (open) structures.137 In order to analyze the influence of using different 

reference structures, i.e., average or open, in CGNM analysis, ED modes were 

compared with CGNM modes computed from either the average or the open structure. 

Not unexpectedly, ED modes correlate better with CGNM modes in both directions 

and amplitudes of motions if the average structure is used for CGNM. For example 

for ENM, the mean maximal overlap (Eq. 4.1) and mean maximal correlation (Eq. 

4.2) values are 0.65 and 0.73, respectively, using the average structure. These values 

decrease by 0.10 and 0.08 if the open structure is used instead. The lower values are 

mainly due to those proteins that show large conformational differences between the 

open and the average structures. For example, those 49 out of 335 protein structures 

for which the maximal overlap decreases by at least 0.2 have a mean RMSD between 

open and average structure of 3.11 Å. For comparison, the mean RMSD over all 

proteins is 2.06 Å.  

As a further test, average structures were minimized (see section 4.1.1) to remove 

stereochemical inaccuracies obtained by the averaging process. The mean maximal 

overlap and correlation values between ED and CGNM modes were found to be 

almost unaffected compared to the use of non-minimized average structures, which 

can be explained150,176 by the coarse-grained nature of CGNM.  Given that in general 

very similar results are obtained for CGNM from both the open and average structures 

and for the sake of a fair comparison with ED modes, the average structure will be 

used as a reference in this study. The average structure has also been used 

previously85 in ENM for the sake of comparison. 

As for the decomposition of the structure into rigid clusters and flexible regions by 

FIRST, however, the MD average structures generally result in more flexible 

decompositions than the open ones. This can be explained by the fact that FIRST 

requires input at an atomic level, which makes FIRST more sensitive to the accuracy 
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of the input structure.91 To what extent RCNMA results are influenced by this is 

discussed in more detail below.  

 

5.1.2 Influence of the level of coarse-graining: ENM vs. RCNMA 

FIRST91 decomposes a protein structure into rigid clusters and flexible regions based 

on rigidity theory.91,161,204,226 RCNMA utilizes this information and considers each 

rigid cluster as a single node with six degrees of freedom in an elastic network 

representation of the protein. This not only reduces the dimensionality of the problem 

and, hence, the memory requirements and computational times, but also simplifies 

and emphasizes important movements of mobile regions.68 When applying RCNMA, 

caution is required as an overly rigid representation of a protein might lead to an 

under-estimation of motion. Average structures obtained from MD trajectories, which 

are used here as reference structures, generally result in more flexible decompositions 

than the respective experimental structures: On average the largest rigid cluster 

comprises 16 % of the residues of the average structure, whereas it comprises 25 % of 

the residues of the experimental structure. As a more general measure for the level of 

coarse-graining, the dimensionality reduction (Eq. 4.4) has been introduced. Here, a 

dimensionality reduction of on average 0.26 for the average structures is found, 

whereas it is 0.32 for the open structures, in agreement with our previous results.68 

For larger proteins, the dimensionality reduction is even more pronounced. E.g., for 

proteins with > 200 residues in the dataset, this value amounts to 0.45. 

Compared to ED modes, both ENM and RCNMA on average perform similar in terms 

of the maximal overlap of mode directions and correlation of amplitudes of motions 

(Table 5.1). There are some differences, however, on the level of individual proteins. 

Figure 5.1 shows differences in the maximal overlap values between ENM or 

RCNMA modes and ED modes as a function of the dimensionality reduction. 

Differences in overlap values occur in both negative and positive directions and are 

mainly in the range between 0.05 and 0.2, indicating that using a coarse-grained 

protein representation does not deteriorate the agreement in general. This is also 

corroborated by the fact that there is no correlation between dimensionality reduction 

and overlap difference values and that both positive and negative overlap differences 
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are observed even for the highest levels of coarse-graining. Finally, no difference 

between ENM and RCNMA results were found if the minimized average structures 

were used instead. For simplicity, we thus present ENM results from here onwards 

unless stated otherwise. 

 

Figure 5.1: The differences between maximum overlap values for modes either 

obtained from ENM or RCNMA with ED modes for different proteins as a 

function of the dimensionality reduction (Eq. 4.4) due to coarse-graining 

the protein in RCNMA. 

 

5.1.3 Comparison between ED and ENM modes 

The first five ED modes of each protein of the dataset were compared with ENM 

modes in terms of overlap, correlation, and spanning coefficient between the two sets 

of modes. Despite underlying differences between ED and normal mode methods, 

high maximal overlap and maximal correlation values between the two sets of modes 

were observed. Table 5.1 shows maximal overlap and maximal correlation values 

averaged over 335 proteins of ED modes with ENM modes. Only 3 % of the proteins 

have overlap values < 0.4, indicating an unsatisfactory agreement of mode directions, 

whereas 83 % of the proteins have maximal overlap values > 0.5 and more than 30 % 

of the proteins have maximal overlap values > 0.7 (see Figure 5.2). More than one 
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quarter of the proteins have a max overlap value between 0.60 and 0.70. These high 

overlap values indicate that the essential motions extracted from MD trajectories can 

likewise be obtained from a coarse-grained normal mode method, albeit at much 

lower computational expenses. Good overlap values on such a large and diverse 

dataset support the argument that the ENM approach is successful in describing 

motions of proteins with different and complex architectures, as long as it describes 

collective motions.136,150,227 These collective modes, derived from both ED and ENM, 

have been shown previously70,150,218,228-230 to be involved in biologically important 

conformational changes.  

 

Figure 5.2: Relative frequency distribution of maximal overlap values of ENM modes 

with ED modes. 

 

Additionally, the frequency distribution of ENM modes involved in the maximal 

overlap (Figure 5.3) shows that these modes are among the lowest frequency ones. 

Around 94 % of the overlapping modes are among the first five non-zero modes of 

ENM. Interestingly, the probability of maximal mode involvement with ED strongly 

decreases among the first five non-zero ENM modes i.e., the first and fifth non-zero 

lowest-frequency modes are considered in 45 % and 3 % respectively of all cases. 
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This result can be helpful in designing normal mode based approaches: it emphasizes 

that the trend of decreasing importance with increasing frequency of normal modes 

should be considered when modeling a normal mode-based approach. Interestingly, 

similar trend is reported231 for experimental conformational changes on a large dataset 

of ~4000 proteins. Contrary to ENM, the frequency distribution of the first 5 ED 

modes involved in the maximal overlap does not show single mode dominance, i.e., 

the first and fifth non-zero lowest-frequency modes are considered in 21 % and 18 % 

of all cases, respectively. This is probably an effect of the presence of anharmonic 

modes135,217 in ED, which are associated with crossing energy barriers during MD 

simulation and reside among the first few ED modes. Recently85 it has also been 

found that a 1-1 correspondence doesn’t exist between overlapping ED and ENM 

modes. 

 

Figure 5.3: Relative frequency distribution of ENM mode numbers involved in the 

maximal overlap with ED modes. Mode 7 is the first non-zero frequency 

mode.  

 

Correlations of the amplitudes of motions described by ED and ENM modes are even 

higher than overlap values (Table 5.1) with a mean value around 0.73, more than 

94 % of the cases with a correlation value > 0.50, and still more than 40 % of the 
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cases with a correlation value > 0.80 (Figure 5.4). This emphasizes that low frequency 

modes of ENM do not only well describe directions of motions but also the 

magnitudes of motions, in comparison to ED modes. ENM has been found70 to well 

describe the magnitudes of motions for experimental conformational changes as well, 

even for non-collective conformational changes.  

 

Figure 5.4: Relative frequency distribution of maximal correlation values of ENM 

modes with ED modes.  

 

To analyze how well each of the five modes of ED can be described by ENM modes 

collectively and to explore the minimal set of the most contributing ENM modes in 

the low frequency range, the spanning coefficient (Eq. 4.3) was calculated with a 

varying mode number. It was found that only a relatively small number of normal 

modes are needed to describe the space spanned by low-frequency ED modes. The 

space spanned by the first 10, 25, and 50 % of the ENM modes describes on average 

around 68 %, 84 % and 92 % of all five modes of ED, respectively (Table 5.1). The 

spanning coefficient for all five ED modes of all proteins with a varying number of 

ENM modes (in percentage of the total number of modes) is shown in Figure 5.5. In 

the case of 10 % (i.e., on average 30) of the modes, a rather broad distribution of 

points shows that not all of the five ED modes are well represented. On average, the 
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first quarter of ENM modes describes 84 % of the space of ED modes whereas the 

next quarter of modes describes only 8 % of the space. The last half of the modes 

describes another 8 % of the space. This emphasizes that the two methods, which 

completely differ in underlying techniques and coarse-graining levels, not only show 

high mean maximal overlap (i.e., 0.65) but also good overlap between the two 

important subspaces (derived first 5 ED modes and 30 (i.e., 10 % of all) or 85 (i.e., 25 

% of all) ENM modes). Furthermore, it shows how much dynamic information a 

single protein structure can provide with almost no computational time. For normal 

mode based approaches this result can be helpful in deciding the number of modes to 

be considered in order to explore the essential conformational space. Similar results 

have been reported recently,85  however on smaller dataset.  

 

Figure 5.5: The spanning coefficient (Eq. 4.3) of 10 % (blue points), 25 % (red 

curve), and 50 % (green curve) of all ENM modes as a function of the first 

five ED modes of all proteins of the dataset. Numbers 1-5 relate to the first 

five ED modes of the first protein in the dataset, numbers 6-10 of the 

second protein and so on. 
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Table 5.1: Comparison of ED modes with ENM and RCNMA results  

Methods Max overlap
 a) 

Max correlation
 a) 

Mean spanning 

coefficient
 d) 

 Mean
 b) 

Bad
 c)
 Good 

c)
 Mean 

b) 
Bad

 c)
 Good

 c)
 10 % 25 % 50 % 

ENM 0.65 

(0.31, 0.93) 

3 % 83 % 0.73 

(0.22, 0.98) 

3 % 94 %  0.68 

(30)  

0.84 

(85) 

0.92 

 (176) 

RCNMA 0.64 

(0.34, 0.95) 

3 % 80 % 0.74 

(0.26, 0.98) 

2 % 94 % 0.59 

(20)  

0.78 

(58) 

0.87 

(123) 

a) Maximal overlap (Eq. 4.1) or maximal correlation (Eq. 4.2) between 
ENM/RCNMA and ED modes. b) Average over all 335 proteins in the dataset with 
lowest and highest values in brackets. c) Percentage of maximal overlap/maximal 
correlation values < 0.4 (bad) and > 0.5 (good). d) Mean spanning coefficient (Eq. 
4.3) over all proteins in the dataset using 10, 25, and 50 % of all available modes. The 
average number of modes used in each case is given in brackets. 
 

5.1.4 Similarities/dissimilarities in classes/folds: ED and ENM 
modes 

In order to analyze the dynamic similarities/dissimilarities within different 

classes/folds based on the normal modes and/or essential dynamic modes, the CATH 

classification was incorporated in our dataset of proteins (as described in methods). 

Maximal overlap and correlation of amplitudes of motions described by ENM and 

MD were sorted for these proteins according to different classes/folds, and the mean 

and the standard deviation values were calculated (see Appendix C). With respect to 

maximal overlap and correlation in amplitudes between ED modes and ENM, no 

prominent differences among different classes (i.e., α, β, α+β, and few secondary 

structures) were found (see Table 5.2) considering standard deviations of around 0.1 

for all classes. This is in accordance with the recent study on a relatively smaller 

dataset.85 This shows that on average ED modes and normal modes do not 

differentiate on the bases of different classes and therefore normal modes are equally 

applicable to proteins in different classes.  

Additionally, collectivity of the modes involved in maximal overlap between ED and 

ENM methods were sorted according to CATH classes. A prominent trend of a low 

collectivity index of ED modes for β and α+β classes as compared to the other two 
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classes was found (see Table 5.2). Although the difference of 0.06 is less significant 

considering the standard deviation of 0.1, it can not be ignored. It should be noted that 

collectivity index (Eq. 4.5) does not necessary correspond to correlated motions but 

motions involving most of the atoms. In this view, relatively high collectivity indices 

in the α class are probably due to lower packing232 as compared to β or α+β classes, 

which provides the required space for collective motions of atoms, whereas β or α+β 

classes do not show such collectivity due to higher packing.  On the contrary, the high 

collectivity index in the few secondary structure class could be attributed to the 

underlying flexibility of the structures due to lack of secondary structure which 

probably results in uncorrelated motions (involving most of the atoms).   

Table 5.2: Mean results for different protein classes.  

Class No.
 a)
 Collectivity index

 b) 
Max overlap

 c)
 
 
Max correlation

 c) 

 ED CGNM   

1 (90) 0.41 (±0.11) 0.34 (±0.14) 0.64/0.65 0.73/0.72 

2 (103) 0.35 (±0.10) 0.32 (±0.16) 0.64/0.65 0.75/0.73 

3 (122) 0.35 (±0.10) 0.30 (±0.13) 0.62/0.63 0.74/0.75 

4 (5) 0.42 (±0.13) 0.38 (±0.05) 0.65/0.67 0.75/0.76 

a) Protein classes α, β, α+β, and some secondary structures are numbered 1-4, 
respectively. In brackets are the numbers of domains in the respective class. b) Mean 
collectivity index (Eq. 4.5) of modes involved in maximal overlaps between ED and 
ENM modes with standard deviation in brackets. c) Mean of the maximal overlap 
(Eq. 4.1) or correlation values (Eq. 4.2) of ED and ENM modes. 

 

Furthermore, it was interesting to investigate whether low overlap values observed in 

some cases as compared to the other members in the same fold and family (Topology 

and Homologous superfamily levels in CATH) is a limitation of ED or ENM. It is 

worth noticing that; in general, proteins of the same fold family (topology) show a 

similar overlap between ED and ENM with a standard deviation of around 0.1 (see 

Appendix C). However, some of the proteins have an extended N- or C-terminal 

chain, which results in high overlap between ED and ENM (for example PDB code 
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1ngl) regardless of their folds. In order to investigate the low maximal overlap in 

some cases, three pairs of proteins from each of the three main classes of CATH 

classification were selected such that, despite belonging to the same topology and 

homologous superfamily, the proteins in each pair highly differ in maximal 

overlap/correlation values (values are highlighted in bold in Appendix C). These 

selected pairs are listed in Table 5.3. Assuming that the proteins in the same fold and 

family should have similar dynamics,233 the modes derived from either of the method, 

i.e., ED or ENM of the two selected proteins in each pair were compared in terms of 

maximal overlap (Eq. 4.1) and maximal correlation (Eq. 4.2). Interestingly, in all 

three cases the maximal overlaps and maximal correlations in amplitudes of motions 

obtained from ENM were found to be higher than ED (see Table 5.3). The mean 

maximal overlap values are 0.31 and 0.56 using ED and ENM respectively, and the 

mean maximal correlation values are 0.57 and 0.84 using ED and ENM respectively. 

This illustrates that ENM modes are more robust within a fold than ED modes. 

Moreover, this might be an indication that in some cases MD simulation time of 10 ns 

might not be long enough to explore the required conformational space needed to 

represent the intrinsic motions of a protein.  

It is interesting to mention here that functional modes are usually among the most 

robust modes177, even to sequence variations.234 Furthermore, Leo-Macias et al.
225 

have concluded that, to a significant extent, the structural response of a protein 

topology to sequence changes takes place by means of collective deformations along 

combinations of a small number of low-frequency modes. Recently, it has also been 

argued that dynamics and functional promiscuity are foundation stones of protein 

evolvability.235 In this view, results presented here for three selected proteins show 

that ENM better describe these robust and evolutionary modes than ED and probably 

MD simulation is restricted in capturing these modes due to slow barrier crossing on 

the rugged energy landscape.59,60 
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Table 5.3: Comparison of ED and CGNM modes within folds. 

PDB codes
 a)
 Max overlap

 b) 
Max Correlation

 c) 

 ED ENM ED ENM 

1ahq/1cof (43 %) 0.28 0.59 (7) 0.58 0.92  

1ccr/1co6 (50 %) 0.26 0.46 (15) 0.41 0.72 

1idi/1ntn (66 %) 0.38 0.64 (7) 0.72 0.87 

a) PDB codes of three selected protein pairs. Both proteins of a pair are in same fold 
family and homologous superfamily201 but highly differ in their maximum overlap 
values between ED and CGNM. In brackets, the sequence identities of the protein 
pairs are given. b) Highest overlap (Eq. 4.1) between two sets of modes of each pair 
of proteins using ED/ENM. The respective ENM mode number is given in brackets. 
c) Highest correlation (Eq. 4.2) between two sets of modes of each pair of proteins 
using ED/ENM.  

 

In short, the results in this section validate the directional information obtained from 

the CGNM approaches, and therefore this information is incorporated in the NMSim 

approach to guide backbone motions. In the next section, the NMSim approach is 

validated on hen egg white lysozyme by comparing it to state of the art MD 

simulation and different experimental structures. 
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5.2 Comparison of the performance of NMSim to other 
conformation generation methods 

In this section, the advantages and limitations of the different geometry-based 

approaches are compared to the NMSim approach. The Hen Egg White Lysozyme 

(HEWL) protein is selected as a test case in this study. HEWL is a well 

studied130,220,236-238 protein, comprised of 129 residues, that has also been used for the 

evaluation of the quality of force-fields.200,207,239-241 Here, HEWL conformations207 

from a state-of-the-art MD56-58 simulation and different experimental structures are 

compared with conformations obtained from the most efficient geometry-based 

methods FRODA,64 CONCOORD62,63 and NMSim (see section 4.2). This section 

discusses the results from a comparison of the different simulation methods in terms 

of residue fluctuations, conformational space exploration, essential dynamics,215,216,242 

sampling of side-chain rotamers, and structural quality. 

 

5.2.1 Residue fluctuations and correlations 

In order to compare patterns of atomic fluctuation obtained from different methods, 

the root mean square residue fluctuations (i.e. mass-weighted average of heavy-atom 

fluctuations for each residue) were calculated for the structural ensembles of MD, 

NMSim, FRODA, CONCOORD, and experimental structures (see section 4.2). The 

mobile regions and the magnitudes of fluctuations are well predicted by NMSim 

taking MD structures and experimental structures as references (see Figure 5.6-a). For 

example, high fluctuations are observed for residues 45-50 and 68-78, which are 

associated with β-sheets and turns at the outer edge of the upper lobe of the molecule. 

This is in accordance with earlier theoretical130,220,237,241 and experimental209 studies. 

Similarly, the regions which are stable, especially the hydrophobic core (i.e., residues 

6–15, 25–36 and 89–100) formed by three α-helices (helices A, B and C), show low 

fluctuations and correlate well with the MD and experimental fluctuations.  

Differences between the fluctuations are observed for the tail region of the protein, 

which was found to be highly fluctuating in NMSim, which can be attributed to the 

“tip-effect” in coarse-grained normal modes.243 A “tip-effect” results by an imbalance 
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of elastic forces among neighboring harmonic oscillators (Cα atoms) due to lighter 

packing around “tip” regions. This happens in systems with structural components, 

the “tips”, protruding out of the main body, e.g., an isolated surface loop or a 

protruding tail region of N- or C-terminal residues. As a result, relatively higher 

fluctuations are usually observed for those “tip” regions in coarse-grained normal 

modes.  

The fluctuations obtained from the CONCOORD ensemble also agrees well with MD 

and experimental fluctuations. However, relatively higher magnitudes of fluctuations 

occur in the two mobile regions as compared to the MD fluctuations (see Figure 5.6-

b). The FRODA simulation underestimates the overall fluctuations of residues 

resulting in lower magnitudes of fluctuations compared to all other methods. 

Moreover, even considering relative fluctuations, mobile regions are not well 

predicted in FRODA. For example, low fluctuations can be seen in the two mobile 

regions of residues 45-50 and 68-78 as compared to the MD and experimental 

fluctuations.  
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Figure 5.6: The mass-weighted average of heavy-atom fluctuations for each residue 

in HEWL obtained from the MD (red), experimental (green in panel a), 

NMSim (blue in panel a), FRODA (green in panel b) and CONCOORD 

(blue in panel b) structural ensembles. For clarity, fluctuations plots are 

divided into top and bottom graphs with MD fluctuations (red) as a 

reference.   
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The correlation coefficients between the residue fluctuations obtained from the 

structural ensembles of the different methods and 130 experimental structures are 

shown in  

Table 5.4. Residue fluctuations generated by NMSim and CONCOORD were found 

to be in good agreement with MD fluctuations with a correlation coefficient of around 

0.79 each. Similarly, residue fluctuations obtained from these two methods also 

highly correlate with fluctuations of the experimental structures (correlation 

coefficient of around 0.7, respectively). In contrast, the fluctuations obtained from the 

FRODA ensemble reach only low correlation coefficients of 0.57 and 0.5 with MD 

and experimental fluctuations. In general, NMSim showed high correlations with 

every method including FRODA in terms of residue fluctuations.  

 

Table 5.4: The correlation coefficients of residue fluctuations between different 

methods.  

 MD
 a) 

EXP
 b)
 CONCOORD

 a)
 FRODA

 a)
 

NMSim
 a)
 0.792 0.688 0.896 0.792 

FRODA 0.568 0.492 0.574  

CONCOORD 0.789 0.702   

EXP 0.730    

a) The mass-weighted average of heavy-atom fluctuations (residue fluctuations) for 
each residue of HEWL from the structural ensembles of the different methods. b) The 
residue fluctuations from the structural ensemble of experimental structures of 
HEWL, which contains 130 structures from both X-ray crystallography and NMR.209 
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5.2.2 Conformational space exploration 

In contrast to the MD simulation, progression of a trajectory in a geometry-based 

simulation is usually measured in terms of RMSD from a reference structure.64 The 

plots showing the backbone RMSD between the trajectories/conformers of the 

different methods and the starting structure are shown in Figure 5.7-a. All methods, 

except FRODA, show a considerable backbone RMSD from the starting structure, 

predominantly in the range between 1 to 2 Å. Average backbone RMSD for the 

different trajectories/conformations from the starting structure were found to be 

1.03 Å, 1.40 Å, and 1.26 Å, for MD, NMSim, and CONCOORD, respectively, 

whereas only 0.37 Å in the FRODA ensemble. This shows that FRODA 

underestimates the conformational mobility available to a protein structure in terms of 

backbone RMSD. FRODA has been shown to predict mobile regions in barnase and 

qualitatively predict observed displacements between open and close form in 

maltodextrin binding protein.51,64 However, this study shows that FRODA does not 

fully explore the backbone conformational space available to HEWL. Interestingly, 

the FRODA64 and NMSim approaches share a natural way of coarse-graining,51 i.e., 

rigidity analysis using FIRST approach,91,161,204 at their core levels. However they 

differ at simulation levels. FRODA uses diffusive motion64 of rigid regions. 

Therefore, due to the lack of directions, sampling in FRODA is limited, particularly in 

the cases where proteins are relatively flexible. In contrast, NMSim uses normal mode 

directions to guide backbone motions and is therefore less restricted in sampling 

protein conformational space, at least in this particular case. 

CONCOORD explores a conformational space randomly without following any path 

or trajectory; in this case the minimum and the maximum RMSD with the starting 

structure was found to be 0.61 Å and 2.34 Å respectively. NMSim explores 

conformations in a similar range as CONCOORD with relatively higher and more 

frequent peaks as compared to the MD trajectory. This reflects the coarse-grained 

nature of the energy landscape which makes it easier to get over barriers. In 

CONCOORD, however, to get over barriers, each conformation is generated 

independently of the other, using the starting structure distortion and correction 

procedure.62  
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The RMSD plots for heavy-atoms (Figure 5.7-b), as expected, show similar patterns 

as the backbone RMSD plots (Figure 5.7-a). On average, higher heavy-atom RMSD 

values as compared to the backbone RMSD values for every method were found, 

which is not surprising, as this is an indication of higher mobility in the side-chains of 

the protein than its backbone. The average heavy-atom RMSD for the conformations 

in the structural ensembles of MD, NMSim, FRODA, and CONCOORD with the 

starting structure were found to be 1.56 Å, 1.86 Å, 1.00 Å and 1.41 Å, respectively. 

Every method shows an increase in the RMSD values for heavy-atoms compared to 

backbone-atoms; this increase is 0.67 Å, 0.53 Å, and 0.46 Å in FRODA, MD and 

NMSim ensembles, respectively, but only 0.15 Å in the CONCOORD ensemble. 

Although FRODA underestimated the backbone mobility, it extensively explores the 

side-chain conformational space. In contrast, CONCOORD does not show this high-

mobility behavior for side-chain regions, and therefore, it might be restricted in 

sampling side-chain conformations (as found in section 5.2.4). So far, CONCOORD 

has been mainly used for generating backbone conformations: The novel use of 

CONCOORD generated structures has been to get eigenvectors of essential dynamics 

using backbone atoms; whether it is docking to multiple eigenstructures,65 analyzing 

conformational changes in macromolecular assemblies,171 or exploring different 

biological mechanisms.172-175 
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Figure 5.7: Backbone RMSD (a) and heavy-atoms RMSD (b) between the starting 

structure and the structural ensembles obtained from MD (red), NMSim 

(green), FRODA (blue), and CONCOORD (magenta). The FRODA 

trajectories explore only a limited conformational space compared to the 

other methods.  
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5.2.3 Essential dynamics 

The conformational space exploration in terms of RMSD does not show if two 

methods explore essentially similar conformational spaces. In order to verify this, 

essential dynamics (ED)215,216,242 calculations were performed on the structural 

ensemble of MD, and the conformations from the different methods were projected 

onto the plane described by the first two ED modes with the highest Eigen values. ED 

analysis has previously been extensively applied to extract essential and collective 

modes,229 for example from MD trajectories, and has been used not only to investigate 

protein dynamics216,218 but also to compare conformational spaces with 

experimental244 or generated62,63 structures. Here, Figure 5.8 shows the 2D projection 

of conformations from the different methods and the experimental structures onto the 

plane defined by the first two ED modes derived from the MD ensemble. It describes 

the maximum diversity of the conformational space that can be captured by different 

methods in terms of the two essential directions of conformational change explored by 

MD. As expected, the projection of the MD structural ensemble onto the plane shows 

an eclipse shape with the major axis aligned with the first principal direction (Figure 

5.8-a).  

NMSim and CONCOORD conformations were found to be well distributed along the 

principal directions of MD (see Figure 5.8). The CONCOORD structural ensemble 

shows the highest diversity onto the plane with the mostly dispersed points. This 

reflects the uncorrelated nature of the generated conformations. However, it shows 

that CONCOORD, a simple constraint based method, can efficiently explore the 

essential conformational space of HEWL as shown previously for other systems.62,63 

NMSim also shows a diverse projection of conformations onto the ED plane, which 

validates that the conformational exploration in normal mode space are in agreement 

with the essential dynamics of the MD ensemble. Different previous studies85,219 

showed the striking similarities between normal modes and ED modes. The clustered 

nature of the points in Figure 5.8-b reflects the typical behavior for trajectories 

indicating different local minima.  

The FRODA conformations capture a very small portion on the ED plane (Figure 5.8-

c) compared to the other methods. This confirms the conclusion derived from the 
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RMSD plots (Figure 5.7): the conformational space explored by FRODA simulation 

is considerably smaller than compared to the other methods. Furthermore, Figure 5.8-

c shows that the FRODA explored conformational space is restricted in exploring the 

MD principal directions compared to the other methods.  

The projections of the 130 experimental structures onto the MD principal directions 

plane are shown in Figure 5.8-e. The diversity of the points in the MD principal 

directions plane is relatively less compared to the MD, NMSim, and CONCOORD 

ensembles but still more than the FRODA ensemble. Interestingly, the two clusters 

identifiable in Figure 5.8-e can be assigned to a top cluster of 50 NMR209 structures 

(PDB code 18el) and a bottom cluster comprising all X-ray crystal structures.  
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Figure 5.8: The projections of the structural ensembles of 1000 conformations of 

HEWL obtained from a) MD (red), b) NMSim (green), c) FRODA (blue), 

d) CONCOORD (magenta), and e) 130 experimental structures (cyan) 

onto the plane described by the first two ED modes of MD conformations. 

A collective view is shown in panel (f) by superimposing projections a)-e).  

 

5.2.4 Side-chain flexibility and rotamers 

To compare side-chain quality and flexibility in terms of rotamer sampling, the 

rotamer derived measures (see section 4.2.2), i.e., heterogeneity, occupancy, and 

rotamericity, were calculated for the structural ensembles of the different methods. 

Rotamers have been successfully used to account for side-chain flexibility in docking 
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applications.77,245-247 With the increasing amount of experimental data, many rotamer 

libraries have been published.179,190,191 In this study, the Penultimate rotamer library179 

from the Richardson lab has been used. A recent review has regarded the Penultimate 

rotamer library as the best among the available backbone-independent rotamer 

libraries.191 

To analyze how well the different methods sample available rotamer states, a rotamer 

heterogeneity measure of each HEWL residue was calculated over the structural 

ensembles of the different methods. The rotamer heterogeneity derived from the 130 

experimental structures was taken as reference (see Figure 5.9). Here CONCOORD, 

which was found to explore good backbone conformation space, poorly explores 

different rotamer states as compared to the experimentally observed rotamer states 

(see Figure 5.9-d). None of the residues in the CONCOORD ensemble was found to 

explore the full range (i.e., heterogeneity = 1) of available rotamer states, whereas the 

experimental structures show a heterogeneity = 1 for 13 out of 103 residues (i.e., 

excluding GLY, ALA, and PRO). Furthermore, almost all heterogeneity values 

observed in the CONCOORD ensemble are lower than the experimentally derived 

values. This is an interesting observation, since conformations in CONCOORD are 

generated from randomized atomic positions62 and thus should be sampling diverse 

sets of rotamer states. This poor sampling of side-chains should be considered before 

using CONCOORD structures in side-chain sensitive applications such as ligand 

docking. 
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Figure 5.9: The rotamer heterogeneity of HEWL residues in the structural ensembles 

of 1000 structures obtained from MD (red in panel a), NMSim (green in 

panel b), FRODA (blue in panel c) and CONCOORD (magenta in panel 

d). The rotamer heterogeneity values derived from 130 experimental 

structures (cyan in a-d) are shown as reference in all graphs. 
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MD, NMSim, and FRODA show a similar pattern of the rotamer heterogeneity, which 

is also similar to the pattern derived from 130 experimental structures (Figure 5.9 a-

c). Small differences occur in the mobile regions of HEWL (i.e., residues 40 to 60), 

where all methods, especially FRODA, show lower heterogeneity than is 

experimentally observed. In contrast, in the tail region, all methods show higher 

heterogeneity than in the experiments. Comparing different methods reveals that MD 

explores more rotamer states than NMSim, whereas NMSim samples more states than 

FRODA. This can also been seen by the average heterogeneity values over 103 

HEWL residues for different methods (see Table 5.5). 

The average of the “rotamer occupancy” measure (see section 4.2.2) can be used to 

quantify the diversity of the rotamer states captured in an ensemble, and thus reflects 

the flexibility available to side-chains. It should be noted that the highest possible 

average rotamer occupancy is ~10 for an HEWL ensemble; i.e., if in a hypothetical 

case every residue (103 residues, excluding GLY, ALA, and PRO) of HEWL in the 

ensemble samples all possible rotamer states available in the rotamer library. MD, 

NMSim, FRODA, and CONCOORD on average sample 5.78, 4.97, 3.14 and 1.63 

rotamer states, respectively, out of 10 (see Table 5.5). Here CONCOORD shows 

around 2.7 times less diversity in rotamer states than the experimentally observed 

4.41. This again shows a restricted conformational space available to side-chains in 

structures generated by CONCOORD. Contrarily, a high average occupancy value for 

NMSim as compared to FRODA and CONCOORD is observed, which justifies the 

specific modeling of rotamer states in geometry-based conformational modeling. The 

correlation coefficient between the occupancy vectors (103-dimensional vector 

containing occupancy values) is shown in Table 5.5 (see section 4.2.2) which 

compares the patterns of rotamers sampled in the different ensembles. NMSim was 

found to have a higher correlation coefficient of 0.71 and 0.80 with the experimental 

and the MD derived vectors, respectively, as compared to FRODA and CONCOORD. 

In order to analyze the probability for any rotamer state to exist for each residue in a 

protein sequence, the rotamericity measure is calculated over an ensemble of 

structures (see section 4.2.2). This is related to the quality of side-chains in the 

ensemble in terms of rotamers. The average rotamericity for 103 residues (Table 5.5) 
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shows a higher value for CONCOORD compared to NMSim and FRODA. This can 

be expected, if there is a tendency of a method to keep a rotamer state as found in the 

starting structure over the trajectory/ensemble. However, the average rotamericity 

measure for NMSim (0.698) and FRODA (0.685) are comparable to the 

experimentally found value of 0.731, whereas for MD it is even 0.816 (see Table 5.5). 

 

Table 5.5: The rotamer derived measures for different structural ensembles.  

Methods Average values
 a)
 Occupancy 

vector 
e)
 

 Heterogeneity
 b) Occupancy c) Rotamericity 

d)
 EXP MD 

EXP 0.498 4.407 0.731 1.000 0.861 

MD 0.537 5.786 0.816 0.861 1.000 

NMSim 0.459 4.970 0.698 0.713 0.808 

FRODA 0.338 3.145 0.685 0.569 0.733 

CONCOORD 0.228 1.631 0.752 0.438 0.520 

a) The averages of different measures are calculated over 103 out of 129 residues of 
HEWL (excluding GLY, ALA, and PRO). b) The heterogeneity measure of a residue 
in a protein sequence is defined as the ratio of the total number of distinct rotamer 
states of the residue observed in an ensemble to the total number of available rotamer 
states for that residue in the rotamer library.179 c) The occupancy measure of a residue 
in a protein sequence is defined as the total number of distinct rotamer states of the 
residue observed in an ensemble. d) The rotamericity of a residue in a protein 
sequence is defined as the ratio of the total number of occurrences of the residue in 
any of the possible rotamers to the total number of conformers in the ensemble. e) The 
correlation coefficients between the different occupancy vectors of different methods. 
Occupancy vector in HEWL is a 103-dimensional vector containing occupancy values 
of the residues.  
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5.2.5 Structure quality using Procheck 

The quality of a subset of the structures obtained from the different types of methods 

was analyzed using the Procheck194 program (see section 4.2.3). The averages and the 

standard deviations were calculated for the different properties obtain from Procheck. 

Table 5.6 summarizes the Procheck results including Ramachandran plot distribution, 

G-factors, and planar groups. 

Procheck divides the Ramachandran plot into four areas: core, additionally-allowed, 

generously-allowed, and disallowed. Every method shows a good Ramachandran plot 

distribution with almost zero percent of the structures located in disallowed or 

generously allowed regions and with a highly populated core region. Specific 

modeling of ψϕ  constraints in NMSim results in the highest core region population 

on average (i.e., 92 %) as compared to the other methods. Remarkably, this is in 

agreement with the high resolution experimental structures EXPTOP.  

The Procheck G-factor provides a measure of how normal a given stereo-chemical 

property is. This value is computed for dihedrals angles and covalent geometry. 

A low G-factor indicates that the property corresponds to a low-probability 

conformation; ideally, the G-factor value should be above -0.5, whereas structures 

with values below -1.0 may need investigation. Table 5.6 shows that for every method 

except for MD the overall G-factor value is higher than -0.5. Notably, the covalent G-

factor (i.e., main-chain bond lengths and main-chain bond angles) for MD is as low as 

-1.5. NMSim on average achieves 100 % planarity for the planar groups. Considering 

experimental EXP/EXPTOP, other methods also give acceptable planarity for planar 

groups except for MD, which gives around 56 % planarity on average. In short, 

structure quality properties for all methods are within acceptable ranges, as compared 

to the properties derived from experimental structures, except for main-chain bond 

lengths and side-chain planarity from MD derived structures. The poor quality of MD 

structures is understandable as the MD simulation is performed at 300 K, whereas 

geometry-based methods implicitly minimize each structure during correction cycles. 

 



Results and discussions  86 

 

Table 5.6: The averages and standard deviations for quantities determining structure 

quality. 

Methods Ramachandran plot 
a)
 G-factor 

b)
 Planar

 

c)
 

 Core
 
Allow Gen. Disal. Dihe.

 
Cova. Over 

all 

 

MD 84.36 
±2.73 

15.05 
±2.80 

0.59 
±0.70 

0.00 
±0.00 

-0.47 
±0.04 

-1.51 
±0.08 

-0.86 
±0.04 

56.08 
±5.57 

NMSim 92.55 
±1.61 

7.42 
±1.62 

0.01 
±0.12 

0.00 
±0.00 

-0.26 
±0.51 

-0.36 
±0.01 

-0.30 
±0.31 

100.00 
±0.00 

FRODA 88.05 
±1.30 

11.90 
±1.28 

0.04 
±0.19 

0.00 
±0.00 

-0.05 
±0.20 

-0.36 
±0.02 

-0.17 
±0.12 

92.02 
±2.22 

CONCOORD 85.93 
±2.08 

13.91 
±2.04 

0.14 
±0.33 

0.00 
±0.00 

-0.09 
±0.06 

-0.51 
±0.12 

-0.23 
±0.08 

92.54 
±4.50 

EXP 81.31 
±7.60 

17.62 
±6.72 

0.89 
±1.22 

0.18 
±0.41 

-0.07 
±0.26 

0.24 
±0.91 

0.06 
±0.38 

98.34 
±3.82 

EXPTOP  91.26 
±3.80 

8.30 
±3.62 

0.28 
±0.59 

0.14 
±0.33 

0.06 
±0.26 

-0.28 
±0.52 

-0.05 
±0.25 

92.82 
±11.25 

a) Averages/standard deviations of percentages of ψϕ  torsion angles found in 
different regions (i.e., core, allowed, generously allowed, and disallowed) in the 
Ramachandran plots of the structural ensembles. b) Averages/standard deviations of 
Procheck derived G-factors for the structural ensembles. A low G-factor indicates that 
the property corresponds to a low-probability conformation. Ideally, G-factor should 
be above -0.5, whereas a value below -1.0 indicates that the structure may need 
investigation. Procheck calculates G-factors for dihedral angles, covalent geometry 
and overall. c) Averages/standard deviations of percentages of side-chain planarity 
found in the structural ensembles.  

In short, the NMSim approach described in chapter 3 was validated on hen egg white 

lysozyme in this section. NMSim sufficiently samples both the backbone and the side-

chain conformations taking experimental structures and conformations from the state 

of the art MD simulation as reference. A comparison of different geometry-based 

simulation approaches shows that FRODA is restricted in sampling the backbone 

conformational space and CONCOORD is restricted in sampling the side-chain 

conformational space. NMSim produces structures of a good structural quality. 

Furthermore, the explicit modeling of rotamer states in NMSim improves the quality 

of side-chain conformations as compared to without modeling in NMSim and as 

compared to the other geometry-based approaches. The NMSim approach will be 

used for exploring biologically relevant motions in the following section. 
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5.3 Performance of NMSim in exploring biologically relevant 
conformational changes 

Specific functions of biological systems often require conformational transitions of 

macromolecules. Such changes range from large-scale domain motions to localized 

loop motions or even single side-chain rearrangements. Understanding the underlying 

dynamics and knowledge of the different conformational states of macromolecules are 

important in structure-based drug design (SBDD).39,44,248,249 In addition to 

experimental techniques like X-ray crystallography and NMR and theoretical 

simulation techniques like MD, efficient coarse-grained techniques have also gained 

importance in describing conformational sub-states and intrinsic motions of 

macromolecules. Biologically important conformational changes in proteins have 

been found along low-frequency normal modes.130,237 Utilizing coarse-grained normal 

modes, efficient approaches82,87,88,250 have been developed for conformational 

pathway and intermediate structure generation between unbound and ligand bound 

conformations.  

The large-scale comparison, shown above in section 5.1 , of essential dynamics (ED) 

modes from MD simulations and normal modes from coarse-grained approaches 

further establishes that not only large-scale motions but also intrinsic dynamics from 

MD essentially follow the directions of low-frequency normal modes. Consequently, 

the NMSim approach, described above, has been developed, which efficiently 

exploits structural information available at different levels, i.e., structural rigidity, 

normal mode directions, rotamer, and stereo-chemical information. In this section, 

applications of the approach in describing biologically important conformational 

changes will be described. The usefulness and limitations of the approach will be 

discussed in detail for important domain and loop motions of different types. It is 

suggested that a reduction of the radius of gyration ( gR ) if used in combination with 

low-frequency normal modes improves the search for ligand bound conformations.  
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5.3.1 Domain motions 

The domain dataset in Table 4.1 contains diverse proteins in terms of their structures, 

sizes, and motions. Adenylate kinase (ADK) contains three domains in contrast to two 

domains for most of the other proteins. The number of residues range from 148 for 

calmodulin (CLM) to 860 for citrate synthase (CTS). ADK and 

lysine/argnine/ornithine-binding protein (LAO) show global and hinge-bending 

motions of domains in contrast to aspartate aminotransferase (AST) and CTS, which 

show relatively localized motions of small domains and sheer motions.251 Finally, 

CLM shows a large-scale bend and twist motion of the two domains.  

ADK is a monomeric enzyme that catalyzes the transfer of a phosphoryl group from 

ATP to AMP. The structure of ADK contains a main domain (CORE), an ATP-

binding domain (LID), and a NMP-binding domain (NMPbind)252. AST is a 

homodimeric enzyme that catalyzes a reversible transamination reaction: L-aspartate 

+ 2-oxoglutarate ⇌ oxaloacetate + L-glutamate.253 CTS is also a homodimeric 

enzyme and catalyzes the reaction: acetyl-coenzyme A + oxaloacetate ⇌ citrate + 

coenzyme. A study213 that includes these three domain proteins identifies specific 

interactions that drive a ligand-induced domain closure. Furthermore, it supports the 

assumption that each enzyme has a dedicated binding domain, to which the ligand 

binds first, and a closing domain. CLM is a ubiquitous intracellular protein that plays 

a critical role in coupling transient Ca2+ influx. It consists of two small globular 

domains separated by a flexible linker, with no stable, direct contacts between the two 

domains.20 LAO is a part of bacterial periplasmic transport systems (permeases), 

which transport a wide variety of substrates. The LAO structure214 is bi-lobate, and 

the two lobes (lobes I and II) are held together by two connecting segments.   

The NMSim approach is applied to the open conformation of the proteins in the 

dataset using three different types of simulations: freely-evolving, ROG-guided and 

target-directed (see section 4.3.2). The conformations obtained over the trajectories 

are compared with the close conformation in terms of backbone RMSD. The Cα RMS 

fluctuations over the freely-evolving trajectories are compared with the fluctuations 

derived from respective open and close structures. Adenylate kinase is selected for a 
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detailed analysis, and essential dynamics calculations are applied using eleven 

experimental structures. Furthermore, the extent to which ROG-guided NMSim can 

lead to a ligand-bound conformation is discussed in detail.  

 

Comparison of essential dynamics between experimental and NMSim 

structures 

In order to compare the essential dynamics (ED) between the experimental and 

NMSim structures, ED calculations were performed using eleven crystal structures 

and NMSim generated structures from ten freely-evolving trajectories, each one 

starting from the open structure of Adenylate kinase (ADK). ADK is a well studied 

protein in terms of catalytic mechanism and conformational flexibility and has been 

used as a test case in different theoretical studies.87,89,152 Different X-ray crystal 

structures have been reported14-16,252 for different conformations of the protein. The 

eleven crystal structures mainly lie in three groups: structures near the open 

conformation (4ake_A and 4ake_B; in PDB-code_chain format), intermediate 

structures in between the open and close conformations (1dvr_B and 1dvr_A; here the 

LID domain is completely closed and the NMPbind domain is still open), and 

structures near the close conformation (1e4y_B, 1e4y_A, 1e4v_A, 2eck_A, 1ank_A, 

2eck_B and 1ake_A).  

The ED calculations were performed on the experimental structures, and the NMSim 

generated structures were projected onto the plane described by the first two ED 

modes with highest Eigenvalues (Figure 5.10-a). The projections of the NMSim 

structures reach very close to both, the intermediate structures (e.g., PDB code 1dvr) 

and the close structures (e.g., PDB code 1ake).  In general, the spread of the projected 

NMSim structures is broader along the ED mode 1, which in fact represents the 

movement of the LID domain. This movement has been shown to be a large-scale 

movement (Figure 5.13-a) and is an important mechanism for ATP binding.252 It is 

important to note, however, that the NMSim projected structures show closing as well 

as further opening of the LID domain, as indicated by projected structures on the right 

side of 4ake along ED mode 1 in Figure 5.10-a. Furthermore, one NMSim trajectory 

out of ten shows a closing of the LID domain to an extent seen in the close structure 
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(PDB code 1ake) along ED mode 1 (dotted line above 1e4y and 1ake in Figure 5.10-

a). This suggests that the LID domain is mainly driven by the intrinsic dynamics as 

argued previously.89  

Conversely, the ED calculations were also performed on the NMSim generated 

structures, and the experimental structures were projected onto the plane described by 

the first two ED modes (See Figure 5.10-b). Here, again, the different close structures 

were found to be very near to the NMSim structures, whereas an intermediate 

structure (PDB code 1dvr) was found within one of the clusters of NMSim generated 

structures on the plane. This shows that the two sets of structures overlap in their 

essential dynamics. During different trajectories, both the opening and the closing of 

the LID domain can be seen from the spread of NMSim projected structures along the 

ED mode 1.  However, the overall triangular shape of the NMSim projected structures 

onto the plane suggests that the ED mode 2 is mostly active upon the LID domain 

closure.  
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Figure 5.10: The projections of NMSim generated structures (red) using ten freely-

evolving trajectories and eleven different experimental structures (green) 

of adenylate kinase onto the plane described by the first two ED modes 

derived from eleven different experimental structures (in a) and from 

NMSim generated structures (in b) are shown. It is shown that the two sets 

of structures overlap in their essential dynamics.  
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Intrinsic fluctuations and conformational changes 

Intrinsic fluctuations of a protein near its equilibrium state in the open conformation 

correlate with the conformational change of that protein upon complex formation. 
34,254 Theoretically, these fluctuations can be derived from ENM or GNM modes and 

have been reported to correlate well in different studies.34,255 In order to verify if this 

argument holds for NMSim generated structures, Cα RMS fluctuations derived from 

the freely-evolving NMSim trajectories are compared with the fluctuations derived 

from their respective open and close conformations (Figure 5.11). Despite considering 

experimental fluctuations from two extreme conformations in the open and the close 

forms, good correlations with the fluctuations derived from NMSim generated 

structures were found (Table 5.7) in 4 out of 5 cases in the domain dataset. This 

supports the argument, mentioned above, that especially global conformational 

changes upon complex formation correlate well with the intrinsic motions of proteins 

in an open form. Furthermore, it shows that the NMSim approach effectively captures 

the information available in low-frequency normal modes and translates it into 

structural information in terms of different conformations without disturbing the 

underlying fluctuation pattern.  

Good correlation coefficients above 0.7 (Table 5.7) between the RMS fluctuations 

derived from NMSim generated structures and the two experimental structures are 

observed for all cases except CLM. The highest correlation coefficient of 0.92 was 

observed in ADK between the two fluctuations plots. It is interesting to see that, in 

contrast to NMSim, the relative fluctuations in the mode best overlapping with the 

conformational change, as reported previously68, underestimates the relative motions 

in the NMPbind domain. This could be explained by the finding84,89 that the LID 

domain closure precedes the NMPbind domain movement and, therefore, can not be 

captured by a single mode in the open conformation. LAO, another protein having 

hinge bending motion, shows good agreement between the two fluctuations patterns, 

however, with high fluctuations in some regions as compared to the observed 

fluctuations between the open and the close structures.  

Mobile regions are well recognized in NMSim. For example, in the CTS case, a sheer 

motion,251 high fluctuations in small domain comprising residues 284-327 and 338-
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378 of chain A and 714-757 and 768-808 of chain B in Figure 5.11 correlate well with 

the regions of conformational changes upon ligand binding. In the case of CLM, a low 

correlation coefficient of 0.32 between the two fluctuations is observed. This can be 

attributed to the local rearrangements (see also open and close structures in Figure 

5.13-c) within the two domains of the open structure, which result upon Ca2+-

binding.20 Due to these conformational rearrangements, in both domains of CLM 

where all four Ca2+-binding sites are occupied, a large hydrophobic surface has been 

found to become exposed to the solvent.256 These local rearrangements are not well 

described in the low-frequency modes,71 especially in a protein where the intrinsic 

motion is dominated by the large-scale movement of domains, as in CLM.  

In AST, RMS fluctuations derived from NMSim structures are higher than the 

fluctuations derived from the open and the close structures (Figure 5.11-b). However, 

a good correlation coefficient of 0.71 between the two is observed. Contrarily, good 

agreements in the magnitudes of the fluctuations are observed for large-scale motions, 

for example in ADK (Figure 5.11-a) and CLM (Figure 5.11-c). In general, high 

fluctuations observed in some proteins, are an indication that the underlying constraint 

network might be under-constrained in some cases and, therefore, results in a higher 

mobility of the systems. A similar constraint-based method tCONCOORD63 also 

reports high fluctuations as compared to NMR derived structures. In general, 

therefore, there is a need for improving the underlying constraint network for these 

methods.  

It is important to note here that the reported fluctuations are derived from NMSim 

generated structures which incorporate low-frequency modes with no prior 

experimental information. Previously, studies34,67,68,70,142 have shown good correlation 

between the fluctuations of the biologically relevant normal mode (which is selected 

using close structure information) and the observed conformational changes.  So, it is 

almost always true that, in general, the biologically relevant mode is one or several of 

the low-frequency modes, yet, it is hard to identify that mode without any additional 

experimental information.136 For example, LAO and other proteins of the same family 

have been reported to invoke a single bending low-frequency mode,69,255 however this 

information is reported only with the help of experimental structure in its closed form. 

Recently,257 it has also been argued that a single mode can be deceiving if used for the 
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purpose of identifying correlated motions in biomolecules. Considering these, it is 

interesting to see the good correlation values observed in NMSim, which is a normal 

mode-based method and incorporates a range of low-frequency modes. 

 

Figure 5.11: The Cα fluctuations of different domain moving proteins: Adenylate 

kinase (a), Aspartate aminotransferase (b), Calmodulin (c), Citrate 

synthase (d),  LAO binding protein (e) for freely-evolving NMSim 

trajectory (red) are shown. The Cα fluctuations (green) derived from 

respective open and close structures are also shown. 
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Ligand bound conformations generated from an unbound one 

In order to observe how close the “close structure” is reached during the NMSim 

trajectories, freely-evolving NMSim trajectories started from open conformations of 

different proteins were analyzed in terms of backbone RMSD with their respective 

close conformation. Figure 5.12 shows the RMSD plots for all 10 different trajectories 

of every protein in the domain dataset. Each trajectory contains 500 structures and is 

placed one after the other in the RMSD plot. In general, each trajectory follows a 

different path and shows different patterns of RMSD distance with the close 

structures. Hinge bending motions like in ADK and LAO show either an increase or 

decrease or both in RMSD with the respective close structures in different trajectories, 

which is an indication of a freely opening and closing of domains. For example in 

ADK, the first trajectory (structures 1-500) fluctuates around the open conformation, 

the second trajectory (structures 1-500) shows further opening of domains, the third 

trajectory (structures 1001-1500) shows a closing of the domains and remains near the 

close structure, whereas the eighth trajectory (structures 3500-4000) shows an initial 

opening and then closing of the domains. Sheer motions like in AST and CTS show a 

more frequent increase in RMSD from their respective close structures. However, 

interestingly, trajectories do get closer to the respective close structure at the initial 

stages. It should be noted that, in addition to sheer motions, AST and CTS 

conformational changes are relatively localized in small domains (see Table 4.1). It 

has been reported previously136,258 that for systems involving localized transitions, as 

in p21ras, normal modes are better suited for initial stages of movements only.   
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Figure 5.12: The backbone RMSD of the ligand bound (close) structure with the 10  

freely-evolving NMSim trajectories (500 structures per trajectory placed 

in sequence on the x-axis) started from the unbound (open) structure of 

Adenylate kinase (a), Aspartate aminotransferase (b), Calmodulin (c), 

Citrate synthase (d) and LAO binding protein (e) are shown. The backbone 

RMSD between the open and the close structures for each protein (in a-e) 

is shown as a dotted straight line.  
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The RMSD between the close structure and the best NMSim generated structure, i.e., 

the one nearest to the close structure, for each protein is reported in Table 5.7. 

Considering RMSD between open and close structures, a considerable decrease in 

RMSD is observed in all cases of the domain dataset. A structure similar to the ADK 

close structure is achieved with RMSD ~3 Å in NMSim, which is slightly lower than 

the recently reported63 RMSD of ~3.3 Å for tCONCOORD for the same structures. In 

target-directed trajectory, close structure is reached with RMSD ~1 Å using 50 low-

frequency modes, however, higher modes would be required to get even closer to the 

target structures.230 A similar study,250 using normal modes but in combination with 

Monte Carlo simulation for ADK, reports that an RMSD of 2.27 Å is achieved with 

the close structure using 10 low-frequency modes.  

The close structure in LAO is achieved with RMSD as low as ~2.3 Å and ~0.6 Å, 

respectively, with and without close structure information starting from the open 

structure, which is ~4.7 Å away from the close structure. This supports the argument 

in a recent study37 suggesting a conformation selection mechanism for glutamine-

binding protein, which is also a periplasmic binding protein. Proteins having sheer 

motions, as discussed above, do show initial movements towards the close structure in 

NMSim trajectories. Considering the large-scale conformational change observed in 

CLM, the NMSim trajectory does not reach near to the close structure, although it 

does show a ~3 Å movement towards the close structure. Even a target-directed 

NMSim trajectory can only reach ~3 Å near to the close structure using the first 50 

modes in the CLM case. As discussed above this is due to the local rearrangements 

within the two domains of the open structure, which results from Ca2+-binding,20 

which are not well described by the low-frequency modes.230  

 

 

 

 



Results and discussions  98 

 

Table 5.7: The correlation coefficients and the lowest RMSD achieved by the different 

types of NMSim simulations. . 

RMSD 
a)
  

Proteins Open 
b)
 Freely-

evolving 
c)
 

ROG-

guided 
c)
 

Target-

directed 
c)
 

 

Correlation 
d) 

Domain:      

Adenylate kinase  
 

7.155 
 

3.059 
 

2.363 0.929 
 

0.919  

Aspartate  
aminotransferase  

1.551 
 

0.979 
 

1.214 0.599 
 

0.709 

Calmodulin  
 

9.800 
 

6.708 
 

5.319 
 

2.955 
 

0.319 

Citrate synthase  
 

2.701 
 

1.551 
 

1.373 
 

0.913 0.860 

LAO binding 
protein  

4.675 
 

2.313 
 

1.750 0.593 
 

0.705 

Loop:      

Tyrosine 
phosphatase  

3.176 
 

1.862 1.581 0.954 0.427 

Triosephosphate 
isomerase  

4.504 
 

2.011 2.236 0.902 0.393 

CAMP-dependent 
protein kinase  

1.676 1.141 0.666 0.790 0.279 

a) The backbone RMSD with respect to close structures. For loop proteins backbone 
RMSD only for the loop region is calculated after aligning the rest of the protein. b) 
The RMSD between open and close structures. c) The lowest RMSD achieved with 
the respective close structures by different types of simulations, i.e., freely-evolving 
(see also Figure 5.12), ROG-guided, and target-directed. d) The Correlation 
coefficient between the two Cα fluctuations (plot shown in Figure 5.11) obtained from 
conformations generated from the freely-evolving trajectories and obtained from open 
and close structures.  
 

ROG-guided trajectory leads to ligand bound conformation 

Results from freely-evolving and target-directed NMSim trajectories, as discussed 

above, describe the extent to which the close conformation can be reached without 

and with prior information of the close conformation using low-frequency modes. 

Normal modes in combination with different experimental data has been found useful 

in different applications.81,145,148,259 It has been shown260 that a small set of pairwise 

distance constraints of the end state is helpful in driving one structure into the other 

using low-frequency modes. However, in the case where experimental information is 

not known, NMSim can provide an alternative. This is achieved in ROG-guided 
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NMSim, which assumes that the ligand binding would result in domain or loop 

closures. Using normal mode combinations which decrease the radius of gyration 

( gR ) would then guide to the close conformation. It is important to note here that the 

conformations are still generated by random linear combinations of low frequency 

normal modes and, therefore, the pathway still goes though low energy space. 

The comparison between the ten freely-evolving NMSim trajectories and the ROG-

guided NMSim trajectory for the proteins in the domain dataset shows that the ROG-

guided simulations reach nearer to the close structure in 4 out of 5 cases (Table 5.7). 

This improvement is more obvious for hinge bending motions than sheer motions; this 

is perhaps because the underlying assumption, that the ligand binding would result in 

domain closures, is more valid in hinge bending motions. Here, it should be noted that 

this improvement is achieved with around four times lower computational cost; In 

contrast to the ten freely-evolving trajectories, a single ROG-guided trajectory 

(generating 3 structures each step) was run for each protein, because it was found in 

initial test that different ROG-guided trajectories do not differ significantly.  

Coarse-grained normal modes usually very well describe functionally important 

conformational changes,71,231 however, which mode or combination of modes are 

involved in a conformational change is not know in advance. This has triggered 

discussions how to identify functionally relevant mode.177,230 In this view, the radius 

of gyration ( gR ) can be used as a criterion for selecting normal modes in cases where 

no experimental information is known.   

Figure 5.13 illustrates the extent to which ROG-guided NMSim was successful in 

reaching the close conformation. The nearest generated structure to the close is shown 

along with the respective open and close conformations for every protein in the 

domain dataset. In the ADK case, it is interesting to see that the large-scale 

conformational change in the LID domain is well reached by ROG-guided NMSim as 

compared to the close structure with no prior information of the close structure. 

However NMPbind domain, despite considerable movement, only reaches half-way 

towards the close conformation. Here, it is important to note that the closing of 

NMPbind domain has been suggested through ligand-induced mechanism.89 
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Therefore, probably the full closure of NMPbind domain would only be possible in 

the presence of a ligand. LAO in Figure 5.13-e again shows a large hinge-bending 

motion towards the close conformation (~ 3 Å from the starting structure), and the 

close conformation is almost reached with RMSD 1.7 Å (see Table 5.7) in ROG-

guided NMSim. CLM in Figure 5.13-c shows a large scale hinge-bending motion, 

which can be seen in NMSim generated structure too, however, the local 

rearrangements within the two domains resulting from Ca2+-binding20 is not 

reproduced by NMSim. AST in Figure 5.13-b shows that the sheer type of 

conformational change is not achieved completely, however, a small movement of 0.3 

Å towards the close conformation can be seen. It is interesting to see in Figure 5.13-d 

that, despite sheer type of motion and localized in the small domain in the case of 

CTS, NMSim generated structure very well fit to the close structure (with RMSD 1.3 

Å). This shows that the underlying assumption in ROG-guided NMSim (i.e., proteins 

contract upon ligand binding) is justified not only in hinge-bending motions but also 

in sheer motions. The transition towards the close structure can then be captured using 

the low-frequency modes without close structure information.  
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a) 

 
b) 
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c) 

 
d) 
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e) 

Figure 5.13: The experimental structures i.e., open (blue), close (cyan), and NMSim 

generated structure nearest to the close (magenta) using ROG-guided 

trajectories of different domain moving proteins are shown: Adenylate 

kinase (panel a), Aspartate aminotransferase (panel b), Calmodulin (panel 

c), Citrate synthase (panel d) and LAO binding protein (panel e).  

 

In order to analyze the effectiveness of using normal mode directions for guiding 

movements in ROG-guided NMSim, a ROG-guided simulation was also performed 

using random vectors instead of normal modes. It was found that a random vector-

based ROG-guided NMSim simulation hardly moves towards the close structure. For 

example, in the case of ADK, a random vector-based ROG-guided trajectory moves 

only ~0.57 Å towards the close structure in 500 NMSim cycles and reduces gR  by 

0.74 Å (the starting structure gR  is 19.46 Å). In contrast, a normal mode-based ROG-

guided trajectory moves ~5 Å towards the close structure (Table 5.7) in only 200 

NMSim cycles and reduces gR  by 3 Å. This shows that, in the results described 

above in Table 5.7, the movements towards the close structure in ROG-guided 

trajectories are due to the collective and functionally relevant modes. And this also 

shows that, radius of gyration can not be used as a guide for bound conformations in 

diffusive motion of atoms.  
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5.3.2 Functionally important loop motions 

Three functionally important loop motions used in this study are listed in the loop 

dataset in Table 4.1. Tyrosine phosphatases (TYP) and kinases coregulate the critical 

levels of phophorylation necessary for interacellular signaling, cell growth, and 

differentiation.261 A ligand-induced conformational change has been observed in 

TYP, which moves Asp356 on the β7-α4 loop into the active site, where it can 

function as a general acid.18 Triosephosphate isomerase (TIM) is an important enzyme 

in glycolysis, catalyzing the interconversion between dihydroxyacetone phosphate 

and D-glyceraldehyde-3-phosphate. Low-frequency modes have been shown to be 

active in the important loop motions in TYP and TIM.68,212 The catalytic subunit of 

cAMP-dependent protein kinase (CAPK) catalyzes the phosphorylation of proteins 

that have several arginines preceding the site of phosphotransfer. A study75 has 

suggested that the mid-scale loop rearrangements, like those found in protein kinase, 

do not involve the first few lowest frequency modes. However, still modes can be 

selected from the low-frequency range using a relevance measure to describe the loop 

flexibility in CAPK. This means, normal modes do provide the directions for loop 

motions as well, however, selecting a mode or combination of modes to predict the 

conformational changes for loop motions might be complicated  than domain motions.  

In order to explore the extent to which experimentally observed loop conformational 

changes can be simulated in NMSim, NMSim was applied to the open conformation 

of the three proteins in the loop dataset (Table 4.1). For each protein, a single 

trajectory for each of the three different types of simulation, freely-evolving, ROG-

guided and target-directed, is computed (section 4.3.2).  

Ligand bound loop conformation computed from unbound 

In order to analyze the movements of the selected loop region (Table 5.7), the 

backbone RMSD of the loop region along the trajectory (after superimposing the rest 

of the protein) with respect to the close loop conformation is plotted in Figure 5.14 for 

each protein. In case of TYP and TIM, freely-evolving trajectories show opening and 

closing movements of the β7-α4 loop and loop 6, respectively. TYP and TIM freely-
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evolving trajectories reach RMSD 1.8 Å and 2.0 Å with respect to the close loop 

conformation, respectively, starting from 3.2 Å and 4.5 Å, respectively (Table 5.7). 

These considerable motions show that even loops have intrinsic motions towards the 

close conformation, and ligands further stabilize these conformations in the close 

form. It has been shown, both experimentally262 and theoretically,263 that the loop 6 

closure in TIM is an intrinsic motion of the protein and not ligand gated, as it can be 

seen in different unbound crystal structures. In contrast, a ligand induced motion has 

been proposed18 for the β7-α4 loop in TYP. However, the considerable movements of 

the loop in freely-evolving NMSim suggest that there is an intrinsic motion in the β7-

α4 loop and probably a ligand influences the receptor conformation at the later stages 

of the ligand binding. Previously,68 the lowest-frequency mode of an unbound TYP 

has also been found to predict the β7-α4 loop movement in TYP, which is also an 

indication of some intrinsic motions in this loop region. The glycine-rich loop in 

CAPK does get 0.5 Å (Table 5.7) nearer to close loop conformation in the first 100 

structures in the freely-evolving trajectory, however, the loop moves away from the 

close conformation afterwards in the trajectory (Figure 5.14-c). A study75 has 

suggested that, mid-scale loop rearrangements like glycine-rich loop in CAPK, do not 

involve the first few lowest-frequency modes. Therefore, criteria for mode selection 

in CAPK have been proposed.75 It should be noted that, for using the proposed criteria 

for mode selection, the moving loop region should be known in advance. In contrast, 

the NMSim approach uses all 50 low-frequency modes and no information of a loop 

region is provided.  
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Figure 5.14: The loop region backbone RMSD plots between the ligand bound (close) 

structure and the NMSim generated structures of Tyrosine phosphatase 

(a), Triosephosphate isomerase (b), and cAMP-dependent protein kinase 

(c) are shown. Each plot in a-c shows three different NMSim trajectories, 

freely-evolving (in red), target-directed (in green), and ROG-guided (in 

blue, magenta, and cyan). The loop region backbone RMSD between open 

and close structures for each protein (in a-c) is shown as straight line. For 

clarity, RMSD plots for ROG-guided trajectories of different proteins are 

shown in one graph (d). 

In ROG-guided trajectories, it is interesting to see that the lowering of gR  in low-

energy space does guide the trajectory towards the experimentally observed loop 

closure in all three cases (Figure 5.14-d) and TYP, TIM, and CAPK ligand-bound 

loop conformations are reached with RMSD 1.58 Å, 2.23 Å and 0.66 Å, respectively 

(Table 5.7). This shows that low-frequency modes can be used to predict not only 

domain closures but also loop closures upon ligand binding with no prior information 

of close conformation.  

Furthermore, in two out of three cases (i.e., in TYP and TIM), the loops in the 

trajectories fluctuate around to the best achieved loop conformation i.e., nearest to the 

close structure. This means, further reducing gR of structures in normal mode space 
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does not influence the loop region. However this is not always the case, as observed 

in CAPK, where further reducing gR of structures in normal mode space moves the 

loop away from its best achieved conformation. This can be expected due to 

additional compactness of the protein and also probably due to the ligand absence in 

the environment, which provides the room to over-stretch the loop closure. It is 

interesting to see that, improvements were observed in two out of three cases with 

ROG-guided trajectories as compared to freely-evolving trajectories in terms of 

RMSD achieved nearest to the close conformation (Table 5.7).  

The best achieved conformation in ROG-guided trajectory in terms of nearest loop 

RMSD with the close conformation are shown in Figure 5.15, along with respective 

open and close conformations. In all three cases, considerable movements towards 

close conformation can be seen (see Table 5.7). However, further rearrangements are 

needed to attain completely bound conformation. Probably, a ligand influence is 

inevitable in those cases. It has been argued34,255 that conformational selection and 

induced fit are not two mutually exclusive processes but both can play their part, and 

the extent to which each mechanism contributes can vary in different proteins. 

In the target-directed trajectories, in all three cases loop conformations were obtained 

that come close to the “close structure” to less than 0.9 Å (see Table 5.7). These 

values can further be decreased if higher frequency modes are used and if only loop 

region is considered during mode selection as done previously.75 As can be seen in 

Figure 5.14, trajectories immediately move towards close conformations if directions 

are provided; this again shows that these loop motions are intrinsic and can be 

captured by low-frequency modes. In the case of CAPK, the ROG-guided trajectory 

outperforms target-directed trajectory in terms of achieving bound loop conformation. 

However, values in Table 5.7 shows that this difference is only 0.13 Å. This might 

happen because; RMSD values are only for loop regions, whereas target-directed 

NMSim by default uses all Cα atoms in the close conformation as a target.  
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Figure 5.15: The experimental structures, open (blue) and close (cyan), and the 

NMSim generated structure closest to the close structure using ROG-

guided simulation of different loop moving proteins are shown in front and 

side views: Tyrosine phosphatase (in panel a and b), Triosephosphate 

isomerase (in panel c and d), and cAMP-dependent protein kinase (in 

panel e and f). 

 

Intrinsic fluctuations and conformational changes 

In order to see how well the intrinsic fluctuations correlate with the conformational 

changes observed in the loop dataset, Cα RMS fluctuations derived from NMSim 

generated structures are compared with the fluctuations derived from their respective 

open and close conformations and the fluctuations derived from respective B-factor 

values in open form (see Figure 5.16). In contrast to the domain dataset, low 

correlation coefficients between the two fluctuations were found (Table 5.7) for the 

proteins in loop dataset. However, in the case of TYP and TIM high fluctuations can 

be seen in β7-α4 loop and loop 6, respectively, in NMSim generated structures that 

match perfectly with the observed conformational changes upon ligand binding (in 

Figure 5.16-a,b). In lines with the “conformational selection” model, Bahar and co-

workers34 have shown that structural changes involved in protein binding correlate 

with intrinsic motions of proteins in the open form, and loops possess an intrinsic 

tendency to move towards the bound conformations. High fluctuations in some parts 

of the proteins are also seen, for example, residues 335-343 in TYP and residues 65-

78 in TIM (Figure 5.16-a,b), which do not correlated with the observed 

conformational changes. In the case of TYP, these fluctuations do correlate with the 

B-factor values with a correlation coefficient of 0.64. This shows that, these high 

fluctuating regions in TYP are probably the regions that have an intrinsic ability to 

move and the two crystal structures of TYP do not capture these movements. In the 

case of TIM, B-factor values do not correlate with these high fluctuating regions 

observed in NMSim. This might be an indication that the underlying constraint 

network might be under-constrained in some regions and, therefore, results in a higher 

mobility of those regions.  

In contrast to TIM and TYP, the glycine-rich loop in CAPK does not show high 

fluctuations in NMSim structures. Although this glycine-rich loop has been 
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previously reported264,265 to be mobile, fluctuations in NMSim are not prominent in 

this loop region. This is not surprising in view of a recent study75 that suggested that, 

the  mid-scale loop rearrangements, like glycine-rich loop in CAPK, do not involve 

the first few lowest-frequency modes. The NMSim approach emphasizes these low-

frequency modes and, therefore, does not perform well if the motions of a loop are not 

guided by low-frequency modes, as found in CAPK case. The region containing F-to-

G helix loop and G helix (residues 238-250) is found to be highly mobile in NMSim. 

This is probably the effect of removing inhibitor near this region for the simulation, as 

part of the default NMSim setting. In the following section, the usability of NMSim 

approach to generate conformational change pathways is discussed. 
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Figure 5.16: The Cα fluctuations of different loop moving proteins, Tyrosine 

phosphatase (a), Triosephosphate isomerase (b) and cAMP-dependent 

protein kinase (c) derived from freely-evolving NMSim trajectories (red) 

are shown. The Cα fluctuations derived from respective open and close 

structures (green) and derived from B-factor values in open PDB file 

(blue) are also shown. Residues in the functionally important loop region 

are marked by a red bar at the top of each plot.  
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5.4 NMSim and Conformational change pathways 

The NMSim approach can be used to generate pathways of conformational change 

from an apo structure to a ligand-bound structure. In this section, the NMSim 

generated pathway for Adenylate kinase (ADK) is analyzed and compared with 

similar studies.84 89 

5.4.1 Adenylate kinase: a test case  

ADK is a monomeric enzyme that catalyzes the transfer of a phosphoryl group from 

ATP to AMP. The structure of ADK contains a main domain (CORE), an ATP-

binding domain (LID), and a NMP-binding domain (NMPbind)252. Large 

conformational changes have been observed in the ADK structure upon ligand 

binding, where the LID and the NMPbind domains close with respect to the CORE 

domain. A study254 has shown that the intrinsic motion of apo ADK occurs 

preferentially in the direction of the close conformation.  

There have been significant efforts to develop theoretical frameworks for describing 

functional transitions in proteins to fully understand their mechanism. The ADK 

transition has been studied extensively using different theoretical methods.87-89,250 A 

model for landscape hopping between elastic networks has been introduced83,84 to 

estimate the barrier of the transition process and to identify regions where local 

unfolding occurs. A number of studies87-89,250 have focused on generating intermediate 

structures and analyzing the pathway between the apo and the bound structures of 

ADK. 

 

5.4.2 NMSim generated pathways using Close directed and ROG-
guided simulations 

The NMSim generated pathways (see section 4.4) from the open conformation to the 

close conformation of ADK using target-directed NMSim trajectory is shown in green 

in Figure 5.17. In order to analyze the order of the domains closure, the reaction 
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coordinates described by Whitford et al.
89 were used (section 4.4). In general, the 

pathway generated by target-directed NMSim (Figure 5.17) shows that the LID 

domain closure precedes the NMPbind domain closure. This is in agreement with 

previous studies.84,89 It has been suggested that this sequential domain closure is likely 

evolved to ensure that each conformational rearrangement contribute to the turnover 

of a substrate by preventing nonproductive substrate binding.89 Furthermore, the 

transition seems to be energetically favorable to a large extent: Out of 50 normal 

modes used in target-directed trajectory, the first 5 lowest frequency modes are active 

throughout the transition, unless it nearly reaches the close conformation (state e). 

Interestingly, the initial closing of the LID domain (state a-b) is completely dominated 

by the first lowest frequency mode. The partial closing of the NMPbind domain (state 

b-c) mainly originates from the second and third lowest-frequency modes.  

A ROG-guided simulation, in contrast to a target-directed simulation, is not biased 

towards any direction and assumes that the open to close transition would lead to a 

contraction of the protein, as usually observed for bound structures. The NMSim 

generated pathway using the ROG-guided trajectory is shown in red in Figure 5.17. 

Interestingly, this pathway again confirms that the LID domain closure precedes the 

NMPbind domain, even if no close conformation information is provided. The two 

pathways, i.e., target-directed and ROG-guided, remarkably resemble each other 

between state a to e, however, differ in the last stage. Furthermore, the LID domain in 

the ROG-guided trajectory closes more as compared to the target-directed trajectory 

(see Figure 5.17). This could be an effect of the absence of the ligand during the 

simulation, which provides the required space to contract the protein, whereas in the 

target-directed simulations this is avoided due to the directional biasing. Despite a 

small difference in the level of LID domain closure in both trajectories, the same level 

of NMPbind domain closure is observed in state b to e. Furthermore, the involvement 

of higher frequency modes from state e to f in target-directed trajectory suggests the 

higher influence of the ligand at this stage. Whitford et al.
89 have also suggested that 

the NMPbind domain closure is an example of a ligand-induced conformational 

change.  
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Figure 5.17: The NMSim generated pathway from the open Adenylate kinase 

conformation is shown for the target-directed trajectory using close 

conformation information (in green) and the ROG-guided trajectory (in 

red). On the x-axis is the distance between the LID domain and CORE 

domain centers of mass, CORELIDR − , and on the y-axis is the distance 

between the NMPbind domain and CORE domain centers of mass, 
CORENMPR − , over the trajectories. Each point corresponds to an 

intermediate structure. The different point types represent the modes used 

for that intermediate conformation generation. The unfilled and the filled 

black circles mark the starting (PDB code 4ake) and the target (PDB code 

1ake) conformations respectively. For discussion, different states are 

marked from a-f, and higher frequency modes in target-directed trajectory 

are colored differently (blue and magenta).  

 

In order to further verify the NMSim pathway, the generated intermediate structures 

were compared with eleven different X-ray crystal structures of ADK in terms of Cα 

RMSD. The crystal structures used here can be divided into three groups: structures in 

the open conformation (4ake_A and 4ake_B: in PDB-code_chain format), structures 

in between the open and close conformations (1dvr_B and 1dvr_A; here the LID 

domain is completely closed and the NMPbind domain is still open) and structures 

near the close conformation (1e4y_B, 1e4y_A, 1e4v_A, 2eck_A, 1ank_A, 2eck_B 

and 1ake_A). Maragakis and Karplus87 have identified different crystal structures that 
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lie along the pathway from open to close conformation of ADK by selecting a crystal 

structure with the lowest RMSD to each intermediate structure along the generated 

pathway. 

The RMSD plots for the target-directed trajectory are shown in Figure 5.18-a. Apart 

from the minor differences, the structures observed along the generated pathway are 

in agreement with the previously suggested87 sequence of structures. Crystal 

structures 1dvr_A and 1dvr_B have the lowest RMSD < 3 Å in the middle of the 

transition. Crystal structures 4ake_A, 4ake_B, 1dvr_A, 1e4y_B, 1e4y_A, 1ank_A, 

2eck_B and 1ake_A are found along the pathway from the open to the close, when the 

crystal structures are selected with lowest Cα RMSD along the generated pathway.87  

The RMSD plots for the ROG-guided trajectory, shown in Figure 5.18-b, do agree 

with the reported sequence of crystal structures,87 in the start and the middle of the 

transition. Crystal structures 4ake_A, 4ake_B, 1dvr_A, 1dvr_B, and 1ake_A are 

found along the pathway from the open to the close, when the crystal structures are 

selected with lowest Cα RMSD along the generated pathway. Interestingly, without 

the information of the close conformation, the crystal structures 1dvr_A and 1dvr_B, 

which lies in between the open to close transition, is found with a lowest RMSD of 

~2.5 Å. However, the end transition is blurred, and does not show any preference for 

the different close crystal structures. It is interesting to note however that, the close 

structure is reached ~2.7 Å in the ROG-guided trajectory where no information of 

close structure is provided (using five low frequency modes, see section 4.4). In the 

target-directed trajectory the close structure is reached with an RMSD of 1 Å, using 

the first 50 low frequency modes. However, modes of higher frequency would be 

required to get even closer to the target structure.230 A similar study,250 using normal 

modes but in combination with Monte Carlo simulation for ADK, reports that the 

RMSD of 2.27 Å is achieved with the target structure using 10 low frequency modes.  
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Figure 5.18: The Cα RMSD between intermediate structures, derived from target-

directed simulation using close conformation information (in a) and ROG-

guided trajectory (in b), and different experimental structures (shown in 

different colors and point types) of Adenylate kinase are plotted. PDB 

codes (here subscripts represent chain) for different experimental 

structures listed in the legend are sorted with the sequence proposed by 

Maragakis and Karplus,
87

 that lie along the pathway from open to close 

conformational transition of adenylate kinase. 
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6 Summary 

Specific functions of biological systems often require conformational transitions of 

macromolecules. Thus, being able to describe and predict conformational changes of 

biological macromolecules is not only important for understanding their impact on 

biological function, but will also have implications for the modelling of 

(macro)molecular complex formation and in structure-based drug design approaches. 

The “conformational selection model” provides the foundation for computational 

investigations of conformational fluctuations of the unbound protein state. These 

fluctuations may reveal conformational states adopted by the bound proteins.33 

Different computational approaches targeting the modelling of protein flexibility and 

plasticity are promising in this context. Molecular dynamics (MD)56-58 simulation is 

one of the most widely applied and accurate computational techniques currently being 

used. However, despite immense increase in computer power, MD simulations are 

computationally expensive and explore limited conformational space due to slow 

barrier crossing on the rugged energy landscape of macromolecules.59,60 Hence, there 

have been efforts to develop alternative approaches that are computationally efficient 

in exploring conformational space. For example, a simple geometry-based approach 

CONCOORD generates conformations by satisfying distance constraints derived from 

a starting structure of a protein structure.62,63 Another geometry-based approach 

FRODA generates conformations by diffusive motions of flexible regions and rigid 

clusters of proteins.64 So far, these geometry-based approaches do not use any 

directional guidance for sampling the biologically relevant conformational space.  

The aim of this work is to incorporate directional information in a geometry-based 

approach, in order to sample biologically relevant conformational space extensively. 

Interestingly, coarse-grained normal mode (CGNM) approaches, e.g., the elastic 

network model (ENM) and rigid cluster normal mode analysis (RCNMA), have 

emerged recently and provide directions of intrinsic motions in terms of harmonic 

modes (also called normal modes).67,68 These normal modes can be viewed as 

possible deformations of proteins and can be sorted by their energetic costs of 
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deformations. In my previous work68 and in other studies67,69-71 it has been shown that 

conformational changes upon ligand binding occur along a few low-energy modes of 

unbound proteins and can be efficiently calculated by CGNM approaches.  

In order to explore the validity and the applicability of CGNM approaches, a large-

scale comparison of essential dynamics (ED) modes from molecular dynamics (MD) 

simulations and normal modes from CGNM was performed over a dataset of 335 

proteins. Despite high coarse-graining, low frequency normal modes from CGNM 

correlate very well with ED modes in terms of directions of motions (average 

maximal overlap is 0.65) and relative amplitudes of motions (average maximal 

overlap is 0.73). On average, the space spanned by the first quarter of normal modes 

describes 85 % of the space spanned by the five ED modes. Furthermore, ED and 

CGNM modes do not differentiate on the basis of protein structural class (Class level 

in CATH classification). However, for selected cases, it was found that CGNM modes 

are more robust within the same family (Homologous superfamily levels in CATH) 

than ED modes. In view of recent223-225 evidences regarding evolutionary 

conservation of vibrational dynamics, this suggests that ED modes, in some cases, 

might not be representative of the underlying dynamics characteristic for a whole 

family, probably due to insufficient sampling in MD. 

The finding that MD essential directions are very well reproduced by CGNM 

approaches on a large and diverse dataset of proteins illustrates the potential of 

CGNM approaches in describing the intrinsic motions of proteins. The intrinsic 

motions of a protein are not only related to its functions according to the 

“conformational selection model”26-29 but also to allosteric regulations following a 

“modern view of allostery”266,267  and evolvability225,235 of proteins. Hence, being able 

to predict the intrinsic motions of proteins with almost no computational cost can be 

extremely helpful in the development of computational approaches, especially in the 

field of structural-based drug design (SBDD). In this work, the directional 

information, provided by the CGNM approach RCNMA, is utilized to sample the 

biologically relevant conformational space of a protein. 

In order to exploit the potential of CGNM approaches, I have developed a three-step 

approach for efficient exploration of intrinsic motions of proteins. The first two steps 
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are based on recent developments in rigidity and elastic network theory.68 Initially, 

static properties of the protein are determined by decomposing the protein into rigid 

clusters using the graph-theoretical approach FIRST91 at an all-atom representation of 

the protein. In a second step, dynamic properties of the molecule are revealed by the 

rotations-translations of blocks approach (RTB)178 using an elastic network model 

representation of the coarse-grained protein. In the final step, the recently introduced 

idea of constrained geometric simulations of diffusive motions in proteins64 is 

extended for efficient sampling of conformational space. Here, the low-energy 

(frequency) normal modes provided by the RCNMA approach are used to guide the 

backbone motions. The side-chains observe diffusive motion biased towards 

energetically favorable rotamers. This is an iterative approach, which progress in 

small steps and generates intermediate conformations at every step. 

The NMSim approach was validated on hen egg white lysozyme by comparing it to 

previously mentioned simulation methods in terms of residue fluctuations, 

conformational space explorations, essential dynamics,215,216,242 sampling of side-

chain rotamers, and structural quality. Residue fluctuations in NMSim generated 

ensemble is found to be in good agreement with MD fluctuations207 with a correlation 

coefficient of around 0.79. A comparison of different geometry-based simulation 

approaches shows that FRODA is restricted in sampling the backbone conformational 

space; an average backbone RMSD from the starting structure of 0.37 Å is observed 

for the FRODA generated ensemble compared to 1.03 Å and 1.40 Å RMSD for MD 

and NMSim ensembles, respectively. CONCOORD is restricted in sampling the side-

chain conformational space; on average, CONCOORD samples 1.63 rotamer states 

out of 10, in contrast to 5.78 and 4.97 rotamer states sampled in MD and NMSim, 

respectively. NMSim sufficiently samples both the backbone and the side-chain 

conformations taking experimental structures and conformations from the state of the 

art MD simulation as reference. Furthermore, the explicit modeling of rotamer states 

in NMSim improves the quality of side-chain conformations; the rotamericity 

increases from 0.57 to 0.70. 

It is important to note that the use of directional information differentiates the NMSim 

approach from the other geometry-based approaches, FRODA and CONCOORD. The 

FRODA64 and the NMSim approaches share a natural way of coarse-graining,51 i.e., 
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rigidity analysis using FIRST approach,91,161,204 at their core levels. However, they 

differ at simulation levels. FRODA uses diffusive motion64 of rigid regions. 

Therefore, due to the lack of direction, sampling in FRODA is limited, particularly in 

those cases where proteins are relatively flexible. In contrast, NMSim uses normal 

mode directions to guide backbone motions, but uses diffusive motions for side-

chains. The CONCOORD approach62 iteratively satisfies inter-atomic distance 

constraints to generate conformations starting from randomized atomic coordinates. 

Therefore, the CONCOORD generated structures are sensitive to the inter-atomic 

distances of the starting structure. In comparison, the NMSim approach relies on the 

intrinsic mobility information obtained from CGNM approaches of the previously 

generated structure. This is achieved by moving atomic coordinates of a 

starting/generated structure, iteratively, in the low-energy normal mode space instead 

of randomizing atomic coordinates.  

The NMSim approach is also applied to a dataset of proteins where conformational 

changes have been observed experimentally, either in domain or functionally 

important loop regions. The NMSim simulations starting from the unbound structures 

are able to reach conformations similar to ligand bound conformations (RMSD < 2.4 

Å) in 4 out of 5 cases of domain moving proteins. In these four cases, good 

correlation coefficients (R > 0.7) between the RMS fluctuations derived from NMSim 

generated structures and two experimental structures are observed. Furthermore, 

intrinsic fluctuations in NMSim simulation correlate with the region of loop 

conformational changes observed upon ligand binding in 2 out of 3 cases. It is 

suggested in this study that the radius of gyration ( gR ), if used in combination with 

low-frequency normal modes, improves the search for ligand bound conformations in 

NMSim. 

The NMSim generated pathway of conformational change from the unbound structure 

to the ligand bound structure of adenylate kinase is validated by a comparison to 

experimental structures reflecting different states of the pathway as proposed by 

previous studies.87-89 Different crystal structures that lie along the transition from the 

unbound structure to the ligand-bound structure are closely sampled in the NMSim 

generated pathway. Interestingly, the generated pathway confirms that the LID 
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domain closure precedes the closing of the NMPbind domain, even if no target 

conformation is provided in NMSim.  

Hence, the results in this study show that, incorporating directional information in the 

geometry-based approach NMSim improves the sampling of biologically relevant 

conformational space and provides a computationally efficient alternative to state of 

the art MD simulations. 

 



Zusammenfassung  122 

 

 

Zusammenfassung 

Konformationsänderungen von Proteinen sind häufig eine grundlegende 

Voraussetzung für deren biologische Funktion. Die genaue Charakterisierung und 

Vorhersage dieser Konformationsänderungen ist nicht nur für das Verständnis ihres 

Einflusses auf die Funktion erforderlich, sondern liefert auch hilfreiche Anhaltspunkte 

für die Modellierung der Protein-Komplexbildung und für das strukturbasierte 

Wirkstoffdesign (SBDD). Das Konformations-Selektions-Modell liefert die 

Grundlage für computergestützte Untersuchungen der konformationellen Diversität 

ungebundener Proteine, welche auch gebundene Konformationen einschließen kann.33 

In diesem Zusammenhang sind computergestützte Methoden von großem Nutzen, 

welche die Flexibilität und Plastizität von Proteinen beschreiben. Eines der dafür am 

häufigsten verwendeten und genauesten computergestützten Verfahren ist die 

Molekulardynamik-Simulationen56-58 (MD Simulationen). Trotz der immensen 

Steigerung der verfügbaren Rechenkapazitäten sind MD Simulationen nach wie vor 

sehr rechenintensiv und durchmustern den Konformationsraum nur in begrenztem 

Maße, da die Energiebarrieren in der komplexen Energielandschaft eines Proteins nur 

langsam überwunden werden können.59,60 Daher wurden Anstrengungen 

unternommen, alternative Methoden zu entwickeln, die auf einer reduzierten 

Darstellung von Proteinen beruhen, dafür aber den biologisch relevanten 

Konformationsraum rechnerisch viel effizienter durchmustern können. Ein Beispiel 

ist das geometriebasierte Programm CONCOORD, welches ausgehend von einer 

Protein-Startstruktur, unter Berücksichtigung von Distanzeinschränkungen, neue 

Konformationen erzeugt.62,63 Der alternative geometriebasierte Ansatz FRODA 

erzeugt Konformationen durch die Diffusionsbewegungen von flexiblen und rigiden 

Teilbereichen in einer Proteinstruktur.64 Bisher verwenden diese geometriebasierten 

Verfahren keine Richtungsinformationen für eine gerichtete Bewegung zur 

Durchmusterung des biologisch relevanten Konformationsraumes.  

Das Ziel dieser Arbeit ist, Richtungsinformationen in einen geometriebasierten Ansatz 

zu integrieren und so den biologisch relevanten Konformationsraum erschöpfend zu 



Zusammenfassung  123 

 

durchmustern. Dies führte kürzlich zur Entwicklung von „coarse-grained normal 

mode“ (CGNM) Methoden, wie zum Beispiel dem „elastic network model“ (ENM) 

und der von mir in vorangegangenen Arbeiten entwickelte „rigid cluster normal mode 

analysis“ (RCNMA). Die beiden Methoden liefern die gewünschte 

Richtungsinformation der intrinsischen Bewegungen eines Proteins in Form von 

harmonischen Moden (auch Normalmoden).67,68 Die Normalmoden entsprechen in 

diesem Zusammenhang den Deformierungsmöglichkeiten des Proteins und können 

anhand des Energieaufwandes bei der Deformation sortiert werden. In meinen 

vorangegangenen Arbeiten68 und in weiteren Studien67,69-71 konnte unter Verwendung 

von CGNM Methoden in Übereinstimmung mit dem Konformations-Selektions-

Modell gezeigt werden, dass bei vielen Proteinen die durch die Bindung des Liganden 

bedingten Konformationsänderung nur entlang weniger, energiearmer Moden des 

ungebundenen Proteins stattfindet. 

Um die Aussagekraft, Robustheit und breite Anwendbarkeit solcher CGNM 

Verfahren zu untersuchen, wurde im Rahmen dieser Dissertation ein umfangreicher 

Vergleich zwischen „essential dynamics“ (ED) Moden aus MD Simulationen und 

Normalmoden aus CGNM Berechnungen durchgeführt. Der zugrundeliegende 

Datensatz enthielt 335 Proteine. Obwohl die CGNM Verfahren eine stark vereinfachte 

Darstellung für Proteine verwenden, korrelieren die niederfrequenten Moden dieser 

Verfahren bezüglich ihrer Bewegungs-Richtung (durchschnittliche maximale 

Überschneidung: 0,65) und -Amplitude (durchschnittliche maximale Überschneidung: 

0,73) sehr gut mit ED Moden. Im Durchschnitt beschreibt das erste Viertel der 

Normalmoden 85 % des Raumes, der durch die ersten fünf ED Moden aufgespannt 

wird. In einigen Ausnahmefällen konnte gezeigt werden, dass sich CGNM Moden 

innerhalb einer Proteinfamilie (homologe Superfamilie in CATH) robuster verhalten 

als ED Moden. Mit Blick auf neuere Erkenntnisse223-225 bezüglich der evolutionären 

Konservierung von Vibrations-Dynamik in Proteinfamilien heißt dies, dass ED 

Moden die zugrundeliegenden dynamischen Charakteristiken schlechter abbilden. 

Dies kann möglicherweise durch die ungenügende Durchmusterung des 

Konformationsraumes durch die MD Simulationen erklärt werden.  

Anhand dieses großen und diversen Datensatzes von Proteinen konnte gezeigt 

werden, dass CGNM essentielle Bewegungsrichtungen äquivalent zu MD 
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Simulationen abbilden kann und daher über das Potential verfügt, die intrinsische 

Dynamik von Proteinen zu beschreiben. Die intrinsische Dynamik von Proteinen 

wiederum steht nicht nur in direktem Zusammenhang mit dem Konformations-

Selektions-Modell,26-29 sondern auch mit allosterischen Regulationswegen in 

Proteinen im Sinne des „modern view of allostery"266,267 und der Richtung 

evolutionärer Strukturveränderungen in Proteinen.225,235 Die Möglichkeit, intrinsische 

Dynamik von Biomolekülen mit geringem Rechenaufwand vorherzusagen, ist für die 

Entwicklung weiterer Computermethoden von Nutzen, insbesondere im Bereich des 

strukturbasiertem Wirkstoffdesigns. In dieser Arbeit wurde der CGNM Ansatz 

RCNMA verwendet, um Richtungsinformationen abzuleiten und diese für die 

Durchmusterung des biologisch relevanten Konformationsraumes zu verwenden. 

Um die Leistungsfähigkeit von CGNM Verfahren genauer zu bestimmen, wurde im 

Rahmen der vorliegenden Studie eine dreistufige Methode zur Untersuchung der 

intrinsischen Dynamik von Proteinen entwickelt. Die ersten beiden Stufen basieren 

auf neuen Entwicklungen in der Rigiditäts-Theorie und der Beschreibung von 

elastischen Netzwerken.68 Im ersten Schritt werden hierbei statische Eigenschaften 

des Proteins mit Hilfe des graphentheoretischen Ansatzes FIRST91 bestimmt, welcher 

die einzelnen Atome des Proteins in rigide und flexible Teilbereiche zusammenfasst. 

Im zweiten Schritt wird diese Einteilung in rigide und flexible Teilbereiche 

verwendet, um die dynamischen Eigenschaften des Proteins durch das sogenannte 

„rotations-translations of blocks“ (RTB)178 Verfahren zu beschreiben. Im letzten 

Schritt wird die kürzlich beschriebene Idee der eingeschränkten, geometrischen 

Simulation von Diffusionsbewegungen64 erweitert und zur effizienten 

Durchmusterung des Konformationsraumes eingesetzt. Dabei werden die 

Bewegungen des Proteinrückgrates entlang der mittels RCNMA erzeugten 

niederenergetischen Normalmoden ausgerichtet. Die Seitenkettenkonfomrationen 

werden dabei durch Diffusionsbewegungen hin zu energetisch günstigen Rotameren 

erzeugt. Dies ist ein iterativer Prozess, bestehend aus mehreren kleineren Schritten, in 

denen jeweils intermediäre Konformationen erzeugt werden.  

Zur Validierung des NMSim Ansatzes wurde dieser mit den anderen zuvor genannten 

Simulationsmethoden am Beispiel von Lysozym aus Hühnereiweiß verglichen. Als 

Bewertungskriterien wurden die Fluktuationswerte der jeweiligen Reste, die 
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Vollständigkeit der Durchmusterung des Konformationsraumes, die „essential 

dynamics“215,216,242 Moden, die Durchmusterung der Seitenkettenrotamere und die 

Qualität der Struktur verwendet. Die Fluktuationen der Aminosäurereste aus dem mit 

NMSim erzeugten Ensemble stimmen mit den Fluktuationen aus der MD 

Simulation207 gut überein (Korrelationskoeffizient R = 0,79). 

Ein Vergleich der unterschiedlichen geometriebasierten Simulationsansätze zeigt, 

dass bei FRODA die Durchmusterung des Konformationsraumes des Proteinrückrates 

unzureichend ist. Im Vergleich zu den MD und NMSim erzeugten Ensembles, die 

jeweils eine durchschnittliche RMS Abweichung zur Startstruktur von 1,03 Å und 

1,40 Å erzielen, weist das FRODA generierte Ensemble mit einem durchschnittlichen 

RMSD von 0,37 Å nur eine geringe Abweichung auf. Bei CONCOORD ist hingegen 

die Durchmusterung des Konformationsraumes der Seitenketten unzureichend. 

Verglichen mit durchschnittlich jeweils 5,78 und 4,97 durchmusterten 

Rotamerzustände von MD und NMSim generierten Ensembles erzeugt CONCOORD 

durchschnittlich nur 1.63 Rotamerzustände. 

NMSim hingegen durchmustert sowohl den Konformationsraum des Proteinrückrates 

als auch den der Seitenketten angemessen, wenn man die experimentell und mittels 

MD Simulationen erzeugten Konformationen als Referenz verwendet. Weiterhin führt 

die explizite Modellierung der Rotamerzustände in NMSim zu einer erhöhten Qualität 

der Seitenkettenkonformationen: die „rotamericity“ steigt von 0,57 auf 0,70. 

Es ist wichtig zu erwähnen, dass sich die NMSim Methode durch die Verwendung 

richtungsbezogener Information von anderen geometrie-basierten Ansätzen, wie 

FRODA und CONCOORD, unterscheidet. FRODA und NMSim basieren beide auf 

einer vereinfachten Darstellung des Proteins,64 welche beispielsweise mit Hilfe des 

FIRST Ansatzes91,161,204 basierend auf der Rigiditätsanalyse erreicht werden kann. Die 

beiden Methoden unterscheiden sich jedoch auf der Simulationsebene. FRODA 

verwendet Diffusionsbewegung rigider Bereiche. Durch die fehlende 

Bewegunsrichtung ist die Durchmusterung in FRODA eingeschränkt, insbesondere 

bei flexiblen Proteinen. Im Gegensatz dazu verwendet NMSim die Richtung der 

Normalmoden, um die Bewegungen des Proteinrückrates zu steuern, und 

Diffusionsbewegungen für die Bewegungen der Seitenketten. Beim CONCOORD 
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Ansatz werden iterativ interatomare Distanzeinschränkungen (“constraints”) 

optimiert, um ausgehend von randomisierten Atomkoordinaten sinnvolle 

Konformationen zu erzeugen. Deshalb sind die mit CONCOORD generierten 

Strukturen stark abhängig von den interatomaren Distanzen in der Startstruktur. Im 

Vergleich dazu ist der NMSim Ansatz von der intrinsischen Bewegungsinformation 

des CGNM Ansatzes abhängig, die aus dessen Anwendung auf die im vorherigen 

Schritt erzeugte Konformation stammt. Dies wird durch die iterative Veränderung der 

Atomkoordinaten der vorherigen Konformation im niederenergetischen 

Normalmodenraum anstatt durch deren Randomisierung erreicht. 

Der NMSim Ansatz wurde ebenfalls auf einen Datensatz von Proteinen angewendet, 

für die Konformationsänderungen in Domänen oder in funktionell wichtigen 

Schleifenregionen experimentell beobacht wurden. In Übereinstimmung mit dem 

Konformations-Selektions-Modell ist der NMSim Ansatz bei vier von fünf Proteinen, 

die eine Domänenbewegung aufweisen, in der Lage, ausgehend von der 

ungebundenen Struktur neue Konformationen zu erzeugen, die der ligandgebundenen 

Konformation entsprechen (RMSD < 2,4 Å). In diesen vier erfolgreichen Fällen 

wurde ein hoher Korrelationskoeffizient (R > 0,7) zwischen der RMS Fluktuation der 

durch NMSim erzeugten Konformationen und jeweils zwei experimentellen 

Strukturen erreicht. Hingegen korrelieren die intrinischen Fluktuationen der NMSim 

Simulation in zwei von drei Fällen mit dem Bereich der ligandinduzierten 

Konformationsänderung in den Schleifen. In dieser Studie wird gezeigt, dass die 

Verwendung des Gyrationsradius (Rg) in Kombination mit niederfrequenten 

Normalmoden in NMSim die Suche nach ligandgebundenen Konformationen 

verbessert. 

Der mit NMSim generierte Pfad für die Konformationsänderungen von der 

ungebundenen Struktur zur ligandgebundenen Struktur der Adenylat-Kinase wurde 

durch den Vergleich zu experimentellen Strukturen validiert, die, wie in 

vorangegangenen Studien gezeigt werden konnte,87-89 verschiedene Zustände des 

Pfades widerspiegeln. Die unterschiedlichen Kristallstrukturen, die entlang der 

Konformationsänderungen von der ungebundenen zur ligandgebundenen Struktur 

liegen, werden auf dem von NMSim erzeugten Pfad durchmustert. Interessanterweise 

bestätigt der generierte Pfad, dass die Schließbewegung der LID Domäne derjenigen 
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der NMPbind Domäne vorangeht, sogar wenn keine Zielkonformation für die NMSim 

Simulation verwendet wurde. 

Die Ergebnisse dieser Arbeit zeigen, dass die Einbeziehung richtungsbezogener 

Information in den geometriebasierten NMSim Ansatz die Durchmusterung des 

biologisch relevanten Konformationsraumes verbessert und somit eine 

recheneffiziente Alternative zu den aktuellen MD Simulationen darstellt. Hybride 

Normalmoden-Ansätze,72,73,80,81,260 insbesondere in der Kombination mit 

experimentellen Daten (zum Beispiel Röntgenkristallographie, NMR, Cryo-EM, 

SAXS), haben sich in verschiedenen Anwendungen als erfolgreich erwiesen. Wie 

bereits erwähnt, konnte in Analogie dazu in dieser Studie gezeigt werden, dass die 

Berücksichtigung des Gyrationsradius (Rg) in Kombination mit berechneten 

Normalmoden in NMSim die Suche nach gebunden Konformationen verbessert. Dies 

gilt für Scharnierbewegungen („hinge bending motions“), Scherbewegung („sheer 

motions“) und Bewegungen in Schleifenregionen („loop motions“). Eine potentielle 

Erweiterung für NMSim wäre somit die Einbeziehung experimenteller Daten, wie 

etwa paarweiser Distanzeinschränkungen oder Gyrationsradien, wodurch sicherlich 

gebundene Konformationen effizienter vorhergesagt werden könnten.  

Die aktuellen Entwicklungen im Bereich der geometriebasierten 

Simulationsmethoden sind sowohl für die Simulation großer 

Konformationsänderungen als auch für kombinierte Anwendungen mit molekularem 

Docking und virtuellen Screening vielversprechend. Offensichtliche Anwendungen 

liegen hierbei beim Docken in Multiple-Rezeptorkonformationen (MRC) und sogar 

im Bereich des Hochdurchsatzdockings.40 Insbesondere bilden solche effizient 

generierten Konformations-Ensemble die Grundlage für die implizite 

Berücksichtigung der Rezeptormobilität in Dockinganwendungen. Ein Bespiel hierfür 

ist eine kürzlich veröffentlichte Studie, die Rezeptormobilität implizit durch eine 

elastische Netzwerkrepräsentation moduliert.268 
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Outlook 

Hybrid normal mode approaches,72,73,80,81,260 particularly in combination with 

experimental data (e.g., X-ray, NMR, cryo-EM, SAXS), have been found successful 

in different applications. Following a similar direction, it was found in this study that 

the radius of gyration ( gR ) if used in combination with normal modes improves the 

search for ligand bound conformations in NMSim. This is not only true for hinge 

bending motions but also sheer motions and loop motions. Considering these facts, a 

potential extension in NMSim would be to incorporate experimental data (for 

example a small set of pairwise distance constraints or the gR  of the ligand bound 

conformation) to improve the prediction for the ligand bound conformations. 

The recent developments in geometry-based simulation approaches are promising not 

only in large-scale conformational changes predictions but also in combination with 

molecular docking and virtual screening approaches. The obvious use of these 

efficient approaches is in combination with multiple receptor conformations (MRC) 

docking40 and even for high throughput docking.61 Moreover, theses efficiently 

generated ensembles provide the basis for approaches that implicitly incorporate 

receptor mobility in docking approaches, for example, as proposed recently,268 

through an elastic representation of a potential grid in the binding pocket region of a 

receptor.  

The NMSim approach can also be extended to nucleic acids. Although normal mode 

analysis have been applied to investigate DNA and RNA dynamics,127-129 a large-scale 

CGNM validation study would be required for nucleic acids too. The NMSim 

approach can be improved by enhancing the underlying constraint network. For 

example, by considering the breaking and formation of non-covalent bonds, during 

the NMSim simulation, based on the atom movements predicted by the normal mode 

directions.  Furthermore, a ligand influence on a receptor can be modeled by biasing 

modes, and thus the motion of a receptor that influences the binding pocket of a 

receptor.  
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Appendix 
 

Appendix A:  The parameter set used in NMSim. 

Parameter names Default values Description 

SIM_ITER 500 Number of simulation cycles
for calling RCNMA and NMSim
alternatively.  

MOVE_ITER 10 Number of NMSim cycles. 

SHAKE_ITER 500 Maximum number of structure 
correction cycles. 

NMRANGE 7 to 56 Normal modes range used for 
linear combination. 

ECUT -1.0 kcal/mol Energy cutoff for hydrogen 
bonds. 

RMSDSTEPSIZE 0.5 Å Structure distortion (of all 
atoms) in normal mode 
directions in an NMSim cycle.  

TEMPERATURE 300 K Temperature for atomic 
fluctuation calculations from 
normal modes.  

WRITECONFEVERY 1 Frequency of writing out 
conformations during NMSim 
cycles.  

SELECTCONF 0 Select conformation for next 
simulation cycle. 1 = lowest 
ROG, 2 = highest ROG, or 3 = 
nearest ROG as compared to the 
previously generated structure. 

RANDSCALING 0.3 Å Scaling factor for random 
component in side-chain 
directions. 

MISS_SLOPE_TOL 0.01 Exit criteria for structure 
correction cycle. 

VDW_CUT 8.0 Å Van der Waals cutoff used in 
structure correction. 

CF_DIST_TOL 0.005 Å Tolerance allowed for covalent 
distance constraints. 

VDW_DIST_TOL 0.07  Tolerance (in fraction of vdW 
sum) allowed for vdW distance 
constraints (excluding 1-4 
constraints). 
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VDW_ONE4_DIST_TOL 0.20 Tolerance (in fraction of vdW 
sum) allowed for vdW 1-4 
distance constraints. 

HBSB_DIST_TOL 0.05 Å Tolerance allowed for hydrogen 
bond distance constraints. 

PH_DIST_TOL 0.05 Å Tolerance allowed for 
hydrophobic distance 
constraints. 

PHIPSI_DIST_TOL 0.05 Å Tolerance allowed for ψϕ
distance constraints. 

BB_PLANAR_TOL 0.017 Rad. (1°) Tolerance allowed for backbone 
planar constraints. 

SC_PLANAR_TOL 0.001 Å  Tolerance (from ideal planarity) 
allowed for side-chain planarity
constraints. 

ROTAMER_TOL 0.174 Rad. (10°) Tolerance allowed for χ -angles 
dihedral constraints from 
rotamer. 

ADJUST_FAC_CF 0.5   Adjustment factor for covalent 
distance constraints.  

ADJUST_FAC_VDW 0.4   Adjustment factor for vdW 
distance constraints. 

ADJUST_FAC_HBSB 0.2   Adjustment factor for hydrogen 
bond distance constraints. 

ADJUST_FAC_PH 0.1   Adjustment factor for 
hydrophobic distance 
constraints. 

ADJUST_FAC_PHIPSI 0.005 Adjustment factor for ψϕ
distance constraints. 

ADJUST_FAC_BB_PLANAR 0.02 Adjustment factor for backbone
planar constraints. 

ADJUST_FAC_SC_PLANAR 1.0 Adjustment factor for side-chain
planar constraints. 

ADJUST_FAC_ROTAMER 0.001 Adjustment factor for χ -angle 
dihedral constraints. 

CHIDEV_SELLIMIT 1.047 Rad.(60°) Chi-limit in making Candidate 
rotamer list for residues. 
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Appendix B:  The list of 130 experimental structures of Hen Egg White Lysozyme. 

1ic5_Y_01 

1c08_C_01 

2dqd_Y_01 
1j1p_Y_01 

1ri8_B_01 
2dqc_Y_01 

2dqg_Y_01 

2dqh_Y_01 

2dqj_Y_01 

2dqf_C_01 

2zq3_A_01 
1j1o_Y_01 

3hfm_Y_01 
2dqe_Y_01 

1j1x_Y_01 
1lys_A_01 

1ua6_Y_01 

2f4g_A_01 

2d4j_A_01 

3lyt_A_01 

1mlc_E_01 
1xgu_C_01 

2f30_A_01 
2dqi_Y_01 

3d9a_C_01 
1dqj_C_01 

1jto_L_01 

2f4a_A_01 

1xgp_C_01 
2lzt_A_01 

1xgt_C_01 
1v7s_A_01 

4lzt_A_01 

2z12_A_01 

1lzn_A_01 

2f2n_A_01 

1lks_A_01 
1xgr_C_01 

2z19_A_01 
2vb1_A_01 

1zmy_L_01 
1lzt_A_01 

1xgq_C_01 

1xfp_L_01 

2hs7_A_01 

3lzt_A_01 

1v7t_A_01 
1xei_A_01 

2hs9_A_01 
2hso_A_01 

2z18_A_01 
1xej_A_01 

1sq2_L_01 

1jtt_L_01 

2yss_C_01 
1xek_A_01 

2a6u_A_01 
1bvk_C_01 

1kiq_C_01 

1ja6_A_01 

1g7j_C_01 

1g7i_C_01 

1vfb_C_01 
1g7m_C_01 

1kir_C_01 
2fbb_A_01 

1g7l_C_01 
1kip_C_01 

1g7h_C_01 

1ja7_A_01 

1ja4_A_01 

1ja2_A_01 

1sfb_A_01 
1sf7_A_01 

1gxx_A_01 
1sf4_A_01 

1sfg_A_01 
1gxv_2_01 

1e8l_A_49 

1e8l_A_48 

1sf6_A_01 
1e8l_A_43 

1e8l_A_14 
1e8l_A_46 

1e8l_A_50 

1e8l_A_47 

1e8l_A_45 

1e8l_A_18 

1e8l_A_44 
1e8l_A_08 

1e8l_A_10 
1e8l_A_17 

1b2k_A_01 
1e8l_A_07 

1e8l_A_09 

1e8l_A_04 

1e8l_A_05 

1e8l_A_41 

1e8l_A_31 
1e8l_A_01 

1e8l_A_19 
1e8l_A_15 

1e8l_A_39 
1e8l_A_24 

1e8l_A_03 

1e8l_A_16 

1e8l_A_28 
1e8l_A_38 

1e8l_A_40 
1e8l_A_36 

1e8l_A_32 

1e8l_A_30 

1e8l_A_26 

1e8l_A_35 

1e8l_A_34 
1e8l_A_27 

1e8l_A_20 
1e8l_A_42 

1e8l_A_22 
1e8l_A_11 

1e8l_A_29 

1e8l_A_23 

1e8l_A_33 

1e8l_A_21 

1e8l_A_12 
1e8l_A_02 

1e8l_A_25 
1e8l_A_06 

1e8l_A_37 
1e8l_A_13 

The above list, which is divided into columns for clarity, is sorted with the increasing 
Cα RMSD to the reference structure of HEWL (PDB code 1hel);208 The top-left 
structure has the smallest Cα RMSD of 0.5 Å and the bottom-right has the largest Cα 
RMSD of 1.8 Å. The experimental structures in the list have the format PDB-
code_Chain_Model. 
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Appendix C: The ED and CGNM mode comparison result along with CATH 

classifications. 

Folda) Ab) Tb) H b) PDB  Sizec) ENMd) RCNMAe) ENM d) 

Mean ± SD 

RCNMA e) 

Mean ± SD 

      Lapf) Corrg) Lap f) Corr g) Lap f) Corr g) Lap f) Corr g) 

Class1: mainly-alpha 

10 10 10 1bby 69 0.62 0.87 0.63 0.66 
   1d8k 81 0.74 0.79 0.73 0.80 
   1hks 106 0.73 0.71 0.73 0.70 
   1irf 112 0.65 0.63 0.61 0.47 
   1lea 72 0.68 0.79 0.66 0.71 
  60 1bw6 56 0.69 0.67 0.70 0.68 
   2ezh 65 0.51 0.36 0.59 0.62 
   2ezk 93 0.90 0.83 0.86 0.84 

Arc Repressor Mutant,  

subunit A 

 

  250 1fow 76 0.63 0.72 0.68 0.77 

0.68 ± 

0.11 

0.71 ± 

0.15 

0.69 ± 

0.08 

0.69 ± 

0.11 

10 760 10 1c52 131 0.41 0.60 0.46 0.34 
   1c75 71 0.45 0.29 0.42 0.22 
   1ccr 111 0.58 0.60 0.67 0.68 

   1co6 107 0.31 0.31 0.36 0.20 
   1cot 121 0.37 0.53 0.41 0.34 
   1cyj 90 0.46 0.47 0.57 0.44 
   1fi3 82 0.58 0.77 0.59 0.75 
   1gdv 85 0.59 0.88 0.68 0.86 

Cytochrome Bc1 

Complex; Chain D, 

domain 2 

   3c2c 112 0.55 0.62 0.54 0.52 

0.48 ± 

0.10 

0.56 ± 

0.19 

0.52 ± 

0.12 

0.48 ± 

0.24 

10 238 10 1b8l 108 0.83 0.84 0.61 0.71 
   1g33 73 0.67 0.89 0.73 0.79 
   1rk9 110 0.60 0.65 0.58 0.59 
   1rro 108 0.62 0.34 0.65 0.40 
   1sra 151 0.61 0.73 0.59 0.84 
   2bca 75 0.54 0.55 0.56 0.58 
   3pat 109 0.51 0.11 0.51 0.32 

Recoverin; domain 1 

   1c3z 108 0.54 0.57 0.53 0.57 

0.62 ± 

0.10  

  

  

  

0.59 ± 

0.26 

  

0.60 ± 

0.07 

  

0.60 ± 

0.18 

  

10 530 10 1b9o 123 0.68 0.76 0.68 0.76 
   1gd6 119 0.66 0.48 0.67 0.54 
   1hfx 123 0.69 0.65 0.59 0.53 
   1i56 130 0.50 0.62 0.48 0.56 
   1iiz 120 0.69 0.70 0.68 0.71 
   1jug 125 0.71 0.65 0.73 0.75 

Lysozyme 

   2eql 129 0.81 0.92 0.81 0.92 

0.68 ± 

0.09 

  

  

0.68 ± 

0.14 

  

0.66 ± 

0.10 

  

0.68 ± 

0.15 

  

10 490 10 1a6m 151 0.61 0.50 0.68 0.57 
   1dlw 116 0.60 0.60 0.47 0.49 
   1hlb 157 0.54 0.41 0.38 0.12 
   2gdm 153 0.57 0.73 0.69 0.88 
   2hbg 147 0.53 0.22 0.67 0.70 

Globins 

  30 1a87 297 0.98 0.96 0.78 0.76 

0.64 ±  

0.17  

  

  

0.57 ± 

0.26 

  

0.61 ± 

0.15 

  

0.59 ± 

0.27 

  

10 1200 10 1hqb 80 0.49 0.53 0.48 0.53 
   1hy8 76 0.58 0.72 0.47 0.46 
   2af8 86 0.51 0.64 0.42 0.49 
  20 1cei 85 0.67 0.62 0.53 0.80 
   1gxg 85 0.62 0.67 0.62 0.67 

Non-ribosomal Peptide 

Synthetase 

Peptidyl Carrier 

Protein; Chain A 
   1imq 86 0.57 0.64 0.58 0.83 

0.57 ± 

0.07 

  

  

0.64 ± 

0.06 

  

0.52 ± 

0.07 

  

0.63 ± 

0.16 

  

20 120 10 1apc 106 0.71 0.67 0.56 0.64 
  20 1aep 153 0.80 0.67 0.69 0.67 
   1bz4 144 0.56 0.52 0.49 0.58 

Four Helix Bundle 

(Hemerythrin (Met), 

subunit A)    30 1jmw 146 0.68 0.92 0.78 0.93 

0.69 ± 

0.10 

0.70 ± 

0.17 

0.63 ± 

0.13 

0.71 ± 

0.15 

10 150 20 1coo 81 0.85 0.88 0.83 0.80 
   1doq 69 0.74 0.75 0.66 0.91 

5' to 3' exonuclease, C-

terminal subdomain 
  90 1tam 120 0.69 0.82 0.64 0.86 

0.76 ± 

0.08 

0.82 ± 

0.07 

0.71 ± 

0.10 

0.86 ± 

0.06 

10 220 10 1ann 315 0.79 0.68 0.79 0.69 
   1axn 323 0.75 0.63 0.73 0.63 

Annexin V; domain 1 

  
   1hvf 313 0.84 0.76 0.84 0.74 

0.79 ± 

0.05 

0.69 ± 

0.07 

0.79 ± 

0.06 

0.69 ± 

0.06 

10 260 40 1neq 74 0.69 0.84 0.71 0.87 
   1pru 56 0.70 0.60 0.66 0.79 

434 Repressor (Amino-

terminal Domain) 
   1r69 63 0.45 0.42 0.46 0.44 

0.61 ± 

0.14 

0.62 ± 

0.21 

0.61 ± 

0.13 

0.70 ± 

0.23 

10 533 10 1ddf 127 0.71 0.91 0.71 0.91 
   1e3y 104 0.61 0.86 0.73 0.86 

Death Domain, Fas 

   2ygs 92 0.67 0.52 0.53 0.41 

0.66 ± 

0.05 

0.76 ± 

0.21 

0.66 ± 

0.11 

0.73 ± 

0.28 

20 90 10 1lwb 122 0.53 0.44 0.56 0.60 Phospholipase A2 

   1pir 124 0.57 0.52 0.59 0.46 
0.60 ± 0.54 ± 0.58 ± 0.46 ± 
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   1umv 122 0.71 0.66 0.60 0.32 0.09 0.11 0.02 0.14 

20 1250 10 1buy 166 0.56 0.58 0.62 0.67 
   1ijz 113 0.39 0.29 0.60 0.57 

Growth Hormone; 

Chain: A; 
   1irl 133 0.83 0.93 0.86 0.94 

0.59 ± 

0.22 

0.60 ± 

0.32 

0.69 ± 

0.14 

0.73 ± 

0.19 

25 40 20 1bd8 156 0.75 0.61 0.72 0.57 
   2myo 118 0.71 0.70 0.64 0.64 

Serine Threonine 

Protein Phosphatase 5, 

Tetratricopeptide repeat 

  90 1eyh 144 0.56 0.62 0.67 0.72 

0.67 ± 

0.10 

0.64 ± 

0.05 

0.68 ± 

0.04 

0.64 ± 

0.08 

10 8 60 1qzm 94 0.56 0.69 0.59 0.74 Helicase, Ruva Protein; 

domain 3 
  100 1yub 245 0.82 0.90 0.82 0.90 

0.69 ± 

0.18 

0.80 ± 

0.15 

0.71 ± 

0.16 

0.82 ± 

0.11 

10 418 10 1aa2 108 0.51 0.56 0.57 0.79 Actin-binding Protein, 

T-fimbrin; domain 1 
   1mb8 243 0.86 0.93 0.62 0.87 

0.69 ± 

0.25 

0.75 ± 

0.26 

0.60 ± 

0.04 

0.83 ± 

0.06 

Insulin-like, subunit E 10 100 10 1b9g 57 0.55 0.53 0.63 0.61     

Hydrophobic Seed 

Protein 

10 110 10 1l6h 69 0.68 0.67 0.67 0.64     

Enzyme I; Chain A, 

domain 2 

10 274 10 1eza 259 0.73 0.94 0.84 0.94     

Endonuclease V 10 440 10 2end 137 0.55 0.69 0.63 0.74     

Ribosomal Protein S7 10 455 10 1rss 135 0.92 0.97 0.88 0.93     

Peroxidase; domain 1 10 520 20 1abv 105 0.68 0.94 0.85 0.95     

Major Prion Protein  10 790 10 1ag2 103 0.72 0.72 0.53 0.72     

Cysteine Motif 10 810 10 1hp8 68 0.86 0.81 0.74 0.77     

N-utilizing Substance 

Protein B Homolog; 

Chain A 

10 940 10 1tzw 142 0.80 0.87 0.79 0.86     

Villin Headpiece 

Domain; Chain A 

10 950 10 1qqv 67 0.71 0.75 0.65 0.79     

Ribosomal Protein S4 

Delta 41; Chain A, 

domain 1 

10 1050 10 1c05 159 0.61 0.72 0.65 0.79     

c-terminal domain of 

poly(a) binding protein 

10 1900 10 1i2t 61 0.59 0.55 0.79 0.89     

Pheromone ER-1 20 50 10 2erl 40 0.78 0.65 0.73 0.76     

Acyl-CoA Binding 

Protein 

20 80 10 1mix 206 0.65 0.44 0.60 0.39     

Receptor-associated 

Protein 

20 81 10 1nre 81 0.77 0.60 0.58 0.55     

Glycosyltransferase 50 10 20 1c3d 294 0.58 0.56 0.64 0.61     

Class 2: mainly-beta 

60 40 10 1bmg 98 0.70 0.73 0.70 0.73 
   1cdy 178 0.90 0.86 0.90 0.86 
   1cid 177 0.68 0.79 0.65 0.50 
   1nct 98 0.48 0.63 0.48 0.65 
   1qsz 101 0.57 0.65 0.54 0.64 
   1tit 89 0.68 0.58 0.68 0.58 
   1wit 93 0.58 0.36 0.59 0.38 
  20 1ok0 74 0.69 0.61 0.69 0.62 
  30 1bj8 109 0.55 0.35 0.55 0.35 
   1fna 91 0.61 0.31 0.45 0.42 
   1n6v 212 0.68 0.82 0.68 0.75 
  150 1bci 123 0.46 0.64 0.46 0.49 
  230 1noa 113 0.76 0.78 0.75 0.70 
  290 1e5b 87 0.46 0.63 0.46 0.63 
   1exg 110 0.44 0.65 0.43 0.66 
   1heh 88 0.56 0.67 0.56 0.67 
  420 1a8z 153 0.51 0.62 0.49 0.59 
   1aac 105 0.54 0.60 0.54 0.60 
   1bqk 124 0.62 0.76 0.67 0.84 

Immunoglobulin-like 

  

   1byp 99 0.47 0.43 0.50 0.45 

0.60 ± 

0.11 

0.63 ± 

0.15 

0.60 ± 

0.12 

0.62 ± 

0.13 
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   1plb 97 0.54 0.70 0.54 0.70 
   1plc 99 0.70 0.80 0.70 0.80 
   1pmy 123 0.59 0.65 0.59 0.65 
   2cbp 96 0.48 0.65 0.48 0.65 
   2plt 98 0.48 0.33 0.50 0.35 
  550 1ifg 140 0.70 0.65 0.63 0.58 
  740 1amx 150 0.49 0.42 0.48 0.74 
  760 1whp 94 0.56 0.66 0.56 0.66 
  770 1ahk 129 0.68 0.59 0.68 0.59 
  830 1hcz 250 0.78 0.66 0.77 0.66 
  1030 1qts 247 0.74 0.88 0.82 0.76 
  1220 1m42 102 0.60 0.67 0.60 0.67 
40 50 40 1b4o 62 0.81 0.87 0.76 0.86 
   1bo0 76 0.65 0.71 0.73 0.83 
   1dol 71 0.78 0.92 0.77 0.92 
   1hfg 71 0.65 0.85 0.63 0.80 
   1je4 69 0.57 0.69 0.55 0.68 
   1sap 66 0.84 0.86 0.81 0.82 
  100 1dcz 77 0.67 0.81 0.67 0.81 
   1fyc 106 0.88 0.86 0.88 0.86 
   1ghj 79 0.73 0.55 0.71 0.54 
   1iyu 79 0.69 0.84 0.69 0.84 
   1lac 80 0.77 0.78 0.77 0.78 
  140 1ewi 114 0.75 0.84 0.75 0.84 

OB fold 

(Dihydrolipoamide 

Acetyltransferase, E2P) 

  

  

   1mjc 69 0.66 0.82 0.67 0.82 

0.73 ± 

0.09 

0.80 ± 

0.10 

0.72 ± 

0.08 

0.80 ± 

0.10 

60 120 180 1bk1 182 0.71 0.72 0.45 0.74 
  200 1a3k 137 0.38 0.34 0.38 0.36 
   1gbg 214 0.72 0.67 0.50 0.52 
   2ayh 214 0.61 0.60 0.59 0.57 
  230 1pgs 311 0.52 0.58 0.49 0.68 
  260 1gui 155 0.53 0.61 0.52 0.69 
   1kex 155 0.50 0.86 0.62 0.77 
   1ulo 152 0.78 0.68 0.68 0.74 

Jelly Rolls 

 

  

  390 1job 162 0.78 0.89 0.87 0.94 

0.61 ± 

0.14  

  

0.66 ± 

0.16 

  

0.57 ± 

0.15 

  

0.67 ± 

0.17 

  

30 30 40 1ark 60 0.74 0.75 0.72 0.83 
   1awj 77 0.76 0.85 0.76 0.85 
   1hsq 71 0.75 0.90 0.75 0.90 
   1pwt 61 0.70 0.78 0.70 0.78 
   1shg 57 0.54 0.61 0.54 0.61 
   1tuc 61 0.68 0.81 0.68 0.81 
  50 1qp2 70 0.76 0.87 0.75 0.88 

SH3 type barrels 

  

  190 1lpl 95 0.60 0.81 0.60 0.81 

0.69 ± 

0.08 

  

  

0.80 ± 

0.09 

  

0.69 ± 

0.08 

  

0.81 ± 

0.09 

  

40 128 20 1bsq 162 0.53 0.54 0.46 0.57 
   1cbs 137 0.39 -0.03 0.39 0.21 
   1ifc 131 0.36 0.24 0.41 0.62 
   1lpj 133 0.45 0.33 0.37 0.45 
   1ngl 179 0.89 0.93 0.88 0.93 

Lipocalin 

  

  

  
   1p6p 125 0.54 0.70 0.70 0.80 

0.53 ± 

0.19  

  

0.45 ± 

0.34 

  

0.54 ± 

0.21 

  

0.60 ± 

0.25 

  

60 20 10 1ag4 103 0.55 0.69 0.54 0.59 
   1amm 174 0.72 0.74 0.74 0.72 
  30 1bhu 102 0.68 0.72 0.68 0.72 
   1f53 84 0.58 0.60 0.58 0.60 

Gamma-B Crystallin; 

domain 1 

 
   1gh5 87 0.67 0.79 0.67 0.79 

0.64 ± 

0.07 

 

0.71 ± 

0.07 

  

0.64 ± 

0.08 

  

0.68 ± 

0.09 

  

10 25 10 1ata 62 0.76 0.70 0.75 0.68 
   1ip0 50 0.88 0.97 0.88 0.97 
   1k37 46 0.66 0.46 0.66 0.46 

Laminin 

   2tgf 50 0.59 0.61 0.58 0.68 

0.72 ± 

0.13 

0.69 ± 

0.21 

0.72 ± 

0.13 

0.70 ± 

0.21 

10 60 10 1chv 60 0.68 0.62 0.68 0.62 
   1idi 74 0.49 0.74 0.46 0.74 

   1ntn 72 0.82 0.95 0.82 0.96 

CD59 

  

   1txa 73 0.69 0.60 0.70 0.61 

0.67 ± 

0.14 

0.73 ± 

0.16 

0.67 ± 

0.15 

0.73 ± 

0.16 

40 10 10 1arb 263 0.50 0.69 0.54 0.72 
   1dua 242 0.85 0.95 0.78 0.93 
   1p3c 215 0.56 0.59 0.58 0.56 

Thrombin, subunit H 

  

   2sfa 191 0.71 0.81 0.73 0.83 

0.66 ± 

0.16 

0.76 ± 

0.16 

0.66 ± 

0.12 

0.76 ± 

0.16 

40 100 10 1a58 177 0.70 0.88 0.56 0.73 
   1j2a 166 0.74 0.88 0.73 0.89 

Cyclophilin 

 
   2cpl 164 0.45 0.55 0.49 0.78 

0.63 ± 

0.16  

0.77  ± 

0.19  

0.59 ± 

0.12  

0.80 ± 

0.08  

80 10 50 1fmm 132 0.50 0.42 0.56 0.59 Trefoil (Acidic 

Fibroblast Growth 

Factor, subunit A) 

   1md6 154 0.70 0.77 0.70 0.77 
0.60 ± 

0.14 

0.60 ± 

0.25 

0.63 ± 

0.10 

0.68 ± 

0.13 

Cysteine Protease 

(Bromelain) Inhibitor, 

10 69 10 1bbi 71 0.87 0.89 0.87 0.89     
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subunit H 

Complement Module; 

domain 1 

10 70 10 1fbr 93 0.82 0.75 0.82 0.75     

Pdz3 Domain 30 42 10 1iu0 91 0.69 0.58 0.69 0.56     

HIV-inactivating 

Protein, Cyanovirin-n 

30 60 10 3ezm 101 0.72 0.84 0.74 0.85     

Heparin-binding Growth 

Factor, Midkine; Chain 

A, C-terminal Domain; 

30 90 10 1mkc 43 0.90 0.68 0.90 0.68     

Barwin-like 

endoglucanases 

40 40 20 1cz4 185 0.81 0.73 0.81 0.73     

Cathepsin D, subunit A; 

domain 1  

40 70 10 1flh 326 0.60 0.81 0.59 0.60     

Substrate Binding 

Domain Of DNAk; 

Chain A, domain 1 

60 34 10 1bpr 173 0.53 0.58 0.53 0.58     

Thaumatin 60 110 10 1aun 208 0.76 0.77 0.59 0.77     

Coagulation Factor XIII; 

Chain A, domain 1  

70 50 30 1gdf 145 0.88 0.98 0.87 0.98     

Rieske Iron-sulfur 

Protein 

102 10 10 1rfs 127 0.67 0.50 0.67 0.51     

Pectate Lyase C-like 160 20 10 1ee6 197 0.65 0.64 0.53 0.62     

Calcium-transporting 

ATPase, cytoplasmic 

transduction domain A 

170 150 10 1h6q 168 0.87 0.94 0.88 0.95     

Class 3: alpha-beta 

40 50 180 1chd 198 0.67 0.94 0.65 0.83 
  270 1dg9 157 0.42 0.34 0.48 0.57 
  280 1b1a 137 0.53 0.67 0.53 0.53 
   1be1 137 0.65 0.78 0.67 0.78 
  300 1ak2 220 0.83 0.85 0.82 0.84 
  360 1akq 147 0.55 0.64 0.55 0.64 
  410 1ido 184 0.48 0.52 0.50 0.62 
   1mjn 179 0.49 0.51 0.50 0.61 
  1470 2pth 193 0.80 0.87 0.77 0.85 
  1820 1be0 310 0.35 0.43 0.45 0.57 
   1cex 197 0.46 0.61 0.56 0.66 
  2300 1tmy 118 0.44 0.31 0.49 0.33 
   2fsp 124 0.51 0.47 0.39 0.37 
  10190 1cdz 96 0.71 0.82 0.53 0.70 

Rossman fold 

   1imo 88 0.85 0.90 0.84 0.91 

0.58 ± 

0.16 

0.62 ± 

0.21 

0.58 ± 

0.14 

0.65 ± 

0.17 

30 70 100 1opz 76 0.60 0.80 0.71 0.80 
  250 1mla 305 0.90 0.84 0.91 0.86 
  330 1d8z 89 0.80 0.94 0.81 0.94 
   1hd0 75 0.75 0.74 0.67 0.66 
   2mss 75 0.65 0.62 0.63 0.63 
   2sxl 88 0.67 0.88 0.66 0.89 
   2u2f 85 0.69 0.69 0.58 0.43 
  400 1fwp 69 0.48 0.39 0.48 0.41 
  680 1f2h 169 0.63 0.77 0.60 0.74 

Alpha-Beta Plaits 

  830 1p1l 102 0.78 0.95 0.79 0.95 

0.70 ± 

0.12 

  

0.76 ± 

0.17 

  

0.68 ± 

0.13 

  

0.73 ± 

0.20 

  

10 20 10 1pgx 70 0.69 0.83 0.66 0.78 
  30 1frd 98 0.69 0.73 0.69 0.73 
   2cjn 97 0.56 0.73 0.55 0.75 
   4fxc 98 0.47 0.61 0.48 0.57 
  90 1jru 89 0.68 0.67 0.70 0.89 
   1rrb 76 0.67 0.71 0.67 0.71 
   1ubi 76 0.78 0.89 0.79 0.89 

Ubiquitin-like 

(Ub-roll) 

  240 1ipg 85 0.92 0.94 0.93 0.95 

0.68 ± 

0.13 

  

0.76 ± 

0.11 

  

0.68 ± 

0.14 

  

0.78 ± 

0.12 

  

30 30 10 1c56 40 0.76 0.84 0.76 0.84 
   1chz 64 0.79 0.65 0.83 0.78 
   1jxc 68 0.61 0.79 0.58 0.77 

Defensin A-like 

   1jzb 66 0.60 0.66 0.39 0.46 

0.73 ± 

0.09 

0.78 ± 

0.09 

0.70 ± 

0.16 

0.77 ± 

0.14 
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   1nra 63 0.81 0.93 0.82 0.93 
   1px9 42 0.68 0.74 0.65 0.70 
   2b3c 64 0.75 0.83 0.75 0.83 
   2sn3 65 0.82 0.81 0.85 0.86 

  

  

      

40 30 10 1a23 189 0.50 0.71 0.46 0.56 
   1aba 87 0.66 0.65 0.64 0.64 
   1gh2 107 0.48 0.30 0.55 0.31 
   1i5g 144 0.48 0.35 0.38 0.46 
   1o73 144 0.43 0.40 0.42 0.27 
   1thx 108 0.78 0.90 0.78 0.89 

Glutaredoxin 

   1trs 105 0.55 0.53 0.46 0.32 

0.55 ± 

0.12 

 

0.55 ± 

0.22 

  

0.53 ± 

0.14 

  

0.49 ± 

0.22 

  

30 450 20 1ew0 130 0.94 0.98 0.95 0.98 
  30 1a0k 130 0.44 0.56 0.34 0.53 
   1acf 125 0.53 0.71 0.45 0.59 
   1pne 139 0.49 0.54 0.46 0.50 
  50 1h8m 140 0.66 0.78 0.68 0.82 

Beta-Lactamase 

  70 1h3q 140 0.60 0.69 0.63 0.72 

0.61 ± 

0.18 

  

  

0.71 ± 

0.16 

  

0.59 ± 

0.22 

  

0.69 ± 

0.19 

  

30 505 10 1ayd 101 0.65 0.72 0.69 0.87 
   1bfj 111 0.82 0.89 0.81 0.89 
   1jwo 97 0.57 0.78 0.57 0.79 

SHC Adaptor Protein 

   1oo3 111 0.59 0.51 0.58 0.51 

0.66 ± 

0.11 

0.73 ± 

0.16 

0.66 ± 

0.11 

0.77 ± 

0.18 

40 20 10 1ahq 133 0.55 0.60 0.41 0.24 

   1cof 135 0.71 0.74 0.70 0.73 
   1svr 94 0.57 0.81 0.60 0.81 

Severin 

   2vik 126 0.70 0.86 0.67 0.83 

0.63 ± 

0.08 

0.75 ± 

0.11 

0.60 ± 

0.13 

0.65 ± 

0.28 

40 420 10 1apa 261 0.68 0.65 0.68 0.66 
   1d8v 263 0.77 0.93 0.76 0.93 
   1mrg 246 0.54 0.73 0.55 0.75 

Ricin (A subunit); 

domain 1 

   1mrj 247 0.51 0.39 0.50 0.25 

0.63 ± 

0.12 

0.68 ± 

0.22 

0.62 ± 

0.12 

0.65 ± 

0.29 

10 50 40 1jnt 92 0.48 0.59 0.48 0.60 
   1rot 118 0.53 0.69 0.58 0.51 

DNA Polymerase III; 

Chain A, domain 2 
   1yat 113 0.60 0.72 0.60 0.52 

0.54 ± 

0.06 

0.67 ± 

0.07 

0.55 ± 

0.06 

0.54 ± 

0.05 

20 20 80 1c3f 265 0.56 0.59 0.49 0.46 
   1jfx 217 0.69 0.81 0.54 0.77 

TIM Barrel 

  140 1vfl 15 0.45 0.40 0.54 0.66 

0.57 ± 

0.12 

0.60 ± 

0.21 

0.52 ± 

0.03 

0.63 ± 

0.16 

30 160 60 2bb8 71 0.70 0.87 0.69 0.87 
  80 1bbg 40 0.52 0.67 0.52 0.67 

Double Stranded RNA 

Binding Domain 
  120 1iqs 88 0.88 0.87 0.89 0.88 

0.70 ± 

0.18 

0.80 ± 

0.12 

0.70 ± 

0.19 

0.81 ± 

0.12 

30 420 10 1goa 156 0.58 0.77 0.67 0.76 
   1ril 147 0.67 0.68 0.64 0.61 

Nucleotidyltransferase; 

domain 5 
  140 1ovq 138 0.64 0.84 0.64 0.84 

0.63 ± 

0.05 

0.76 ± 

0.08 

0.65 ± 

0.02 

0.74 ± 

0.12 

90 1210 10 1hg7 66 0.74 0.85 0.74 0.86 
   1ops 64 0.60 0.67 0.60 0.66 

Type Iii Antifreeze 

Protein Isoform Hplc 12 
   1ucs 64 0.64 0.82 0.62 0.75 

0.66 ± 

0.07 

0.78 ± 

0.10 

0.65 ± 

0.08 

0.76 ± 

0.10 

10 100 10 1dv8 128 0.80 0.82 0.78 0.82 Mannose-Binding 

Protein A; Chain A 
   1koe 172 0.49 0.41 0.48 0.37 

0.65 ± 

0.22 

0.62 ± 

0.29 

0.63 ± 

0.21 

0.60 ± 

0.32 

10 110 10 1a3s 158 0.79 0.87 0.79 0.87 Ubiquitin Conjugating 

Enzyme 
   2ucz 164 0.82 0.84 0.85 0.86 

0.81 ± 

0.02 

0.86 ± 

0.02 

0.82 ± 

0.04 

0.87 ± 

0.01 

10 120 10 1b5m 84 0.63 0.66 0.55 0.72 Flavocytochrome B2; 

Chain A, domain 1 
   1cyo 88 0.71 0.84 0.91 0.96 

0.67 ± 

0.06 

0.75 ± 

0.13 

0.73 ± 

0.25 

0.84 ± 

0.17 

10 450 10 1cew 108 0.72 0.63 0.80 0.83 Nuclear Transport 

Factor 2; Chain: A 
   1cyv 98 0.58 0.72 0.57 0.72 

0.65 ± 

0.10 

0.68 ± 

0.06 

0.69 ± 

0.16 

0.78 ± 

0.08 

30 1330 30 1ck2 104 0.46 0.78 0.45 0.79 60s Ribosomal Protein 

L30; Chain: A 
   1go1 102 0.64 0.89 0.65 0.89 

0.55 ± 

0.13 

0.84 ± 

0.08 

0.55 ± 

0.14 

0.84 ± 

0.07 

90 190 10 1jln 297 0.65 0.79 0.64 0.79 Protein-Tyrosine 

Phosphatase; Chain A 
   1m3g 145 0.45 0.46 0.43 0.47 

0.55 ± 

0.14 

0.63 ± 

0.23 

0.54 ± 

0.15 

0.63 ± 

0.23 

P-30 Protein 10 130 10 1a5p 124 0.70 0.72 0.71 0.61     

Mlu1-box Binding 

Protein; DNA-binding 

Domain 

10 260 10 1bm8 99 0.45 0.60 0.48 0.56     

Trypsin Inhibitor V; 

Chain A 

30 10 10 1mit 69 0.49 0.39 0.48 0.38     

Phenylalanyl-tRNA 

Synthetase; Chain B, 

domain 1 

30 56 30 1kvv 104 0.64 0.85 0.55 0.78     
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Wheat Germ Agglutinin 

(Isolectin 2); domain 1 

30 60 30 1hpt 56 0.80 0.96 0.80 0.96     

Viral Topoisomerase I 30 66 10 1vcc 77 0.64 0.80 0.63 0.56     

Phosphorylase Kinase; 

domain 1 

30 200 20 1g8a 227 0.62 0.91 0.62 0.91     

Rec A Protein; domain 2 30 250 10 1aa3 63 0.60 0.80 0.61 0.87     

Barnase; Chain D 30 370 10 1bta 89 0.38 0.16 0.44 0.15     

Potassium Channel 

Kv1.1; Chain A 

30 710 10 1cs3 116 0.74 0.82 0.70 0.79     

Metal Transport, 

Frataxin; Chain A 

30 920 10 1ew4 106 0.45 0.31 0.59 0.54     

Carboxypeptidase 

Inhibitor; Chain A 

30 1040 10 1dtv 67 0.59 0.75 0.59 0.75     

Nonspecific Lipid-

transfer Protein; Chain 

A 

30 1050 10 1c44 123 0.63 0.80 0.64 0.80     

Conserved Hypothetical 

Protein Mth637; Chain: 

A 

30 1200 10 1jrm 104 0.44 0.52 0.44 0.57     

Histidine-containing 

Protein; Chain: A 

30 1340 10 1ptf 87 0.35 -0.02 0.38 0.00     

Cell Division Protein 

Zipa; Chain: A 

30 1400 10 1f7w 144 0.61 0.88 0.63 0.88     

Lysozyme-like 40 80 10 1j3g 187 0.52 0.74 0.49 0.58     

Oxidized Rhodanese; 

domain 1 

40 250 10 1c25 161 0.47 0.52 0.41 0.56     

Uracil-DNA Glycosylase, 

subunit E 

40 470 10 1udg 228 0.53 0.20 0.45 0.41     

Replication Protein E1; 

Chain: A 

40 1310 20 1l2m 118 0.74 0.81 0.74 0.81     

Nuia 40 1460 10 1j57 143 0.71 0.85 0.75 0.85     

Hepatocyte Growth 

Factor 

50 4 10 2hgf 97 0.63 0.79 0.64 0.65     

GroEL 50 7 10 1srv 145 0.38 0.46 0.36 0.47     

Proliferating Cell 

Nuclear Antigen 

70 10 10 1plr 258 0.71 0.71 0.53 0.47     

Phenol Hydroxylase P2 

Protein 

90 56 10 1g10 102 0.53 0.51 0.53 0.53     

Phosphatidylethanolami

ne-binding Protein 

90 280 10 1a44 185 0.50 0.69 0.42 0.62     

Nucleotide Excision 

Repair Protein XPA 

(XPA-MBD); B Chain A 

90 530 10 1xpa 113 0.82 0.87 0.70 0.78     

Sugar Binding Protein, 

Amyloid A4 Protein; 

Chain A 

90 570 10 1mwp 96 0.77 0.92 0.65 0.91     

Endoglucanase; Chain: 

A 

90 1220 10 1e8p 46 0.64 0.69 0.63 0.78     

Class 4: few secondary 

structure 

Omega-AgatoxinV 10 40 10 1omb 35 0.70 0.64 0.70 0.64     
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Low-density Lipoprotein 

Receptor 

10 400 10 1j8e 44 0.82 0.83 0.83 0.85     

Factor Xa Inhibitor 10 410 10 1dem 60 0.72 0.86 0.73 0.84     

H-NS DNA Binding 

Protein 

10 430 10 1hnr 47 0.50 0.49 0.49 0.45     

Virus Scaffolding 

Protein; Chain A 

10 810 10 2gp8 40 0.62 0.46 0.50 0.32     

a) Fold family (Topology) as classified by CATH.201 b) CATH protein structure 
classification,201 A: architecture, T: topology, H: homologous superfamily. c) Protein 
size in number of amino acids. d) Elastic Network Model. e) Rigid Cluster Normal 
Mode Analysis.68 f) Maximal overlaps as calculated by Eq. 4.1. g) Maximal 
correlations in magnitudes of modes as calculated by Eq. 4.2. The three pairs of 
proteins used in Table 5.3 (see section 5.1.4) are highlighted in bold.  
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