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Abstract. Condensing phenomena for systems biology, ecology and sociology present in real
life different complex behaviors. Based on local interaction between agents, we present another
result of the Energy-based model presented by [20]. We involve an additional condition provid-
ing the total condensing (also called consensus) of a discrete positive measure.
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1 Introduction
The dynamics of of autonomous agents systems, which lead to condensing or subcondensing is
an interesting and omnipresent modeling approach in the applied sciences. They describe the
behaviors of self-organizing populations of multi-agents. For example swarming and schooling
display interesting and beautiful social aggregation. Flying or swimming in a groups is con-
ditioned by applying strong local rules. These rules, also called natural intelligence, lead to
condensing in order to keep energy, provide security and outwit predators. For more details we
refer to [2, 3, 6, 10, 16]. Biology presents another condensing phenomena, like condensation of
cells. That one cell becomes a brain cell and another one a liver cell may depend on physical
and biological factors. Moreover, the spread of cancer tumor can be seen not only as a diffu-
sion problem but also as a condensing phenomenon. Cancer development and the dynamics of
the immune system have been a significant focus of mathematical modeling in recent decades,
see for example [14, 17]. In social science, the opinion dynamics studied by Hegselmann and
Krause in [11, 12, 13], where opinion formation within an interacting group, leads to consensus,
polarization or fragmentation and presents another application of condensing.

We believe that the dynamics of groups have many forms and various applications. The natural
intelligence of each member of the group motivates it permanently to look for other positions.
Following a gradient trajectory or the barycenter rule on his neighborhood or any local rule,
the agent moves locally considering all other positions and neighbors on his neighborhood.
Presently, we are particularly interested to extend the Energy-based model for condensing of
particles (in academic point of view) to reach total condensing, where the final state with a
global zero-energy stabilizes the nonlinear system. Moreover, total condensing is an interesting
case with a stochastic construction. Thus, our goal here is to give and to test an additional and
local condition, which may almost lead to the total condensing of a collection of particles. We
simulate our experiments in one and two dimensional Euclidean metric spaces.
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2 Energy function in continuous metric space
Let (X, d) be a metric space with metric d. We shall assume that all bounded subsets of X are
compact. Hence, X is locally compact and we may use Radon measures. Let M+(X) be the
set of nonnegative Radon measures on X . We shall however for simplicity deal with discrete
measures and discrete time only. A measure is given as

m :=
∑

x∈S(m)

m(x)δx, (1)

where S(m) denote the support of m and δx the Kronecker symbol. Note that S(m) is discrete.
For such a measure, the energy map E, defined by [20] given as

E : M+(X) −→ IR+ (2)

E(m) =
∑

d(x,y)≤ε

m(x)m(y)d2(x, y).

is in general a not continuous function of m. The following example illustrates this:

Example 2.1. For X = IR, S(m) = {1, 2}, ε = 1 and a given m with

m =
∑

x∈{1,2}
m(x)δx = δ1 + δ2, (3)

it follows that E(m) = 2. Now let mj be a sequence of positive measures defined as

mj = δ1 + δ2+ 1
j
, (4)

it follows limj mj = m and E(mj) = 0, and

E(lim
j

mj) = 2 6= lim
j

E(mj) = 0. (5)

Hence, from (5), it follows that the map E with the definition (2) is not continuous in m.

In order to obtain an energy function which depends continuously on m, we extend the
definition (2) to the following:

E : M+(X) −→ IR+ (6)

E(m) =

∫

X

∫

X

ϕ(x, y)d2(x, y)m(dx)m(dy)

=
∑
x,y

m(x)m(y)ϕ(x, y)d2(x, y),

where ϕ is a continuous function, which satisfies:

ϕ : X ×X −→ [0, 1]; (7)

ϕ(x, y) :=

{
1, if d(x, y) ≤ ε,
0, if d(x, y) ≥ ε+ θ.

For ε > 0 and θ > 0. These parameters will be fixed throughout this paper. The function ϕ will
be called intensity function.
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Example 2.2.

1. For ε, θ > 0, define the continuous function ψ as

ψ : [0,∞) −→ [0, 1];

ψ(x) :=

{
1, if 0 ≤ x ≤ ε,

0, if x ≥ ε+ θ.

Then ϕ : (x, y) 7→ ϕ(x, y) = ψ(d(x, y)) is an intensity function.

2. The following function is an intensity function for every ε > 0 and θ > 0:

ϕ : IR× IR −→ [0, 1];

ϕ(x, y) :=





1, if |x− y| ≤ ε,

0, if |x− y| ≥ ε+ θ.(
ε+θ−|x−y|

θ

)
otherwise.

3 Condensing model
Let ME(X) be the set of discrete and nonnegative measure with E(m) < ∞. As in [20] a pair
(a, a∗) ∈ X ×X operates on ME(X) as

m∗(x) = (a, a∗,m)(x) =





m(x); if x /∈ {a, a∗},
0; if x = a,
m(a) +m(a∗); if x = a∗.

Note that if m ∈ ME(X) then m∗ ∈ ME(X). The energy of a point a ∈ X with respect to
m ∈ ME(X) is

e : X ×ME(X) −→ IR+ (8)

e(a,m) =
∑
y

m(y)ϕ(a, y)d2(a, y).

Lemma 3.1. For a, a∗ ∈ X , m ∈ ME(X) and m∗ := (a, a∗,m), we have

E(m)− E(m∗) = 2m(a)
[
e(a,m)− e(a∗,m∗)

]
. (9)

Proof. For simplicity, let us denote by Im the following term:

Im :=
∑

{x,y}∩{a,a∗}=∅
m(x)m(y)ϕ(x, y)d2(x, y),

and let us compute the energy of m:

E(m) =
∑
x,y

m(x)m(y)ϕ(x, y)d2(x, y) (10)

= Im + 2
∑
x,y

m(a)m(y)ϕ(a, y)d2(a, y)

+2
∑
x,y

m(a∗)m(y)ϕ(a∗, y)d2(a∗, y)− 2m(a∗)m(a)ϕ(a∗, a)d2(a∗, a)

= Im + 2m(a)e(a,m) + 2m(a∗)e(a∗,m)− 2m(a∗)m(a)ϕ(a∗, a)d2(a∗, a).
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Similarly for m∗ (by replacing m by m∗), we get

E(m∗) = Im∗ + 2m∗(a)e(a,m∗) + 2m(a∗)e(a∗,m∗) (11)
−2m∗(a∗)m∗(a)ϕ(a∗, a)d2(a∗, a).

Note that

m∗(a) = 0 and Im = Im∗ , (12)

and in addition we have:

e(a∗,m∗) = e(a∗,m)−m(a)ϕ(a∗, a)d2(a∗, a). (13)

Therefore, from (11)–(13) it follows:

E(m∗) = Im∗ + 2m∗(a)e(a,m∗). (14)

From (10) and (14), it follows that

E(m)− E(m∗) = 2m(a)
[
e(a,m)− e(a∗,m∗)

]
, (15)

which prove the result of the lemma.

In order to extend the move notion to a continuous metric space, we use the intensity func-
tion to introduce an additional necessary condition. Recall that in the case of a finite metric
space, we required for (m,m∗) to be condensing

(i) e(a,m)− e(a∗,m∗) > 0 and

(ii) d(a, a∗) ≤ ε.

Now we require a∗ minimizing the function y → e(y,m∗)ϕ(a, y).

Definition 3.1 (Model).
A pair (m,m∗) is called condensing, if there is (a, a∗) ∈ S(m)×X such that

(i) d(a, a∗) ≤ ε+ θ,

(ii) m∗ = (a, a∗,m) and

(iii) e(a∗,m∗)ϕ(a, a∗) < e(y,m∗)ϕ(a, y), d(a, y) ≤ ε+ θ, ∀y.

A sequence of non negative measures m1,m2, . . . is called condensing, if for every i the pair
(mi,mi+1) is condensing.

It is important to note that a singular admissible move according to definition 3.1 satisfies
the so called minimality condition: If a moves to a∗ then e(a,m) > e(a∗,m∗). In other words
the particle a moves where the local energy smaller, in this case it moves where the energy is
minimal. Our goal is to construct a condensing sequence, with vanishing energy (stable state)
at the limit state. The following corollary is useful:

Corollary 3.1. If m1,m2, . . . is a singularly condensing sequence, then

lim
i
E(mi) = ` ≥ 0. (16)
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Proof. The proof follows immediately from definition 3.1 and lemma 3.1.
Our goal is to prove the existence of condensing sequences converging to a measure m, such that
E(m) = 0. Therefore, we define the so called effectively condensing sequences: A singularly
condensing sequence m1,m2, . . . is called effectively condensing sequence if there exists c > 0
such that

(i) mi+1 = (a, a∗,mi),

(ii) E(mi)− E(mi+1) ≥ cα(mi),

where α(mi) = maxy
{
ϕ(y, a)d2(y, a)|y ∈ S(mi)

}
. From (14) and (15) and

c = 2min
a

{
m(a)|a ∈ S(mi)

}
,

follow the existence of the effectively condensing sequence.

Lemma 3.2. Suppose that m1,m2, . . . is an effectively condensing.

if lim
i→∞

E(mi) = E(m), then α(m) = 0. (17)

Proof. Consider η > 0, from limi→∞ E(mi) = E(m), exists i0 such that for all i > i0, it
follows

2cα(mi) ≤ E(mi)− E(m) ≥ η, (18)

for large i, we get limi α(m
i) = 0 and still α(m) = 0. ¥

Theorem 3.1. If (X, d) is a compact metric space, then every effectively condensing sequence
is finite such and it exists k ≥ 0 such that E(mk) = 0.

Proof. Since X is compact, then ∪iS(m
i) is relative compact and there exists a subsequence

mij of mi such that limj m
ij = m and limj E(mij) = E(m). From lemma 3.2 it follows

that limj α(m
ij) = 0 and α(m) = 0. Since the sequence m1,m2, . . . is effectively condens-

ing, and from definition 3.1 there exists k such that α(mk) = 0. Therefore, for all x, y ∈ S(mk),
it follows

d(x, y) = 0 or d(x, y) ≥ ε+ θ (19)

Hence, E(mk) = 0 and still mk is a collection of isolated masses with propriety (19) or a point
mass m = m(X)δa for a ∈ X. ¥
Remark 3.1. We remarked that even if the energy of the limit measure vanishes, the results are
non necessary a singleton (total condensing). The limit measure is a collection of segregated
subgroups. Total condensing of particles as physical phenomena is subject of many scientists by
studying consensus dynamics of opinions, such the model proposed by [11]. Thus, we construct
in the next section an additional condition to reach total condensing.

4 Reaching total condensing (consensus)
An interesting phenomenon of condensing sequences is the state of total condensing, in another
context consensus. Under the Hegselmann and Krause (HK) model [13], one of the main ques-
tions is the consensus of the opinions under bounded confidence, in despondence of the initial
distribution and a suitable choice of the confidence, for more details, we refer to [11, 12, 9, 5].
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The HK-model motivated us to purpose the energy-based model, which basically has similar
behaviors on convex metric spaces. Moreover, we give an additional condition, which may
cause, in the case of convex metric spaces, total condensing.

Consider a convex metric space (X, d) with a metric d and let m be a positive measure in
M+(X) with support S(m). We require the following initial condition:

∀x ∈ S(m) : eε(x,m) > 0.

Furthermore, we define a usual move based on the energy given as:

(i) m∗ = (a, a∗,m) and

(ii) a∗ minimizing y → e(y,m∗)ϕ(a, y), with d(a, y) ≤ ε+ θ,

and suppose for a move candidate a there is a set of positions1 N∗
ε+θ(a) minimizing the energy

function. Let us now apply the average rule of the HK-model: We build the barycenter of all
mass points neighbors of a, namely over the set Nε+θ(a) and set b = Bareycenter{x|x ∈
Nε+θ(a)}2. The following algorithm present the move based on the energy with the additional
condition:

0. Fix ε, θ, r > 0;

1. Fix a move candidate a ∈ S(m);

2. Compute the barycenter of Nε+θ(a);

3. Approximate N∗
ε+θ, and Nr(b);

4. If N∗
ε+θ(a) ∩Nr(b) 6= ∅;

Additional condition:
5. Chose randomly a∗ ∈ N∗

ε+θ(a) ∩Nr(b) for the confidence r > 0;

6. Move a to a∗;

7. Else if N∗
ε+θ(a) ∩Nr(b) = do nothing.

5 Numerical simulation
In this section we perform some numerical tests on the condensing model. Although results we
present here pertain academic examples only. The method can be extended to more realistic
problems using real parameters and suitable modifications. Moreover, to give sense to the con-
densing sequence (3.1) two steps are required namely, the computation of local energy given
by (8) of a particle x and the comparison procedure with the local energy of a randomly chosen
point mass y such that d(x, y) ≤ ε+ θ. It is important to note that the particle y minimizes the
energy in his neighborhood. We simulate the condensing sequences in two domains, the real
line and plane such as:

Test 1. Two tests on the real line without the additional condition.
Test 2. Two tests on the real line with the additional condition.
Test 3. Two tests on the real plane with the additional condition.

1Note that N∗
ε+θ(a) is not necessary a subset of S(m).

2The barycenter will be approximated and depends on the gripoints of the domain
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5.1 One dimensional metric space
This section presents simulations on the real line. In order to compute the density of the points
masses of a measure at each iteration, the space domain is discretized into Nx = 50 uniform
gridpoints. The computational domain is X = [0, 1] and using the absolute value as a metric,
we carry out two tests of condensing sequences of two measures given as:

m :=
∑

x∈S(m)⊂[0,1]

m(x)δx, with S(m) = {x1, . . . , x50}. (20)

We run our code after fixing the order of reactions (the array of 50 indexes is randomly per-
muted). The following table summarizes the results of the simulations without additional con-
dition on the real line:

Parameter/Sim. (b) (a)
ε 0.02 0.02
θ 0.01 0.01

Initial state 50 masses (one) 50 masses (U(0, 4))
Final state 4 isolated masses 4 isolated masses

Number of iterations 175 195

Table 1: Results of simulations in the real line.

• We present in table 5.1 the results of the first test on the real line without the additional
conditions. The limit measure is a collection of subgroups. In these simulations, we show
four subgroups with different distributions and different iteration numbers.

• The figures 1 present the changing processes of one dimensional density functions of the
condensing of two measures. On the left, we show some iterations of simulation (b) and
on the right those of simulation (a). The initial states are chosen differently, for the case
(b), we generate a random distribution of particles on [0, 1] and for the case (a), we put
an on the uniform gridpoints equal masses. The density is computed on fixed gridpoints
Nx. For each simulation, the limit state is constituted from a ε + θ isolated masses with
different densities.

• For the same initial data, we simulate the condensing measures above with the additional
condition. Figure 2 show the condensing process. For both simulations, the finale states
represent a total condensing.

• It is important to note that the additional condition requires no isolating aspect for each
agent. It may lead in most cases to the total condensing state.
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Figure 1: One dimensional density function of the condensing measures on the real line for two
simulation, without additional condition (sim. (a) and (b)).
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Figure 2: Density of the condensing measures on the real line (sim. (a)).
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5.2 Two dimensional metric space
The two dimensional domain X = [0, 1]2 is discretized into Nx × Nx (in this case Nx = 20)
uniform gridpoints. We carry out two tests of condensing sequences of two measures given as:

m :=
∑

x∈S(m)⊂[0,1]2

m(x)δx, with S(m) = {x1, . . . , x441}. (21)

The following table summarizes the results of the simulations on the real plane for the measure
above:

Parameter/Sim. (a) (b)
ε 0.1 0.1
θ 0.001 0.001

Initial state 441 masses (one) 441 masses (U(0, 4))
Final state condensing condensing

Number of iterations more than 9600 more than 35000

Table 2: Results of two simulations on real planes.

• Table 5.2 presents the result of the condensing process on the real plane of two simulation.
Note that the total condensing behavior is clearly shown.

• For (ε, θ) = (0.1, 0.001). Figure 3 present the two dimensional density function of a
measure. In order to show the condensing of particles (also consensus), we plot the
corresponding contour in figure 4. These simulations need 9600 and 35000 time iterations
respectively until the limit state. Our code stops, when the total energy is negligible
(compared with a fixed tolerance). It is clearly shown in figures 3 and 4 that the particles
build mass point with total density in only one point of the computation domain. This
result will be different if we perform another simulation, even if we use the same data for
the initial measure.

• Figures 3 and 4 shows respectively the densities and the contour plots of the same exper-
iment.

• Figure 5 present curves of the decreasing energy function along the condensing process.
The finale energy vanishes, which means that the finale state is stable.
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Figure 3: Densities of a condensing sequence in an Euclidian continuous metric space, simula-
tion (a) (left column), (b) (right column).
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Figure 4: Condensing in an Euclidian continuous metric space, simulation (a) (left column), (b)
(right column).
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Figure 5: Condensing in an euclidian continuous metric space, simulation (a) (left column), (b)
(right column).

6 Concluding remarks
We have presented an experimental method, which leads, in discrete time, to total condensing
in a Euclidean metric space. Therefore, we believe that No-Isolation of the agents is a necessary
condition providing total condensing. The result presented here is one of many variations of the
energy-based model, thus it opens many possibilities to analyze other problems. The continu-
ous energy model can explain other interesting phenomena, for example the transformation of
continuous masses.
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