
 
 

GTPase activating protein Rap1GAP2 and 
synaptotagmin-like protein 1 interact and are 
involved in platelet dense granule secretion  

 

 
 
 
 

Dissertation 

zur Erlangung des Doktorgrades 

der Naturwissenschaften 

 

 

 

vorgelegt beim Fachbereich 

Chemische und Pharmazeutische Wissenschaften 

der Johann Wolfgang Goethe - Universität 

in Frankfurt am Main 

 

 

 

von 

Olga Neumüller 

aus Balchasch, Kasachstan 

 

 

 

Frankfurt 2008 

D30 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vom Fachbereich Chemische und Pharmazeutische Wissenschaften der Johann 

Wolfgang Goethe-Universität als Dissertation angenommen. 

 

 

 

 

 

 

 

Dekan:  Prof. Dr. Dieter Steinhilber 

 

Gutachter:  Prof. Dr. Theodor Dingermann 

  PD Dr. Albert P. Smolenski 

  Prof. Dr. Steve Watson 

 

 

 

Datum der Disputation:    25.11.2009 

 

 



 

 

 

 

 

 

 

 

 

Für meine Eltern. 
In Liebe und Dankbarkeit. 

 



Table of contents 
_________________________________________________________________________________ 

 

TABLE OF CONTENTS 

List of original publications…………………………………………………………. 1 

Abbreviations………………………………………………………………………….. 2 

SUMMARY……………………………………………………………………………… 5 

1. INTRODUCTION…………………………………………………………………… 7 
1.1 Platelets          7 
1.2 Platelet activation and inhibition       9                               

 1.2.1   Platelet activators        9 
 1.2.2   Platelet inhibitors        11 

       1.3 Platelet granule secretion        11 
             1.3.1   Platelet granules        11 
             1.3.2    Molecular mechanisms of platelet granule secretion   12 

       1.4 Platelet aggregation        18 
 1.5 Aims of the present study        21 

2. MATERIALS AND METHODS……………………………………………………. 22  
2.1 Materials          22 

2.1.1  Plasmids and cDNAs       22 
2.1.2  Constructs and primers       22 
2.1.3  Yeast and bacteria strains, cell lines     22 
2.1.4  Antibodies         23 
2.1.5  Enzymes and purified proteins      24 
2.1.6  Standards and kits        24 
2.1.7  Chemicals and special reagents      24 
2.1.8  Buffers, solutions and gels       25 
2.1.9  Consumables        27 
2.1.10 Equipment         27 

2.2 Molecular biological methods       28     
2.2.1  Agarose gel electrophoresis      28 
2.2.2  Cloning of PCR products       28 
2.2.3  In-vitro mutagenesis       30  

2.3 Cell biological methods        30 
2.3.1  Cell culture and transfection      30 
2.3.2  Platelet preparation        31 
2.3.3  Cell lysis         31 
2.3.4  Immunofluorescence microscopy      31 

 

I 
 



Table of contents 
_________________________________________________________________________________ 

 

 

2.4 Protein biochemical methods       32 
2.4.1  Yeast transformation       32 
2.4.2  Expression and purification of GST fusion proteins   32 
2.4.3  Expression and purification of His6-tagged proteins   33 
2.4.4  SDS-PAGE and immunoblotting      34 
2.4.5  Immunoprecipitation and pull-down assays    34 
2.4.6  Antibody production        35 
2.4.7  Phospholipid binding assay (PIPStrip)     35 
2.4.8  Peptide binding assay (PepSpot)      35 
2.4.9  In-vitro phosphorylation       35 
2.4.10 Affinity chromatography       36 

2.5 Other Methods         36 
2.5.1  In-vitro GAP assay        36 
2.5.2  Cell adhesion assay       37 
2.5.3  Prostate-specific antigen secretion assay     37 
2.5.4  Serotonin secretion  assay of intact platelets    38 
2.5.5  Serotonin secretion assay of permeabilized platelets   38 
2.5.6  Statistical analysis        39 

 
3. RESULTS…………………………………………………………………………… 40 

3.1 Verification of Slp1 as new interaction partner of Rap1GAP2   40 
3.1.1  Slp1 is a new binding partner of Rap1GAP2    40 
3.1.2  Rap1GAP2 and Slp1 interact in transfected mammalian cells  41 
3.1.3  Slp1 is expressed and binds to Rap1GAP2 in human platelets  43 

3.2 Characterization of the Rap1GAP2/Slp1 interaction    46 
3.2.1  The C2A domain of Slp1 is sufficient for binding to Rap1GAP2  46   
3.2.2  Binding of Rap1GAP2 does not affect lipid binding of Slp1  48  
3.2.3  Rap1GAP2 interacts through the -TKXT- motif with Slp1   50  
3.2.4  Rap1GAP2/Slp1 interaction is enhanced upon activation of PKA                      

in platelets         55 
           

3.3 Complex formation of Rap1GAP2, Slp1 and Rab27    57 
3.3.1  Rap1GAP2, Slp1 and Rab27a form a trimeric complex and  

co-localize in transfected HeLa cells     57  
3.3.2  Rap1GAP2, Slp1 and Rab27 form a trimeric complex  

in human platelets        60               
3.3.3  Slp1 is phosphorylated by PKA in-vitro     61 
3.3.4  Identification of Slp1 interacting proteins in platelets   63 

3.4 Functional analysis of the Rap1GAP2/Slp1 interaction   65  
3.4.1  In-vitro GAP assay        65  
3.4.2  Cell adhesion assay       65  
3.4.3  Prostate-specific antigen secretion assay     67  
3.4.4  Serotonin secretion assay of platelet dense granules   68            

 

II 
 



Table of contents 
_________________________________________________________________________________ 

 

III 
 

 

4. DISCUSSION……………………………………………………………………….. 75 

  4.1 Interaction of Rap1GAP2 and Slp1      75 
   4.1.1    The Slp1 binding -TKXT- motif of Rap1GAP2    75 
   4.1.2    The role of the C2 domains of Slp1     76 
   4.1.3    Phosphorylation at the -TKXT- motif of Rap1GAP2   77 

        4.2 Complex formation of Slp1, Rab27, Rap1GAP2 and other proteins  78 
   4.2.1    The Slp1/Rab27 complex       78 
   4.2.2    The platelet Slp1 interactome      81 

        4.3 Involvement of Slp1 and Rap1GAP2 in platelet dense granule secretion 84 
  4.3.1    Serotonin secretion assay of permeabilized platelets   84 
  4.3.2    The role of Slp1 in platelet dense granule secretion   85 
  4.3.3    The role of Rap1GAP2 in platelet dense granule secretion  86 

 
5. FUTURE PERSPECTIVES………………………………………………………... 89 

6. REFERENCES……………………………………………………………………… 91 

7. APPENDIX………………………………………………………………………….. 102 

ZUSAMMENFASSUNG……………………………………………………………….. 107 

Danksagung……………………………………………………………………………. 113 

Lebenslauf……………………………………………………………………………… 114 

Eidesstattliche Erklärung……………………………………………………………. 115  

 

 

 

 

 

 

 



List of original publications 
_________________________________________________________________________________ 

LIST OF ORIGINAL PUBLICATIONS 

 
Publications 

Neumüller O., Hoffmeister M., Babica J., Prelle C., Gegenbauer K., Smolenski A.P., (2009). 

GTPase-activating protein Rap1GAP2 and synaptotagmin-like protein 1 interact and regulate 

dense granule secretion in platelets. Blood 114: 1396-1404. 

Hoffmeister M., Riha P., Neumüller O., Danielewski O., Schultess J., Smolenski A.P., 

(2008). Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-

activating protein Rap1GAP2 in platelets. J Biol Chem 283: 2297-2306. 

Klatt A.R., Klinger G., Neumüller O., Eidenmüller B., Wagner I., Achenbach T., Aigner T., 

Bartnik E., (2006). TAK1 downregulation reduces IL-1 beta induced expression of MMP13, 

MMP1 and TNF-alpha. Biomed Pharmacother 60: 55-61. 

 

Contributions to conferences and workshops 

Neumüller O., Hoffmeister M., Smolenski A.P., (2007). Rap1GAP2 is a new binding partner 

of Slp1 in platelets. Poster. CGC Workshop: GEFs and GAPs as therapeutic targets., 

Utrecht, Netherlands.  

Neumüller O., Hoffmeister M., Smolenski A.P., (2007). Rap1GAP2 and Slp1 interact in 

human platelets. Poster. ELSO Conference, Dresden, Germany. 

Neumüller O., Hoffmeister M., Danielewski O., Smolenski A.P., (2007). Rap1GAP2 is a new 

target of the Rab27- and membrane-binding protein Slp1 in platelets. Poster. Pharmaceutical 

Sciences World Congress, Amsterdam, Netherlands. 

Neumüller O., Hoffmeister M., Danielewski O., Smolenski A.P., (2006). Rap1GAP2 is a new 

interacting partner of the Rab27-binding protein Slp1 in human platelets. Poster. FEBS 

Special Meeting on Cellular Signaling, Dubrovnik, Croatia. 

 

 

1 
 



Abbreviations 
_________________________________________________________________________________ 

ABBREVIATIONS 

Ade     Adenine   
ADP      Adenosine diphosphate 
APS     Ammonium persulfate    
ATP      Adenosine triphosphate     
BSA      Bovine serum albumin 
Ca2+     Calcium ion 
[Ca2+]     Calcium ion concentration 
cAK     cAMP-dependent protein kinase 
cAMP      Cyclic adenosine monophosphate    
cDNA      Copy DNA 
cfu      Colony forming unit 
cGK      cGMP-dependent protein kinase 
cGMP      Cyclic guanosine monophosphate  
Ci     Curies 
Cy3/5     Cyanin 3/5      
DAG      1,2-Diacylglycerol     
DEAE-Dextran   Diethylaminoethyl-Dextran  
DMEM     Dulbecco’s modified Eagle’s medium 
DMSO     Dimethylsulfoxide 
DNA      Deoxyribonucleic acid 
Doc2     Double C2 domain  
DTE     Dithioerythreitol 
DTT     Dithiothreitol 
EDRF     Endothelium-derived relaxing factor    
EDTA      Ethylenediamine tetra-acetic acid 
EGTA     Ethyleneglycol tetra-acetic acid 
e.g.     Latin: exempli gratia; for example 
EGFP      Enhanced green fluorescent protein 
ELISA     Enzyme-linked immunosorbent assay 
Fig.     Figure 
FBS      Fetal bovine serum 
g     Gram 
g     Gravity (= 9.81 m/s2) 
GAL4AD     Gal4 activation domain     
GAL4BD     Gal4 binding domain 
GAP      GTPase activating protein 
GDI     GDP dissociation inhibitor 
GDP      Guanosine diphosphate 
GDPβS    Guanosine 5`-O-[β-thio] diphosphate 
GEF      Guanine nucleotide exchange factor 
GFP     Green fluorescent protein 
GGT     Geranylgeranyl transferase 
gm     Gunmetal 
GP     Glycoprotein 
GPCR     G protein-coupled receptor 

2 
 



Abbreviations 
_________________________________________________________________________________ 

GS     Griscelli syndrome 
GSH     Glutathione 
GST      Glutathione-S-transferase 
GT     Glanzmann`s thrombasthenia 
GTP      Guanosine triphosphate 
GTPγS     Guanosine 5`-O-[γ-thio] triphosphate 
h     Hour 
HA     Hemagglutinin 
HEPES    4-(2-Hydroxyethyl)-1-piperzineethanesulfonic acid 
His     Histidine 
HRP     Horseradish peroxidase 
5HT     5-Hydroxytryptamine, serotonin 
IB     Immunoblot 
i.e.     Latin: id est; that is 
IF     Immunofluorescence  
IgG     Immunoglobulin G      
IP      Immunoprecipitation 
IP3     Inositol-1,4,5-trisphosphate 
IPTG     Isopropyl-β-D-1-thiogalactopyranoside 
kb     Kilobase pairs 
kD     Kilodalton  
l     Liter 
LB     Luria-Bertani medium    
Leu     Leucine 
LDH     Lactate dehydrogenase 
LSM     Laser scanning microscope 
M     Molarity 
mg     Milligram 
MHD     Munc homology domain 
min     Minute 
mmol     Millimol 
ml     Milliliter 
Mr, MW    Molecular weight 
mRNA     Messenger RNA 
Ni-NTA    Nickel-nitrilotriacetic acid agarose    
NO     Nitric oxide 
NSF     N-ethylmaleimide sensitive factor 
OCS     Open canalicular system 
OD600     Optical density at 600 nm 
P     Phosphate     
PAR      Protease-activated receptor 
PBS      Phosphate buffered saline 
PCR      Polymerase chain reaction 
PDE      Phosphodiesterase 
PDZ-GEF                                        Postsynaptic density-95 discs-large and zona occludens  

 protein 1-GEF 
PGI2     Prostaglandin I2, prostacyclin 
PH domain    Pleckstrin homology domain 
PIP     Phosphoinositide 

3 
 



Abbreviations 
_________________________________________________________________________________ 

4 
 

PKA/B/C/G     Protein kinase A/B/C/G 
PKI     PKA inhibitor 
PLC     Phospholipase 
PSA     Prostate-specific antigen 
P-VASP    phosphorylated VASP 
RG1     Rap1GAP1 
RG2     Rap1GAP2 
RNA     Ribonucleic acid 
Rp-8-Br-cAMPS                     Rp-8-Bromoadenosine-3`,5`-cyclic 

monophosphorothioate 
rpm     Rotations per minute 
RT     Room temperature 
sec     Second 
SD     Standard deviation 
SDS     Sodium dodecyl sulphate 
SDS- PAGE     SDS-Polyacrylamide gel elektrophoresis 
SHD     Slp homology domain 
Slac     Slp homologue lacking C2 domains 
Slp     Synaptotagmin-like protein  
SNAP     Soluble NSF attachment protein 
SNARE    Soluble NSF attachment protein receptor 
SNP     Sodium nitroprusside 
SPA-1     Signal-induced proliferation-associated protein 1 
Sp-5,6-DCI-cBIMPS   Sp-5,6-dichloro-1-β-D-ribofuranosylbenzimidazole-3`,5`- 
     monophosphorothioate 
Tab.     Table 
TBS-T     Tris buffered saline with Tween® 20 
TCA     Trichloroacetic acid 
TEMED    N,N,N,N-Tetramethylethylendiamine 
Tm     Melting temperature 
TPA     12-O-Tetradecanoyl phorbol-13-acetate 
Tris      Tris-hydroxymethyl-aminomethane 
Trp      Tryptophane 
TxA2     Thromboxane A2 
U     Unit  
VAMP     Vesicle-associated membrane protein 
VASP     Vasodilatator-stimulated phosphoprotein 
VSV     Vesicular stomatitis virus glycoprotein   
v/v      Volume per volume 
WB     Western blotting 
wt     Wild-type 
w/v      Weight per volume 
X-α-Gal     5-Bromo-4-chloro-3-indolyl-α-D-galactopyranoside 



Summary 
_________________________________________________________________________________ 

 

SUMMARY 

Platelets are anucleate cells that play a major role in hemostasis and thrombosis in the 

vasculature. During primary hemostasis platelets adhere to sites of vascular damage and the 

initial platelet coat is reinforced by additional platelets forming a stable aggregate. At the 

same time platelets secrete their intracellular granules containing substances that further 

activate platelets in an autocrine and paracrine fashion and affect local coagulation and 

endothelial smooth muscle cell function. The small guanine nucleotide binding protein Rap1 

regulates the activity of the platelet integrin αIIbβ3 and thus platelet aggregation. Rap1 activity 

is controlled by guanine nucleotide exchange factors and GTPase activating proteins. In 

platelets, Rap1GAP2 is the only GTPase activating protein of Rap1.  

In order to identify Rap1GAP2-associated proteins, a genetic two-hybrid screening in yeast 

was performed and synaptotagmin-like protein 1 (Slp1, also called JFC1) was found as a 

new putative binding partner of Rap1GAP2. Slp1 is a tandem C2 domain containing protein 

and is known to bind to Rab27, a small GTPase involved in platelet dense granule secretion. 

The direct interaction between Rap1GAP2 and Slp1 was confirmed in yeast and in 

transfected cells. More importantly, Slp1 is expressed in platelets and binding of endogenous 

Rap1GAP2 and Slp1 was verified in these cells. The Rap1GAP2 and Slp1 interaction sites 

were mapped by mutational analysis. Rap1GAP2 binds through the -TKXT- motif within its C-

terminus to the C2A domain of Slp1. Moreover, the Slp1 binding -TKXT- motif of Rap1GAP2 

was confirmed by complementary approaches using short synthetic Rap1GAP2 peptides. 

The C2A domain of Slp1 is a phospholipid binding domain and thus mediates binding of Slp1 

to the plasma membrane. Phospholipid overlay assays revealed that simultaneous binding of 

Slp1 via its C2A domain to Rap1GAP2 and to phospholipids can occur. In addition, the 

interaction between Rap1GAP2 and Slp1 is regulated by cAMP-dependent protein kinase 

(cAK or PKA), and kinase activation in platelets enhanced binding of endogenous 

Rap1GAP2 to Slp1. In-vitro phosphorylation assays revealed that Slp1 is a substrate of PKA, 

and serine 111 was identified as phosphorylation site. Since Slp1 is a Rab27 binding protein, 

a trimeric complex of Slp1, Rab27 and Rap1GAP2 is conceivable. The association of Slp1, 

Rab27 and Rap1GAP2 was investigated by immunofluorescence and co-immuno-

precipitation experiments in both, transfected cells and platelets. By Slp1 affinity 

chromatography and subsequent mass spectrometric analysis additional Slp1 binding 

proteins were identified in platelets, and binding of Slp1 to Rab8 was confirmed in pull-down 

assays. To investigate the functional significance of the interaction between Rap1GAP2 and 

Slp1, an assay system was established to determine serotonin secretion of streptolysin-O 

permeabilized platelets. Addition of recombinant Slp1 protein to permeabilized platelets 

strongly inhibited platelet dense granule secretion, whereas addition of recombinant 
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Rap1GAP2 protein or synthetic Rap1GAP2 peptide enhanced secretion. Deleting the Slp1 

binding -TKXT- motif abolished the stimulatory effect of Rap1GAP2 on secretion. Addition of 

Rap1 to permeabilized platelets had no effect on secretion. These findings indicate that the 

Rap1GAP2 effect on platelet secretion does not depend on the GTPase activating function of 

Rap1GAP2, but is rather dependent on the -TKXT- mediated interaction of Rap1GAP2 with 

Slp1. In addition, in-vitro GAP assays revealed that Slp1 binding to Rap1GAP2 does not 

affect the Rap1GAP activity of Rap1GAP2, and adhesion assays excluded a role for the 

Rap1GAP2/Slp1 interaction in cell adhesion.  

Altogether, the results of the present study demonstrate that besides its function in platelet 

aggregation by controlling the activity of the small guanine nucleotide binding protein Rap1, 

Rap1GAP2 is involved in platelet dense granule secretion by the new -TKXT- mediated 

interaction with the Rab27 and membrane binding protein Slp1. In addition, the interaction 

between Rap1GAP2 and Slp1 is embedded into an elaborate network of protein-protein 

interactions in platelets which appear to be regulated by phosphorylation. Future studies will 

in particular aim to dissect the molecular details of Rap1GAP2 and Slp1 action in platelet 

secretion and investigate the potential biochemical and pharmacological value of the unique 

protein binding -TKXT- motif of Rap1GAP2. 
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1. INTRODUCTION 
 

1.1 Platelets  

Platelets, or thrombocytes, are specialized blood cells that play a central role in physiological 

and pathological processes of hemostasis and thrombosis (Davi and Patrono 2007). 

Platelets are the smallest (0.5 x 3.0 µm) and most numerous (normal range: 2-3 x 108/ml) 

corpuscular components of the circulating blood (Italiano 2008). They are produced from 

megakaryocytes in the bone marrow (Hartwig and Italiano 2003). Once released, platelets 

have a lifespan of about 7-10 days. Degradation of platelets occurs in the reticulo-endothelial 

system of liver and spleen (Gawaz 1999). Platelets do not have a nucleus and thereby lack 

genomic DNA (Italiano and Shivdasani 2003). However, they contain megakaryocyte-derived 

messenger RNA (mRNA) and the translational machinery needed for protein synthesis 

(reviewed by Davi and Patrono 2007). Moreover, pre-mRNA splicing, a typical nuclear 

function, has recently been detected in the cytoplasm of these anucleate cells (Denis et al. 

2005). Platelets are rich in mitochondria and store three different types of granules, alpha 

granules, dense granules and lysosomes (Rendu and Brohard-Bohn 2001). In the resting 

state, platelets are discoid shaped having granules homogenously distributed throughout the 

platelet body. Upon activation, however, platelets undergo a shape change during which 

pseudopodia are formed and granules are centralized. Platelets are characterized by a 

unique membrane network including the dense tubular and the surface-connected open 

canalicular system. The dense tubular system is the main storage pool for free calcium ions 

(Jardin et al. 2008). The open canalicular system (OCS) is an elaborate system of membrane 

tunnels and serves on the one hand as a direct passageway to the bloodstream, into which 

platelet granule contents can quickly be released, and on the other hand, as a reservoir for 

platelet plasma membrane and membrane receptors (Gawaz 1999, Italiano 2008). The main 

platelet plasma membrane receptors are adhesive glycoprotein receptors (e.g. GPIb for von 

Willebrand factor, GPVI for collagen), several G protein-coupled receptors (GPCRs) (e.g. 

PAR1 and PAR4 for thrombin, P2Y1 and P2Y12 for adenosine diphosphate), and β1 and β3 

integrin receptors (e.g. α2β1 for collagen, αIIbβ3 for fibrinogen) (Gachet 2008, Coughlin 2005, 

Varga-Szabo et al. 2008).  

Platelets in primary hemostasis 

In circulation, the major physiological function of platelets is to sentinel the integrity of the 

vascular system and to prevent bleeding/hemorrhage after vascular injury, a process called 

primary hemostasis (Fig.1.1) (Ruggeri 2002, Davi and Patrono 2007). Under conditions of 

rapid blood flow the initial platelet tethering at sites of vascular injury involves the interaction 
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of von Willebrand factor with the platelet glycoprotein complex GPIb-V-IX. Moreover, 

interaction of collagen with glycoprotein GPVI  and  integrin α2β1 further promotes platelet 

adhesion and activation (Varga-Szabo et al. 2008, Ruggeri and Medolicchio 2007). Platelet 

activation results in platelet shape change, granule secretion and aggregation. Platelet 

granule secretion leads to the release of granule contents which activate platelets in an 

autocrine and paracrine fashion, thereby perpetuating the initial platelet response. In 

addition, more platelets are recruited from the circulation to form a growing platelet 

aggregate. Platelet aggregation is mediated by binding of fibrinogen to the activated integrin 

αIIbβ3 (also called GPIIb-IIIa) leading to cohesion of adjacent platelets (Jackson 2007). The 

so formed primary hemostatic plug, however, is still fragile and only temporarily arrests 

bleeding. Therefore, stable clot formation is induced during secondary hemostasis through 

activation of the plasma coagulation system, resulting in thrombin-mediated conversion of 

fibrinogen to fibrin (Gawaz 1999, Jurk and Kehrel 2005).  

 

 
Figure 1.1: Platelets in primary hemostasis. 
Primary hemostasis can be classified into different phases ultimately leading to the formation of a primary 
hemostatic platelet plug. (1) Initial adhesion of resting platelets to sites of vascular damage is mediated through 
the interaction of immobilized extracellular von Willebrand factor with GPIbα which is part of the GPIb-V-IX 
complex. The interaction of collagen with GPVI especially induces the activation of adherent platelets. In turn, 
activated α2β1 integrin binds to collagen, thereby promoting firm platelet adhesion. (2) Platelet activation leads to 
platelet shape change, granule secretion and aggregation. Activated platelets secrete substances (e.g. adenosine 
diphosphate) which activate platelets in an autocrine and paracrine fashion operating through G protein-coupled 
receptors. (3) Platelet aggregation is mediated by binding of fibrinogen to activated αIIbβ3 integrin leading to 
cohesion of adjacent platelets. (4) More platelets are recruited and accumulate into a growing platelet thrombus. 
EC: endothelial cell; GP: glycoprotein; vWF: von Willebrand factor; GPCR: G protein-coupled receptor. Arrows 
indicate activation. Figure was modified according to Jackson 2007. 
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Although presented here as separated events, primary and secondary hemostasis are 

closely linked, e.g. activated platelets accelerate plasma coagulation, and products of the 

plasma coagulation system, such as thrombin, stimulate platelet aggregation. 

1.2 Platelet activation and inhibition 

Platelets are rapidly activated by various agonists. Irrespective of collagen as the main non-

diffusible platelet agonist, diffusible mediators of platelet activation are α-thrombin, 

adenosine diphosphate (ADP), and thromboxane A2 (TxA2). Platelet activation is 

counteracted by platelet inhibition. The main platelet inhibitors are nitric oxide (NO, also 

termed endothelium-derived relaxing factor (EDRF) and prostaglandin I2 (PGI2, also termed 

prostacyclin). 

1.1.1 Platelet activators 

Diffusible platelet agonists activate platelets through G protein-coupled receptors. Platelet 

activation via GPCRs involves three major G protein-mediated signaling pathways that are 

initiated by the activation of the G proteins Gαq, Gαi and Gα12/13 (reviewed by Offermanns 

2006). Gαq-mediated signaling activates phospholipase Cβ (PLCβ). Activation of PLCβ 

results in the hydrolysis of phophatidylinositol-4,5-bisphosphate and the formation of the 

second messengers inositol-1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG). IP3 

increases intracellular [Ca2+], whereas DAG activates protein kinase C (PKC). By contrast, 

activated Gαi inhibits adenylyl cyclase and thus formation of the inhibitory cyclic adenosine 

monophosphate. Finally, Gα13, a member of the Gα12/13 family, activates guanine nucleotide 

exchange factors of the small GTPase Rho (Hart et al.1998, Fukuhara et al. 2001), leading to 

the formation of Rho-GTP and rearrangement of the platelet actin cytoskeleton and shape 

change. 

Thrombin           

The serine protease α-thrombin is one of the most potent platelet activators. Upon vascular 

injury exposure of tissue factor to plasma coagulation factors initiates thrombin formation 

(Daubie et al. 2007). Thrombin is produced on cellular surfaces including that of activated 

platelets (Heemskerk et al. 2002). Activation of platelets by thrombin is mediated by 

protease-activated receptors (PARs) (Coughlin 2000). To date four PARs have been 

described: PAR1, PAR2, PAR3, and PAR4. PARs are activated by proteolytic cleavage of 

their extracellular N-terminal domain which leads to the generation of a tethered ligand. 

While PAR1, PAR3, and PAR4 are cleaved and activated by thrombin, PAR2 is activated by 

trypsin, tryptase and coagulation factors VIIa and Xa (Nystedt et al. 1994, Molino et al. 1997, 
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Camerer et al. 2000). Human platelets express PAR1 and PAR4 (Kahn et al. 1999). PAR1 is 

the predominant human platelet thrombin receptor, and couples to Gαq, Gα12/13 and Gαi 

(reviewed by Coughlin 2005).  

In addition to interacting with PARs, α-thrombin binds also to GPIbα, which is part of the 

GPIb-V-IX complex (Okumara et al. 1978, Andrews et al. 1999). Deletion of the extracellular 

domain of GPIbα or blockade of the α-thrombin binding site decreased thrombin-induced 

platelet activation (Brass 2003). However, the precise role of α-thrombin interaction with 

GPIb-V-IX remains yet to be defined. 

Adenosine diphosphate 

Adenosine diphosphate is stored in platelet dense granules and is released upon platelet 

activation. Released ADP activates platelets in an autocrine and paracrine manner. ADP 

interacts with G protein-coupled receptors of the P2 receptor family: P2Y1 and P2Y12. P2Y1 

couples to Gαq, whereas P2Y12 to Gαi. Studies using receptor agonists revealed that 

concomitant activation of both receptors is required for a full response of platelets to ADP 

(Jin et al. 1998, Jantzen et al. 1999). The P2Y12 receptor is irreversibly inhibited by 

thienopyridines (e.g. ticlopidine, clopidogrel and prasugrel) which are used as antiplatelet 

drugs (Savi and Herbert 2005, Niitsu et al. 2005). Enzymatic conversion of ADP to the 

inactive adenosine monophosphate and phosphate by endothelial ecto-ADPase CD39 limits 

platelet activation by ADP (Atkinson et al. 2006). 

Additionally, a third platelet P2 receptor, P2X1, is activated by adenosine triphosphate (ATP). 

P2X1 is a gated cation channel responsible for a fast calcium influx that contributes to platelet 

activation (Gachet 2008). 

Other platelet activators 

Like ADP, thromboxane A2 functions as a positive feedback mediator during platelet 

activation. TxA2 is produced from arachidonic acid by the enzymes cyclooxygenase-1, which 

is the target of low dose aspirin (Patrono et al. 2005, Patrono and Rocco 2008), and by 

thromboxane synthase. Because of its short half-life, the action of TxA2 is locally restricted. 

TxA2 operates through its platelet surface receptor TP coupled to Gαq and Gα12/13 

(Murugappan et al. 2004). 

Several other substances including epinephrine and serotonin can activate platelets, too. 

However, in contrast to thrombin, ADP, and TxA2, they are only weak platelet activators. 

Serotonin (5-hydroxytryptamine, 5HT) is taken up by platelets, stored in dense granules and 

released upon platelet activation. It activates platelets in a positive feedback mechanism 

through interaction with platelet surface receptor 5HT2A which couples to Gαq. Moreover, 
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platelet-derived serotonin causes vasoconstriction (Coppinger and Maguire 2007), and has 

recently been shown to mediate platelet effects on tissue regeneration (Lesurtel et al. 2006). 

1.2.2 Platelet inhibitors 

Endothelium-derived nitric oxide and prostaglandin I2 are the two major inhibitors of platelet 

activation (Schwarz et al. 2001, Davi and Patrono 2007). Gaseous NO diffuses into platelets 

and directly activates the soluble guanylyl cyclase to produce cyclic guanosine 

monophosphate (cGMP). By contrast, PGI2 acts through a platelet surface receptor, the IP 

receptor (Norel 2007), which couples to Gαs. Activation of Gαs then stimulates adenylyl 

cyclase to produce cyclic adenosine monophosphate (cAMP). Consequently, a rise in 

intracellular levels of cGMP and cAMP activates cGMP- and cAMP-dependent protein 

kinases (cGK/PKG and cAK/PKA). In platelets, PKG and PKA are highly expressed with 

PKGIβ and PKAIβ and IIβ representing the major isoforms (Schwarz et al. 2001). PKG and 

PKA phosphorylate substrate proteins leading to the inhibition of platelet activation and 

aggregation (Schwarz et al. 2001, Münzel et al. 2003, Hofmann et al. 2006). One of the 

major substrates of PKG and PKA in platelets is the vasodilator-stimulated phosphoprotein 

(VASP). VASP is phosphorylated at serine 157, serine 239, and threonine 278 by both PKG 

and PKA (Butt et al. 1994, Reinhard et al. 2001). VASP phosphorylation appears to be 

involved in the inhibition of agonist-induced activation of integrin αIIbβ3 and thus platelet 

adhesion and aggregation (Horstrup et al. 1994, Aszodi et al. 1999, Häuser et al. 1999, 

Massberg et al. 2004). 

cGMP and cAMP are hydrolyzed and thereby inactivated by phosphodiesterases (PDEs). 

Platelets contain at least three different types of PDEs: PDE2, PDE3, and PDE5 (reviewed 

by Schwarz et al. 2001, Colman 2004). 

1.3 Platelet granule secretion 

1.3.1 Platelet granules 

Three types of intracellular granules have been described in platelets: alpha granules, dense 

granules, and lysosomes. Alpha granules are the largest (~ 200-500 nm in diameter) and 

most abundant platelet granules (~ 80 per platelet) (Reed 2004, Italiano 2008). They store 

proteins (e.g. von Willebrand factor, fibrinogen) that are important for platelet adhesion, 

aggregation, and clot formation. Moreover, alpha granules contain various cytokines (e.g. 

platelet factor 4) and growth factors (e.g. platelet derived growth factor) that contribute to 

platelet interactions with leukocytes and other cells (Coppinger and Maguire 2007, Sierko 

and Wojtukiewicz 2007). Platelet dense granules, of which there are ~ 8 per platelet, are 250 

nm in size and characterized by virtue of their electron-dense cores. Dense granules contain 
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small molecules such as ADP, serotonin, calcium, and pyrophosphate (Gawaz 1999, Reed 

2004). In particular, the release of dense granule contents allows the recruitment of 

additional circulating platelets to sites of vascular injury.  

Several proteins (e.g. GPIb, αIIbβ3, P-selectin) that are critical for platelet function are 

incorporated into the limiting membranes of both alpha and dense granules (King and Reed 

2002, Rendu and Brohard-Bohn 2001). Upon platelet granule secretion these proteins 

become exposed on the platelet surface. The presence of GPIb and αIIbβ3 facilitates platelet 

adhesion and aggregation. P-selectin upon engagement of its ligand P-selectin glycoprotein 

ligand 1 recruits monocytes, neutrophils and lymphocytes, thereby initiating the formation of 

platelet-leukocyte aggregates (Furie et al. 2001, von Hundelshausen and Weber 2006, Jurk 

and Kehrel 2008).  

Unlike alpha and dense granules, lysosomes are generally considered as degradative 

compartments (Luzio et al. 2007). However, platelets and some other hematopoietic cells 

including macrophages and cytotoxic T lymphocytes contain the so-called secretory 

lysosomes, and lysosome release is stimulated by transient increase in intracellular calcium 

(Stichcombe and Griffiths 1999, Andrews 2000, Luzio et al. 2007). Platelet lysosomes 

contain lysosomal enzymes (e.g. β-hexosaminidase, cathepsin D, heparitinase) that might 

play a role in clot remodeling (Reed 2004).  

1.3.2 Molecular mechanisms of platelet granule secretion 

Platelet granule secretion is crucial for normal platelet function during primary hemostasis 

and can be summarized as a process occurring in three steps: (1) platelet activation initiated 

by a platelet agonist, leading to the increase of intracellular calcium and activation of protein 

kinase C with subsequent phosphorylation of effector molecules; (2) granule 

tethering/docking with the target membrane followed by ATP-dependent granule priming; and 

(3) granule/membrane fusion with release of granule contents into the extracellular 

environment. Various proteins have been reported to be essential for distinct steps during 

this process. For example, Rab GTPases and their effectors are widely believed to regulate 

granule secretion at the tethering/docking step, and membrane proteins of the soluble N-

ethylmaleimide sensitive factor attachment protein receptor (SNARE) family in concert with 

SNARE accessory proteins have been shown to control membrane fusion (Fig.1.2) (Reed et 

al. 2000, Rendu  and Brohard-Bohn 2001, Flaumenhaft 2003, Reed 2004).  

Calcium and protein kinase C  

Platelet agonists (e.g. collagen, thrombin, ADP) activate platelets through interaction with 

specific receptors on the platelet plasma membrane. Subsequent phospholipase C - 

mediated formation of inositol-1,4,5-trisphosphate and 1,2-diacyglycerol leads to an increase 
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in intracellular calcium and activation of protein kinase C. Both, calcium and PKC are critical 

determinants of platelet granule secretion, operating in synergy (Walker and Watson 1993, 

Reed et al. 2000). However, a rise in intracellular calcium is at all times sufficient to induce 

platelet granule release, and secretion of permeabilized platelets can be stimulated by 

addition of exogenous calcium ions (Flaumenhaft 2004). The exact mechanism through 

which an increase in intracellular calcium induces granule secretion is poorly understood. In 

this regard, specific calcium sensor/effector molecules could play a role. Among them, 

proteins containing C2 and EF hand domains appear to be likely candidates. The tandem C2 

domain containing protein synaptotagmin-I is the most prominent example of a Ca2+-sensor 

not only in neurons, but also in non-neuronal cells (reviewed by Burgoyne and Morgan 2003, 

Martens and McMahon 2008). Other C2 domain containing proteins, all of which are 

implicated in regulated exocytosis, are rabphilin, Doc2, RIM, Munc13, and Slp (Burgoyne and 

Morgan 2003, Fukuda 2005, Martens and McMahon 2008). EF hand domain containing 

proteins are e.g. calmodulin and calcyclin. Both proteins are expressed in platelets and have 

been invoked in secretion (reviewed by Flaumenhaft 2003). 

Based on studies using broad spectrum pharmacological inhibitors and activators of protein 

kinase C, there is evidence suggesting a general role for PKC in platelet activation and in 

particular, a stimulatory role for this kinase in platelet granule secretion. Inhibitors of PKC 

block platelet dense granule release (Chung et al. 2000, Rozenvayn and Flaumenhaft 2003, 

Reed 2004). Phorbol esters such as 12-O-tetradecanoyl phorbol-13-acetate (TPA) activate 

protein kinase C by mimicking DAG, and stimulation of PKC with TPA in platelets resulted in 

increased platelet granule release (Rink et al. 1983). Moreover, a purified rat brain PKCα has 

been shown to augment Ca2+-dependent platelet alpha and dense granule secretion 

(Yoshioka et al. 2001). PKCs form a family of related serine/threonine kinases that are part of 

the AGC-type kinase (protein kinase A/protein kinase B/protein kinase C) superfamily. In 

platelets, isoforms α, βI, βII, δ, η, θ and ζ are present, and recently, PKCδ has been shown to 

be required for PAR-mediated platelet dense granule secretion (Murugappan et al. 2004). 

Activation of PKC results in phosphorylation of downstream effector molecules such as 

myristoylated alanine-rich C kinase substrate (MARCKS) and Munc-18c (reviewed by 

Flaumenhaft 2003). 

Rab proteins and their effectors 

Rab proteins are members of the Ras superfamily of small GTPases and involved in various 

aspects of intracellular membrane trafficking (Zerial and McBride 2001). To date more than 

60 Rab isoforms have been identified in mammals. Some of these are ubiquitously 

expressed, whereas others are cell-type specific. After synthesis Rab GTPases are soluble. 

However, post-translational modification by prenylation turns Rab proteins into peripheral 
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membrane proteins. Attachment of geranylgeranyl group(s) to cysteine residue(s) which is 

carried out by Rab geranylgeranyl transferase (RabGGT) allows Rab proteins to associate 

with membranes. Like other small GTPases, Rab GTPases are molecular switches 

alternating between an active guanine-nucleotide triphopshate (GTP)-bound form and an 

inactive guanine nucleotide diphosphate (GDP)-bound form. This GTP/GDP cycle is 

controlled by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins 

(GAPs). So far, only few Rab GEFs and GAPs have been identified. In the active GTP-bound 

form Rab proteins are membrane-associated and interact with specific effector molecules. In 

contrast, GDP-bound Rab proteins are removed from the membrane and are kept cytosolic 

by means of the Rab GDP dissociation inhibitor (RabGDI) (reviewed by Behnia and Munro 

2005, Ali and Seabra 2005). 

 

 

 

Figure 1.2: Platelet dense granule secretion requires Rab27 and SNARE proteins. 
Dense granules in platelets are loaded with small molecules (e.g. ADP, serotonin) that are released on platelet 
activation. Platelet dense granule release requires the small GTPase Rab27 and the SNARE proteins VAMP-8, 
syntaxin-2 and SNAP-23. GTP-Rab27 is dense granule-associated and through engagement of effector proteins 
regulates granule motility (1) and granule tethering/docking to the plasma membrane (2). Rab27 effector proteins 
interact with motor proteins (e.g. myosin) and/or plasma membrane components (e.g. phospholipids). Once a 
dense granule is docked, membrane fusion is mediated by SNARE proteins. VAMP-8 is a vesicle-associated (v)-
SNARE, and syntaxin-2 and SNAP-23 are target/plasma membrane-associated (t)-SNAREs. SNARE proteins are 
characterized by SNARE motifs. VAMP-8 and syntaxin-2 each possess a single SNARE motif, whereas SNAP-23 
contains two SNARE motifs separated by a palmitoylated linker. Assembly of the SNARE motifs into a tight four 
α-helix bundle, the so-called SNARE core complex, drives fusion of the two lipid bilayers and hence delivery of 
dense granule contents into the extracellular environment. GTP: guanine nucleotide triphosphate; SNARE: 
soluble NSF attachment protein receptor; TM: transmembrane domain; PL: palmitoylated linker. 
 

First evidence that Rab proteins and in particular Rab27 are involved in platelet granule 

secretion came from studies of gunmetal (gm) mice. The naturally occurring gunmetal mice 
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have a mutation in the RGGTA gene encoding the α-subunit of the Rab geranylgeranyl 

transferase which results in a reduction of RabGGT activity to approximately 20 % of wild-

type (Detter et al. 2000). In consequence, Rab27 and other Rab proteins in platelets remain 

unprenylated and thus cytosolic (Detter et al. 2000). Mice with gm mutation exhibit 

abnormalities in platelet alpha and dense granules, thrombocytopenia, and prolonged 

bleeding (Seabra et al. 2002). Additional evidence that Rab proteins play a critical role in 

platelet secretion was obtained from studies with Rab GDP dissociation inhibitor. When 

introduced into permeabilized platelets, RabGDI extracted Rab GTPases from membranes 

and inhibited Ca2+-induced alpha granule secretion (Shirakawa et al. 2000). The same study 

by Shirakawa et al. 2000 demonstrated that Rab4 blocked platelet alpha granule but failed to 

affect secretion from dense granules. These data suggest that the regulatory mechanisms 

governing alpha and dense granule secretion in platelets are distinct, and Rab4 is required 

for alpha but not dense granule release. Conversely, incubation of permeabilized platelets 

with Rab27 inhibited platelet dense granule secretion, and this inhibition could be rescued by 

addition of Munc13-4 (Shirakawa et al. 2004). Rab27 is expressed in two isoforms, Rab27a 

and Rab27b, that share 71 % identity at the amino acid level (Pereira-Leal and Seabra 

2001). Both, Rab27a and Rab27b are present in platelets and localize predominantly to 

membranes of platelet dense granules (Barral et al. 2002). Much recent interest has focused 

on Rab27a because it is the first Rab protein closely associated with human disease (Seabra 

et al. 2002). In humans, defects in the RAB27A gene cause Griscelli syndrome (GS), a rare 

autosomal disorder which is characterized by hypopigmentation and loss of cytotoxic killing 

activity. At cellular level, the disease reflects dysfunction in melanosome transport in 

melanocytes and lytic granule release in cytotoxic T lymphocytes. The corresponding mouse 

model for GS is designated ashen and exhibits a loss-of-function mutation in RAB27A. 

Interestingly, the issue of platelet dysfunction in ashen mice has been a matter of debate. 

Despite the fact that platelet functional defects are not observed in patients with GS, a 

platelet phenotype has been reported for ashen mice (Wilson et al. 2000). Subsequent 

analysis, however, revealed that the platelet defect seen by Wilson and his co-workers is due 

to a mutation in a second gene, Slc35d3, which encodes an orphan putative sugar nucleotide 

transporter (Chintala et al. 2007). Consistent with studies of GS in humans, normal platelet 

function in the presence of RAB27A loss-of-function mutation has been described in ashen 

by Barral et al. 2002, suggesting that presence of Rab27b in platelets compensates for the 

loss of Rab27a. Deletion of RAB27B in mice, however, resulted in a bleeding phenotype, 

albeit the bleeding tendency was more severe in double RAB27A/B knockout animals 

(Tolmachova et al. 2007). Both, Rab27a and Rab27b have been demonstrated to participate 

in platelet dense granule release with a distinct and probably non-redundant role for Rab27b 

in dense granule formation (Tolmachova et al. 2007). Conversely, the morphology and 
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secretion of platelet alpha granules were not affected, consistent with only minor association 

of Rab27a and Rab27b with alpha granule membranes (Tolmachova et al. 2007, Barral et al. 

2002). Rab27 regulates platelet dense granule secretion, operating upstream of SNARE 

proteins and thus upstream of the membrane fusion event. Rab27 is thought to exert its 

function by promoting granule motility and/or granule tethering/docking to the plasma 

membrane (Fig.1.2) (Seabra and Coudrier 2004, Fukuda 2006). Therefore, Rab27 needs to 

interact with effector molecules, and Munc13-4 was identified as the first Rab27-binding 

protein in platelets (Shirakawa et al. 2004). To date three groups of Rab27 effectors have 

been described (Fig.1.3): Slp (synaptotagmin-like proteins), Slac2 (Slp homologue lacking 

C2 domains), and Munc13-4. Slp and Slac2 family members are defined by a conserved N-

terminal synaptotagmin-like protein homology domain (SHD) that binds to Rab GTPases and 

in particular Rab27 (Fukuda 2005). In addition, Slps contain two tandem C2 domains at their 

C-termini that are homologous to the C2A and C2B domains of synaptotagmins. In contrast,                          
 

 

 

 
 
 
Figure 1.3: Domain structures of putative Rab27 effector proteins. 
Three groups of Rab27 binding proteins are known: Slp (synaptotagmin-like proteins), Slac2 (Slp homologue 
lacking C2 domains) and Munc13-4. A: There are five Slp family members (Slp1, 2, 3, 4, and 5). All of them 
contain an N-terminal Slp homology domain (SHD), which mediates binding to Rab27, and two C-terminal tandem 
C2A and C2B domains. The Slp homology domain of Slp3, Slp4 and Slp5 is separated by a zinc finger motif 
(Zn2+). Besides Rab27, Slp1 binds to Rab8 and Slp4 binds to Rab3 and Rab8. B: There are three Slac2 family 
members (Slac2-a, -b and -c). All of them contain the N-terminal Slp homology domain (SHD), which binds to 
Rab27, but lack tandem C2 domains. Instead, Slac2-a and Slac2-c possess myosin and actin binding domains. 
Slac2-a binds to myosin Va and Slac2-c binds to myosin Va and VIIa.. C: Munc13-4 contains two separate C2 
domains and two Munc13 homology domains (MHD). Munc13-4 is a Rab27 binding protein, however, the Rab27 
binding site in Munc13-4 is yet unknown. Figure was modified according to Fukuda 2005. 
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Slac2 proteins lack such domains. In mammals, there are five synaptotagmin-like proteins: 

Slp1/JFC1, Slp2/exophilin-4, Slp3, Slp4/granuphilin-a, and Slp5. Several studies implicate 

Slps in the regulation of membrane trafficking in different secretory cells (reviewed by 

Martens and McMahon 2008). 

SNAREs and SNARE accessory proteins 

Membrane fusion in platelets depends on SNAREs and is a process whereby two separate 

lipid bilayers (e.g. granule and OCS/plasma membrane) merge to become one. SNARE 

proteins are membrane-associated, and on the basis of their localization can be divided into 

vesicle (v)-SNAREs and target membrane (t)-SNAREs. Prior to granule/membrane fusion, a 

ternary core complex of SNARE proteins is formed in trans on opposing membranes, 

bringing the granule and plasma membranes into close apposition. Then, upon fusion a cis 

SNARE complex is formed in which all of the contributing SNARE proteins are localized to 

the same membrane. This cis complex is subsequently disassembled by the AAA-ATPase 

NSF (N-ethylmaleimide sensitive factor) and α-SNAP (soluble NSF attachment protein) 

(Jahn and Scheller 2006). In platelets, t-SNAREs syntaxin-2, -4, -7, -11 (Lemons et al. 1997, 

Chen et al. 2000a, Chen et al. 2000b), and SNAP-23, -25, -29 are present (Flaumenhaft et 

al. 1999, Reed et al. 1999, Polgar et al. 2003). Platelets also contain the v-SNAREs VAMP-2, 

VAMP-3, VAMP-7, and VAMP-8 (Flaumenhaft et al. 1999, Polgar et al. 2002, Schraw et al. 

2003, Ren et al. 2007). Experiments using permeabilized platelets strongly suggest a role for 

SNARE proteins in platelet granule release (reviewed by Flaumenhaft 2003). However, 

despite the consensus on t-SNAREs, it was long time unclear which v-SNARE(s) are 

involved. Recent studies with transgenic mice demonstrated a redundancy of v-SNAREs in 

platelets, with VAMP-8 as the primary v-SNARE for platelet granule secretion (Ren et al. 

2007). Thus, platelet dense granule release requires syntaxin-2, SNAP-23 and VAMP-8 

(Fig.1.2), whereas platelet alpha granule and lysosome secretion are mediated by syntaxin-4 

and syntaxin-2, SNAP-23 and VAMP-8 (Lemons et al. 1999, Flaumenhaft et al. 1999, Chen 

et al. 2000a, Chen et al. 2000b, Ren et al. 2007).  

In addition, SNARE accessory proteins such NSF, α-SNAP and Munc-18c have been shown 

to serve as important modulators of SNARE function in platelets. By means of inhibitory 

peptides and antibodies a role for NSF in platelet dense, alpha and lysosomal granule 

release could be assigned (Chen et al. 2000a, Lemons et al. 2000, Polgar et al. 1999). Upon 

inhibition of NSF, SNARE proteins are sequestered in cis complexes and are unavailable to 

interact with SNARE proteins on opposing membranes. α-SNAP binds and activates NSF 

(Clary et al. 1990). In platelets, wild-type α-SNAP stimulated Ca2+-induced granule secretion, 

whereas a dominant-negative mutant of α-SNAP and anti-α-SNAP antibodies inhibited 

granule release (Chen et al. 2000). Moreover, the Sec1/Munc18 homologue Munc-18c (also 
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known as platelet Sec1 protein) was identified in platelets (Reed et al. 1999). Munc-18c 

binds to syntaxin-4, and is phosphorylated by PKC upon platelet activation (Reed et al. 1999, 

Houng et al. 2003). Phosphorylation of Munc-18c decreases binding to syntaxin-4, 

suggesting that activation-induced dissociation of the Munc-18c/syntaxin-4 complex might 

contribute to platelet granule secretion. Accordingly, peptides mimicking Munc-18c binding 

sites augmented Ca2+-induced dense granule release from permeabilized platelets, and 

similarly, antibodies that inhibit Munc-18c/syntaxin-4 complex formation promoted platelet 

granule secretion (Houng et al. 2003). 

Taken together, platelet granule secretion is essential to hemostasis and is a process 

mediated by an elaborate protein machinery regulating distinct steps of granule motility, 

granule tethering/docking and granule/membrane fusion. Yet, the organization of this protein 

network in platelets is not well understood. Undoubted is the role for SNARE proteins in 

membrane fusion, and it is clear that small GTPases such as Rab GTPases by engagement 

of effector molecules are involved as well. Apart from extensive work that has been done on 

SNAREs, only little is known about Rab proteins and their effectors. So far, Rab4 and Rab27 

have been shown to play a role in platelet granule secretion. However, Rab effector proteins 

have not yet been identified, except for Munc13-4. Moreover, the issue of how agonist-

induced platelet activation elicits platelet granule release is obscure. It is evident that 

elevation of intracellular calcium and activation of protein kinase C play a crucial role. 

However, the exact signaling mechanism remains to be established. 

1.4 Platelet aggregation 

The accumulation of platelets into a hemostatic plug is based on the formation of multiple 

platelet-platelet interactions (platelet aggregation). The major receptor mediating platelet 

aggregation is integrin αIIbβ3 (also known as GPIIb-IIIa), which is the most abundant receptor 

on the platelet surface (Fullard 2004, Varga-Szabo et al. 2008). In humans, lack or 

dysfunction of αIIbβ3 cause the bleeding disorder Glanzmann`s thrombasthenia (GT) (Nurden 

and Nurden 2008). Mice lacking the β3 integrin resemble the phenotype of GT with absent 

platelet aggregation and reduced uptake of fibrinogen into platelets (Hodivala-Dilke et al. 

1999, Fullard 2004). Integrin αIIbβ3 binds various ligands including von Willebrand factor, 

fibrinogen and fibronectin, all of which contain the classical integrin recognition sequence 

arginine-glycine-aspartic acid (Jackson 2007, Varga-Szabo et al. 2008). In resting platelets, 

αIIbβ3 is in a low affinity or inactive state, in which it is not able to bind to its ligands. Agonist-

induced platelet activation, however, induces intracellular signaling processes that activate 

αIIbβ3 by converting it into an active high affinity conformation (inside-out signaling and 

change in affinity). In addition, αIIbβ3 lateral mobility and clustering within the platelet plasma 
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membrane (change in avidity) supports ligand binding to αIIbβ3 and thus platelet aggregation 

(Shattil et al. 2004, Ginsberg et al. 2005).  

The exact signaling mechanisms linking agonist-induced platelet activation and activation of 

platelet integrins (e.g. αIIbβ3) have been extensively studied, but are yet not fully understood. 

Recently, Rap1 has been suggested to be an important intermediate (Bos et al. 2001, Shattil 

et al. 2004, Stork and Dillon 2005). Rap1 is a member of the Ras superfamily of small 

nucleotide binding proteins and has been implicated to be involved in various aspects of cell 

adhesion (Bos et al. 2001, Bos et al. 2003, Bos 2005). Rap1 has two isoforms, Rap1a and 

Rap1b, that share 95 % sequence identity at the amino acid level (Scrima et al. 2008). 

Rap1b is the predominant isoform in platelets (Klinz et al. 1992). Like other small guanine 

nucleotide binding proteins, Rap1 exists in an inactive GDP-bound form and is activated, 

when guanine nucleotide diphosphate is exchanged for guanine nucleotide triphosphate. 

Replacement of GDP for GTP is stimulated by guanine nucleotide exchange factors, 

whereas GTPase activating proteins promote the hydrolysis of bound GTP to GDP and thus 

Rap1 inactivation (Fig.1.4) (Bos et al. 2007).  

 

 

 
 
 
Figure 1.4: Regulation of Rap1 in platelets. 
The small guanine nucleotide binding protein Rap1 regulates the activity of the platelet integrin αIIbβ3, which is 
required for fibrinogen binding and thus platelet aggregation. Rap1 cycles between an inactive GDP- and an 
active GTP-bound form. This GDP/GTP cycle is regulated by guanine nucleotide exchange factors (GEFs) and 
GTPase-activating proteins (GAPs). In platelets, PDZ-GEF1, CalDAG-GEFI and III, and Rap1GAP2 are present. 
PDZ-GEF: postsynaptic density-95 discs-large and zona occludens protein 1-GEF; CD-GEF: CalDAG-GEF 
(where cal stands for calcium and DAG for 1,2-diacylglycerol); GDP: guanine nucleotide diphosphate; GTP: 
guanine nucleotide triphosphate. 
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In murine megakaryocytes, overexpression of the constitutively active Rap1 mutant 

augmented agonist-induced binding of fibrinogen to integrin αIIbβ3 (Bertoni et al. 2002). 

Moreover, deficiency of Rap1 in mouse platelets resulted in abnormal platelet function and a 

severe hemostatic defect caused by reduced agonist-induced αIIbβ3 activation and thus 

platelet aggregation (Chrzanowska-Wodnicka et al. 2005).  

Rap1 becomes rapidly activated on platelet activation with various agonists (Franke et al. 

1997, Franke et al. 2000, Woulfe et al. 2002). Rap1 activation is mediated by Rap1-specific 

GEFs, of which PDZ-GEF1 and CalDAG-GEFI and III are expressed in platelets (Schultess 

et al. 2005). In particular, CalDAG-GEFI and III are likely candidates to integrate agonist-

induced formation of second messengers into the activation of Rap1. Both, CalDAG-GEFI 

and III, are activated by calcium and 1,2-diacylglycerol (Bos et al. 2007). Recently, platelets 

from mice lacking CalDAG-GEFI have been demonstrated to have decreased agonist-

induced activation of Rap1 and αIIbβ3, and thus impaired aggregation and thrombus formation 

(Crittenden et al. 2004). Conversely, platelet inhibition by NO and PGI2, leading to the 

activation of cGMP- and cAMP-dependent protein kinases, blocks agonist-induced formation 

of Rap1-GTP (Franke et al. 1997, Danielewski et al. 2005). Rap1 is phosphorylated by both, 

PKG and PKA, in platelets (Siess et al. 1990, Miura et al. 1992, Siess and Grünberg 1993, 

Danielewski 2005). However, the effect of this phosphorylation is currently unknown. The 

slow kinetics of Rap1 phosphorylation does not correlate with the fast inhibition of the 

protein, suggesting that Rap1 phosphorylation per se is not responsible for the fast 

inactivation of Rap1. Alternatively, phosphorylation and activation of a Rap1-specific GAP 

could play a role in this process. Two major groups of Rap1-specific GAPs have so far been 

described. The first group includes SPA-1 (signal-induced proliferation-associated protein 1) 

and E6TP1α (SPAR/SPAL), whereas the second group consists of Rap1GAP1 and the 

recently identified Rap1GAP2 (Bos et al. 2001, Stork and Dillon 2005, Schultess et al. 2005). 

In platelets, only Rap1GAP2 is present (Schultess et al. 2005). Rap1GAP2 contains a 

conserved catalytic GAP domain, a dimerization domain, an N-terminal 14-3-3 binding site 

and a large C-terminal region of so far unknown function (Fig.1.5) (Daumke et al. 2004, 

Schultess et al. 2005, Hoffmeister et al. 2008). Platelet activation results in phosphorylation 

of Rap1GAP2 on serine 9, binding of 14-3-3 and inhibition of GAP function (Hoffmeister et al. 

2008). Conversely, phosphorylation of Rap1GAP2 by PKG and PKA at serine 7 inhibits 14-3-

3 binding to Rap1GAP2 (Schultess et al. 2005, Hoffmeister et al. 2008). The release of 14-3-

3 protein from Rap1GAP2 might contribute to the inhibition of platelet aggregation initiated by 

NO and PGI2. 
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Figure 1.5: Rap1GAP2 is a multidomain protein.
Rap1GAP2 is a modular protein composed of a central catalytic GAP domain (GAP), a dimerization domain 
(dimer) and an N-terminal 14-3-3 binding site. The C-terminal part of Rap1GAP2 is predicted to have low 
structural organization and is so far of unknown function.  
 
 
1.5 Aims of the present study 

Rap1GAP2 was identified in our laboratory as the first and so far only known GTPase 

activating protein of Rap1 in human platelets (Schultess et al. 2005). Since no other Rap1 

specific GAPs are available, tight regulation of Rap1GAP2 is probably required. In addition to 

the central catalytic GAP domain, Rap1GAP2 contains large N- and C-terminal regions of 

unknown function. It was hypothesized that these regions could be involved in protein-protein 

interactions. Subsequently, a genetic screening in yeast was performed in order to identify 

Rap1GAP2-associated proteins. Apart from 14-3-3 (Hoffmeister et al. 2008), synaptotagmin-

like protein 1 (Slp1, also called JFC1) was found as a new putative interaction partner of 

Rap1GAP2.  

Based on the results of the yeast-two-hybrid screening, the specific aims of the present study 

were to  

(1) verify binding of Slp1 and Rap1GAP2,  

(2) map the interaction site(s) involved in binding of Slp1 and Rap1GAP2,  

(3) investigate complex formation by Slp1, Rap1GAP2, Rab27 and other  proteins,  

(4) determine the function of Slp1/Rap1GAP2 interaction. 

The investigations were carried out in both, mammalian cells and human platelets. In 

particular, in order to define the functional significance of the interaction between Slp1 and 

Rap1GAP2, both, cellular and platelet models were established and applied. 
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Plasmids and cDNAs 

pGBKT7   Clontech Takara Bio, Saint-Germain-en-Laye, France 

pACT2    Clontech Takara Bio, Saint-Germain-en-Laye, France 

pGEX-4T-3   GE Healthcare, Freiburg, Germany 

pET28    Novagen, Darmstadt, Germany 

pcDNATM4/TO   Invitrogen, Karlsruhe, Germany 

pcDNA3.1TM/myc-His  Invitrogen, Karlsruhe, Germany 

pCMV-3Tag-3   Stratagene, La Jolla, USA 

pRluc-N3   BioSignal, Montreal, Canada 

  

Full-length Slp1 cDNA, clone IRATp970G0456D6, was obtained from RZPD (Deutsches 

Ressourcenzentrum für Genomforschung GmbH, Berlin, Germany). 
 

2.1.2 Constructs and primers 

All constructs and primers that were provided or generated and used in this work are listed in 

the appendix. Primers were purchased from MWG Biotech AG, Martinsried, Germany. 

2.1.3 Yeast and bacteria strains, cell lines 

Saccharomyces cerevisiae AH109  Clontech Takara Bio, Saint-Germain-en-Laye, 

France 

Escherichia coli strain TOP10  Invitrogen, Karlsruhe, Germany 

Escherichia coli strain XL-10 GoldTM  Invitrogen, Karlsruhe, Germany 

Escherichia coli strain BL21 StarTM (DE3)  Invitrogen, Karlsruhe, Germany 

COS-1 cells     DSMZ, Braunschweig, Germany 

African green monkey kidney cells 

HeLa cells     Dr. M. Innocenti, IBCII, Frankfurt, Germany 

Human epithelial cervixcarcinoma cells 

LNCaP cells     DSMZ, Braunschweig, Germany 

Human prostate carcinoma cells  
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2.1.4 Antibodies 

Primary antibodies 

Antigen Species (clone) IB IP IF Generated by 

Protein-specific antibodies 

Rap1GAP2 rabbit 1:500 - - A. Smolenski 

Slp1 rabbit 1:2000 - - ImmunoGlobe  

Rap1 rabbit 1:500 - - Santa Cruz  

Rab27a mouse (1G7) 1:2000 1:50 - Abnova 

Rab8a mouse (3G1) 1:2000 - - Abnova 

P-VASP mouse (16C2) 1:5000 - - A. Smolenski 

LDH goat 1:5000 - - Chemicon  

Tag-specific antibodies 

FLAG mouse (M2) 1:10000 1:100 - Sigma 

c-Myc 

 

mouse (9E10) 

rabbit 

1:2000 

1:100 

1:50 

- 

1:250 

- 

Santa Cruz  

 

HA mouse (16B12) 1:2000 - - Covance 

VSV mouse (P5D4) 1:5000 1:200 1:250 Sigma 

T7 mouse 1:10000 - - Novagen 

GFP mouse (7.1 & 13.1) 1:1000 1:100 - Roche 

His6 mouse 1:5000 - - Novagen 

GST mouse (GST-2) 1:10000 - - Sigma 

. 
 

Secondary antibodies 
 

Horseradish peroxidase-coupled donkey anti-goat IgG, goat anti-rabbit IgG and goat anti-

mouse IgG were purchased from Dianova, Hamburg, Germany and used as secondary 

antibodies for immunoblot analysis in dilutions 1:10000. Cy3- and Cy5-labelled secondary 

antibodies were obtained from Jackson Immunoresearch, West Grove, USA and used for 

immunofluorescence analysis in dilutions 1:250. 
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2.1.5 Enzymes and purified proteins 

Pfu DNA Polymerase    Stratagene, La Jolla, USA 

      Fermentas, St. Leon-Rot, Germany 

Quick T4 DNA Ligase    New England Biolabs, Beverly, USA 

Restriction enzymes    New England Biolabs, Beverly, USA 

      Fermentas, St. Leon-Rot, Germany 

 

Human thrombin    Sigma, Taufkirchen, Germany 

Human fibronectin    Calbiochem, Darmstadt, Germany 

 

Creatine phosphokinase   Sigma, Taufkirchen, Germany 

Streptolysin-O   Prof. Dr. S. Bhakdi, Mainz, Germany 

Catalytic subunit of PKA  Dr. E. Butt-Dörje, Würzburg, Germany 

2.1.6 Standards and kits 

GeneRuler DNA Ladder Mix   Fermentas, St. Leon-Rot, Germany 

Unstained Protein MW Marker  Fermentas, St. Leon-Rot, Germany 

 

QIAquick Gel Extraction Kit   Qiagen, Hilden, Germany 

NucleoSpin® Plasmid MiniPrep Kit  Macherey-Nagel, Düren, Germany 

NucleoBond® PC500 MaxiPrep Kit  Macherey-Nagel, Düren, Germany 
 

ECLTM WB detection kit   Amersham Biosciences, Freiburg, Germany 

ImmobilonTM  WB detection kit  Millipore, Billerica, USA 
 

Renilla Luciferase Assay System  Promega, Mannheim, Germany  

Active® PSA ELISA Kit  Diagnostic Systems Laboratories, Sinsheim, 

Germany 

2.1.7 Chemicals and special reagents 

MetafecteneTM     Biontex, Martinsried, Germany 

DEAE-Dextran    Sigma, Taufkirchen , Germany 

Chloroquine     Sigma, Taufkirchen, Germany 

6α-fluorotestosterone    Biomol, Hamburg,Germany 

ADP      Sigma, Taufkirchen, Germany 

Forskolin     Sigma, Taufkirchen, Germany 
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Prostaglandin I2 (PGI2)   Biozol, Eching, Germany 

Sp-5,6-DCI-cBiMPS    Biolog, Bremen, Germany 

Rp-8-Br-cAMPS    Biolog, Bremen, Germany 

ortho-Phthalaldehyde    Sigma, Taufkirchen, Germany 

Serotonin creatinine sulfate   Sigma, Taufkirchen, Germany 

Creatine phosphate    Fluka, Buchs, Switzerland 

Protein A/G Plus Agarose   Santa Cruz Biotechnology, Santa Cruz, USA 

GSH SepharoseTM 4B   GE Healthcare, Freiburg, Germany 

Ni-NTA      Qiagen, Hilden, Germany 

Bio Rad Protein Assay   Bio-Rad, München, Germany 

Albumine bovine fraction V   Sigma, Taufkirchen, Germany 

Albumin bovine fraction V, fatty acid-free Serva Electrophoresis, Heidelberg, Germany 
 

Rap1GAP2 wild-type peptide with the sequence HNSMEVTKTTFSPPV (amino acids 518-

532 of Rap1GAP2a) and Rap1GAP2ΔEVTKTT peptide with the sequence GISHNSMFSPP 

VVAA (amino acids 515-535 of Rap1GAP2a lacking amino acids 522-527) were obtained 

from Schafer-N, Copenhagen, Denmark. All chemicals and reagents for yeast culture and 

transformation were obtained from Clontech Takara Bio, Saint-Germain-en-Laye, France and 

Sigma, Taufkirchen, Germany, except for x-α-Gal which was purchased from Glycosynth, 

Warrington, UK. All cell culture media and solutions were purchased from PAA Laboratories, 

Pasching, Austria. Other chemicals and reagents not listed above were obtained from Sigma, 

Taufkirchen, Germany, Applichem, Darmstadt, Germany, Merck, Darmstadt, Germany and 

Roth, Karlsruhe, Germany.                                                   

2.1.8 Buffers, solutions and gels 

1x TAE Buffer     

40 mM Tris     

20 mM Acetic acid    

1 mM EDTA pH 8.0 

  

TBS      TBS-T                                            

10 mM Tris-HCl pH 7.6   TBS pH 7.6         

150 mM NaCl    + 0.1 % (v/v) Tween® 20 

 

1x SDS Electrophoresis Loading Buffer 

0.01 M Tris-HCl pH 8.0 

1 mM EDTA 
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1 % (w/v) SDS (electrophoresis grade) 

5 % (v/v) β-Mercaptoethanol 

10 % (v/v) Glycerine 

0.05 % (w/v) Bromophenol blue 

 

1x SDS Electrophoresis Running Buffer 

25 mM Tris  

112 mM Glycine 

0.1 % (w/v) SDS 

 

Transfer Buffer 

25 mM Tris-NaOH pH 8.3 

150 mM Glycine 

10 % (v/v) Methanol 

 

Ponceau S Staining Solution   

1 % (w/v) Ponceau S      

15 % (w/v) Trichloroacetic acid    
 

Hot Coomassie Staining Solution 

Phast GelTM Blue R (Coomassie R 350 stain) 

GE Healthcare, Freiburg, Germany 
 

LB Medium (Luria-Bertani Medium) 

1 % (w/v) Tryptone 

0.5 % (w/v) Yeast extract 

1 % (w/v) NaCl 

 

Synthetic drop-out (SD) agar medium 

-Trp/-Leu/-His/-Ade: 

4.67 % (w/v) minimal SD agar base 

0.06 % (w/v) -Trp/-Leu/-His/-Ade DO supplement 

For SD/-Trp/-Leu/-His/-Ade supplemented with x-α-Gal, 40 mg/l of x-α-Gal were added. 

 

X-α-Gal stock solution 

5-bromo-4-chloro-3-indolyl-α-D-galactopyranoside (x-α-Gal) was dissolved in N,N-

Dimethylformamide to a final concentration of 20 mg/ml and stored in the dark at -20°C. 
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Polyacrylamide gels  
 

 
Resolving gel Stacking gel 

[ml] 9 % 10 % 12 % 4% 

H2O 27.725 26.025 22.725 11.38 

Acrylamide 30 % 15 16.7 20 2.7 

3 M Tris-HCl pH 8.9 6.25 6.25 6.25 - 

0.5 M Tris-HCl pH 6.7 - - - 5 

SDS 10 % 0.5 0.5 0.5 0.5 

TEMED 0.025 0.025 0.025 0.02 

APS 10 % 0.5 0.5 0.5 0.4 

. 

2.1.9 Consumables 

Protran® nitrocellulose transfer membrane  Whatman, Dassel, Germany 

Pore size 0.45 µm 

Fuji Medical X-ray film Super RX   Fujifilm, Tokyo, Japan 

PD-10 desalting columns    GE Healthcare, Freiburg, Germany 

Amicon® Ultra centrifugal filter devices  Millipore, Billerica, USA 

3K / 10K / 50K / 100K     

All cell culture dishes and flasks were purchased from Greiner, Frickenhausen, Germany. All 

other plastic consumables were from Greiner, Frickenhausen, Germany and Sarstedt, 

Nuembrecht, Germany. 

2.1.10 Equipment  

PCR: 

GeneAmp® PCR system 9700   Applied Biosystems, Foster City, USA 

Eppendorf Mastercycler    Eppendorf, Hamburg, Germany 
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Agarose gel analysis: 

Gel Doc 2000 with Quantity One software  Bio Rad, München, Germany 

Immunflourescence analysis: 

Zeiss LSM 510 confocal laser scanning microscope   

with Plan-Apochromat 63x/1.4 oil DIC objective lens 

and LSM 510 Meta software    Carl Zeiss, Göttingen, Germany 

  

Centrifuges: 

Eppendorf centrifuge 5415D    Eppendorf, Hamburg, Germany 

Eppendorf centrifuge 5417R    Eppendorf, Hamburg, Germany 

Eppendorf centrifuge 5810R    Eppendorf, Hamburg, Germany 

AvantiTM J-30I centrifuge    Beckman Coulter, Krefeld, Germany 
 

Photometric analysis: 

Eppendorf BioPhotometer    Eppendorf, Hamburg, Germany 

Wallac Victor3 1420 Multilabel Counter  Perkin Elmer, Fremont, USA 

 

2.2 Molecular biological methods 

2.2.1 Agarose gel electrophoresis 

DNA fragments were separated by electrophoresis on 1 % agarose gels according to their 

size. Gels were prepared using standard agarose and 1x TAE running buffer. For DNA 

visualization, 1 µg/ml ethidium bromide was added. Before loading, samples were mixed with 

6x DNA loading buffer (Fermentas, St- Leon-Rot, Germany). Gels were run at 100 V 20 min 

in 1x TAE buffer and finally examined under UV (Gel Doc 2000, Quantity One). 

2.2.2 Cloning of PCR products 

DNA fragments were amplified by polymerase chain reaction (PCR) using thermostable 

proofreading DNA polymerase Pfu (Stratagene; Fermentas). Primers for cloning were 

designed with overhangs in their 5` regions containing the appropriate sites for restriction 

enzymes. All primers that were used can be found in the appendix. Unless otherwise 

specified, a standard hot start PCR protocol was applied in which the polymerase was added 

after the initial denaturation step. 
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Reaction mixture: 

 
Component    Final    Volume 

       concentration  for 50 µl of reaction mixture 
  
dH2O     -   variable 

10x Pfu buffer    1x   5 µl 

10 mM dNTPs    0.2 mM each  1 µl 

Forward primer 10 µM  0.1 µM   1 µl 

Reverse primer 10 µM  0.1 µM   1 µl 

Template DNA   100 ng   variable 

Pfu DNA polymerase 2.5 U/µl 2.5 U   1 µl 

 
Cycling conditions: 

Step   Temperature Time     
 
Initial denaturation 95°C  3 min 

Hot start  80°C  1 min   Pfu DNA polymerase was added. 

Denaturation  95°C  20 sec 

Annealing  variableA 20 sec   25 - 30 cycles      

Extension  72°C  variableB              

Final Extension 72°C  20 min 

Cool down  12°C  unlimited 
 
A usually primer Tm - 5°C, as standard was used 55°C; B n [min] = size of insert  [kb] x 1.5 

plus increments of 1 sec per cycle. 
 

The amplified DNA was separated by agarose gel electrophoresis and analysed under UV. 

For further processing, DNA of appropriate size was cut out and extracted using QIAquick 

Gel Extraction Kit according to manufacturer`s instructions. For directional cloning into the 

plasmid vector, the purified fragment (insert) and the vector were digested with the 

appropriate restriction enzymes. Then, purified and digested insert and vector were ligated at 

a molar ratio of insert:vector of 3:1 using Quick T4 DNA Ligase according to manufacturer`s 

instructions. Ligation products were transformed into ultra-competent Escherichia coli Top10 

cells and grown overnight on LB-agar plates containing the appropriate antibiotic at 37°C. On 

the next day, transformed colonies were picked and grown in LB with antibiotic overnight at 

37°C under vigorous shaking. The plasmid DNA was purified using NucleoSpin® Plasmid 

MiniPrep Kit according to manufacturer`s instructions. The presence of the amplified cloned 

fragment was confirmed by (i) digesting with restriction enzymes and analysis of the 
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restricted DNA by agarose gel electrophoresis and (ii) by DNA sequencing (MWG Biotech, 

Martinsried, Germany). 

2.2.3 In-vitro mutagenesis 

To create a mutation (truncation, deletion or point mutation) of any given DNA sequence, 

site-directed in-vitro mutagenesis was performed. For this purpose, target wild-type DNA was 

amplified by PCR using mutagenic primer pairs (see appendix, list of primers for 

mutagenesis) and Pfu DNA polymerase. The PCR product was digested with DpnI 

(Fermentas, St. Leon-Rot, Germany) for 1 h at 37°C. DpnI specifically cleaves methylated 

and thereby bacterially generated DNA used as template. DpnI-resistant DNA was 

transformed into Escherichia coli XL-10 GoldTM by KCM method. In brief, to prepare 

competent Escherichia coli XL-10 GoldTM, cells were grown in LB medium without antibiotic to 

an OD600
 of 0.3 to 0.6 at 37°C under vigorous shaking. After short centrifugation, the bacterial 

pellet was resuspended in ice-cold TSB (LB medium with 10 % (v/v) polyethylene glycol, 5 % 

(v/v) DMSO, 20 mM Mg2SO4). Then, 80 µl of dH2O, 20 µl of 5x KCM buffer (0.5 M KCl, 0.15 

M CaCl2, 0.25 M MgCl2), 5 µl of DpnI-digested PCR product and 100 µl of competent 

Escherichia coli XL-10 GoldTM were mixed and incubated on ice for 20 min, followed by 

further incubation for 10 min at RT. Then, 800 µl of LB medium were added and cells were 

shaken for 1 h at 37°C. Prior to plating on selective LB-agar with antibiotic, cells were 

centrifuged at 8000 rpm for 1 min. The supernatant was removed and cells were 

resuspended in 100 µl of LB medium. Cells were plated and grown overnight at 37°C. The 

desired mutation was verified by DNA sequencing (MWG Biotech, Martinsried, Germany).                           

2.3 Cell biological methods 

2.3.1 Cell culture and transfection 
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COS-1 and HeLa cells were cultured in Dulbecco`s modified Eagle`s medium (DMEM) with 

4500 mg/l glucose and L-glutamine. LNCaP cells were cultured in RPMI 1640 medium with 

L-glutamine. All media were supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin (PAA Laboratories, Pasching, Austria). Cells were kept at 37°C and 

ambient air containing 5 % CO2. For cell splitting, trypsin-EDTA (1x) solution (PAA 

Laboratories, Pasching, Austria) was used. In brief, one 10 cm dish of confluent cells was 

washed once with 10 ml of PBS to remove residual medium and cell debris. Then, 2 ml of 

trypsin-EDTA were added and cells were incubated for up to 10 min at 37°C 5 % CO2. In 

order to inactivate trypsin, the detached cells were mixed with a surplus of DMEM and then 

collected. An appropriate split ratio was calculated (generally 1:10 to 1:20) and cells were 

replated. The newly seeded cells were left undisturbed for at least 12 to 24 h.  
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Transient transfections of COS-1 cells were performed with DEAE-dextran. For this purpose, 

6 x 105 cells counted with CASY cell counter (Innovatis, Bielefeld, Germany) were seeded 

per 10 cm dish. On the following day, cells were washed with PBS, and 8 to 10 µg of 

expression plasmids were applied in 5.7 ml of serum-free DMEM mixed with 300 µl of DEAE-

dextran (1 mg/ml stock) and 12 µl of chloroquine (100 mM stock). After incubation for 3 h, the 

transfection mixture was removed and cells were cultured in DMEM with 10 % FBS for 24 to 

48 h prior to use. HeLa and LNCaP cells were transiently transfected using MetafecteneTM 

according to manufacturer`s instructions. 

2.3.2 Platelet preparation 

Washed platelets were obtained by sequential centrifugation. In brief, 20.8 ml freshly drawn 

venous blood from healthy volunteers who gave their informed consent according to the 

declaration of Helsinki was collected into 4.2 ml of prewarmed ACD buffer (85 mM sodium 

citrat, 65 mM citric acid, 100 mM glucose) and centrifuged at 200 g for 15 min without brake. 

Platelet rich plasma was removed and platelets were pelleted at 600 g for 15 min. The 

platelet pellet was then resuspended in prewarmed resuspension buffer (145 mM NaCl, 5 

mM KCl, 1 mM MgCl2, 10 mM HEPES, 10 mM glucose, pH 7.4) to a final concentration of 

approximately 1-3 x 108 platelets/ml counted with CASY cell counter (Innovatis, Bielefeld, 

Germany). The platelet suspension was incubated at 37°C for 30 min prior to use. 

2.3.3. Cell lysis 

Adherent COS-1 or HeLa cells were washed three times with ice-cold PBS and detached by 

scraping with a rubber policeman. Washed platelets or washed COS-1 or HeLa cells were 

lysed 10 min on ice with lysis buffer (50 mM Tris-HCl pH 7.5, 1% (v/v) Triton X-100, 150 mM 

NaCl, 5 mM MgCl2), containing  phosphatase inhibitors (1 mM Na3VO4, 50 mM NaF, 5 mM 

Na4P2O7) and protease inhibitors (2 µg/µl aprotinin, 1 µg/µl leupeptin, 0.1 mM 

phenylmethylsylfonyl fluoride). In order to remove insoluble material, cell lysates were 

centrifuged at 14000 g 4°C for 20 min and cleared supernatants were collected for co-

immunoprecipitation and pull-down experiments. 

2.3.4 Immunofluorescence microscopy 
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HeLa cells were grown on glass coverslips (Falcon® culture slides, Becton Dickinson, USA) 

and transfected with expression vectors for EGFP-tagged Rab27a, VSV-tagged Rap1GAP2 

and myc-tagged Slp1. 24 h post-transfection, cells were fixed with 3.7 % paraformaldehyde 

in PBS for 15 min on ice, washed with PBS and permeabilized with 0.2 % (v/v) Triton X-100 

in PBS for 10 min at RT. To detect VSV-tagged Rap1GAP2 and myc-tagged Slp1, primary 

tag-specific antibodies, diluted with 1 % (w/v) BSA in PBS, were added and incubated for 1 h 
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at 37°C, followed by incubation with Cy5-conjugated anti-mouse IgG and Cy3-conjugated 

anti-rabbit IgG as secondary antibodies. After further washing with PBS and water, samples 

were mounted in GEL/MountTM (Biomeda, Foster City, CA). Staining was observed using 

Zeiss LSM 510 confocal laser scanning microscope (Carl Zeiss, Göttingen, Germany). 

2.4 Protein biochemical methods 

2.4.1 Yeast transformation 

Saccharomyces cerevisiae strain AH109 was retransformed with Rap1GAP2-Gal4BD and 

two positive clones of Slp1-Gal4AD (clone 27 and clone 87) obtained from the yeast-two-

hybrid screening with full-length Rap1GAP2a as bait and a human adult brain cDNA library 

as prey (Hoffmeister et al. 2008). Transformation was carried out by lithium acetate/single 

stranded DNA/polyethylene glycol method according to Agatep and Gietz 1998. To select for 

co-transformants, transformed yeasts were grown on synthetic dropout (SD) agar medium 

lacking tryptophane and leucine (SD/-Trp/-Leu) at 30°C for two days. Grown colonies were 

transferred on agar plates containing SD medium without tryptophane, leucine, histidine and 

adenine (SD/-Trp/-Leu/-His/-Ade) and SD/-Trp/-Leu/-His/-Ade supplemented with 5-bromo-4-

chloro-3-indoxyl-α-D-galactopyranoside (x-α-Gal). After two days, yeasts were analyzed for 

survival and α-galactosidase activity or blue coloration, respectively. 

2.4.2 Expression and purification of GST fusion proteins 

To produce recombinant glutathione-S-transferase (GST) fusion protein of Slp1, full-size 

cDNA of Slp1 was subcloned into EcoRI and XhoI sites of the prokaryotic expression vector 

pGEX-4T-3. For GST-14-3-3β protein production, full-size cDNA of 14-3-3β was subcloned in 

pGEX-4T-3 as described in Hoffmeister et al. 2008. Escherichia coli strain BL21 (DE3) was 

transformed with 50 ng of the appropriate plasmid by heat shock and a starter culture of 25 

ml LB medium with 100 µg/ml ampicillin (LB/ampicillin) was grown overnight at 37°C. On the 

next day, the confluent culture was diluted 20 times with LB/ampicillin (500 ml total) and 

grown to an OD600 of 0.9 at 37°C under vigorous shaking. Protein expression was induced 

with 0.1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) and bacteria were grown 

overnight at 16°C. On the following day, cells were harvested by centrifugation at 5500 rpm 

4°C for 10 min in a Beckman JA-10 rotor (AvantiTM J-30I centrifuge, Beckman Coulter). The 

bacterial pellet was resuspended in  5 ml of ice-cold lysis buffer (50 mM HEPES pH 7.5, 150 

mM NaCl, 1 mM EDTA, 5 % (v/v) glycerol, 0.1 % (v/v) Nonidet P40), containing the complete 

protease inhibitor cocktail (Roche, Mannheim, Germany). Bacterial walls were disrupted by 

sonication for 10 sec three times each. To obtain clear bacterial lysate, the bacterial cell 
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suspension was centrifuged at 16000 rpm 4°C for 30 min in a Beckman JA-30.50 rotor 

(AvantiTM J-30 centrifuge, Beckman Coulter). Meanwhile, glutathione (GSH) sepharose 

beads were prepared by washing of 250 µl of GSH sepharose twice with ice-cold PBS and 

once with lysis buffer. Beads were centrifuged in a swinging bucket rotor at 500 g 4°C for 5 

min (Eppendorf Centrifuge 5810R). The prewashed beads were incubated with clear 

bacterial lysate for 1 h at 4°C under gentle rotation, centrifuged and washed extensively 

three times with ice-cold lysis buffer, three times with PBS containing 0.1 % (v/v) Triton X-

100, and three times with PBS. Washed beads were resuspended in 250 µl of PBS 

supplemented with 5 % (v/v) glycerol, aliquoted, frozen and stored at -20°C. Alternatively, in 

order to obtain free GST-Slp1 protein, beads were incubated with 2.5 ml of elution buffer (50 

mM Tris-HCl pH 8.0, 10 mM glutathione) overnight at 4°C, followed by buffer exchange and 

protein concentration using Amicon® Ultra 50K centrifugal filter devices. 

2.4.3 Expression and purification of His6-tagged proteins 

For recombinant hexa-histidine (His6)-tagged protein production in Escherichia coli, full-size 

cDNA of Slp1 and the coding sequence of amino acids 1-167 of Rap1b were subcloned into 

the prokaryotic expression vector pET28. The plasmids were transformed into Escherichia 

coli BL21 and a starter culture of 10 ml LB medium with 30 µg/ml kanamycin (LB/kanamycin) 

was grown overnight at 37°C. On the next day, the confluent culture was diluted 50 times 

with LB/kanamycin (500 ml total) and grown to an OD600 of 0.6 at 37 °C under vigorous 

shaking. Protein expression was induced with 0.4 mM IPTG and bacteria were grown for 3 h 

at 37°C. Cells were harvested, as mentioned in 2.4.2, and lysed in 5 ml of ice-cold lysis 

buffer (50 mM NaH2PO4-NaOH pH 8.0, 300 mM NaCl) containing protease inhibitors, 

followed by sonication. Clear bacterial lysate was obtained by centrifugation as described in 

2.4.2. To purify His6-tagged proteins from the lysate, nickel-nitrilotriacetic acid-agarose (Ni-

NTA) was used. His6-tagged Slp1 was purified in batch mode, whereas His6-tagged Rap1b 

was purified via HisTrap HP column (GE Healthcare) using an ÄKTA-system (J. Babica, 

IBCII, Frankfurt, Germany). For batch purification of His6-Slp1, 1 ml Ni-NTA suspension was 

prewashed with ice-cold lysis buffer and subsequently incubated with clear bacterial lysate 

for 1 h at 4°C on a rotator. Once bound with protein, the resin was centrifuged at 4000 rpm 

4°C for 2 min in a swinging bucket rotor (Eppendorf Centrifuge 5810R). The spent lysate was 

poured off. Washing was performed by resuspension of Ni-NTA in wash buffer (50 mM 

NaH2PO4-NaOH pH 8.0, 300 mM NaCl, 20 mM imidazole) and subsequent centrifugation. 

The bound His6-Slp1 protein was eluted sequentially four times with 250 µl of elution buffer 

(50 mM NaH2PO4-NaOH pH 8.0, 300 mM NaCl, 250 mM imidazole). The eluted protein was 

then collected and combined. Imidazole-containing elution buffer was exchanged by PBS by 
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using PD-10 desalting columns according to manufacturer`s instructions, followed by 

concentration of protein with Amicon® Ultra centrifugal filter devices.  

Recombinant His6-tagged Rap1GAP2 wild-type and Rap1GAP2Δ522-527 mutant were 

affinity purified from COS-1 cells. Briefly, one hundred 10 cm dishes of COS-1 cells were 

transiently transfected with the appropriate plasmids. 48 h post-transfection, cells were lysed 

with lysis buffer (50 mM NaH2PO4-NaOH pH 8.0, 300 mM NaCl, 1% (v/v) Triton X-100) 

containing protease inhibitors, and His6-tagged proteins were affinity purified using Ni-NTA 

agarose, as described before for His6-Slp1 batch purification. The purity of all proteins was 

examined by SDS-PAGE followed by Coomassie Brilliant Blue staining. The concentration 

was determined by Bradford method (Bio-Rad) and from intensities of the bands in 

Coomassie Brilliant Blue-stained gels using BSA as standard. 

2.4.4 SDS-PAGE and immunoblotting 

SDS polyacrylamide gel electrophoresis was used to electrophoretically separate proteins 

according to their molecular weight and was carried out in vertical gels using Mighty Small II 

unit (GE Healthcare) and buffers listed under 2.1.8. Separated proteins were either stained 

with Coomassie Brilliant Blue or electrophoretically transferred from the gel to a nitrocellulose 

membrane using the semi-dry transfer unit Fastblot B44 (Whatman Biometra, Göttingen, 

Germany). Prior to immunoblotting, protein transfer was confirmed by staining the 

nitrocellulose membrane with Ponceau S staining solution. After short destaining with TBS-T, 

the membrane was blocked in 5 % (w/v) BSA/TBS-T for 1 h at RT, followed by further 

incubation with the primary antibody, diluted in 5 % (w/v) BSA/TBS-T, for 1 h at RT or 4°C 

overnight. After subsequent three rinses with TBS-T, the membrane was incubated with 

HRP-coupled secondary antibody for 1 h at RT and again washed three times with TBS-T. 

To detect the HRP signal, two different ECL solutions were used: the ECLTM WB detection 

reagent from Amersham Biosciences showed good results for strong signals, whereas 

ImmobilonTM WB detection reagent from Millipore proved to be better for weak HRP signals 

2.4.5 Immunoprecipitation and pull-down assays 

Proteins were immunoprecipitated from 500 µl of lysate by addition of 5 µl of ANTI-FLAG M2 

affinity gel (Sigma, Taufkirchen, Germany) or other protein- or tag-specific antibody at 4°C for 

4 h or overnight. In case of immunoprecipitation with protein- or tag-specific antibodies, 7 µl 

of protein A/G plus agarose (Santa Cruz Biotechnology) were added to precipitate the 

immunocomplex. In pull-down experiments, 1 µl or 5 µl of GSH sepharose, saturated with 

GST, GST-Slp1 or GST-14-3-3β, respectively, were added to platelet or cellular lysate and 

incubated at 4°C for 4 h or overnight. After incubation, beads were washed three times with 

lysis buffer before adding 15 µl of 3x SDS electrophoresis loading buffer and boiling for 5 
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min. Bound proteins were separated by SDS-PAGE, transferred to a nitrocellulose 

membrane and visualized by immunoblotting using specific antibodies. 

2.4.6 Antibody production 

To detect Slp1, a polyclonal antibody against Slp1 was produced using full-length 

recombinant glutathione-S-transferase-tagged Slp1 purified from Escherichia coli BL21 as 

antigen. Immunization of rabbits and subsequent purification were performed by 

ImmunoGlobe Antikörpertechnik (Himmelstadt, Germany). 

2.4.7 Phospholipid binding assay (PIPStrip) 

PIP StripsTM (Echelon Biosciences, Salt Lake City, USA) spotted with 100 pmol of various 

lipids were blocked with 3 % (w/v) fatty-acid free BSA/TBS-T and incubated with 0.5 µg/ml 

purified recombinant proteins in TBS-T for 3 h at RT. The membranes were washed three 

times with TBS-T, incubated with either anti-GST antibody or anti-His6 antibody in 3 % (w/v) 

fatty-acid free BSA/TBS-T for 1 h at RT, washed three times with TBS-T and incubated with 

HRP-coupled goat anti-mouse IgG diluted 1:20000 in 3 % (w/v) fatty-acid free BSA/TBS-T for 

1 h at RT. After washing with TBS-T, bound proteins were detected using ECLTM WB 

detection reagent (Amersham Biosciences). 

2.4.8 Peptide binding assay (PepSpot) 

Synthetic peptides with either wild-type Rap1GAP2 sequence HNSMEVTKTTFSPP (amino 

acids 518-531 of Rap1GAP2a) or with one amino acid mutated to alanine or single 

threonines phosphorylated were synthesized on cellulose membrane (ImmunoGlobe 

Antikörpertechnik) and incubated with 1 µg/ml of purified recombinant GST-Slp1 in 5 % (w/v) 

BSA/TBS-T for 3 h at RT. Bound GST-Slp1 was visualized by immunoblotting using anti-GST 

antibody. 

2.4.9 In-vitro phosphorylation 

COS-1 cells were transiently transfected with myc-tagged wild-type Slp1 and mutants of Slp1 

having serine-to-alanine mutations of serine 117 and serine 311. 48 h post-transfection, cells 

were lysed in lysis buffer, as described in 2.3.3, and proteins were immunoprecipitated with 

anti-myc antibody (9E10) and protein A/G plus sepharose. Precipitated proteins were 

washed and transferred into 20 µl of kinase buffer (30 mM Tris-HCl pH 7.5, 0.1 mM EGTA, 2 

mM MgCl2) supplemented with 0.1 % (v/v) β-mercaptoethanol and without or with the 

catalytic subunit of PKA at a final concentration of 20 ng/µl. In parallel, 50 µl of cold ATP (200 

nM stock) and 1 µl of γ-[32P] ATP (10 µCi/µl, obtained from Hartmann Analytic, 
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Braunschweig, Germany) were carefully mixed, and 5 µl of this mixture were used to start the 

phosphorylation reaction. Proteins were phosphorylated for 10 min at 30°C. The reaction was 

stopped by addition of 12.5 µl of 3x SDS electrophoresis loading buffer and boiling for 5 min. 

Samples were subjected to SDS-PAGE and transferred to a nitrocellulose membrane. 32P 

incorporation was detected by autoradiography. Slp1 expression was analyzed by 

immunoblotting using anti-myc antibody. 

2.4.10 Affinity chromatography 

Affinity chromatography was performed using 1 ml HiTrapTM NHS-activated HP columns (GE 

Healthcare, Freiburg, Germany) and a peristaltic pump P-1 (Pharmacia). As ligand up to 8 

mg/ml of purified recombinant His6-tagged Slp1 protein in coupling buffer (0.2 M NaHCO3, 

0.5 M NaCl, pH 8.3) were covalently coupled to the NHS-activated sepharose according to 

manufacturer`s instructions. As negative control, HiTrapTM NHS-activated HP column without 

ligand was prepared and treated identically. As source for interacting proteins, lysate of 

washed human platelets prepared from 100 ml freshly drawn venous blood was used. Prior 

to administration onto the column, platelet lysate was adjusted to the composition of the 

binding buffer (50 mM Tris pH 7.5, 150 mM NaCl) by buffer exchange using PD10 desalting 

columns. Lysate was filtered through a 0.45 µm filter and applied onto the column with a flow 

rate of 0.2 ml/min according to manufacturer`s instructions. After washing with 20 ml of 

binding buffer, bound proteins were eluted with 3 ml of elution buffer (0.1 M glycine pH 3.0) 

and collected in 6 fractions to 500 µl. Each fraction was concentrated with Amicon® Ultra-4 

10K centrifugal filter devices, mixed with 3x SDS electrophoresis loading buffer, boiled and 

separated by SDS-PAGE followed by Coomassie Brilliant Blue staining. Protein bands of 

different molecular weight ranging from 16 to 100 kD were finally excised and analyzed by 

tryptic digest and mass spectrometry (Dr. Guiliano Elia, Conway Institute for Biomolecular 

and Biomedical Research, Dublin, Ireland).  

2.5 Other methods 

2.5.1 In-vitro GAP assay 

36 

For GTP loading, 25 µM His6-Rap1b was incubated with 125 nM [32P]GTP (800 Ci/mmol, 10 

µM/µl, obtained from Hartmann Analytic, Braunschweig, Germany) in the presence of 25 µM 

GTP, 10 mM EDTA, 1 mM DTE, and 30 mM Tris-HCl pH 7.5 for 1 h at RT. The exchange 

reaction was stopped by adding 20 mM of MgCl2. The non-incorporated nucleotides were 

removed by gel filtration using NAP-5 columns (GE Healthcare). FLAG-tagged Slp1 and 

Rap1GAP2 proteins were purified from transfected HeLa cells using ANTI-FLAG M2 affinity 

gel (Sigma). Precipitated proteins were incubated with purified [32P] GTP-loaded His6-Rap1b 
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in a buffer containing 30 mM Tris-HCl pH 7.5, 5 mM MgCl2 and 1 mM DTE in 50 µl aliquots at 

25°C. After different time points, 5 µl aliquots were removed and mixed with 395 µl of ice-

cold 5 % (w/v) charcoal suspension in 20 mM phosphoric acid. After centrifugation at 12000 

rpm 4°C for 10 min, 200 µl of supernatants were removed, mixed with 2 ml of scintillation 

fluid and counted (TRI-CARB 2900 TR liquid scintillation analyzer plus QuantaSmartTM 

software, Perkin Elmer, Fremont, USA). 

2.5.2 Cell adhesion assay 

96 well plates were coated overnight at 4°C with 20 µg/ml fibronectin in PBS, washed with 

PBS, and blocked for 1 h at RT with 0.5 % (w/v) BSA in PBS. After washing, 50 µl of DMEM 

containing 10% (v/v) FBS were added per well. HeLa cells were transiently transfected with 

pRluc-N3 (BioSignal Packard), either alone or in combination with Rap1GAP2-FLAG or 

Rap1GAP2-FLAG and Slp1-myc. Cells were washed, detached with 0.05 % (w/v) EDTA in 

PBS, spun down, resuspended in DMEM containing 10 % (v/v) FBS, counted using 

Neubauer counting chamber and finally diluted to a concentration of 2 x 105 cells/ml.  50 µl of 

cell suspension were added per well of the previously prepared 96 well plate. After a short 

spinning down for 1 min at 10 g, cells were allowed to adhere for 50 min at 37°C. Non-

adherent cells were removed by washing with prewarmed 0.5 % (w/v) BSA in PBS. Adherent 

cells were lysed and subjected to luciferase assay using Renilla luciferase assay system 

according to manufacturer`s instructions (Promega, Mannheim, Germany). Expression levels 

of transfected constructs were examined by immunoblotting. Numbers of bound cells were 

calculated and corrected for transfection efficiency by measuring luciferase activity of total 

input cells.  

2.5.3 Prostate-specific antigen secretion assay 

LNCaP cells were cultured as described in 2.3.1. Prior to transfection, cells were seeded in 

six well plates at 3 x 105 cells/ml and left undisturbed for 12-24 h. Cells were transiently 

transfected with 2 µg of the indicated expression plasmids with MetafecteneTM according to 

manufacturer`s instructions. 12 h post-transfection, medium was replaced with fresh RPMI 

1640 containing 100 nM 6α-fluorotestosterone or DMSO as control. Cells were incubated for 

additional 36 h at 37°C in 5 % CO2. Then, cell medium was collected and stored at -20°C 

before analysis. The concentration of secreted prostate-specific antigen (PSA) in the medium 

was measured using PSA ELISA kit as described by the manufacturer (Diagnostic Systems 

Laboratories, Sinsheim, Germany). Cells were washed with PBS, trypsinized, counted and 

diluted to a concentration of 2 x 105 cells/ml. For protein expression analysis, cells were 

lysed in hot 3x SDS electrophoresis loading buffer and boiled for 5 min. Proteins were 

37 
 



Materials and methods 
_________________________________________________________________________________ 

 

separated by SDS-PAGE, transferred onto a nitrocellulose membrane and subjected to 

immunoblotting using tag-specific antibodies. 

2.5.4 Serotonin secretion of intact platelets 

Serotonin (5-hydroxytryptamine, 5HT) forms a fluorophore with ortho-phthalaldehyde, which 

was detected by measuring the fluorescence emission at 475 nm using Wallac Victor 1420 

Multilabel Counter according to Holmsen and Dangelmaier 1989. To inhibit serotonin 

reuptake during secretion, 4 µM of fluoxetine hydrochloride, a selective serotonin reuptake 

inhibitor, were added to 300 µl of platelet suspension (approximately 1-3 x 108 platelets/ml, 

counted with CASY cell counter, Innovatis, Bielefeld, Germany). To induce serotonin 

secretion, washed platelets were either treated with thrombin at different concentrations for 5 

min at 37°C, or pretreated with 10 µM of forskolin for 20 min or 1 µM of sodium nitroprusside 

(SNP) for 5 min at 37°C, followed by thrombin treatment as indicated. The secretion reaction 

was stopped by addition of 30 µl of ice-cold 50 mM EDTA pH 7.4. Samples were mixed, 

centrifuged (except for the totals) and put on ice. For protein precipitation, 270 µl of 

supernatants and totals were transferred to Eppendorf tubes containing 60 µl of ice-cold 6 M 

trichloroacetic acid (TCA), vortexed and centrifuged. 250 µl aliquots of these TCA extracts 

were added to 1 ml of ortho-phthalaldehyde reagent (0.5 % (w/v) ortho-phthalaldehyde in 

ethanol mixed with 10 volumes of 8 N HCl), boiled for 10 min and cooled on ice. Samples 

and totals were transferred into 15 ml Falcon tubes and washed twice with chloroform by 

vigorous vortexing 10 sec each. Fluorescence emission of the upper phase was measured 

as described above. For assay validation, serotonin creatinine sulphate, dissolved to 1 mM in 

1 N HCl, was used as standard. Working solutions ranging from 0 to 5 µM were prepared in 

dH2O and processed as described above, starting with TCA protein precipitation. Blank 

values were subtracted from all readings.  

2.5.5 Serotonin secretion of permeabilized platelets 

Freshly obtained washed platelets (1 x 108 platelets/ml, counted with CASY cell counter, 

Innovatis, Bielefeld, Germany) were resuspended in 70 µl of prewarmed buffer A (50 mM 

HEPES-KOH pH 7.4, 78 mM KCl, 4 mM MgCl2, 2 mM EGTA, 0.2 mM CaCl2, 5 mM DTT), 

containing 4 mg/ml BSA, 5 mM ATP, 8 mM creatine phosphate, 50 μg/ml creatine 

phosphokinase. Platelets were permeabilized using 0.6 µg/ml streptolysin-O in buffer A 

containing 4 mg/ml BSA at 30°C for 5 min. Then, permeabilized platelets were placed on ice 

and incubated with proteins or peptides to be tested for additional 40 min, followed by further 

incubation at 30°C for 5 min. Finally, platelets were stimulated with either 10 µl of prewarmed 

buffer A, where the free calcium ion concentration was calculated to approximately 20 nM, or 

10 µl of prewarmed stimulation buffer (50 mM HEPES-KOH pH 7.4, 78 mM KCl, 4 mM 
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MgCl2, 2mM EGTA, 20 mM CaCl2), which results in 20 µM of free calcium, at 30°C for 1 min. 

In case of guanosine 5`-O-[γ-thio] triphosphate (GTPγS)-induced secretion of dense 

granules, platelets were stimulated with 100 µM of GTPγS at 30°C for 5 min. The reaction 

was stopped by addition of 200 µl of 2-fold concentrated ice-cold stop buffer (100 mM 

HEPES-KOH pH 7.4, 156 mM KCl, 8 mM MgCl2, 18 mM EGTA, 0.4 mM CaCl2) and 

incubation on ice for 5 min. Then, platelets were removed (except for totals) by centrifugation 

at 4°C 5000 g for 5 min, and released serotonin in the supernatant was measured as 

described in 2.5.4. In all cases, the secretion levels of serotonin were expressed as 

percentage of total serotonin stored in platelet dense granules. Permeabilization was 

monitored by immunoblotting of platelet total lysates and supernatants using anti-LDH 

antibody. 

2.5.6 Statistical analysis 

Shown data represent means ± SD of at least three independent experiments performed in 

triplicate. The statistical significance of the means was analyzed by Student`s t test using 

SigmaPlot 8.0. P-values are expressed as follows * p < 0.05, ** p < 0.01, *** p < 0.001 and 

considered as statistically significant. All experiments (e.g. co-immunoprecipitation and pull-

down assays) were conducted at least three times. 
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3. RESULTS 

3.1 Verification of Slp1 as new interaction partner of Rap1GAP2 

3.1.1 Slp1 is a new binding partner of Rap1GAP2  

To identify Rap1GAP2-associated proteins, a genetic two-hybrid screening in yeast was 

performed (O. Danielewski and A. Smolenski, IBCII, Frankfurt, Germany). Full-length wild-

type Rap1GAP2a, the predominant splice isoform of Rap1GAP2 in platelets, was subcloned 

into the pGBKT7 vector, generating a fusion protein between Rap1GAP2 and the DNA 

binding domain (BD) of the yeast transcription factor Gal4, and was used as bait (1. hybrid). 

Likewise, a human adult brain cDNA library was constructed into the pACT2 prey vector to 

generate fusions of the various proteins encoded by the library cDNAs and the Gal4 

transcriptional activation domain (AD) (2. hybrid). The bait vector and 3.5 x 106 cfu of the 

library were introduced into the yeast reporter strain AH109 and a high-stringency screening 

was carried out as described by the manufacturer. Yeasts were grown on synthetic dropout 

(SD) media and selected by proliferation (nutritional selection for TRP, LEU, HIS3 and 

ADE2). Among the 112 positive library clones that were found to interact in the screening, 

two clones were identified as synaptotagmin-like protein 1 (Slp1, also called JFC1) (clones 

27 and 87, accession numbers NP_116261 or BC035725).  

To confirm the two-hybrid interaction between Rap1GAP2 and Slp1, Rap1GAP2-Gal4BD and 

Gal4BD as negative control were co-transformed together with the prey plasmids of clone 27 

and clone 87 into AH109, and yeasts were assayed for growth and α-galactosidase activity 

(Fig.3.1). After initial selection for co-transformants on SD/-Trp/-Leu agar plates, yeasts were 

transferred on SD/-Trp/-Leu/-His/-Ade agar to select for co-transformants that host a positive 

two-hybrid interaction of Rap1GAP2 and Slp1. If Rap1GAP2 and Slp1 interact, the Gal4BD 

was brought into proximity to Gal4AD. Subsequently, the Gal4 transcription factor was 

reconstituted and activated the transcription of the reporter genes HIS3, ADE2 and MEL1. 

HIS3 and ADE2 encode the amino acids histidine and adenine, thereby enabling yeasts to 

produce and survive in absence of these amino acids. These yeasts were selected by growth 

on SD/-Trp/-Leu/-His/-Ade agar plates (Fig.3.1, left panel). In contrast, the gene product of 

MEL1 is α-galactosidase. α-Galactosidase cleaves x-α-Gal, yielding α-D-galactose and 5-

bromo-4-chloro-3-hydroxyindole which in turn is oxidized into the blue pigment 5,5'-dibromo-

4,4'-dichloro-indigo. To select for α-galactosidase activity, transformed yeasts were grown on 

SD/-Trp/-Leu/-His/-Ade agar plates supplemented with x-α-Gal. If Rap1GAP2 and Slp1 

interact, yeast colonies turned blue (Fig.3.1, right panel). In contrast, yeasts transformed with 

the empty bait vector pGBKT7 (Gal4BD) and prey vector pACT2 of Slp1 clone 27 did not 

survive on SD/-Trp/-Leu/-His/-Ade agar plates, indicating that absence of Rap1GAP2 as 
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binding partner of Slp1 results in physically separated Gal4BD and Gal4AD. In conclusion, 

yeast-two-hybrid screening revealed Slp1 as a new putative interaction partner of Rap1GAP2 

and the interaction between Rap1GAP2 and Slp1 was confirmed by yeast retransformation 

and x-α-Gal staining.  

 

 

 
 
 
 
 
Figure 3.1: Rap1GAP2 and Slp1 associate in yeast. 
AH109 yeasts were co-transformed with Rap1GAP2-
Gal4BD (RG2-Gal4BD) and Slp1-Gal4AD clone 27 and 
clone 87, respectively. As negative control, Slp1-Gal4AD 
clone 27 was co-transformed with empty vector pGBKT7 
expressing Gal4BD. Transformed yeasts were analyzed 
for growth on SD/-Trp/-Leu/-His/-Ade agar plates (left 
panel) and x-α-galactosidase activity on SD/-Trp/-Leu/-
His/-Ade supplemented with x-α-Gal (right panel). 

3.1.2 Rap1GAP2 and Slp1 interact in transfected mammalian cells 

To confirm the Rap1GAP2/Slp1 interaction outside the yeast-two-hybrid system, pull-down 

assays were performed. For this purpose, HeLa cells were transiently transfected with FLAG-

tagged Rap1GAP2. 24 h post-transfection, cells were lysed, and lysates were subjected to 

pull-down assays using equal amounts of purified recombinant full-length Slp1 fused to GST 

and GST as control. The precipitates were analyzed for the presence of bound FLAG-tagged 

Rap1GAP2 by immunoblot using anti-FLAG antibody. As shown in Fig.3.2A, GST-Slp1 was 

clearly able to pull down transfected Rap1GAP2 from cell lysates, whereas GST alone did 

not. To verify that Rap1GAP2 and Slp1 interact also in intact mammalian cells, co-

immunoprecipitation experiments were performed. HeLa cells were transfected with FLAG-

tagged Rap1GAP2 and myc-tagged Slp1 either alone or in combination. On the next day, 

cells were lysed, and Rap1GAP2 was immunoprecipitated with anti-FLAG antibody. The 

precipitates were analyzed for the presence of bound myc-tagged Slp1 by immunoblotting 

using anti-myc antibody. As shown in Fig.3.2B, Slp1 was only present in precipitates from 

cells overexpressing both, Slp1 and Rap1GAP2. This result was further confirmed in a 

reverse co-immunoprecipitation experiment using anti-myc antibody (Fig.3.2C). All 

experiments were also carried out using transfected COS-1 cells, yielding the same results 

(data not shown).  
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Figure 3.2: Rap1GAP2 interacts with Slp1 in transfected HeLa cells. 
A: Pull-down of transfected Rap1GAP2 with GST-Slp1. HeLa cells were transiently transfected with FLAG-
tagged Rap1GAP2 (RG2-FLAG). Equal amounts of GST as control and GST-Slp1 coupled to GSH sepharose 
beads were used for precipitation (lower panel). Bound Rap1GAP2 protein was visualized by immunoblot using 
anti-FLAG antibody (upper panel). The middle panel shows expression levels of Rap1GAP2 (total RG2-FLAG, 
2% input). The broad band of Rap1GAP2 is probably due to extensive post-translational modifications.  
B and C: Co-immunoprecipitation of transfected Rap1GAP2 and Slp1. HeLa cells were transiently transfected 
with FLAG-tagged Rap1GAP2, myc-tagged Slp1 or FLAG-tagged Rap1GAP2 together with myc-tagged Slp1. 
After cell lysis, Rap1GAP2 was immunoprecipitated with anti-FLAG antibody (B) and Slp1 with anti-myc 
antibody (C), respectively. The precipitates were analyzed for the presence of bound Slp1 (B, upper panel) or 
bound Rap1GAP2 (C, upper panel) by immunoblot using tag-specific antibodies. The two lower panels show 
expression levels of Slp1 (total Slp1-myc, 2% input) and Rap1GAP2 (total RG2-FLAG, 2% input). 

 

 

Taken together, the interaction between Rap1GAP2 and Slp1 was confirmed by pull-down 

assays and co-immunoprecipitation experiments in transfected mammalian cells.  

 

To investigate whether Slp1 also binds to other RapGAPs, Rap1GAP1 was tested. 

Rap1GAP1 is the closest relative of Rap1GAP2 with about 50 % overall identity at amino 

acid level (Schultess et al. 2005). HeLa cells were transiently transfected with HA-tagged 

Rap1GAP1, which was kindly provided by Prof. Dr. J. Bos, Utrecht, Netherlands. 24 h post-

transfection, cells were lysed, and lysates were subjected to GST-Slp1 pull-down assays. As 

shown in Fig.3.3, no binding of GST-Slp1 to Rap1GAP1 was observed. The same result was 

also obtained in co-immunoprecipitation experiments using transfected HeLa cells (data not 

shown). In conclusion, Slp1 does not bind to Rap1GAP1, indicating that the interaction 

between Slp1 and Rap1GAP2 is specific. 
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Figure 3.3: Rap1GAP1 does not bind to Slp1. 
HeLa cells were transiently transfected with HA-tagged Rap1GAP1 (RG1-HA). Cells were lysed, and lysates 
were subjected to pull-down assays using equal amounts of GST as negative control and GST-Slp1. The 
precipitates were analyzed for the presence of bound Rap1GAP1 by immunoblot using anti-HA antibody (upper 
panel). The lower panel shows expression levels of Rap1GAP1 (total RG1-HA, 2% input). 

 

3.1.3 Slp1 is expressed and binds to Rap1GAP2 in human platelets 

Rap1GAP2 is the only GTPase activating protein of Rap1 expressed in human platelets 

(Schultess et al. 2005). To asses the interaction between Rap1GAP2 and Slp1 in a more 

physiological context, pull-down assays using human platelet lysate were performed. 

Washed human platelets were lysed as described under Materials and Methods (2.3.3), and 

platelet lysates were subjected to pull-down assays using equal amounts of GST and GST-

Slp1. The precipitates were analyzed for the presence of endogenous Rap1GAP2 by 

immunoblot using anti-Rap1GAP2 antibody. As shown in Fig.3.4A, only GST-Slp1, but not 

GST, bound to endogenous Rap1GAP2 protein. So far, it was unknown if Slp1 is expressed 

in platelets. Endogenous expression of Slp1 in platelets, however, is a prerequisite for the 

association of both proteins, Rap1GAP2 and Slp1, at endogenous level and determines the 

physiological relevance of the Rap1GAP2/Slp1 interaction for platelet function. To check if 

Slp1 is present in platelets, a polyclonal antibody against full-length human Slp1 was 

generated (IBCII, ImmunoGlobe Antikörpertechnik). The antibody specifically recognized the 

66 kD Slp1 protein in HeLa cells transfected with myc-tagged Slp1, but not in mock-

transfected cells (Fig.3.4B). Importantly, the antibody recognized a band of similar molecular 

weight in human platelet lysate, suggesting that Slp1 is endogenously expressed in human 

platelets (Fig.3.4C). Unfortunately, neither this newly generated anti-Slp1 antibody nor our 

anti-Rap1GAP2 antibody were able to immunoprecipitate their antigens efficiently from 

human platelet lysates. Therefore, in order to obtain conclusive evidence that endogenous 

Rap1GAP2 and Slp1 interact, an alternative precipitation approach was developed and 

applied as described in Hoffmeister et al. 2008. 
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Figure 3.4: Endogenous Rap1GAP2 and Slp1 interact in human platelets.
A: Pull-down of endogenous Rap1GAP2 with GST-Slp1. Equal amounts of GST as control and GST-Slp1 
coupled to GSH sepharose beads were incubated with human platelet lysate. Bound endogenous Rap1GAP2 
protein was visualized with anti-Rap1GAP2 antibody (RG2, upper panel). Expression level of Rap1GAP2 is 
shown as 2% input of total Rap1GAP2.  
B: Anti-Slp1 antibody recognizes the 66 kD Slp1 protein in transfected HeLa cells. HeLa cells were transiently 
transfected with empty vector pcDNA3.1/mycHis (mock) or myc-tagged Slp1 (Slp1-myc). Cells were lysed, and 
lysates were analyzed by immunoblot using anti-Slp1 antibody.  
C: Slp1 is expressed in human platelets. Washed human platelets were lysed, and lysates were analyzed by 
immunoblot using preimmune serum and anti-Slp1 antibody, respectively.  
D: Pull-down of transfected Rap1GAP2 and Slp1 with GST-14-3-3β. COS-1 cells were transiently transfected 
with myc-tagged Slp1 and without or with FLAG-tagged Rap1GAP2 (RG2-FLAG). Cells were lysed, and GST 
fusion protein of 14-3-3β was used to precipitate Rap1GAP2 and indirectly Slp1 bound to Rap1GAP2. 
Precipitated Slp1 was detected by immunoblot using anti-myc antibody (top panel). Precipitation of Rap1GAP2 
was controlled by immunoblot with anti-FLAG antibody (second panel from top). In parallel, total cell lysates were 
analyzed for the expression of Slp1 (total Slp1-myc, 2% input) and Rap1GAP2 (total RG2-FLAG, 2% input).  
E: Pull-down of transfected Rap1GAP2 and 14-3-3β with GST-Slp1. COS-1 cells were transiently transfected 
with myc-tagged 14-3-3β and without or with FLAG-tagged Rap1GAP2 (RG2-FLAG). Cells were lysed, and GST 
fusion protein of Slp1 was used to precipitate Rap1GAP2 and indirectly 14-3-3β bound to Rap1GAP2. 
Precipitated 14-3-3β was detected by immunoblot using anti-14-3-3 antibody (top panel), and precipitated 
Rap1GAP2 using anti-FLAG antibody (second panel from top). The two lower panels show expression levels of 
14-3-3β  (total 14-3-3-myc, 2% input) and Rap1GAP2 (total RG2-FLAG, 2% input).  
F: Pull-down of endogenous Rap1GAP2 and Slp1 from human platelets. Washed human platelets were treated 
with 0.1 U/ml thrombin for 1 min at 37°C. Platelets were lysed, and lysates were subjected to pull-down assays 
using equal amounts of GST as control and GST-14-3-3β. The precipitates were analyzed for the presence of 
endogenous Rap1GAP2 (RG2) and Slp1 using specific anti-Rap1GAP2 and anti-Slp1 antibodies (first and 
second panel from top). Expression levels of Rap1GAP2 and Slp1 are shown as 2% input of total protein 
amounts. The lower panel shows the amounts of GST and GST-14-3-3β used for precipitation. Unspecific band 
is marked with asterisk (*).  
G: Pull-down of endogenous Rap1GAP2 and 14-3-3 from human platelets. Washed human platelets were 
treated with 0.1 U/ml thrombin for 1 min at 37°C as indicated. Platelets were lysed, and lysates were subjected to 
pull-down assays using equal amounts of GST as control and GST-Slp1. The precipitates were analyzed for the 
presence of endogenous 14-3-3 and Rap1GAP2 (RG2) by immunoblot with anti-14-3-3 and anti-Rap1GAP2 
antibodies (first and second panel from top). The two lower panels show expression levels of 14-3-3 (total 14-3-
3, 2% input) and Rap1GAP2 (total RG2, 2% input). 

 

To this end, a second Rap1GAP2 binding partner, 14-3-3, was expressed and purified as 

GST fusion protein from Escherichia coli BL21 and used to precipitate sufficient amounts of 

endogenous Rap1GAP2. Binding of 14-3-3 proteins to Rap1GAP2 was discovered and 

characterized in our group. We could show that 14-3-3 proteins bind to Rap1GAP2 at 

phosphorylated serine 9 within the N-terminus of Rap1GAP2. Moreover, platelet activation by 

ADP and thrombin enhances serine 9 phosphorylation and thereby increases 14-3-3 binding 

to endogenous Rap1GAP2 (Hoffmeister et al. 2008). To exclude the possibility that 14-3-3 

and Slp1, designated Rip2 in Hoffmeister et al. 2008, interact directly with each other, control 

experiments in COS-1 cells were performed. To mimic the endogenous situation in platelets, 

COS-1 cells were transiently transfected with myc-tagged Slp1 and FLAG-tagged 

Rap1GAP2. As control, cells were transfected with myc-tagged Slp1 only. After two days, 

cells were lysed, and GST-14-3-3  was used to pull down Rap1GAP2 and indirectly Slp1 that 

was associated with Rap1GAP2 in cells overexpressing both proteins. The precipitates were 

analyzed for the presence of FLAG-tagged Rap1GAP2 and myc-tagged Slp1 by immunoblot 

using tag-specific antibodies. As shown in Fig.3.4D, GST-14-3-3 precipitated Slp1 only in 
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presence of Rap1GAP2, demonstrating that 14-3-3 could not bind to Slp1 by itself. This 

result could further be confirmed in a reverse experiment using COS-1 cells transfected with  

myc-tagged 14-3-3 and with or without FLAG-tagged Rap1GAP2. Purified recombinant GST-

Slp1 was used to pull down Rap1GAP2 and indirectly 14-3-3 associated with Rap1GAP2. As 

expected, precipitated 14-3-3 was only detected in precipitates from cells overexpressing 

both, Rap1GAP2 and 14-3-3 (Fig.3.4E). To show that Rap1GAP2 and Slp1 interact at 

endogenous level in human platelets, purified recombinant GST-14-3-3 was used to pull 

down endogenous Rap1GAP2 from platelet lysate. To induce serine 9 phosphorylation and 

thereby enhance binding of GST-14-3-3 to Rap1GAP2, platelets were treated with thrombin. 

As shown in Fig.3.4F, GST-14-3-3 was clearly able to pull down endogenous Rap1GAP2 

and Slp1 bound to Rap1GAP2 from human platelets. In a reverse experiment, GST-Slp1 was 

used to pull down endogenous Rap1GAP2 from platelet lysate. As shown in Fig.3.4G, GST-

Slp1 was able to co-precipitate endogenous 14-3-3 via Rap1GAP2, whereas GST alone did 

not bind Rap1GAP2 or 14-3-3. Thrombin treatment of platelets resulted in increased binding 

of 14-3-3 to Rap1GAP2 at endogenous level (Fig.3.4G, top panel). Taken together, these 

experiments confirm that the interaction between Rap1GAP2 and Slp1 is direct and show 

that both proteins interact at endogenous level in human platelets. 

Slp1 is a member of the synaptotagmin-like protein (Slp) family, and to date, five distinct 

isoforms (Slp1-5) have been reported in mammals (Fukuda 2005). Database search 

(http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de) revealed that among those, Slp4 is 

expressed in platelets, too. To test if Rap1GAP2 binds to Slp4 or other Slp isoforms (Slp2, 

Slp3 and Slp5), co-immunoprecipitation experiments were performed. No interaction 

between Rap1GAP2 and Slp2, Slp3, Slp4, and Slp5 was detected (data not shown).  

3.2 Characterization of the Rap1GAP2/Slp1 interaction  

3.2.1 The C2A domain of Slp1 is sufficient for binding to Rap1GAP2 

Slp1 is composed of an N-terminal Rab27 binding domain (SHD) and two tandem C2 

domains, C2A and C2B, at the C-terminus (Fukuda and Mikoshiba 2001, McAdara Berkowitz 

et al. 2001). From the yeast-two-hybrid screening the binding site for Rap1GAP2 within Slp1 

was assumed to be located within the two C2 domains of Slp1. Both Slp1 clones that were 

found to interact with Rap1GAP2 in yeast matched the C-terminal part of Slp1 containing the 

two tandem C2 domains (amino acids 293-549 of Slp1). Therefore, to determine the binding 

site for Rap1GAP2 within Slp1, mutants composed of C2A, C2B or C2AB domain of Slp1 

fused to GST were expressed and purified from Escherichia coli BL21 and used in pull-down 

assays (Fig.3.5A). In brief, HeLa cells were transfected with FLAG-tagged Rap1GAP2. After 
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cell lysis, equal amounts of GST as negative control, GST-C2A, GST-C2B, and GST-C2AB 

were used to precipitate transfected Rap1GAP2. The precipitates were analyzed for the 

presence of FLAG-tagged Rap1GAP2 by immunoblot using anti-FLAG antibody. As shown in 

Fig.3.5B, GST did not bind to Rap1GAP2. No binding was detected between GST-C2B and 

Rap1GAP2. In contrast, GST-C2A and GST-C2AB were able to pull down transfected 

Rap1GAP2 from HeLa cell lysates, indicating that the C2A domain is required and sufficient 

for binding of Slp1 to Rap1GAP2.  
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Figure 3.5: The C2A domain of Slp1 is sufficient for binding of Slp1 to Rap1GAP2.
A: Schematic representation of Slp1 mutants. GST fusion proteins of C2A (amino acids 292-393 of Slp1), C2B 
(amino acids 433-580 of Slp1) and C2AB (amino acids 292-580 of Slp1) were used in pull-down assays. Myc-
tagged C2A (amino acids 292-432 of Slp1) was used in co-immunoprecipitation experiments.  
B: Pull-down of transfected Rap1GAP2 with GST-Slp1 mutants. Lysates of HeLa cells overexpressing FLAG-
tagged Rap1GAP2 (RG2-FLAG) were subjected to pull-down experiments using equal amounts of GST as control 
and GST fusion proteins of C2A, C2B and C2AB. The precipitates were analyzed for the presence of bound 
Rap1GAP2 by immunoblot with anti-FLAG antibody (upper panel). The middle panel shows expression levels of 
Rap1GAP2 (total RG2-FLAG, 2% input), and the lower panel GST and GST fusion proteins of Slp1 used for 
precipitation.  
C: Co-immunoprecipitation of transfected Rap1GAP2 and Slp1-C2A. HeLa cells were transiently transfected with 
FLAG-tagged Rap1GAP2, myc-tagged C2A domain of Slp1 or FLAG-tagged Rap1GAP2 together with myc-
tagged C2A. After cell lysis, Rap1GAP2 was immunoprecipitated with anti-FLAG antibody. Precipitated C2A was 
detected by immunoblot using anti-myc antibody (upper panel). The two lower panels show expression levels of 
C2A (total C2A-myc, 2% input) and Rap1GAP2 (total RG2-FLAG, 2% input). 
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This result was further confirmed in intact mammalian cells. In co-immunoprecipitation 

experiments using HeLa cells overexpressing FLAG-tagged Rap1GAP2 and myc-tagged 

C2A domain of Slp1, C2A was co-immunoprecipitated together with Rap1GAP2 using anti-

FLAG antibody (Fig.3.5C).  

Binding activities of some C2 domains are modulated by calcium ions (Lemmon 2008). 

However, the Rap1GAP2/Slp1 interaction was not affected by calcium depletion in pull-down 

assays (data not shown). 

 

3.2.2 Binding of Rap1GAP2 does not affect lipid binding of Slp1 

It has previously been reported that Slp1 binds via its C2A domain to phosphoinositides in-

vitro, showing preference for PtdIns(3,4,5)P3 over PtdIns(3)P, PtdIns(3,4)P2, and 

PtdIns(4,5)P2 (McAdara Berkowitz et al. 2001, Catz et al. 2002). In transfected mammalian 

cells the C2A domain of Slp1 has been shown to localize exclusively to the plasma 

membrane, suggesting that the C2A domain of Slp1 is responsible for the specific membrane 

association of the full-length Slp1 protein (Catz et al. 2002). This finding was confirmed in live 

imaging experiments of HeLa cells transfected with DsRed-tagged Slp1 C2A domain 

(Fig.3.6A). Moreover, in the present work the C2A domain of Slp1 has been demonstrated to 

serve as protein-protein interaction domain and to mediate binding of Slp1 to Rap1GAP2. 

These two observations raise the question whether Rap1GAP2 binding to the C2A domain of 

Slp1 could affect the lipid binding ability of Slp1 via C2A and thus targeting of Slp1 to the 

plasma membrane and its plasma membrane association. To answer this question, 

phospholipid binding assays were performed. To first test and compare the lipid binding 

ability of full-length Slp1 and the C2A domain of Slp1, purified recombinant GST-C2A and 

GST-Slp1 were used to probe nitrocellulose membranes spotted with various biologically 

active phospholipids (PIPs) as indicated (Fig.3.6B). GST-tagged PH domain of PLCδ1 was 

used as positive control (Echelon Biosciences), and GST was used as negative control. As 

shown in Fig.3.6C, both controls yielded expected results. PLCδ1 PH domain bound to 

PtdIns(4,5)P2, whereas GST did not bind to any phospholipid. Importantly, GST-C2A and 

GST-Slp1 were able to bind to phospholipids, exhibiting a similar phosholipid binding pattern. 

The slight variations in binding intensities could be due to unintended variations in protein 

concentrations applied onto the membranes. Interestingly, both, GST-C2A and GST-Slp1 

bound preferentially to phosphatidic acid (PA) followed by phosphatidylinositol-

monophosphates PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and phosphatidylinositolbisphosphates 

PtdIns(4,5)P2 and PtdIns(3,4)P2. Binding to PtdIns(3,5)P2 and PtdIns(3,4,5)P3 was apparent, 

but rather weak. To investigate next if binding of Rap1GAP2 to the C2A domain of Slp1 could 

affect phospholipid binding ability of Slp1, membranes were incubated with GST-Slp1 either 

alone or together with purified recombinant His6-tagged Rap1GAP2. To evaluate whether 
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Figure 3.6: Slp1 binds via C2A to phospholipids.
A: C2A domain of Slp1 localizes to the plasma membrane. LNCaP cells were transiently transfected with C-
terminally DsRed-tagged C2A domain of Slp1. 24 h post-transfection, cells were analyzed by confocal 
microscopy. Scale bar: 10 µm.                   
B: Schematic representation of phospholipids spotted on a nitrocellulose membrane (PIPStrip). 100 pmol of 
biologically active phospholipids were spotted onto a nitrocellulose membrane as indicated and used in protein 
phospholipid overlay assays.    
C: C2A domain of Slp1 and full-length Slp1 bind to phospholipids. PIPStrips were incubated with 0.5 µg/ml of 
purified recombinant GST, GST-tagged PLCδ1 PH domain, GST-tagged C2A domain and GST-tagged full-length 
Slp1. Bound proteins were detected by immunoblot with anti-GST antibody.    
D: Binding of Rap1GAP2 does not affect phospholipid binding of Slp1. PIPStrips were overlayed with 0.5 µg/ml 
of purified recombinant GST, His6-tagged Rap1GAP2, GST-tagged Slp1 and GST-tagged Slp1 together with 
His6-tagged Rap1GAP2. Bound proteins were detected by immunoblot with anti-His6 and anti-GST antibodies. 
LPA: Lysophosphatidic acid; LPC: Lysophosphocho-line; PtdIns: Phosphatidylinositol; PtdInsP: Phosphatidyl- 
inositolmonophosphate; PtdInsP2: Phosphatidylinositolbisphosphate; PtdInsP3: Phosphatidylinositoltris-
phosphate; PE: Phosphatidylethanolamine; PC: Phosphatidylcholine; S1P: Sphingosine-1-phosphate; PA: 
Phosphatidic acid; PS: Phosphatidylserine. 

Rap1GAP2 is able to bind to phospholipids by itself, one additional membrane was incubated 

with His6-Rap1GAP2 protein only. GST was used as negative control. As shown in Fig.3.6D, 
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no binding of Rap1GAP2 or GST to phospholipids was observed. Importantly, addition of 

Rap1GAP2 did not change the phospholipid binding ability of Slp1. Taken together, binding 

of Rap1GAP2 to the C2A domain of Slp1 does not affect the lipid binding ability of full-length 

Slp1, suggesting that simultaneous binding of Slp1 to Rap1GAP2 and phospholipids can 

occur. 

3.2.3 Rap1GAP2 interacts through the -TKXT- motif with Slp1 

Rap1GAP2 is a modular protein composed of a central catalytic GAP domain, a dimerization 

domain, the N-terminal 14-3-3 binding site and a large serine-rich C-terminus of low 

structural organization and so far unknown function. To map the binding site(s) for Slp1 in 

Rap1GAP2, truncation mutants of Rap1GAP2 were generated and used in GST-Slp1 pull-

down assays (Fig.3.7A). As shown in Fig.3.7B, Slp1 bound to wild-type Rap1GAP2 and 

Rap1GAP2ΔNterm mutant lacking the N-terminal part with equal potency. In contrast, no 

binding was detected between Slp1 and a C-terminally truncated Rap1GAP2 mutant 

(Rap1GAP2ΔCterm), suggesting that the binding site for Slp1 is harbored within the C-

terminus of Rap1GAP2.                                                                                                                    

 

 

Figure 3.7: Slp1 interacts with the C-terminus of Rap1GAP2. 
A: Schematic representation of FLAG-tagged Rap1GAP2 truncation mutants. C-terminally FLAG-tagged 
truncation mutants of Rap1GAP2 (RG2) were used in pull-down assays. Rap1GAP2ΔCterm lacks amino acids 
467-715, whereas Rap1GAP2ΔNterm lacks amino acids 1-121.  
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B: Pull-down of transfected FLAG-tagged Rap1GAP2 truncation mutants with GST-Slp1. HeLa cells were 
transiently transfected with either FLAG-tagged Rap1GAP2 (RG2-FLAG) wild-type or different FLAG-tagged 
Rap1GAP2 truncation mutants as indicated in A. Cells were lysed, and pull-down assays using GST and GST- 
Slp1 were performed. Precipitates were analyzed for the presence of Rap1GAP2 by immunoblot using anti-FLAG
antibody. The upper panel shows precipitation results, and the lower panel expression levels of Rap1GAP2 
proteins (total RG-FLAG, 2% input). 
 

To narrow down the Slp1 binding site, additional truncation mutants of Rap1GAP2 were 

generated and used in GST-Slp1 pull-down assays (Fig.3.8A). Since no binding between 

Slp1 and the N-terminus of Rap1GAP2 (amino acids 1-121) was observed (data not shown), 

these mutants were constructed as VSV-tagged at the N-terminus lacking amino acids 1-121 

and varying in the length of their C-termini. As shown in Fig.3.8B, Slp1 bound to 

Rap1GAP2ΔNterm C1, C2, C3, C4, and C5 mutants, whereas no binding was detected 

between Slp1 and Rap1GAP2ΔNterm C6, C7 and C8 mutants. These results indicate that 

the binding site for Slp1 is located within the C-terminal region of amino acids 526-534 of 

Rap1GAP2. 

 

 

 
Figure 3.8: Slp1 interacts with a short sequence within the C-terminus of Rap1GAP2. 
A: Schematic representation of VSV-tagged Rap1GAP2ΔNterm truncation mutants. N-terminally VSV-tagged 
Rap1GAP2 (RG2) mutants lacking amino acids 1-121 and varying in the length of their C-termini were used in 
pull-down assays.  
B: Pull-down of transfected VSV-tagged Rap1GAP2ΔNterm truncation mutants with GST-Slp1. HeLa cells were 
transiently transfected with different VSV-tagged Rap1GAP2ΔNterm (VSV-RG2ΔNterm) mutants truncated at the 
C-terminus as indicated in A. Cells were lysed, and lysates were subjected to GST-Slp1 pull-down assays. Bound 
Rap1GAP2 was detected by immunoblot with anti-VSV antibody. The upper panel shows precipitation results, 
and the lower panel expression levels of Rap1GAP2 proteins (total VSV-RG2ΔNterm, 2% input). 
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In order to specify the residues that are responsible for binding of Rap1GAP2 to Slp1, 

deletion mutants of Rap1GAP2 were generated, based on the information gained from the 

truncational analysis above. Rap1GAP2Δ522-527 mutant lack amino acids 522-527, 

whereas in the control mutant Rap1GAP2Δ536-542 amino acids 536-542 were deleted 

(Fig.3.9A). Both mutants were overexpressed in HeLa cells, and cell lysates were subjected 

to GST-Slp1 pull-down assays. As shown in Fig.3.9B, Rap1GAP2Δ536-542 mutant bound 

Slp1 comparable to wild-type Rap1GAP2, whereas Rap1GAP2Δ522-527 mutant did not bind 

Slp1, suggesting that the sequence EVTKTT (amino acids 522-527 of Rap1GAP2) mediates 

binding of Rap1GAP2 to Slp1. To determine the role of each amino acid residue within this 

motif, consecutive alanine point mutants of the EVTKTT sequence were generated and 

tested in GST-Slp1 pull-down assays. As shown in Fig.3.9C, mutation of E522 to alanine did 

not affect binding of Slp1 to Rap1GAP2. Mutation of V523 or T526 to alanine only slightly 

reduced binding, whereas mutation of T524, K525 or T527 almost completely abolished 

binding of Slp1 to Rap1GAP2, indicating that amino acids T524, K525 and T527, the so-

called -TKXT- motif, are important for binding of Slp1 to Rap1GAP2. In addition, the 

importance of the T527 residue was supported by the observation that the VSV-tagged 

Rap1GAP2ΔNterm C6 mutant was not able to bind to Slp1, although it contains the residues 

EVTK (amino acids 522-525 of Rap1GAP2) and lacks only T526 and T527 (Fig.3.8A). 

Nevertheless, deletion of T527 was sufficient to abrogate binding of Rap1GAP2 to Slp1 

(Fig.3.8B and Fig.3.9C). To confirm and substantiate these data using a complementary 

approach, peptide binding assays were performed. For this purpose, short peptides 

containing the key sequence EVTKTT in wild-type form or with one amino acid mutated to 

alanine were synthesized on a cellulose membrane (ImmunoGlobe Antikörpertechnik) and 

incubated with purified recombinant GST-Slp1. As shown in Fig.3.9D, if T524, K525 and 

T527 were mutated, no binding of GST-Slp1 was detected. Interestingly, mutation of E522 to 

alanine led to a stronger binding of GST-Slp1. Taken together, these experiments indicate 

that the residues T524, K525 and T527 in the C-terminal part of Rap1GAP2 constitute the 

binding site for Slp1 within Rap1GAP2.  

It is conceivable that phosphorylation of the two threonine residues, T524 and T527, within 

the -TKXT- motif of Rap1GAP2 could occur. To answer this question, peptides having either 

T524, T527 or both phosphorylated were tested in GST-Slp1 overlay assays. No binding of 

GST-Slp1 to the phosphorylated versions of the -TKXT- motif of Rap1GAP2 was observed 

(Fig.3.9D, lanes 9, 10 and 11), indicating that phosphorylation at the -TKXT- motif of 

Rap1GAP2 is not required and can even abolish Slp1 binding to Rap1GAP2.    

 

52 
 



Results 
_________________________________________________________________________________ 

 

 

 

 

 
 
 
Figure 3.9: Binding of Rap1GAP2 to Slp1 is mediated through the -TKXT- motif of Rap1GAP2. 
A: Schematic representation of Rap1GAP2 deletion mutants. C-terminally FLAG-tagged deletion mutants of 
Rap1GAP2 were used in pull-down assays. Rap1GAP2Δ522-527 lacks the sequence EVTKTT (amino acids 
522-527 of Rap1GAP2), whereas in Rap1GAP2Δ536-542 amino acids 536-542 were deleted.  
B: Pull-down of transfected Rap1GAP2 deletion mutants with GST-Slp1. Lysates of HeLa cells overexpressing 
either FLAG-tagged Rap1GAP2 wild-type (RG2-FLAG wt) or deletion mutants Rap1GAP2Δ536-542 as control 
and Rap1GAP2Δ522-527 were subjected to GST-Slp1 pull-down assays followed by immunoblot analysis using 
anti-FLAG antibody. The upper panel shows precipitation results, and the lower panel expression levels of 
Rap1GAP2 proteins (total RG2-FLAG, 2% input). 
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C: Pull-down of transfected Rap1GAP2 alanine point mutants with GST-Slp1. HeLa cells were transiently 
transfected with FLAG-tagged Rap1GAP2 wild-type (RG2-FLAG wt) or different Rap1GAP2 point mutants 
having each of the amino-acids within the EVTKTT sequence (amino acids 522-527) changed to alanine as 
indicated. Cells were lysed, and lysates were subjected to GST-Slp1 pull-down assays followed by immunoblot 
analysis with anti-FLAG antibody. The upper panel shows precipitation results, and the lower panel expression 
levels of Rap1GAP2 proteins (total RG2-FLAG, 2% input).  
D: Peptide binding assay (PepSpot). Synthetic Rap1GAP2 (RG2) peptides covalently bound to a cellulose 
membrane containing either wild-type Rap1GAP2 EVTKTT sequence or with consecutive amino acids changed 
to alanine (A) or phosphorylated threonine residues (pT) as indicated were subjected to GST-Slp1 overlay assay 
followed by immunoblot analysis with anti-GST antibody. 
 
 

Finally, to test if short peptides containing the key sequence EVTKTT of Rap1GAP2 or 

peptides carrying a deletion of this motif could affect binding of Slp1 to endogenous 

Rap1GAP2, GST-Slp1 pull-down assays were performed using human platelet lysate 

supplemented with either Rap1GAP2 wild-type or Rap1GAP2ΔEVTKTT peptide. As shown in 

Fig.3.10B, addition of the wild-type peptide to platelet lysate blocked the interaction of Slp1 

and Rap1GAP2, whereas addition of the mutant peptide did not affect binding of Slp1 to 

Rap1GAP2. 
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Figure 3.10: Rap1GAP2 wild-type peptide prevents binding of endogenous Rap1GAP2 protein to Slp1.  
A: Schematic representation of Rap1GAP2 peptides. Synthetic Rap1GAP2 peptides were used in pull-down 
assays. Rap1GAP2 wild-type peptide contains the sequence HNSMEVTKTTFSPPV (amino acids 518-532 of 
Rap1GAP2). In contrast, Rap1GAP2ΔEVTKTT contains the sequence GISHNSMFSPPVVAA (amino acids 515-
535 of Rap1GAP2 lacking amino acids 522-527).  
B: Pull-down of endogenous Rap1GAP2 with GST-Slp1 from human platelets in absence or presence of 
Rap1GAP2 peptides. Native human platelet lysate or lysate supplemented with 100 µM of either Rap1GAP2 
wild-type (RG2wt) peptide or Rap1GAP2ΔEVTKTT (RG2ΔEVTKTT) peptide were subjected to GST-Slp1 pull-
down assays. The precipitates were analyzed for the presence of endogenous Rap1GAP2 protein by 
immunoblot using anti-Rap1GAP2 antibody. The upper panel shows precipitation results, and the lower panel 
expression levels of endogenous Rap1GAP2 (total RG2, 2% input). The used anti-Rap1GAP2 antibody was 
produced using an N-terminal peptide of Rap1GAP2 (amino acids 1-32) as antigen (Schultess et al. 2005). 
Therefore, it recognizes Rap1GAP2 protein only and does not detect Rap1GAP2 peptides. 
 

In summary, the mapping experiments revealed residues T524, K525 and T527, the so-

called -TKXT- motif, within the C-terminus of Rap1GAP2 as the binding site for Slp1 and 
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showed that phosphorylation at the -TKXT- motif is not required for binding of Slp1 to 

Rap1GAP2. 

3.2.4 Rap1GAP2/Slp1 interaction is enhanced upon activation of PKA in platelets 

In previous studies of our group we could show that Rap1GAP2 is phosphorylated by cGMP- 

and cAMP-dependent protein kinases (cGK and cAK, also called PKG and PKA) in-vitro and 

in intact platelets, and identified serine 7 as one phosphorylation site (Schultess et al. 2005, 

Hoffmeister et al. 2008). We demonstrated that PKG- and PKA-induced phosphorylation of 

serine 7 inhibits binding of 14-3-3 to Rap1GAP2 in platelets, and conversely, platelet 

activation by ADP and thrombin increases 14-3-3 binding to Rap1GAP2 (Hoffmeister et al. 

2008). Therefore, we were interested in investigating if binding of Slp1 to Rap1GAP2 is also 

affected upon platelet activation or platelet inhibition. To this end, GST-Slp1 pull-down 

assays were performed using lysates of platelets preincubated with various platelet 

activators or inhibitors. To determine if platelet activation could impair Slp1 binding to 

Rap1GAP2, washed human platelets were treated with thrombin and ADP as indicated 

(Fig.3.11A). Platelets were lysed, and lysates were incubated with GST and GST-Slp1. The 

precipitates were analyzed for the presence of endogenous Rap1GAP2 using anti-

Rap1GAP2 antibody. As shown in Fig.3.11A, treatment of platelets with thrombin and ADP 

did not affect Slp1 binding to endogenous Rap1GAP2. To investigate if activation of cAMP-

dependent protein kinase in platelets would influence binding of Slp1 to Rap1GAP2, a set of 

experiments was performed. In order to induce activation of PKA, washed human platelets 

were treated with prostaglandin I2, forskolin, and Sp-5,6-DCI-cBiMPS as indicated 

(Fig.3.11B-D). PGI2 initiates platelet inhibition through interaction with specific G protein-

coupled receptors on the platelet surface (1.2.1). Forskolin stimulates cAMP production 

through direct activation of adenylyl cyclase (Seamon et al. 1981, Insel et al. 1982), and Sp-

5,6-DCI-cBiMPS is a membrane permeable cAMP analogue and direct activator of PKA 

(Sandberg et al. 1991). After treatment platelets were lysed, and lysates were subjected to 

GST-Slp1 pull-down assays. The precipitates were analyzed for the presence of endogenous 

Rap1GAP2 by immunoblot. As shown in Fig.3.11B to D, at each step of activation a 

concentration-dependent increase in binding of Slp1 to Rap1GAP2 was observed. 

Phosphorylation of VASP, a well established PKG and PKA substrate in platelets, was in 

direct correlation with the PKA activity and detected by immunoblot using phosphospecific 

anti-P-VASP antibody (Smolenski et al. 1998, Li et al. 2003). To further evaluate the 

specificity of PKA activation on Slp1/Rap1GAP2 binding, platelets were treated with Rp-8-Br-

cAMPS, a specific PKA inhibitor, either alone or with forskolin on top (Fig.3.11E). GST-Slp1 

pull-down assays were performed as described above. As shown in Fig.3.11E, no increase in 

binding of Slp1 to Rap1GAP2 was observed if platelets pretreated with Rp-8-Br-cAMPS were 
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treated with forskolin. Inhibition of PKA by Rp-8-Br-cAMPS was reflected in decreased 

phosphorylation of VASP. In order to confirm this PKA effect on Slp1/Rap1GAP2 binding in a 

different system, HeLa cells were used. Cells were transfected with FLAG-tagged 

Rap1GAP2 either alone or in combination with the PKA inhibitor PKI. On the following day, 

cells were washed and incubated in serum-free medium without or with forskolin. Cells were 

lysed, and lysates were subjected to GST-Slp1 pull-down assays. As shown in Fig.3.11F, 

inhibition of PKA by PKI resulted in decreased binding of Slp1 to transfected Rap1GAP2. 

Probably due to a high basal phosphorylation state of Rap1GAP2 or other PKA substrates 

involved in Rap1GAP2/Slp1 complex formation in HeLa cells, no increase in Slp1 binding to 

Rap1GAP2 upon forskolin treatment was observed.  

 

 
 
Figure 3.11: Activation of PKA in platelets increases binding of Slp1 to endogenous Rap1GAP2. 
A: ADP and thrombin do not alter binding of Slp1 to Rap1GAP2. Washed human platelets were treated without or 
with 10 µM ADP or with 0.1 U/ml thrombin for 1 min at 37°C. Platelets were lysed, and lysates were subjected to 
GST-Slp1 pull-down assays. GST was used as negative control. The precipitates were examined for the 
presence of bound endogenous Rap1GAP2 protein by immunoblot using anti-Rap1GAP2 antibody. The upper  
panel shows precipitation results, and the lower panel expression levels of endogenous Rap1GAP2 (total RG2, 
2% input).  
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B, C and D: Activation of PKA in platelets results in increased binding of Slp1 to endogenous Rap1GAP2. 
Washed human platelets were treated without or with PGI2 (B), forskolin (C) or Sp-5,6-DCI-cBiMPS (D) as 
indicated. Platelets were lysed, and lysates were subjected to GST-Slp1 pull-down assays followed by 
immunoblot analysis using anti-Rap1GAP2 antibody. The upper panel shows precipitation results, and the lower 
panel expression levels of endogenous Rap1GAP2 (total RG2, 2% input). Phosphorylation of VASP was detected 
with anti-P-VASP antibody (total P-VASP, 2% input, lower panel).  
E: Inhibition of PKA in platelets abrogates forskolin-stimulated increase in binding of Slp1 to endogenous 
Rap1GAP2. Washed human platelets were treated without or with 0.5 mM Rp-8-Br-cAMPS for 30 min at 37°C. 
Then, platelets were incubated without or with 1 µM forskolin for 20 min at 37°C. Platelets were lysed, and lysates 
were subjected to GST-Slp1 pull-down assays followed by immunoblot analysis with anti-Rap1GAP2 antibody. 
The upper panel shows precipitation results, and the lower panel expression levels of endogenous Rap1GAP2 
(total RG2, 2% input). Phosphorylated VASP was detected by immunoblot using anti-P-VASP antibody (total P-
VASP, 2% input, lower panel).  
F: Inhibition of PKA in transfected HeLa cells results in decreased binding of Slp1 to Rap1GAP2. HeLa cells were 
transiently transfected with FLAG-tagged Rap1GAP2 without or with PKI. 24 h post-transfection cells were treated 
without or with 10 µM forskolin for 20 min at 37°C. Then, cells were lysed, and lysates were subjected to GST-
Slp1 pull-down assays. The precipitates were analyzed for the presence of bound Rap1GAP2 with anti-FLAG 
antibody (upper panel). The lower panel shows expression levels of Rap1GAP2 (total RG2-FLAG, 2% input). 
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her, activation of PKA in platelets enhanced binding of Slp1 to endogenous 

3.3.1 Rap1GAP2, Slp1 and Rab27a form a trimeric complex and co-localize in 

Slp1 has been shown to bind to Rab27, a small GTPase involved in vesicle regulated 

Taken toget

Rap1GAP2. The PKA effect is specific, because inhibition of PKA by a specific PKA inhibitor 

in platelets abolished the increase of Slp1 binding to Rap1GAP2 upon forskolin treatment. In 

HeLa cells, co-expression of Rap1GAP2 and PKI resulted in decreased Slp1 binding to 

transfected Rap1GAP2. 

3.3 Complex formation of Rap1GAP2, Slp1 and Rab27 

transfected HeLa cells 

exocytosis of many cell types (Fukuda 2005). Rab27 is expressed in 2 isoforms, Rab27a and 

Rab27b, that share 71 % identity at amino acid level (Pereira-Leal and Seabra 2001). To first 

confirm binding of Slp1 to both, Rab27a and Rab27b, co-immunoprecipitation experiments 

were performed. HeLa cells were transfected with EGFP-tagged Rab27a or Rab27b, which 

were kindly provided by Prof. Dr. M. C. Seabra, London, UK, and myc-tagged Slp1 either 

alone or in combination. 24 h post-transfection, cells were lysed, and Rab27 was 

immunoprecipitated using anti-GFP antibody. The precipitates were analyzed for the 

presence of bound Slp1 by immunoblot. As shown in Fig.3.12A and B, Slp1 bound to both, 

Rab27a and Rab27b. Interestingly, binding of Slp1 to Rab27b was much weaker than to 

Rab27a. To determine if Slp1, Rab27 and Rap1GAP2 form a trimeric complex, HeLa cells 

were transfected with epitope-tagged versions of Slp1, Rab27a and Rap1GAP2. Two days 

later, cells were lysed, and lysates were subjected to co-immunoprecipitation experiments 

using anti-FLAG antibody. Rab27a could only be detected in precipitates from cell lysates 

containing all three proteins, indicating that Rab27a, Slp1 and Rap1GAP2 indeed form a 

trimeric complex in intact mammalian cells (Fig.3.12C). This result was further confirmed in a 
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reverse experiment using anti-VSV antibody (Fig.3.12D). Unfortunately, due to very weak 

binding of Rab27b to Slp1 and insufficient expression levels of VSV-tagged Rab27b, a 

trimeric complex composed of Rab27b, Slp1 and Rap1GAP2 could not be proven. However, 

given the fact that Rab27b binds to Slp1 and Slp1 binds to Rap1GAP2, complex formation of 

Rab27b, Slp1 and Rap1GAP2 is quite conceivable.  
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igure 3.12: Rap1GAP2, Slp1 and Rab27 form a trimeric complex in transfected HeLa cells. 
yc-tagged Slp1 

 
 
F
A and B: Slp1 binds to both, Rab27a and Rab27b. HeLa cells were transiently transfected with m
and EGFP-tagged Rab27a (A) or Rab27b (B) either alone or in combination. Cells were lysed, and Rab27 was 
immunoprecipitated using anti-GFP antibody. The precipitates were examined for the presence of bound Slp1 
with anti-myc antibody (upper panel). The two lower panels show expression levels of Slp1 (total Slp1-myc, 2% 
input) and Rab27 (total Rab27-EGFP, 2% input).  
C and D: Co-immunoprecipitation of transfected Rap1GAP2 in complex with Slp1 and Rab27a. HeLa cells were 
transiently transfected with VSV-tagged Rab27a alone, together with FLAG-tagged Rap1GAP2, or with FLAG-
tagged Rap1GAP2 and myc-tagged Slp1. Cells were lysed, and Rap1GAP2 was immunoprecipitated with anti-
FLAG antibody (C) and Rab27a with anti-VSV antibody (D), respectively. The precipitates were analyzed for the 
presence of Rab27a using anti-VSV antibody (C) and Rap1GAP2 using anti-FLAG antibody (D). The upper panel 
shows the precipitation results. Immunoglobulin heavy and light chains are marked with asterisk (*) (C, upper 
panel). The lower panels demonstrate total amounts of transfected Rab27a-VSV (total Rab27a-VSV, 2% input), 
Slp1-myc (total Slp1-myc, 2% input) and Rap1GAP2-FLAG (total RG2-FLAG, 2% input). 
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To investigate the subcellular localization of Rab27, Slp1 and Rap1GAP2, HeLa cells were 

co-transfected with EGFP-tagged Rab27a, myc-tagged Slp1 and VSV-tagged Rap1GAP2. 

Cells were fixed, permeabilized and immunostained with tag-specific primary and dye-

labelled secondary antibodies. Subsequent immunofluorescence analysis revealed a partial 

co-localization of all three proteins in the cytosol as well as at the plasma membrane 

(Fig.3.13). 

 

 

 
 
Figure 3.13: Co-localization of transfected Rap1GAP2, Slp1 and Rab27a. 
Co-localization of EGFP-tagged Rab27a, VSV-tagged Rap1GAP2 and myc-tagged Slp1 overexpressed in HeLa 
cells was analyzed by immunofluorescence as described in Materials and Methods (2.3.4). Arrows indicate co-
localization of all three proteins. Scale bar: 10 µm. 
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3.3.2 Rap1GAP2, Slp1 and Rab27 form a trimeric complex in human platelets 

Both isoforms of Rab27 are present in platelets (Barral et al. 2002). To demonstrate that Slp1 

interacts with endogenous Rab27 expressed in human platelets, GST-Slp1 pull-down assays 

were performed. The monoclonal anti-Rab27a antibody, which was used to detect bound 

Rab27a, recognized both Rab27 isoforms (data not shown). Thus, the band for Rab27 most 

likely represents a mixture of Rab27a and Rab27b (Fig.3.14A). In reverse experiments using 

purified recombinant GST-Rab27a and GST-Rab27b, binding of endogenous Slp1 from 

human platelet lysate was observed to both isoforms of Rab27 (Fig.3.14B). Moreover, Slp1 

bound to both, GTP- and GDP-loaded Rab27a and Rab27b equally well. To verify complex 

formation of Slp1, Rab27 and Rap1GAP2 at endogenous level in human platelets, co-

immunoprecipitation experiments using platelet lysates were performed. As shown in 

Fig.3.14C, endogenous Rab27 was successfully co-immunoprecipitated with endogenous 

Slp1 and Rap1GAP2 from platelets.  
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Figure 3.14: Rap1GAP2, Slp1 and Rab27 form a trimeric complex in platelets. 
A: Pull-down of endogenous Rab27 with GST-Slp1. Human platelet lysate was subjected to GST-Slp1 pull-down 
assay followed by immunoblot analysis using anti-Rab27a antibody which recognizes both isoforms, Rab27a and 
Rab27b. The upper panel shows precipitation results, and the lower panel expression levels of endogenous 
Rab27 protein (total Rab27, 2% input).  
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B: Pull-down of endogenous Slp1 with GST-Rab27. Purified recombinant GST fusion proteins of Rab27a and 
Rab27b loaded either with GDPβS or GTPγS were used to precipitate endogenous Slp1 from human platelet 
lysate. Equal amounts of purified GST protein were used as negative control. The precipitates were analyzed for 
the presence of bound Slp1 by immunoblot with anti-Slp1 antibody (upper panel). The lower panel shows the 
amounts of GST and GST-Rab27 used for precipitation.  
C: Co-immunoprecipitation of endogenous Rap1GAP2 in complex with Slp1 and Rab27. Washed human platelets 
were treated with 10 µM of forskolin for 20 min at 37°C as indicated. Platelets were lysed, and lysates containing 
endogenous Rab27, Rap1GAP2 and Slp1 were subjected to co-immunoprecipitation using anti-Rab27a antibody.
The precipitates were examined for the presence of Rap1GAP2 and Slp1 by immunoblot using anti-Rap1GAP2 
and anti-Slp1 antibodies (first and second panels from top). Precipitated Rab27 was controlled by immunoblot 
using anti-Rab27a antibody (third panel from top). As indicated in A, the Rab27 band most likely consists of both 
isoforms, Rab27a and Rab27b. The three lower panels show expression levels of endogenous Rap1GAP2 (total 
RG2, 2% input), Slp1 (total Slp1, 2% input) and Rab27 (total Rab27, 2% input).  
 

Notably, treatment of platelets with forskolin resulted in stronger binding of Rab27 to Slp1, 

suggesting that activation of PKA and probably subsequent PKA phosphorylation of either 

Slp1 and/or Rab27 could impact complex formation by Slp1, Rab27 and Rap1GAP2 

(Fig.3.14D, lane 3).  

3.3.3 Slp1 is phosphorylated by PKA in-vitro 

To evaluate if Slp1 could be a substrate of PKA, in-vitro kinase assays were performed. To 

this end, HeLa cells were transiently transfected with myc-tagged Slp1. Expressed protein 

was precipitated with anti-myc antibody and subjected to in-vitro phosphorylation using γ-

[32P] ATP and purified catalytic subunit of PKA, which was kindly provided by Dr. E. Butt-

Dörje, Würzburg, Germany. As shown in Fig.3.15A, strong phosphorylation of Slp1 by PKA 

was observed. By means of the computational tool ScanSite (http://scansite.mit.edu), two 

serine residues of Slp1 corresponding to the consensus sequence -(R/K)2-X-S/T- for 

phosphorylation by protein kinase A were predicted: serine 111 (-RKKS-) and serine 301 

 (-RRRS-). In order to identify the exact phosphorylation site(s), candidate serine residues 

were mutated to alanine. Mutation of serine 111 completely abolished in-vitro 

phosphorylation of Slp1 by PKA, whereas mutation of serine 301 only marginally reduced 

phosphorylation (Fig.3.15B).  Using the computational tool SMART (Simple Modular 

Architecture Research Tool, http://smart.embl-heidelberg.de) for protein domain 

identification, the Rab27 binding SHD of Slp1 was assigned to amino acids 30 to 150, 

meaning that serine 111 residue is located within this domain. To investigate whether PKA 

phosphorylation of Slp1 at serine 111 could alter Slp1 binding to Rab27, co-

immunoprecipitation experiments were performed. For this purpose, Hela cells were 

transiently transfected with myc-tagged wild-type Slp1 and serine-111-to-alanine mutant 

either alone or in combination with VSV-tagged Rab27a. 48 h post-transfection, cells were 

lysed, and Rab27a was immunoprecipitated with anti-VSV antibody. The precipitates were 

examined for the presence of Slp1 by immunoblot using anti-myc antibody. Serine-to-alanine 

mutation of residue 111 of Slp1 strongly reduced binding of Slp1 to Rab27a (Fig.3.15C). 
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Taken together, Slp1 is in-vitro phosphorylated by PKA, and serine 111 was identified as 

phosphorylation site. Mutation of serine 111 to alanine resulted in decreased binding of Slp1 

to Rab27 in transfected mammalian cells. 

 

 

 

 
 
 

 
Figure 3.15: Slp1 is phosphorylated by PKA. 
A: Slp1 is in-vitro phosphorylated by PKA. HeLa cells were transiently transfected with myc-tagged Slp1. 
Expressed Slp1 protein was immunoprecipitated with anti-myc antibody, and in-vitro kinase assays were 
performed using γ-[32P]-ATP and purified catalytic subunit of PKA (designated A). As negative control no kinase 
was added (designated -). To detect 32P incorporation, proteins were separated by SDS-PAGE, blotted on a 
nitrocellulose membrane, and exposed to film (32P, upper panel). The expression levels of Slp1 were determined 
by immunoblot using anti-myc antibody followed by ECL detection (IB, lower panel).  
B: Mutation of serine 111 to alanine abolishes in-vitro phosphorylation of Slp1 by PKA. Hela cells were 
transiently transfected with myc-tagged wild-type (wt) Slp1 and mutants of Slp1 having serine-to-alanine 
mutations of serine 111 (S111A) or serine 301 (S301A). Expressed proteins were immunoprecipitated with anti-
myc antibody, and in-vitro kinase assays were performed as described in A. The upper panel shows 32P 
incorporation, and the lower panel the expression levels of Slp1 proteins detected by immunblot using anti-myc 
antibody (IB).  
C: Mutation of serine 111 to alanine reduces binding of Slp1 to Rab27a in transfected cells. HeLa cells were 
transiently transfected with myc-tagged wild-type Slp1 and Slp1S111A mutant having serine 111 changed to 
alanine either alone or together with VSV-tagged Rab27a. Cells were lysed, and Rab27a was 
immunoprecipitated with anti-VSV antibody. The precipitates were analyzed for the presence of bound Slp1 by 
immunoblot using anti-myc antibody (upper panel). The two lower panels show expression levels of Slp1 (total 
Slp1-myc, 2% input) and Rab27a (total Rab27a-VSV, 2% input). 
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3.3.4 Identification of Slp1 interacting proteins in platelets 
 

The next aim of the present study was to identify additional Slp1 interacting proteins in 

platelets. To this end, Slp1 affinity chromatography was performed using human platelet 

lysate as source for Slp1 binding proteins. Subsequent mass spectrometric analysis revealed 

fourteen new putative Slp1 interactors in platelets (Tab.3.1). A total of six proteins were 

identified as members of the Rab protein family that are believed to control intracellular 

membrane trafficking (Zerial and McBride 2001). The presence of Rab27 and Rab8 indicated 

that the method was successful. However, Rap1GAP2 was not identified. Binding of 

endogenous Rab8 to Slp1 was confirmed in GST-Slp1 pull-down assays using human 

platelet lysate (Fig.3.16). In contrast, binding of Rap1b to Slp1 could not be verified (data not 

shown). A total of four proteins were related to actin cytoskeleton, and among them myosin-9 

(non-muscle myosin heavy chain IIA, NMHC-IIA) was identified yielding the most peptide 

matches. Other putative Slp1 interacting proteins were the dual specificity protein 

phosphatase 3 (DUSP3), ATP synthase O subunit (ATPO) and programmed cell death 

protein 10 (PDCD10). Platelet expression of all identified proteins was confirmed by protein 

database search using “PlateletWeb-Knowledgebase” (http://plateletweb.bioapps.bio-

zentrum.uni-wuerzburg.de, Dittrich et al. 2008) and by protein database “Human 

Proteinpedia” (http://www. humanproteinpedia.org). 

Taken together, affinity chromatography and mass spectrometric analysis revealed further 

Slp1 interacting proteins in platelets. Binding of Slp1 to endogenous Rab8 from human 

platelets was verified by GST-Slp1 pull-down assays. 

  

 

 
 
 
Figure 3.16: Slp1 interacts with endogenous Rab8 from platelets. 
Washed human platelets were lysed, and lysates were subjected to GST-Slp1 pull-down assays. GST was used 
as negative control. The precipitates were analyzed for the presence of Rab8 by immunoblot using anti-Rab8 
antibody. The upper panel shows precipitation results, and the lower panel the expression levels of endogenous 
Rab8 (total Rab8, 2% input). 
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Table 3.1: Slp1 interacting proteins in platelets.
Slp1 affinity chromatography and mass spectrometric analysis revealed 14 new putative Slp1 interacting proteins 
in human platelets. His6-Slp1 was bacterially expressed, coupled to NHS-activated sepharose and incubated with 
human platelet lysate as described in Materials and Methods (2.4.10). After elution, bound proteins were 
separated by SDS-PAGE and stained with Coomassie Brilliant Blue. Protein bands were excised and analyzed 
by mass spectrometry. 
 

 

64 
 



Results 
_________________________________________________________________________________ 

 

3.4 Functional analysis of the Rap1GAP2/Slp1 interaction 
 

To determine the function of the interaction between Rap1GAP2 and Slp1, two strategies 

were defined and pursued: firstly, the functional relevance of the interaction in terms of 

Rap1GAP2 function in Rap1-mediated cell adhesion, and secondly, the functional 

significance of the interaction in terms of Slp1 function in Rab27-mediated secretion. 

3.4.1 In-vitro GAP assay 

As GTPase activating protein of Rap1, Rap1GAP2 contains a central catalytic GAP domain 

that is required to confer GTPase activity towards Rap1 (Schultess et al. 2005). Rap1 is a 

small GTPase that regulates integrin function and thus cell adhesion (Bos 2005). In order to 

investigate if Slp1 binding to Rap1GAP2 could affect the GTPase activity of Rap1GAP2, in-

vitro GAP assays were performed. HeLa cells were transiently transfected with the 

appropriate plasmids of Rap1GAP2 and Slp1. Expressed proteins were affinity purified using 

anti-FLAG antibody. In parallel, Rap1b was purified from Escherichia coli BL21 and loaded 

with [32P]-GTP as described in Materials and Methods (2.5.1). Precipitated Slp1 and 

Rap1GAP2 proteins either alone or in complex were added to GTP-loaded Rap1b and 

incubated at 25°C for 30, 60 and 120 sec. Released [32P] was counted by liquid scintillation, 

and plotted as percentage of input [32P]-GTP bound to Rap1b. As shown in Fig.3.17 and 

expected, Slp1 itself did not exhibit any GTPase activity. In contrast, in samples containing 

Rap1GAP2 a time-dependent increase in GAP activity was observed. However, no 

differences between free and Slp1 bound Rap1GAP2 was detected, indicating that Slp1 

binding to Rap1GAP2 did not affect the catalytic GTPase activity of Rap1GAP2 in-vitro. 

3.4.2 Cell adhesion assay 

Rap1GAP proteins are known to inhibit Rap1-mediated adhesion of intact cells (Bos et al. 

2001). As described in 3.4.1, Slp1 binding had no effect on the catalytic GTPase-activating 

function of Rap1GAP2 in-vitro. However, binding of Slp1 to Rap1GAP2 could affect the 

subcellular distribution of Rap1GAP2 leading to local changes of Rap1-GTP levels within the 

cell. Therefore, functional consequences of Slp1 binding to Rap1GAP2 on cell adhesion 

were studied. 

HeLa cells expressing endogenous Rap1 were transiently transfected with pRluc-N3 vector 

together with FLAG-tagged Rap1GAP2 and myc-tagged Slp1 either alone or in combination. 

Control cells were transfected with pRluc-N3 expressing luciferase only. One day after 

transfection, cells were seeded onto fibronectin-coated plates. Adherent cells were quantified  
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Figure 3.17: Slp1 binding does not affect the GAP activity of Rap1GAP2 in-vitro.
HeLa cells were transiently transfected with FLAG-tagged Slp1, FLAG-tagged Rap1GAP2 and FLAG-tagged 
Rap1GAP2 together with myc-tagged Slp1. Expressed proteins were affinity purified using anti-FLAG agarose 
beads. The amounts of precipitated Slp1 and Rap1GAP2 were analyzed by immunoblot using anti-FLAG 
antibody (A, upper panel). Presence of myc-tagged Slp1 bound to Rap1GAP2 was determined by immunoblot 
with anti-myc antibody (A, lower panel). In parallel, His6-tagged Rap1b was purified from E.coli and loaded with 
[32P]-GTP as described in Materials and Methods (2.5.1). Precipitated Slp1 and Rap1GAP2 proteins were added 
to the GTP-loaded Rap1b, and reactions were incubated at 25°C. Aliquots were removed at indicated time 
points, amounts of released [32P] were determined by liquid scintillation counting, and plotted as percentage of 
input Rap1b-bound [32P]-GTP counts. Shown data (B) represent the means + SD of three independent 
experiments performed in triplicate. 
 

as described in Materials and Methods (2.5.2), and plotted as percentage relative to the total 

amount of seeded cells. Expression levels of Rap1GAP2 and Slp1 were analyzed by 

immunoblotting using tag-specific antibodies (Fig.3.18A). As shown in Fig.3.18B, Rap1GAP2 

reduced cell adhesion to more than 50 % of mock-transfected cells, whereas Slp1 did not 

alter cell adhesion. Adhesion of HeLa cells overexpressing both, Rap1GAP2 and Slp1, was 

similar to cells overexpressing Rap1GAP2 only. In conclusion, Slp1 binding to Rap1GAP2 

did not affect the inhibitory function of Rap1GAP2 on Rap1-mediated cell adhesion.  
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Figure 3.18: Slp1 binding does not affect Rap1GAP2-mediated inhibition of cell adhesion. 
HeLa cells were transiently transfected with pRluc-N3 vector expressing luciferase together with FLAG-tagged 
Rap1GAP2 and myc-tagged Slp1 either alone or in combination. Control cells were transfected with pRluc-N3 
vector only (mock). 24 h post-transfection cells were seeded onto fibronectin-coated plates. Adherent cells were 
quantified and plotted as percentage of the total amount of seeded cells. Shown data (B) represent the means + 
SD of ten independent experiments performed in quintuplicate. The difference in adhesion between mock-
transfected cells and cells transfected with Rap1GAP2 is expressed as p < 0.001 and considered as statistically 
significant. In all experiments equal levels of Rap1GAP2 and Slp1 expression were confirmed by immunoblot 
using anti-FLAG and anti-myc antibodies (A). 
 

3.4.3 Prostate-specific antigen secretion assay 

Slp1 was previously shown to be expressed in human prostate carcinoma LNCaP cells and 

to be involved in secretion of prostate-specific antigen and prostate-specific acid 

phosphatase in these cells (Johnson et al. 2005). Moreover, LNCaP cells express Rab27a, 

and Rab27a was demonstrated to regulate the secretion of both, PSA and PSAP (Johnson et 

al. 2005). 

To elucidate the functional consequences of Slp1 binding to Rap1GAP2 in secretion, 

secretion of PSA was studied. LNCaP cells expressing endogenous Slp1 and Rab27a were 

transiently transfected with FLAG-tagged Rap1GAP2 (RG2) or the empty vector as negative 

control (mock). 12 h post-transfection, cells were incubated in absence (DMSO control) or 

presence of the androgen 6α-fluorotestosterone. LNCaP cells are androgen-responsive, and 

upon androgen treatment growth and secretion of these cells accelerated. Cells were 

stimulated for 36 h. Then, cell medium was collected and concentration of secreted PSA was 

determined using a specific PSA ELISA kit as described under Materials and Methods 

(2.5.3). The secretion of androgen-stimulated mock transfected cells was designated as 100 

% secretion. Expression levels of Rap1GAP2 were examined by immunoblot using anti-
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FLAG antibody. As expected, upon treatment of LNCaP cells with 6α-fluorotestosterone, 

expression of Rap1GAP2 was markedly increased compared to untreated cells (Fig.3.19A). 

In addition, cells overexpressing Rap1GAP2 showed significantly higher baseline (DMSO 

control) and 6α-fluorotestosterone-stimulated secretion of PSA, compared to mock 

transfected cells (Fig.3.19B), suggesting a stimulatory role for Rap1GAP2 in secretion. 

  

  

 
Figure 3.19: Rap1GAP2 stimulates the secretion of PSA in transfected LNCaP cells. 
LNCaP cells were transiently transfected with empty vector pcDNA4/TO (mock) or FLAG-tagged Rap1GAP2 
(RG2-FLAG). 12 h post-transfection cells were stimulated with 100 nM 6α-fluorotestosterone. Control cells were 
treated with DMSO. After 36 h cell medium was collected, and concentration of PSA was evaluated using a 
specific PSA ELISA kit. Shown data (B) are means + SD of eight independent experiments performed in 
triplicate. The secretion of 6α-fluorotestosterone-stimulated mock cells was arbitrarily designated as 100 % 
secretion. The difference in PSA secretion between mock and Rap1GAP2 transfected cells is expressed as p < 
0.05 and considered as statistically significant. In all experiments Rap1GAP2 expression was analyzed by 
immunoblot using anti-FLAG antibody (A). 
 
3.4.4. Serotonin secretion assay of platelet dense granules  

To confirm the Rap1GAP2 effect on secretion and to further investigate the impact of 

Rap1GAP2/Slp1 complex formation in this process, serotonin secretion from platelet dense 

granules was studied. In platelets, Rab27 has previously been shown to regulate dense 

granule secretion by interacting with Munc13-4 (Shirakawa et al. 2004). In the present work, 

the Rab27 binding protein Slp1 has been demonstrated to be expressed in platelets, too 

(Fig.3.4C). Moreover, Slp1 binds to Rap1GAP2, and a trimeric complex composed of 

Rap1GAP2, Slp1 and Rab27 is formed in platelets (Fig.3.14D). Therefore, to elucidate the 

roles of Slp1 and Rap1GAP2 in platelet dense granule secretion, a serotonin secretion assay 
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using streptolysin-O permeabilized human platelets was established (Flaumenhaft 2004, 

Shirakawa et al. 2005). Released serotonin which forms a fluorophore with ortho-

phthalaldehyde was determined using Wallac Victor 1420 Multilabel Counter by a chemical 

fluorimetric method (2.5.4, Holmsen and Dangelmaier 1989).  

 

 

 

 

 
 
 
Figure 3.20: Validation of serotonin secretion assay (1). 
A: Determination of serotonin creatinine sulfate as standard. Different concentrations ranging from 0 to 5 µM of 
serotonin creatinine sulfate were measured as described in Materials and Methods (2.5.4).  
B: Agonist-induced serotonin secretion of intact platelets. Washed human platelets were treated as indicated. 
Serotonin (5HT) secretion was determined as described in Materials and Methods (2.5.4), and plotted as 
percentage of total serotonin stored in platelet dense granules. Shown data represent the means + SD of at least 
three independent experiments. 
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To first test the accuracy of serotonin determination, serotonin creatinine sulfate was 

measured as standard. Different concentrations were used ranging from 0 to 5 µM. As shown 

in Fig.3.20A, a straight standard curve was produced. From the experiments hereafter, the 

total amount of serotonin in the platelet preparations varied from 2 to 6 µM depending on the 

donor with a mean platelet concentration of 1 x 108 platelets/ml.  

It is known that platelet activators (e.g. thrombin) induce secretion of platelet granules, 

whereas platelet inhibitors (e.g. forskolin, SNP) inhibit platelet granule secretion (Aktas et al. 

2003). Therefore and for further assay validation, serotonin secretion of intact platelets 

treated with platelet activators and inhibitors was evaluated. As shown in Fig.3.20B and 

expected, treatment of platelets with different concentrations of thrombin induced a 

concentration-dependent serotonin secretion of platelet dense granules. Up to 75 % + 6 of 

total stored serotonin were released upon treatment of platelets with 0.5 U/ml of thrombin, 

while baseline serotonin release was 17 % + 2. Conversely, treatment of platelets with 

forskolin or SNP resulted in an almost entire inhibition of thrombin-induced serotonin 

secretion. The amounts of released serotonin were comparable to that of untreated platelets 

(Fig.3.20B). 

Given the fact that platelets are anucleate cells, they are not amenable to transfection. 

Therefore, we decided to permeabilize platelets in order to introduce proteins or peptides of 

interest. Platelets were permeabilized using the pore forming bacterial toxin streptolysin-O, 

which was a generous gift of Prof. Dr. S. Bhakdi, Mainz, Germany. Streptolysin-O binds as 

monomer to cellular membranes containing cholesterol, i.e. platelet plasma membrane, 

followed by oligomerization into ring-shaped structures, which then surround pores of about 

30 nm in diameter (Palmer et al. 1998). Importantly, intracellular membranes are not 

disrupted, preventing thereby the release of granular contents. Assessment of 

permeabilization was carried out by evaluating the leakage of the cytosolic marker lactate 

dehydrogenase (LDH), which was monitored by immunoblot. As shown in Fig.3.21A, LDH 

was detectable in the supernatants of permeabilized platelets only. In contrast, no LDH was 

present in supernatants of non-permeabilized platelets (Fig.3.21A, right panel).  

Granule secretion of permeabilized platelets can be stimulated with various agents. Strong 

activators such as thrombin capable of stimulating intact platelets, as shown in Fig.3.20B, 

induce granule secretion only within few minutes following permeabilization. However, due to 

leakage of cytosol, molecules critical for signal transduction diffused from the platelets 

interior, resulting in platelet irresponsiveness (data not shown). Therefore, to induce granule 

secretion of permeabilized platelets, calcium ions and the non-hydrolysable GTP analogue 

guanosine 5`-O-[γ-thio] triphosphate (GTPγS) were used. In order to optimize the time of 

Ca2+ and GTPγS stimulation, kinetics of Ca2+- and GTPγS-induced granule secretion of 

streptolysin-O permeabilized platelets was analyzed. As shown in Fig.3.21B, Ca2+-induced  
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Figure 3.21: Validation of serotonin secretion assay (2). 
A: Assessment of platelet permeabilization. Washed human platelets were permeabilized using 0.6 µg/ml 
streptolysin-O as indicated, and centrifuged. Aliquots of supernatants (sup) and total platelet suspensions (tot) of 
permeabilized and non-permeabilized platelets were mixed with 3x SDS electrophoresis loading buffer and 
boiled for 5 min. Proteins were separated by SDS-PAGE and blotted onto a nitrocellulose membrane. The 
presence of lactate dehydrogenase (LDH) was determined by immunoblot using anti-LDH antibody.  
B and C: Time-dependent Ca2+- and GTPγS-induced serotonin secretion of permeabilized platelets. 
Permeabilized platelets were stimulated with Ca2+ (B) or GTPγS (C) for the indicated periods of time. Released 
serotonin (5HT) was measured as described in Materials and Methods (2.5.4).  
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Figure 3.22: Slp1 inhibits platelet dense 
granule secretion in a dose-dependent 
manner. 
A: Ca2+-induced dense granule secretion after 
incubation of permeabilized platelets with Slp1. 
Permeabilized platelets were incubated with 
the indicated concentrations of purified 
recombinant His6-tagged Slp1 and then 
stimulated with Ca2+ for 1 min. For baseline 
serotonin secretion platelets were left 
unstimulated in absence or presence of Slp1. 
Baseline and Ca2+-induced secretion of dense 
granules were analyzed by measuring released 
serotonin (5HT) as described in Materials and 
Methods (2.5.4). The results shown are 
expressed as means + SD of three 
independent experiments performed in 
triplicate. P values are expressed as follows * p 
< 0.05 and *** p < 0.001 and considered as 
statistically significant.  
B: GTPγS-induced dense granule secretion 
after incubation of permeabilized platelets with 
Slp1. Permeabilized platelets were incubated 
with the indicated concentrations of purified 
recombinant His6-tagged Slp1 and then 
stimulated with GTPγS for 5 min. Baseline and 
GTPγS-induced secretion of dense granules 
were analyzed by measuring released 
serotonin (5HT) as described in Materials and 
Methods (2.5.4). The results shown are 
expressed as means + SD of three 
independent experiments performed in 
triplicate. P values are expressed as follows * p 
< 0.05 and *** p < 0.001 and considered as 
statistically significant. 

 

dense granule secretion was very quick, and granules were efficiently secreted within 1 min 

after stimulation. In contrast, GTPγS-induced dense granule secretion was much slower 

(Fig.3.21C). While almost 70 % of stored serotonin was released after 1 min stimulation with 

Ca2+, the same amount of serotonin was released after 10 min stimulation with GTPγS. Thus, 

we decided to stimulate permeabilized platelets with Ca2+ for 1 min and GTPγS for 5 min.  

To test whether Slp1 and Rap1GAP2 are involved in platelet dense granule secretion, 

permeabilized platelets were incubated with purified recombinant Slp1 and Rap1GAP2 

proteins. Upon incubation of permeabilized platelets with purified recombinant Slp1, Ca2+- 

and GTPγS-induced dense granule secretion was significantly inhibited (Fig.3.22). The 

inhibitory effect of Slp1 was dose-dependent, while baseline serotonin secretion was not 

affected by Slp1 (Fig.3.22). In contrast, incubation of permeabilized platelets with purified 

recombinant wild-type Rap1GAP2 significantly enhanced Ca2+- and GTPγS-induced dense 

granule release (Fig.3.23A). Baseline levels of serotonin secretion were not changed by 

Rap1GAP2 (Fig.3.23A). To investigate the relevance of the Rap1GAP2/Slp1 interaction in  
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Figure 3.23: Rap1GAP2 augments platelet 
dense granule secretion by binding to 
Slp1. 
A: Ca2+- and GTPγS-induced dense granule 
secretion after incubation of permeabilized 
platelet with wild-type Rap1GAP2. 
Permeabilized platelets were incubated with 
or without 1 µM of purified recombinant His6-
tagged wild-type Rap1GAP2 and then 
stimulated with Ca2+ for 1 min or with GTPγS 
for 5 min. For baseline serotonin secretion, 
platelets were left unstimulated (-stim) in 
absence or presence of Rap1GAP2. 
Baseline and induced secretion of dense 
granules were analyzed by measuring 
released serotonin (5HT) as described in 
Materials and Methods (2.5.4). The results 
shown are expressed as means + SD of 
three independent experiments performed in 
triplicate. P values are expressed as follows 
** p < 0.01 and *** p < 0.001 and considered 
as statistically significant.  
B: Ca2+- and GTPγS-induced dense granule 
secretion after incubation of permeabilized 
platelet with Rap1GAP2ΔEVTKTT mutant 
that is deficient in Slp1 binding. 
Permeabilized platelets were incubated with 
or without 1 µM of purified recombinant His6-
tagged Rap1GAP2ΔEVTKTT mutant which 
does not bind Slp1. Then, platelets were 
stimulated with Ca2+ for 1 min or with GTPγS 
for 5 min. For baseline serotonin secretion, 
platelets were left unstimulated (-stim) in 
absence or presence of Rap1GAP2 
ΔEVTKTT. Baseline and induced secretion 
of dense granules were analyzed by 
measuring released serotonin (5HT) as 
described in Materials and Methods (2.5.4). 
The results shown are expressed as means 
+ SD of seven independent experiments 
performed in triplicate.  
C: Permeabilized platelets were incubated 
with 100 µM of Rap1GAP2 wild-type peptide 
(RG2wt peptide) or Rap1GAP2 peptide 
lacking the Slp1 binding motif EVTKTT 
(RG2ΔEVTKTT peptide). The solvent DMSO 
was used as negative control. Baseline and 
Ca2+-induced secretion of dense granules 
were analyzed by measuring released 
serotonin (5HT) as described in Materials 
and Methods (2.5.4). The results shown are 
expressed as means + SD of five 
independent experiments performed in 
triplicate. P values are expressed as follows 
*** p < 0.001 and considered as statistically 
significant. 
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Figure 3.24: Rap1GAP2 effect on platelet dense 
granule secretion is not mediated by Rap1. 
Ca2+-induced dense granule secretion after incubation 
of permeabilized platelets with Rap1. Permeabilized 
platelets were incubated with 1 µM of either BSA as 
control or purified recombinant His6-tagged native 
Rap1b or Rap1b loaded with GTP. Then, platelets 
were stimulated with Ca2+ for 1 min. Baseline and 
Ca2+-induced secretion of dense granules were 
analyzed by measuring released serotonin (5HT) as 
described in Materials and Methods (2.5.4). The 
results shown are expressed as means + SD of five 
independent experiments performed in triplicate. 

 

secretion, Rap1GAP2ΔEVTKTT mutant deficient in Slp1 binding was purified and tested in 

the serotonin secretion assay. Incubation of permeabilized platelets with this mutant had no 

effect on Ca2+- and GTPγS-induced dense granule secretion (Fig.3.23B). In order to 

corroborate the Rap1GAP2 effect on secretion, Rap1GAP2 peptides, described in 3.2.3, 

were tested in secretion assays of permeabilized platelets. The wild-type Rap1GAP2 peptide 

containing the Slp1 binding -TKXT- motif, but not the mutant Rap1GAP2 peptide lacking this 

motif, augmented Ca2+-induced platelet dense granule secretion (Fig.3.23C). To assure the 

Rap1GAP2 function in platelet secretion to be independent of the GAP activity of 

Rap1GAP2, permeabilized platelets were incubated with purified recombinant Rap1 either 

native or GTP-loaded. As expected, no effect on Ca2+-induced serotonin secretion of platelet 

dense granules was observed (Fig.3.24). The same results were obtained if permeabilized 

platelets were incubated with Rap1 and stimulated with GTPγS (data not shown). 

In summary, to study the functional relevance of the interaction between Rap1GAP2 and 

Slp1 in platelet secretion, a serotonin secretion assay using streptolysin-O permeabilized 

human platelets was set up and validated. Incubation of permeabilized platelets with purified 

recombinant Slp1 markedly decreased dense granule secretion, whereas addition of purified 

Rap1GAP2 increased secretion. The stimulation of dense granule secretion by Rap1GAP2 

was independent of its GTPase activity but dependent on its ability to bind to Slp1, and 

deletion of the Slp1-binding -TKXT- motif abolished the Rap1GAP2 effect on secretion. Thus, 

from these data we conclude that Slp1 and Rap1GAP2 play a role in platelet dense granule 

secretion, and that the effect of Rap1GAP2 depends on the binding of Rap1GAP2 to Slp1. 
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4. DISCUSSION 

4.1 Interaction of Rap1GAP2 and Slp1 

4.1.1 The Slp1 binding -TKXT- motif of Rap1GAP2 

Rap1GAP2 is a unique protein in platelets because it is the only GTPase activating protein of 

Rap1 expressed in these cells (Schultess et al. 2005). In order to understand the regulation 

of Rap1GAP2 and to identify possible new functions for this protein, a genetic two-hybrid 

screening for interacting proteins was performed in yeast using Rap1GAP2 as bait. In 

addition to the previously described 14-3-3 protein (Hoffmeister et al. 2008), the tandem C2 

domain containing protein synaptotagmin-like protein 1 (Slp1) was found to interact with 

Rap1GAP2. The direct interaction of Rap1GAP2 and Slp1 was verified in yeast as well as in 

transfected mammalian cells (Fig.3.1 and Fig.3.2). It was shown that Slp1 is expressed in 

platelets, and the interaction of endogenous Slp1 and Rap1GAP2 was demonstrated by 

engagement of 14-3-3 (Fig.3.4). 14-3-3 proteins bind to phosphorylated serine 9 within the N-

terminus of Rap1GAP2 (Hoffmeister et al. 2008). The serine- and threonine-rich C-terminus 

of Rap1GAP2, however, has so far been of unknown function. In the present work it was 

demonstrated that at least part of this C-terminal region of Rap1GAP2 is involved in protein-

protein interactions. Mapping studies revealed that Rap1GAP2 binds through amino acids 

T524-K525-X-T527 within its C-terminus to the C2A domain of Slp1. The Slp1 binding -

TKXT- motif was verified by three complementary approaches, i.e. pull-down assays using 

alanine point mutants of Rap1GAP2 protein (Fig.3.9C) and peptide binding assays using 

either immobilized (Fig.3.9D) or solubized (Fig.3.10) Rap1GAP2 peptides, respectively. 

Interestingly, this -TKXT- motif is not conserved in Rap1GAP1, the closest relative of 

Rap1GAP2 (Schultess et al. 2005). Consequently, no binding between Rap1GAP1 and Slp1 

was observed (Fig.3.3). In Rap1GAP1, both threonine residues are changed to alanines, 

whereas the lysine residue K525 which corresponds to K503 in Rap1GAP1 is present 

(Schultess et al. 2005). However, K503 does not suffice to mediate binding of Rap1GAP1 to 

Slp1. Database search (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) revealed the -TKXT- 

motif in numerous proteins (e.g. lipoxygenase homology domain containing protein 1, 

accession number Q8IVV2.2; NEDD4, accession number P46934; phospholipase D2, 

accession number 014939.2; PTEN-induced putative kinase protein 1, accession number 

Q9BXM7). However, it remains to be investigated whether any of these proteins are capable 

of Slp1 binding. The outcome of such binding studies would help define the biochemical 

value of the -TKXT- motif in terms of having a general role in mediating binding to C2 

domains. At present, the -TKXT- motif of Rap1GAP2 represents a unique new binding motif 

for the C2A domain of Slp1. The Slp1 binding -TKXT- motif could be involved in subcellular 
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targeting of Rap1GAP2 to the plasma membrane via Slp1 and we indeed observed a co-

localization of Rap1GAP2 and Slp1 at the plasma membrane in transfected HeLa cells 

(Fig.3.13). 

4.1.2 The role of the C2 domains of Slp1 

C2 domains are generally considered as phospholipid binding domains (Lemmon 2008), and 

in particular, the C2A domain of Slp1 has been described to bind to phosphoinositides in-

vitro and in transfected mammalian cells (Catz et al. 2002). Overexpressed DsRed-tagged 

C2A domain of Slp1 exclusively localized to the plasma membrane in LNCaP cells 

(Fig.3.6A), and the same was previously observed and reported for the EGFP-C2A chimera 

in transfected NIH3T3 cells (Catz et al. 2002). Thus, the C2A domain of Slp1 is sufficient and 

required for Slp1 binding to the plasma membrane. On the other hand, mapping studies in 

this work revealed that the C2A domain of Slp1 serves as a protein-protein interaction 

domain and mediates binding of Slp1 to Rap1GAP2. Certain C2 domains have been 

observed to be involved in protein-protein interactions before. Protein-protein interactions 

mediated by C2 domains include e.g. the interaction of the C1 and C2 domain of protein 

kinase C (Kheifets and Mochly-Rosen 2007) and the binding of the C2 domain to the 

catalytic GAP domain in SynGAP (Pena et al. 2008). In contrast to the C2A domain, the role 

of the C2B domain of Slp1 remains to be determined. In pull-down assays using the isolated 

C2B domain of Slp1, no binding to Rap1GAP2 was observed (Fig.3.5). Nonetheless, an 

engagement of the C2B domain of Slp1 in protein-protein and/or protein-membrane 

interactions cannot be ruled out. In particular, a cooperative function of both C2 domains of 

Slp1 appears to be conceivable. For example, the C2 domains of the Ca2+-sensor protein 

synaptotagmin-I have recently been shown to function synergistically in promoting Ca2+-

dependent membrane fusion (Martens et al. 2007, Stein et al. 2007, Fuson et al. 2007, 

reviewed by Martens and McMahon 2008). Because of similarities observed between the 

C2A domain of Slp1 and the C2 domains of synaptotagmin-I one could speculate that 

binding of Slp1 to Rap1GAP2 might be modulated by calcium. However, the two C2 domains 

of Slp1 are not very likely to bind calcium ions because some aspartic residues known to be 

involved in calcium binding by synaptotagmins are not conserved in Slp1. To address this 

point experimentally, we performed pull-down assays in absence or presence of calcium. No 

difference in binding of Slp1 to Rap1GAP2 was observed (data not shown). This observation 

renders a possible role for calcium in Slp1/Rap1GAP2 interaction rather unlikely. Moreover, 

previous studies suggested that increased intracellular calcium concentration decreases 

binding of the C2A domain of Slp1 to membranes (Catz et al. 2002).  
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In order to further assess whether the C2A domain of Slp1 is capable of binding to 

phospholipids and thus plasma membrane and to Rap1GAP2 simultaneously, phospholipid 

binding (or protein lipid overlay) assays were performed. As expected, the C2A domain and 

the full-length Slp1 protein bound to phospholipids (Fig.3.6). Interestingly, the lipid specificity 

of both was different compared to that observed previously (Catz et al. 2002). Both, the C2A 

domain and Slp1 bound preferentially to phosphatidic acid followed by phosphatidyl-

inositolmono- and -bisphosphates. Binding to PtdIns(3,4,5)P3 was apparent, but rather weak. 

However, one has to argue that protein lipid overlay assays, albeit fast and convenient, often 

yield inconsistent results which are mostly due to experimental deviations associated with 

lipid deposition and preservation on the nitrocellulose membrane. For example, 

monophosphorylated phosphoinositides such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P most 

stably associate with the nitrocellulose membrane and thus tend to give the strongest results 

(Narayan and Lemmon 2006). Therefore, to define the exact lipid specificity of Slp1 and its 

C2A domain, additional experiments (e.g. studies in solution using specific lipid vesicles) are 

required. Nonetheless, protein lipid overlay assays as they have been carried out in this work 

are sufficient to state that Slp1 binds via its C2A domain to phospholipids and thus the 

plasma membrane, and that the phospholipid binding ability of Slp1 is not affected by binding 

of Rap1GAP2. 

4.1.3 Phosphorylation at the -TKXT- motif of Rap1GAP2 

The Slp1 binding -TKXT- motif of Rap1GAP2 contains two threonines that could be subject 

to phosphorylation, and recently the C2 domain of PKCδ was reported to be a 

phosphotyrosine binding domain (Benes et al. 2005). However, data of the present study 

suggest that phosphorylation is not required for binding of the C2A domain of Slp1 to the -

TKXT- motif of Rap1GAP2 (Fig.3.9). On the other hand, platelet inhibition by activation of 

protein kinase A resulted in enhanced binding of Slp1 to endogenous Rap1GAP2 (Fig.3.11). 

These data suggest that either Rap1GAP2 or other protein(s) that is/are possibly involved in 

binding of Rap1GAP2 to Slp1 are phosphorylated by PKA, and that this phosphorylation 

impacts complex formation of Rap1GAP2 and Slp1 in platelets. From previous studies of our 

group we know that Rap1GAP2 is a substrate of both, PKA and PKG (Schultess et al. 2005). 

For example, phosphorylation of serine 7 by PKA and PKG inhibits binding of 14-3-3 to 

Rap1GAP2, and conversely, phoshorylation of serine 9 by a so far unidentified kinase 

increases 14-3-3 binding to Rap1GAP2 (Hoffmeister et al. 2008). Supposed that direct 

phosphorylation of Rap1GAP2 is responsible for the increase in binding of Slp1 to 

Rap1GAP2, phosphorylation does not occur at the -TKXT- motif. In-vitro kinase assays 

revealed that neither T524 nor T527 are phosphorylated by the purified catalytic subunit of 

PKA (data not shown). Therefore, it is reasonable to assume that the PKA phosphorylation 
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site is elsewhere within Rap1GAP2 and that this site once phosphorylated is able to 

positively modulate the interaction of Rap1GAP2 and Slp1. For instance, serine 549 

corresponds to the consensus sequence -(R/K)2-X-S/T- for phosphorylation by PKA 

(http://scansite.mit.edu/motifscan_seq.phtml). However, mutation of serine 549 to alanine did 

not affect phosphorylation by PKA in in-vitro kinase assays (Schultess et al. 2005), and it did 

not alter binding of Slp1 to Rap1GAP2 in transfected forskolin-treated HeLa cells (data not 

shown). Recently, a phosphopeptide of Rap1GAP2, comprising the sequence 

TTFS*PPVVAATVK (amino acids 526-538 of Rap1GAP2), in which serine 529 was 

phosphorylated, was identified in HeLa cells (Beausoleil et al. 2006). However, mutation of 

serine 529 to alanine did not affect binding of Slp1 to Rap1GAP2 in transfected cells (data 

not shown). Thus, the questions whether direct PKA phosphorylation of Rap1GAP2 is 

responsible for the enhanced binding of Slp1 to Rap1GAP2 and which serine or threonine 

residue(s) is/are phosphorylated remain to be answered. Also the issue of other protein(s) 

that could be phosphorylated by PKA and upon phosphorylation could modulate complex 

formation of Slp1 and Rap1GAP2 is subject for future studies.  

Taken together, in the present work Slp1 was identified and verified as a new direct binding 

partner of Rap1GAP2 in platelets, and has been shown to bind through its C2A domain to 

the -TKXT- motif of Rap1GAP2. Evidence suggests that Slp1 binding to Rap1GAP2 is not 

affected by calcium or phosphorylation at the -TKXT- motif. However, activation of protein 

kinase A in platelets resulted in enhanced binding of Slp1 to Rap1GAP2. Supposed that PKA 

directly phosphorylates Rap1GAP2, the exact phosphorylation site remains to be defined. On 

the other hand, it is also possible that some other protein(s) is/are involved in complex 

formation between Slp1 and Rap1GAP2 and upon kinase activation modulate binding of Slp1 

to Rap1GAP2 in platelets.  

4.2 Complex formation of Slp1, Rab27, Rap1GAP2 and other proteins 

4.2.1 The Slp1/Rab27 complex  

Slp1 is a Rab27 binding protein and is known to interact with Rab27a and Rab27b via its N-

terminal Slp homology domain (SHD). Moreover, binding of Slp1 to Rab27 has been reported 

to be nucleotide-dependent, i.e. Slp1 binds to the GTP-bound form of Rab27 (Kuroda et al. 

2002, Strom et al. 2002). In the present work binding of Slp1 to Rab27 was verified in 

transfected cells and in platelets, and Rap1GAP2 was shown to join the Slp1/Rab27 complex 

(Fig.3.12 and Fig.3.14).  

Binding of Slp1 to Rab27 was first confirmed by co-immunoprecipitation experiments in 

transfected cells. Therein, binding of Slp1 to Rab27a was stronger than to Rab27b (Fig.3.12). 
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In pull-down assays, however, binding of Slp1 to both Rab27 isoforms was similar (Fig.3.14). 

This discrepancy was probably due to different protein amounts of Rab27 used in these 

different approaches, i.e. co-immunoprecipitation and pull-down experiments, and especially, 

slight variations in binding of Slp1 to Rab27a or Rab27b, as they might exist, could have 

been blurred by much higher amounts of Rab27 used in pull-down assays. Therefore, in 

order to precisely and definitely assess the affinity of Slp1 binding to Rab27a and Rab27b, 

further studies (e.g. real time and quantitative analysis of the Slp1/Rab27 interaction using 

BIAcore technology) will be necessary. Notably, also binding of Munc13-4 to Rab27a has 

been shown to be stronger than its binding to Rab27b (Shirakawa et al. 2004). The question 

whether the nucleotide state of Rab27 has an effect on Slp1 binding was addressed in pull-

down assays using GDP- versus GTP-loaded Rab27. No difference in binding was observed 

(Fig.3.10). These data confirm recent findings by Johnson et al. 2005 and Hattula et al. 2006, 

arguing against a role for the nucleotide state of Rab27 in Slp1/Rab27 complex formation. 

For example, also Slp4/granuphilin-a has been reported to bind Rab27 independently of the 

nucleotide state of the Rab protein (Fukuda 2005). Additionally, there is evidence suggesting 

that binding of Slp1 to Rab27 is regulated by phosphorylation. Recently, it was demonstrated 

that Slp1 is a substrate of protein kinase B (PKB, also termed Akt) and is phosphorylated by 

this kinase mainly at serine 241 which is located in proximity to the phospholipid binding C2A 

domain of Slp1 (Johnson et al. 2005). Accordingly, phosphorylation of Slp1 by PKB did not 

alter binding of Slp1 to Rab27. Instead, phosphorylation of Slp1 by PKB led to the 

dissociation of Slp1 from the plasma membrane and consequently, redistribution of Slp1 into 

the cytosol in LNCaP cells (Johnson et al. 2005). In the present work, in-vitro kinase assays 

revealed that Slp1 is a substrate of protein kinase A, and serine 111, which is localized within 

the Rab27 binding Slp homology domain, was identified as phosphorylation site (Fig.3.15). In 

platelets activation of PKA resulted in enhanced binding of Slp1 to Rab27 (Fig.3.14), 

indicating that phosphorylation of Slp1 by PKA could affect binding of Slp1 to Rab27, and 

indeed, mutation of serine 111 to alanine diminished binding of Slp1 to Rab27 in transfected 

cells (Fig.3.15). However, it is also possible that Rab27 itself is subject to phosphorylation 

and likewise, phosphorylation of Rab27 could impinge on binding of Rab27 to Slp1.  

Altogether, the results of the present study suggest a constitutive binding of Slp1 to Rab27 in 

platelets and indicate that Slp1/Rab27 complex formation is affected by phosphorylation. 

Since Slp1 binding to Rab27 occurred independently of the nucleotide state of the Rab 

protein and since Rab27 associates with granules only in its GTP-bound state (Behnia and 

Munro 2005, Barral et al. 2002), it is likely that different pools of Slp1 are present in platelets 

(Fig.4.1). Slp1 that is bound to GDP-Rab27 may be soluble (reserve cytosolic pool), whereas 

Slp1 associated with GTP-Rab27 may mainly localize to platelet dense granules (active 

granule-associated pool). Moreover, the ability of the C2A domain of Slp1 to bind to 
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phospholipids and thus the plasma membrane suggests that Slp1 may also localize to the 

plasma membrane in platelets. Thus, it is reasonable to assume that Slp1 might be able to 

shift between these three distinct subcellular compartments, and accordingly, this might 

determine the functionality of the Slp1 protein. In particular, association of Slp1 with GTP-

Rab27 on platelet dense granules might turn Slp1 into a Rab27 effector, and subsequent 

interaction of Slp1 with other proteins and/or lipids might help to position the granules to 

cellular targets (e.g. actin cytoskeleton or plasma membrane). Of course, further studies will 

be required in order to foremost precisely define the subcellular distribution of Slp1 in 

platelets and to answer the question of whether and how this distribution might be regulated. 

 
 
 

 
 
Figure 4.1: Possible subcellular distribution of Slp1 in platelets. 
Slp1 is a Rab27 and membrane binding protein and might therefore distribute between three different subcellular 
compartments in platelets: (1) due to its binding to the inactive GDP-bound form of Rab27 Slp1 is cytosolic; (2) 
binding of Slp1 to the active GTP-bound form of Rab27, however, shifts Slp1 to platelet dense granules and turns 
it into a Rab27 effector; (3) finally, membrane binding of Slp1 positions the Slp1 protein at the plasma membrane 
and/or promotes tethering/docking of Rab27-coated dense granules to the plasma membrane during platelet 
secretion. 
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4.2.2 The platelet Slp1 interactome 

Rab27 has been shown to regulate platelet dense granule secretion (Shirakawa et al. 2004, 

Tolmachova et al. 2007). It probably acts by promoting granule motility or by enhancing 

docking and fusion of granules with the plasma membrane (Seabra and Coudrier 2004, 

Behnia and Munro 2005, Fukuda 2006). For these functions Rab27 needs to interact with 

effector proteins, and Slp1 is the second Rab27 effector protein identified in platelets, in 

addition to Munc13-4 (this work, Shirakawa et al. 2004). In some cases the Rab27/effector 

protein complex in turn associates with other proteins (e.g. myosin, SNARE or SNARE 

regulatory proteins) to mediate membrane transport, docking and fusion. For example, 

Slac2-a/melanophilin simultaneously interacts with Rab27 and the cytoskeletal motor protein 

myosin Va, thereby enabling melanosome transport in melanocytes (Strom et al. 2002). The 

Rab27 binding protein Slp4/granuphilin-a directly binds to syntaxin-1a (Torii et al. 2002) and 

Munc18-1 (Coppola et al. 2002), both important for membrane docking and fusion. In 

addition, Slp4 is also known to bind to Rab8 and Rab3 at least in-vitro (Fukuda 2005). 

Recently, Slp1 has also been reported to bind to Rab8 in transfected HeLa cells (Hattula et 

al. 2006). However, the existence of the endogenous Slp1/Rab8 complex e.g. in platelets 

has not yet been demonstrated. The results of the present work clearly show that Slp1, 

Rab27 and Rap1GAP2 form a trimeric complex in transfected cells and in platelets, and 

demonstrate that this complex is affected by phosphorylation (Fig.3.14). In order to identify 

further proteins that could be involved in the complex formation around Slp1 in platelets, Slp1 

affinity chromatography was performed. On the whole, fourteen new putative Slp1 interacting 

proteins were identified in platelets (Tab.3.1). The presence of Rab27 and Rab8 argues for 

the success of this biochemical method, and binding of Rab8 to Slp1 was confirmed in pull-

down assays (Fig.3.16). The fact that Slp1 interacts with both Rab27 and Rab8 in platelets is 

of particular interest. Both Rab proteins might functionally overlap. For example, Rab27 and 

Rab8 colocalize on zymogen granules in pancreatic acinar cells and on melanosomes in 

melanocytes, and they are both involved in actin-based movement and secretion of these 

organelles (Chen et al. 2004, Chen et al. 2005, Faust et al. 2008, Fukuda et al. 2002, 

Chabrillat et al. 2005). In platelets, however, Rab8 has been reported to be present on alpha 

granules, whereas Rab27 mainly localizes to dense granules (Karniguian et al. 1993, Barral 

et al. 2002). Therefore, one could speculate that in contrast to Rab27 and in addition to 

Rab4, Rab8 could play a role in secretion of alpha granules in platelets. However, 

experimental proof is still missing. In addition, Rab8 has been implicated to regulate the 

formation of cell shape (Hattula et al. 2006) and cell polarity (Sato et al. 2007). In contrast to 

Rab8, binding of Rap1 to Slp1 could not be verified in pull-down assays, suggesting that 

Rap1 is a false-positive because of its very high expression level in platelets (data not 

shown). On the other hand, absence of Rap1GAP2 on the Slp1 affinity column might be 
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caused by low expression of Rap1GAP2 in platelets, and could potentially be tackled by 

forskolin treatment of platelets to enhance Rap1GAP2 binding to Slp1. The presence of 

Rab32 among the six Rab proteins that were purified with Slp1 is remarkable. Rab32 

functions as an A-kinase anchoring protein, as it associates with protein kinase A in intact 

cells (Alto et al. 2002). In addition, Rab32 has been implicated in protein trafficking in 

melanosomes (Wasmeier et al. 2006), and has recently been shown to regulate melanosome 

transport in Xenopus melanophores by PKA recruitment (Park et al. 2007). As Slp1 is a 

substrate of protein kinase A (Fig.3.15), binding of Slp1 to Rab32 might provide an 

opportunity to spatially and temporally control phosphorylation of Slp1 by PKA in platelets. 

The presence of myosin-9 (non-muscle myosin heavy chain IIA, NMHC-IIA) together with 

myosin regulatory light chain 2 and myosin light polypeptide 3 and 6 might be important as 

well. Myosin-9 is encoded by MYH9, and is the only myosin heavy chain isoform expressed 

in platelets (Sellers 2000). Mutations in MYH9 are responsible for the so-called MYH9-

related disorders, i.e. May-Hegglin anomaly, Fechtner syndrome, Sebastian syndrome and 

Epstein syndrome, which are characterized by the triad of thrombocytopenia, large platelets 

and leukocyte inclusions (Seri et al. 2003). Myosin-9 is a heterohexameric protein, and 

becomes activated by phosphorylation of its regulatory light chain subunit. Myosin-9 plays a 

central role in the cytoskeletal rearrangements underlying platelet shape change during 

activation, and in platelet secretion (Blockmans et al. 1995, Nishikawa et al 1980, Watanabe 

et al. 2001).  

Altogether, the identified new putative Slp1 interacting proteins are interesting and promising. 

However, it remains unclear if all these proteins bind to the same macromolecular complex 

around Slp1 or whether there may be different subcomplexes. In the present study Slp1 was 

found to interact with Rap1GAP2 in platelets and the trimeric complex of Rap1GAP2, Slp1 

and Rab27 was proven. However, it appears unlikely that for example Rab8 can be found 

within this complex. Slp1 might rather bind to either Rab27 or Rab8 and act as effector 

protein in separate secretory processes. According to its subcellular localization in platelets 

(Karniguian et al. 1993), one could speculate that Rab8 regulates platelet alpha granule 

secretion by e.g. involving the formation of the trimeric complex of Slp1, Rab8 and 

Rap1GAP2. In addition, myosin-9 might be engaged into these complexes and might help to 

promote granule motility by connecting platelet alpha and dense granules with the actin 

cytoskeleton. Certainly, the identified Slp1 interacting proteins complement the Slp1 

interactome in platelets (Fig.4.2). The platelet Slp1 interactome can be drawn based on the 

data of the present study, previously published data and predicted platelet protein-protein 

interactions by PlateletWeb-Knowledgebase (http://plateletweb.bioapps.biozentrum.uni-

wuerzburg.de). PlateletWeb-Knowledgebase allows creating a “virtual” platelet by combining 
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Figure 4.2: The Slp1 interactome in platelets. 
Protein-protein interactions that were verified in platelets in the present work are colored in violet and indicated by 
violet solid line. Protein-protein interactions that were published and demonstrated in platelets by others are 
colored in grey and indicated by grey solid line. Protein-protein interactions that were published by others but 
need to be verified in platelets are colored in grey and indicated by grey dashed line. Protein-protein interactions 
that were identified by affinity chromatography and mass spectrometric analysis but need to be verified by 
alternative approaches are uncolored and indicated by dashed line. Protein-protein interactions that are predicted 
by PlateletWeb-Knowledgebase (http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de) are colored in green 
and indicated by green dashed line. ST denotes serine and threonine phosphorylation. ARPC5: actin-related 
protein 2/3 complex subunit 5; ATPO: ATP synthase subunit O; CDC42: cell division cycle 42; DUSP3: dual 
specificity protein phosphatase 3; NMHC-IIA: non-muscle myosin heavy chain IIA, also myosin-9; NCF1; 
neutrophil cytosolic factor 1 (also termed p47phox subunit of NADPH oxidase); NCF2: neutrophil cytosolic factor 2 
(also termed p67phox subunit of NADPH oxidase); NSF: N-ethylmaleimide-sensitive factor; PDCD10: programmed 
cell death protein 10; PKB: protein kinase B; RabGDI: Rab GDP dissociation inhibitor; RG2: Rap1GAP2; Slp: 
synaptotagmin-like protein; STX: syntaxin; VAMP; vesicle-associated membrane protein. 
 

large scale proteome and transcriptome data with literature-curated data of the Human 

Protein Reference Database (http://www.hprd.org) (Dittrich et al. 2008). For example, 

previous publications demonstrated that Slp1 stably associates with PKB (Johnson et al. 

2005), and directly interacts with p67phox subunit of NADPH oxidase (NCF2, McAdadra 

Berkowitz et al. 2001). Although these interactions were not demonstrated in platelets, they 

are predicted by PlateletWeb-Knowledgebase. Additionally, Slp4 is known to bind to Rab27 

(Fukuda 2005). However, the Slp4/Rab27 complex has not yet been verified in platelets. On 

the other hand, Slp4 expression and its binding to Rab27 in platelets are predicted by 

PlateletWeb-Knowledgebase. Interestingly, within the platelet Slp1 interactome, Slp1 

interacting proteins can be grouped into secretion-related proteins such as Rab and SNARE 
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proteins and into signaling- or cytoskeleton-related proteins such as Rap1GAP2, PKB, 

NMHC-IIA and NCFs linking Slp1 to Rac, CDC42 and actin (Fig.4.2). Moreover, the fact that 

several proteins of the platelet Slp1 interactome are subject to phosphorylation suggests a 

dynamic regulation of the protein-protein interactions by kinases and phosphates. So far, the 

results of the present study demonstrate that phosphorylation by protein kinase A modulates 

the formation of the trimeric complex of Slp1, Rab27 and Rap1GAP2. However, since Slp1 is 

a substrate of both, PKA and PKB (this work, Johnson et al. 2005), and Rap1GAP2 is known 

to be phosphorylated by both, PKA and PKG (Schultess et al. 2005), other kinases could be 

involved as well. In consequence, protein-protein interaction patterns might be significantly 

rearranged, leading to the so-called dynamic Slp1 interactome in platelets.  

Finally, the question whether the new putative Slp1 interacting proteins constitute the 

complete list of Slp1 protein-protein interactions in platelets will need to be addressed in 

future studies. Further experiments will also help to validate the identified protein-protein 

interactions and clarify their relevance for platelet functions (e.g. platelet secretion of alpha 

and dense granules). 

4.3 Involvement of Slp1 and Rap1GAP2 in platelet dense granule secretion 

4.3.1 Serotonin secretion assay of permeabilized platelets 

To determine the significance of the Slp1/Rap1GAP2 interaction for platelet function and in 

particular to dissect the roles of Slp1 and Rap1GAP2 in platelet secretion, a previously 

described technology was adopted and modified, in which platelets were permeabilized by 

the pore forming bacterial toxin streptolysin-O and secretion of serotonin was measured by a 

non-radioactive flourimetric method (Flaumenhaft 2004, Shirakawa et al. 2005, Holmsen and 

Dangelmaier 1989). Since platelets are anucleate cells, they cannot be transfected. 

Therefore, in order to be able to introduce peptides or proteins into platelets, they need to be 

permeabilized. In the present work, permeabilization at 30°C with 0.6 µg/ml streptolysin-O 

proved to allow access to the platelet cytosol without damaging the granule membranes, and 

was monitored by the appearance of lactate dehydrogenase in the supernatants of 

permeabilized platelets (Fig.3.21). Then, permeabilized platelets were incubated on ice with 

peptides and proteins of interest to equilibrate them into the platelet interior. Since 

streptolysin-O is inactive at 4°C, this cold step decreased the activity of the toxin, thereby 

lessening the extent of permeabilization of granule membranes (Ahnert-Hilger et al. 1989). 

When this step was performed at room temperature or extended over the time indicated in 

Materials and Methods (2.4.5.), an increase in the baseline secretion of serotonin from 

platelet dense granules was observed (data not shown). After rewarming to 30°C for 5 

minutes, permeabilzed platelets were treated with 20 µM Ca2+ or 100 µM GTPγS to induce 
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secretion. Several groups have previously demonstrated that Ca2+ and GTPγS at the 

indicated concentrations can stimulate secretion of permeabilized platelets (Padfield et al. 

1996, Sloan and Haslam 1997). Interestingly, granule secretion was induced rapidly after 

addition of Ca2+ and reached a plateau after 3 minutes (Fig.3.21). In contrast, GTPγS 

stimulated granule secretion only after a certain time lag, but once initiated, secretion 

occurred at comparable rates (Fig.3.21). The delay in GTPγS-induced secretion was perhaps 

due to the dilution of an important cytosolic factor. Such a dilution apparently has only a 

limited effect on the Ca2+-induced secretion, although it also requires cytosol (Shirakawa et 

al. 2005). Alternatively, the delay might be caused by the need for a GDP-GTPγS exchange 

to activate a G protein which is not needed on Ca2+ stimulation. Thus, the difference in 

kinetics suggests that the two types of stimuli induce secretion through different but 

potentially parallel pathways. Ca2+ probably induces granule secretion by stimulating the final 

fusion step of the granule with the plasma membrane, whereas GTPγS stimulation might be 

mediated by small GTPases such as Rab27 or Ral (Padfield et al. 1996, Shirakawa et al. 

2004, Kawato et al. 2008). In all cases, dense granule secretion was dependent on ATP, and 

the creatine phosphate/creatine phosphokinase system was used as an ADP scavenger.  

The major difference between the properties of permeabilized and intact platelets was the 

extent of granule release. The extent of release from permeabilzed platelets was 

approximately 50 % of that seen for thrombin-induced secretion from intact platelets 

(Fig.3.20, Flaumenhaft 2004). This difference in release efficiency was again probably due to 

the dilution of important cytosolic components as they diffused from the platelets, and was 

further supported by the observation that permeabilized platelets became irresponsive to 

thrombin within few minutes following permeabilzation (data not shown). Additionally, it 

should be noted that platelet dense granule secretion was induced at 30°C rather than at 

37°C, which also might account for some decrease in release efficiency.   

4.3.2 The role of Slp1 in platelet dense granule secretion 

Using the above assay a role for Slp1 in platelet dense granule secretion was assigned. 

Addition of purified recombinant Slp1 to permeabilized platelets strongly inhibited Ca2+- and 

GTPγS-induced secretion of serotonin in a dose-dependent manner (Fig.3.22). This finding 

suggests that Slp1 is a negative regulator of platelet dense granule secretion. The inhibitory 

effect of Slp1 on platelet dense granule secretion was further supported by the observation 

that the isolated C2A domain of Slp1 augmented serotonin secretion of permeabilized 

platelets (data not shown). In line with the argument that the C2A domain might compete 

against a function of endogenous Slp1 protein, this result substantiates the inhibitory role of 

Slp1 in platelet secretion. However, the literature about effects of Slp1 on secretion in other 

cells is controversial. Slp1 has previously been demonstrated to positively regulate secretion 
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of prostate-specific antigen by prostate cells (Johnson et al. 2005) and secretion of 

azurophilic granules by granulocytes (Munafo et al. 2007). Studies in mice lacking Slp1, 

however, suggest an inhibitory role for Slp1 in amylase secretion by pancreatic acinar cells 

(Saegusa et al. 2008). Additionally, data obtained from studies of other Slp family members 

indicate that Slp proteins have cell type specific functions and may play both, stimulatory and 

inhibitory roles in secretion through diverse interactions with other proteins or the membrane 

(Rizo and Rosenmund 2008). For example, Slp2 has been shown to positively affect basal 

mucus secretion in gastric cells (Saegusa et al. 2006). Moreover, Slp2 has further been 

implicated in targeting Rab27-coated melanosomes to the plasma membrane in melanocytes 

(Kuroda and Fukuda 2004), and this effect was attributed to its N-terminal Rab27 binding 

domain and its C2A domain that mediates binding to phospholipids and thus the plasma 

membrane. Similarly, Slp2 has been proposed to dock glucagon containing granules to the 

plasma membrane in pancreatic α-cells (Yu et al. 2007). On the other hand, Slp4 has been 

reported to negatively regulate dense granule secretion by neuroendocrine PC12 cells 

(Fukuda et al. 2002) and insulin secretion by pancreatic β-cells (Gomi et al. 2005). The 

inhibitory effect of Slp4 on secretion is supposed to be mediated by its binding to Munc18-1 

and syntaxin-1a (Torii et al. 2002, Coppola et al. 2002, Fukuda 2006). In contrast to Slp1, 

addition of Munc13-4 enhanced Ca2+-induced secretion of platelet dense granules 

(Shirakawa et al. 2004). Since Munc13 proteins appear to play prominent roles in vesicle 

priming (Rizo and Rosenmund 2008), Munc13-4 could presumably be involved in priming of 

platelet dense granules with the plasma membrane (Fukuda 2005).  

Altogether, the results of the present study clearly suggest that Slp1 negatively regulates 

platelet dense granule secretion. However, the exact molecular mechanism of Slp1 action in 

platelets remains yet to be determined. A further more detailed study will be required, 

including experiments on the role of other Slp1 domains and other Slp1 binding partners 

such as Rab27, Rab8, Rab32 and myosin-9 in platelet secretion. 

4.3.3 The role of Rap1GAP2 in platelet dense granule secretion 

Next, the role of Rap1GAP2 in secretion was analyzed. Studies in LNCaP cells pointed to a 

putative stimulatory role of Rap1GAP2 in secretion of prostate-specific antigen (Fig.3.19). 

Addition of purified recombinant Rap1GAP2 protein to permeabilized platelets led to a small 

but highly significant stimulation of platelet dense granule secretion. Rap1GAP2 augmented 

both, Ca2+- and GTPγS-induced secretion of platelet dense granules (Fig.3.23A). Importantly, 

this effect was strictly dependent on the binding of Rap1GAP2 to Slp1. Deleting the Slp1 

binding -TKXT- motif in Rap1GAP2 abolished the stimulatory effect of Rap1GAP2 on platelet 

secretion (Fig.3.23B). The Rap1GAP2 effect on platelet secretion was further confirmed by a 

complementary approach using Rap1GAP2 peptides. Rap1GAP2 wild-type peptide 
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containing the Slp1 binding -TKXT- motif augmented serotonin secretion comparable to the 

full-length Rap1GAP2 protein. In contrast, a mutant peptide lacking the -TKXT- motif had no 

effect on secretion (Fig.3.23C). Moreover, it was demonstrated that the stimulatory effect of 

Rap1GAP2 on secretion was not dependent on the GTPase activating function of 

Rap1GAP2 and thus Rap1. Given the fact that Rap1 was found to be associated with 

secretory granules in e.g. neutrophils and pancreatic acinar cells (Maridonneau-Parini and de 

Gunzburg 1992, Chen X et al. 2005), it has been speculated that Rap1 might be involved in 

secretion (Bos et al. 2001). However, we and others did not observe any effect of Rap1 on 

secretion of platelet dense granules (Fig.3.24, Shirakawa et al. 2004). In addition, Slp1 

binding to Rap1GAP2 also had no effect on the catalytic GTPase activity of Rap1GAP2 in in-

vitro GAP assays using purified proteins (Fig.3.17).  

 

 
 
Figure 4.3: Rap1GAP2 is involved in both platelet secretion and aggregation. 
The -TKXT-mediated interaction of Rap1GAP2 (RG2) with the Rab27 and membrane binding protein Slp1 is 
important for platelet dense granule secretion (A). Slp1 is recruited to Rab27 on platelet dense granules. By 
simultaneously interacting with Rab27 and phospholipids (denoted by PL) Slp1 presumably links dense granules 
with the plasma membrane. Rap1GAP2 interacts with Slp1 via the Slp1 binding -TKXT- motif and augments 
platelet dense granule secretion. On the other hand, Rap1GAP2 is a GTPase activating protein specific for Rap1 
and is required for the GTPase function of Rap1 (B). Rap1GAP2 enables the formation of Rap1-GDP, thereby 
terminating the activatory effect of Rap1-GTP on platelet integrin αIIbβ3 (denoted by dashed line), leading to 
reduced platelet aggregation. 
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Thus, the results of the present study for the first time demonstrate that Rap1GAP2 is 

involved in secretion, and the stimulatory effect of Rap1GAP2 is mediated by a completely 

new mechanism, involving the interaction of Rap1GAP2 with the tandem C2 domain 

containing and Rab27 binding protein Slp1. To explain the Rap1GAP2 effect on secretion, 

 



Discussion 
_________________________________________________________________________________ 

 

88 
 

one could speculate that binding of the -TKXT- motif of Rap1GAP2 to the C2A domain of 

Slp1 positively affects the cooperation between the Slp1 tandem C2A and C2B domains 

(Fuson et al. 2007), which might be required for full activation of membrane fusion by both 

domains (Martens et al. 2007, Stein et al. 2007).  

From these data we conclude that Rap1GAP2 and Slp1 are important new components of 

the protein machinery mediating platelet dense granule secretion. Since Rap1GAP2 is a 

regulator of Rap1 and thus of platelet aggregation, the findings of the present study suggest 

that Rap1GAP2 is involved in both, aggregation and secretion (Fig.4.3), and might serve to 

coordinate these crucial platelet functions.  
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5. FUTURE PERSPECTIVES 

In the present work it was demonstrated that the tandem C2 domain containing and Rab27 

binding protein Slp1 is expressed in platelets and interacts with the GTPase activating 

protein of Rap1, Rap1GAP2. Binding of Rap1GAP2 to Slp1 is mediated by the new -TKXT- 

protein motif in Rap1GAP2 that binds to the C2A domain of Slp1. Furthermore, both Slp1 

and Rap1GAP2 were shown to be involved in platelet dense granule secretion. Of course, 

further experimentation will be required to clarify the exact molecular mechanism of Slp1 and 

Rap1GAP2 action in platelet secretion. For example, it will be necessary to analyze the 

subcellular distribution of Slp1 and Rap1GAP2 e.g. in resting and activated platelets. To this 

end, platelet fractionation assays and electron microscopy approaches could be used. 

Besides dense granules, platelets contain alpha granules and lysosomes. Thus, it is 

interesting to know whether Slp1 and Rap1GAP2 are involved in platelet dense granule 

secretion alone or whether they also play a role in platelet alpha and lysosomal granule 

release. This could be addressed in secretion assays of permeabilized platelets by 

monitoring the release of von Willebrand factor and β-hexosaminidase, respectively. 

Moreover, on the way to further unravel the molecular details of Slp1 and Rap1GAP2 action 

in platelet secretion, one could perform lipid binding assays using liposomes as described by 

Martens et al. 2007. For example, it has been reported that Slp2, a member of the 

synaptotagmin-like protein family, binds to Folch liposomes in a Ca2+-independent manner 

and induces membrane curvature in-vitro (Martens et al. 2007), and this phenomenon was 

attributed to the presence of the two tandem C2 domains in Slp2. Thus, one could ask the 

question whether Slp1 or its tandem C2A and C2B domains are also capable of membrane 

deformation and how it might be affected by Rap1GAP2 protein or peptide containing the 

Slp1 binding -TKXT- motif.  In addition to Slp1, database search using PlateletWeb-

Knowledgebase (http://plateletweb.bioapps.biozentrum.uni-wuerzburg.de) revealed Slp4 to 

be present in platelets. It will be interesting to verify whether Slp4 is expressed in platelets 

and whether it also might be involved in platelet secretion. Initial studies were performed to 

analyze binding of Rap1GAP2 to Slp2, Slp3, Slp4, and Slp5, however, further experiments 

e.g. using purified Slp proteins will be required to conclusively exclude binding of Rap1GAP2 

to Slp family members apart from Slp1. Moreover, a number of putative new Slp1 interacting 

proteins were identified in platelets. Binding of Slp1 to Rab8 was confirmed in pull-down 

assays, however, it remains to be investigated whether Slp1 and Rab8 interact at the 

complete endogenous level in platelets and whether a trimeric complex of Slp1, Rab8 and 

Rap1GAP2 can be formed. In addition, the question whether Rab8 is involved in platelet 

secretion has to be addressed in secretion assays of permeabilized platelets. Given the fact 

that multiple Rab27 binding proteins (e.g. Slp1 and Munc13-4) are present in platelets one 
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could also ask the question how these proteins discriminately bind to Rab27 or other Rab 

proteins (e.g. Rab8), and how they differentially, sequentially or synergistically function in the 

same cell. Moreover, the question how all these protein-protein interactions are regulated 

during platelet activation or platelet inhibition will be a future challenge. Finally, the obtained 

knowledge on the molecular mechanisms governing platelet granule secretion needs to be 

consolidated in order to develop new strategies for antiplatelet drugs. First evidence 

suggests that targeting the platelet secretory machinery might be an effective way to manage 

thrombosis in-vivo, i.e. limiting clot formation without inducing excessive bleeding (reviewed 

by Ren et al. 2008). In particular, the identification of the Slp1 binding -TKXT- motif raises the 

question of its pharmacological value in terms of being a potential target to modify platelet 

granule release. One could imagine developing specific and cell permeable -TKXT- 

peptidomimetics that bind Slp1 but do not augment but rather block platelet granule release. 

Structural analysis of the Rap1GAP2/Slp1 complex by means of crystallography approaches 

will help to proceed in that direction. 
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7. APPENDIX 

7.1 List of constructs 

Table 7.1.1: Slp1 constructs 

Name Vector Primer Template Source 

GST-Slp1 pGEX-4T-3 235,236 Slp1_RZPD this work 

His6-Slp1 pET28 563, 236 Slp1_RZPD this work 

GST-C2A pGEX-4T-3 337,338 Slp1_RZPD this work 

GST-C2B pGEX-4T-3 339,236 Slp1_RZPD this work 

GST-C2AB pGEX-4T-3 337,236 Slp1_RZPD this work 

Slp1-myc pcDNA3.1/myc-His 235, 336 Slp1_RZPD this work 

C2A-myc pcDNA3.1/myc-His 337, 365 Slp1_RZPD this work 

Slp1ΔC2B-myc pcDNA3.1/myc-His 235, 365 Slp1_RZPD this work 

Slp1S117A-myc pcDNA3.1/myc-His 469, 470 Slp1_RZPD this work 

Slp1S311A-myc pcDNA3.1/myc-His 471, 472 Slp1_RZPD this work 

Slp1-3xFLAG pCMV-3Tag-3 235, 405 Slp1_RZPD this work 

 

Table 7.1.2: Rap1GAP2 constructs 

Name Vector Primer Template Source 

RG2-FLAG pcDNA4/TO   A. Smolenski 

RG2ΔCterm-FLAG pcDNA4/TO   A. Smolenski 

RG2Nterm-FLAG pcDNA4/TO   M. Hoffmeister 

RG2ΔNterm-FLAG pcDNA4/TO   M. Hoffmeister 

VSV-RG2ΔNterm-
C1 pSG8-VSV-EGFP   J. Schultess 

VSV-RG2ΔNterm-
C2 pSG8-VSV-EGFP   J. Schultess 
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VSV-RG2ΔNterm-
C3 pSG8-VSV-EGFP   J. Schultess 

VSV-RG2ΔNterm-
C4 pSG8-VSV-EGFP 367, 368 VSV-RG2ΔNterm this work 

VSV-RG2ΔNterm-
C5 pSG8-VSV-EGFP 346, 347 VSV-RG2ΔNterm this work 

VSV-RG2ΔNterm-
C6 pSG8-VSV-EGFP 369, 370 VSV-RG2ΔNterm this work 

VSV-RG2ΔNterm-
C7 pSG8-VSV-EGFP 343, 344 VSV-RG2ΔNterm this work 

VSV-RG2ΔNterm-
C8 pSG8-VSV-EGFP   J. Schultess 

RG2Δ522-527 
-FLAG pcDNA4/TO 401,402 RG2-FLAG this work 

RG2Δ536-542 
-FLAG pcDNA4/TO 399,400 RG2-FLAG this work 

RG2E522A-FLAG pcDNA4/TO 481,482 RG2-FLAG this work 

RG2V523A-FLAG pcDNA4/TO 479,480 RG2-FLAG this work 

RG2T524A-FLAG pcDNA4/TO 496,497 RG2-FLAG this work 

RG2K525A-FLAG pcDNA4/TO 477,478 RG2-FLAG this work 

RG2T526A-FLAG pcDNA4/TO 456, 457 RG2-FLAG this work 

RG2T527A-FLAG pcDNA4/TO 452,453 RG2-FLAG this work 

RG2-VSV pcDNA4/TO   M. Hoffmeister 

RG2-His6 pcDNA4/TO   M. Hoffmeister 

RG2Δ522-527-His6 pcDNA4/TO 401,402 RG2-His6 this work 

Table 7.1.3: Other Constructs 

Name Vector Primer Template Source 

T7-Slp2a pEF-T7   M. Fukuda 

T7-Slp3a pEF-T7   M. Fukuda 

T7-Slp4a pEF-T7   M. Fukuda 

T7-Slp5 pEF-T7   M. Fukuda 
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RG1-HA pMT2-HA   J. Bos 

His6-Rap1B pET28   M. Hoffmeister 

GST-14-3-3 pGEX-4T-3   P. Riha 

EGFP-rRab27a pEGFP-C3   M. Seabra 

EGFP-hRab27b pEGFP-C3   M. Seabra 

rRab27a-VSV pcDNA4/TO 448,468 EGFP-rRab27a this work 

hRab27b-VSV pcDNA4/TO 446, 447 EGFP-hRab27b this work 

GST-rRab27a pGEX-4T-3 559, 560 EGFP-rRab27a this work 

GST-hRab27b pGEX-4T-3 561, 562 EGFP-hRab27b this work 

PKI pcDNA3   R. Maurer 

Rap1GAP2-
Gal4BD pGBKT7   O. Danielewski 

Slp1-Gal4AD pACT2   A.Smolenski 

 

7.2 List of primers 

Table 7.2.1: Primers for cloning 

Primer 
No. Name Sequence 5´→ 3` 

235 Slp1-EcoRI-for ATTGAATTCCATGCCCCAGAGGGGCCACCCATCG 

236 Slp1-XhoI-rev AATCTCGAGCTACGTCCTGGGGGCCAGG 

336 Slp1-XhoI-rev AATCTCGAGAACGTCCTGGGGGCCAGG 

337 C2A-EcoRI-for ATTGAATTCCATGGAGCTGCGCGTGCACGTGATC 

338 C2A-XhoI-rev AATCTCGAGCTAAGCCAGGTGGGCTCAGAGC 

339 C2B-EcoRI-for ATTGAATTCCATGGAGCTGCACTTCTGGGTG 

365 C2A-XhoI-rev AATCTCGAGAACCCGCTCGGGGGCAGTCCTG 

405 Slp1-XhoI-rev AATCTCGAGCGTCCTGGGGGCCAGGTTG 
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446 Rab27b-EcoRI-for ATTGAATTCATGACCGATGGAGACTATG 

447 Rab27b-VSV-XhoI-rev AATCTCGAGCTACTTACCCAGGCGGTTCATTTCGATATCAGTGTA
GCAGATACATTTCTTC 

448 Rab27a-HindIII-for ATTAAGCTTATGTCGGATGGAGATTATGAC 

468 Rab27a-VSV-XhoI-rev AATCTCGAGCTACTTACCCAGGCGGTTCATTTCGATATCAGTGTA
ACAGCCGCATAACCCCTTC 

559 Rab27a-SmaI-for ATTCCCGGGTCATGTCGGATGGAGATTATGAC 

560 Rab27a-XhoI-rev AATCTCGAGTCAACAGCCGCATAACCCCTTC 

561 Rab27b-EcoRI-for ATTGAATTCCATGACCGATGGAGACTATG 

562 Rab27b-XhoI-rev AATCTCGAGCTAGCAGATACATTTCTTCTC 

563 Slp1-NheI-for ATTGGCTAGCATGCCCCAGAGGGGCCACCCATCG 

 

Table 7.2.2: Primers for mutagenesis 

Primer 
No. Name Sequence 5´→ 3` 

344 RG2ΔNC7-for CAGTGGGGGCATCCCTGGCTGACTCAGCGGGGGCATCTCCCAC 

345 RG2ΔNC7-rev GTGGGAGATGCCCCCGCTGAGTCAGCCAGGGATGCCCCCACTG 

346 RG2ΔNC5-for CTCGCCTCCAGTGGTGGCGTGAACGGTGAAGAACCAGTCACGG 

347 RG2ΔNC5-rev CCGTGACTGGTTCTTCACCGTTCACGCCACCACTGGAGGCGAG 

367 RG2ΔNC4-for GAACCAGTCACGGAGTCCCTGAAAGCGACGCTCGGGGCTCTTC 

368 RG2ΔNC4-rev GAAGAGCCCCGAGCGTCGCTTTCAGGGACTCCGTGACTGGTTC 

369 RG2ΔNC6-for CAGCATGGAGGTCACCAAGTGAACCTTCTCGCCTCCAGTGGTG 

370 RG2ΔNC6-rev CACCACTGGAGGCGAGAAGGTTCACTTGGTGACCTCCATGCTG 

399 RG2Δ536-542-for CTCGCCTCCAGTGGTGGCGGCACGGAGTCCCATCAAGCGAC 

400 RG2Δ536-542-rev GTCGCTTGATGGGACTCCGTGCCGCCACCACTGGAGGCGAG 

401 RG2Δ522-527-for CATCTCCCACAACAGCATGTTCTCGCCTCCAGTGGTG 

402 RG2Δ522-527-rev CACCACTGGAGGCGAGAACATGCTGTTGTGGGAGATG 

105 
 



Appendix 
_________________________________________________________________________________ 

 

106 
 

452 RG2T527A-for GAGGTCACCAAGACCGCCTTCTCGCCTCCAGTG 

453 RG2T527A-rev CACTGGAGGCGAGAAGGCGGTCTTGGTGACCTC 

469 Slp1S111A-for CTATGCGCAGGAAGAAGGCCACCAGGGGAGACCAGGCTC 

470 Slp1S111A-rev GAGCCTGGTCTCCCCTGGTGGCCTTCTTCCTGCGCATAG 

471 Slp1S301A-for GCCGCCCGGCGCCGCCGCGCGGACCCCTACGTCAAAAG 

472 Slp1S301A-rev CTTTTGACGTAGGGGTCCGCGCGGCGGCGCCGGGCGGC 

477 RG2K525A-for CAGCATGGAGGTCACCGCGACCACCTTCTCGCCTCCAGTG 

478 RG2K525A-rev CACTGGAGGCGAGAAGGTGGTCGCGGTGACCTCCATGCTG 

479 RG2V523A-for CTCCCACAACAGCATGGAGGCCACCAAGACCACCTTCTCGCCTC 

480 RG2V523A-rev GAGGCGAGAAGGTGGTCTTGGTGGCCTCCATGCTGTTGTGGGAG 

481 RG2E522A-for CATCTCCCACAACAGCATGGCGGTCACCAAGACCACCTTCTC 

482 RG2E522A-rev GAGAAGGTGGTCTTGGTGACCGCCATGCTGTTGTGGGAGARG 

496 RG2T524A-for CACAACAGCATGGAGGTCGCCAAGACCACCTTCTCGCCTCCAG 

497 RG2T524-rev CTGGAGGCGAGAAGGTGGTCTTGGCGACCTCCATGCTGTTGTG 
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ZUSAMMENFASSUNG 

1. Einleitung 

Blutplättchen, auch Thrombozyten genannt, sind kernlose Zellen, die unter physiologischen 

Umständen eine wichtige Rolle in der primären Hämostase spielen. Nach einer 

Gefäßverletzung adhärieren Thrombozyten an Strukturen der freigelegten subendothelialen 

Matrix. Bei dieser primären Adhäsion werden Thrombozyten aktiviert und bilden durch 

Wechselwirkung untereinander ein zunächst fragiles Thrombozytenaggregat. Dieser initial 

gebildete Thrombus wird in der sekundären Hämostase durch Fibrin verfestigt und 

ermöglicht dann die stabile Abdichtung der Gefäßwandläsion gegenüber dem Blutstrom 

(Kehrel 2003). Die Aktivierung von Thrombozyten durch Adhäsion oder durch lösliche 

Plättchenaktivatoren bewirkt eine Formveränderung der Thrombozyten. Gleichzeitig werden 

intrazelluläre Speichergranula von Thrombozyten ausgeschüttet. Thrombozyten enthalten 

drei verschiedene Arten von Granula: alpha-Granula, dichte Granula und Lysosomen. Die 

Granula in Thrombozyten dienen als Speicherorte für Proteine und Substanzen, welche 

sowohl autokrin die Thrombozytenaktivierung verstärken als auch parakrin noch ruhende 

Thrombozyten aus der Blutzirkulation rekrutieren. Die dichten Granula in Thrombozyten 

enthalten niedermolekulare Substanzen wie zum Beispiel ADP, ATP, Ca2+ und Serotonin. In 

den alpha-Granula dagegen befinden sich vor allem Proteine, die für die Adhäsion, 

Aggregation und die Blutgerinnung wichtig sind. Zusätzlich enthalten alpha-Granula Zytokine 

und Wachtumsfaktoren. Die lysosomalen Granula in Thrombozyten enthalten hydrolytische 

Enzyme wie beispielsweise β-Hexosaminidase und Heparitinase (Gawaz 1999).  

Im Gegensatz zur Sekretion der alpha-Granula, die durch Rab4 reguliert wird (Shirakawa et 

al. 2000), steuert das kleine G-Protein Rab27 die Sekretion der dichten Granula in 

Thrombozyten (Shirakawa et al. 2004). Rab27 befindet sich auf der Oberfläche der dichten 

Granula (Barral et al. 2002) und es wird angenommen, dass Rab27 vor allem die Motilität 

und das Andocken der Granula an die Plasmamembran fördert (Seabra und Coudrier 2004, 

Fukuda 2006). Für diese Funktion interagiert Rab27 mit unterschiedlichen Effektorproteinen 

und Munc13-4 wurde als das erste Rab27-bindende Protein in Thrombozyten beschrieben 

(Shirakawa et al. 2004). Weitere Proteine, die für die Sekretion der dichten Granula von 

Bedeutung sind, sind SNARE (soluble N-ethylmaleimide-sensitive-factor attachment 

receptor)-Proteine. SNARE-Proteine spielen eine wichtige Rolle bei der Fusion von 

Membranen. So wird die Fusion der dichten Granula mit der Plasmamembran durch das sich 

auf der Granulaoberfläche befindende (v)-SNARE-Protein VAMP-8 und den an der 

Plasmamembran angesiedelten (t)-SNARE-Proteinen syntaxin-2 und SNAP-23 vermittelt 

(Ren et al. 2007, Chen et al. 2000a).  
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Die Sekretion der Speichergranula geht eng mit der Aggregation von Thrombozyten einher. 

Durch outside in und inside out signaling werden Integrinrezeptoren auf der Oberfläche von 

Thrombozyten aktiviert. Eines der bedeutendsten Plättchenintegrine ist αIIbβ3, auch GPIIb-IIIa 

genannt. Im aktivierten Zustand bindet Integrin αIIbβ3 an Fibrinogen. Durch die Ausbildung 

von Fibrinogenbrücken erfolgt dann die Quervernetzung mehrerer Thrombozyten. Das kleine 

G-Protein Rap1 reguliert den Aktivitätszustand von Integrin αIIbβ3 und besitzt damit eine 

zentrale Rolle bei der Thrombozytenaggregation. Rap1 selbst durchläuft einen 

Aktivitätszyklus: GDP-gebundenes Rap1 ist inaktiv und GTP-gebundenes Rap1 ist aktiv. Die 

Aktivierung von Rap1 erfolgt mit Hilfe verschiedener GEF (guanine nucleotide exchange 

factor)-Proteine, welche den Austausch von GDP zu GTP fördern. In Thrombozyten sind 

CalDAG-GEFI und III sowie PDZ-GEF1 exprimiert (Schultess et al. 2005). Die Inaktivierung 

von Rap1 erfolgt durch Hydrolyse von GTP zu GDP und Phosphat. Da Rap1 eine nur sehr 

schwache eigene intrinsische GTPase Aktivität besitzt, beschleunigen Rap1-spezifische 

GAP (GTPase activating protein)-Proteine die Hydrolyse von GTP. Bisher sind zwei Familien 

von Rap1GAP-Proteinen bekannt (Stork und Dillon 2005). Zur ersten Familie gehören die 

Proteine SPA-1 und E6TP1α. Die zweite Familie umfasst die Proteine Rap1GAP1 und das 

von unserer Arbeitsgruppe kürzlich entdeckte Rap1GAP2. In Thrombozyten ist Rap1GAP2 

das einzige GAP-Protein für Rap1 (Schultess et al. 2005). Rap1GAP2 enthält eine 

konservierte zentrale GAP-Domäne, eine N-terminale Bindungsstelle für 14-3-3-Proteine 

sowie einen großen C-terminalen Bereich mit bisher noch unbekannter Funktion. Die 

Aktivierung von Thrombozyten führt zur Phosphorylierung von Rap1GAP2 an Serin 9, 

woraufhin 14-3-3-Proteine an Rap1GAP2 binden und wahrscheinlich die GAP-Funktion 

hemmen (Hoffmeister et al. 2008).  

2. Zielsetzung dieser Arbeit 

Um weitere Einblicke in die Funktion und Regulation von Rap1GAP2 in Thrombozyten zu 

gewinnen, wurde ein Hefe-zwei-Hybrid-Screening durchgeführt (O. Danielewski und A. 

Smolenski, IBCII, Frankfurt). Neben 14-3-3-Proteinen (Hoffmeister et al. 2008), wurde das 

Rab27-bindende Protein synaptotagmin-like protein 1 (Slp1, auch JFC1 genannt) als neuer 

putativer Interaktionspartner von Rap1GAP2 gefunden. Ausgehend von den Ergebnissen 

dieses Hefe-zwei-Hybrid-Screenings waren die konkreten Ziele der vorliegenden Arbeit (1) 

die Bindung von Slp1 an Rap1GAP2 zu verifizieren, (2) die für die Bindung verantwortlichen 

Bindebereiche zu identifizieren, (3) die mögliche Komplexbildung von Rap1GAP2, Slp1, 

Rab27 und anderen Proteinen zu untersuchen sowie (4) die funktionale Bedeutung der 

Interaktion zwischen Rap1GAP2 und Slp1 zu bestimmen.  
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3. Ergebnisse und Diskussion 

Slp1 ist ein neuer Interaktionspartner von Rap1GAP2 in Thrombozyten 

Die direkte Interaktion zwischen Rap1GAP2 und Slp1 wurde zunächst durch 

Retransformation in Hefe bestätigt. Durch Transfektion von HeLa und COS-1 Zellen mit 

anschließenden Pulldown- und Koimmunpräzipitationsexperimenten wurde die Interaktion 

zwischen Rap1GAP2 und Slp1 in Säugerzellen verifiziert. Mit Hilfe des eigens hergestellten 

polyklonalen Slp1-Antikörpers konnte ferner gezeigt werden, dass Slp1 in Thrombozyten 

exprimiert wird. Weder der Slp1- noch unser Rap1GAP2-Antikörper eigneten sich zur 

Immunpräzipitation ihrer endogenen Antigene aus Thrombozyten. Um dennoch den Beweis 

für die Interaktion zwischen Rap1GAP2 und Slp1 auf endogener Ebene in Thrombozyten zu 

erbringen, wurde ein alternativer Lösungsansatz entwickelt und angewandt (Hoffmeister et 

al. 2008). Unter Ausnutzung der Fähigkeit von Rap1GAP2 an 14-3-3-Proteine zu binden, 

wurde aus Escherichia coli gereinigtes GST-14-3-3-Protein verwendet, um endogenes 

Rap1GAP2 und das daran gebundene Slp1 aus humanen Thrombozyten zu präzipitieren. In 

Kontrollversuchen wurde zuvor eine direkte Interaktion zwischen 14-3-3-Proteinen und Slp1 

ausgeschlossen. Auf diese Art und Weise gelang es die Interaktion zwischen Rap1GAP2 

und Slp1 auf endogener Ebene in Thrombozyten nachzuweisen. 

Um die für die Bindung von Rap1GAP2 und Slp1 verantwortlichen Binderegionen zu 

identifizieren, wurden Mutations- und Peptidbindungsstudien durchgeführt. Es konnte gezeigt 

werden, dass die Bindung von Rap1GAP2 an Slp1 durch das -TKXT- Proteinmotiv im C-

terminalen Bereich von Rap1GAP2 vermittelt wird. Das -TKXT- Motiv bindet Ca2+-

unabhängig an die C2A Domäne von Slp1. C2 Domänen sind im Allgemeinen als 

Phospholipidbindedomänen bekannt und speziell die C2A Domäne von Slp1 vermittelt die 

Bindung von Slp1 an die Plasmamembran (Lemmon 2008, Catz et al. 2002). Andererseits 

sind einige C2 Domänen auch an Protein-Protein-Interaktionen beteiligt (Kheifets und 

Mochly-Rosen 2007, Pena et al. 2008). In Lipidbindungsversuchen wurde nachgewiesen, 

dass Slp1 gleichzeitig sowohl an Phospholipide als auch an Rap1GAP2 binden kann. Die 

Aktivierung der Proteinkinase A in Thrombozyten verstärkte die Bindung von GST-Slp1 an 

endogenes Rap1GAP2. Zusammen mit der Tatsache, dass im -TKXT- Motiv von Rap1GAP2 

zwei Threonine (T524 und T527) enthalten sind, ließ dieser Befund über eine 

Phosphorylierung am -TKXT- Motiv spekulieren. Nachfolgende Experimente sprachen 

jedoch gegen eine Phosphorylierung am -TKXT- Motiv von Rap1GAP2. Vielmehr konnte 

eine Phosphorylierung eines oder beider Threonine am -TKXT- Motiv von Rap1GAP2 die 

Bindung an Slp1 aufheben. Es bleibt demzufolge offen, ob eine Phosphoyrlierung durch 

Proteinkinase A am Rap1GAP2 an anderer Stelle als dem Slp1 bindenden -TKXT- Motiv 

erfolgt und folglich die Bindung von Slp1 an Rap1GAP2 positiv beeinflusst. Alternativ 
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könnten aber auch weitere an der Bindung von Rap1GAP2 und Slp1 beteiligte Proteine 

durch Proteinkinase A phosphoryliert werden und in Folge, die Komplexbildung zwischen 

Rap1GAP2 und Slp1 in Thrombozyten verstärken. Die detaillierte Rolle der Phosphorylierung 

bei der Regulation der Rap1GAP2/Slp1 Interaktion bleibt jedoch in zukünftigen Studien zu 

klären. 

 

Komplexbildung von Slp1, Rab27 und Rap1GAP2 

 

Slp1 bindet über die N-terminale Slp Homologiedomäne (SHD) an das kleine G-Protein 

Rab27, welches, wie bereits erwähnt, die Sekretion der dichten Granula in Thrombozyten 

reguliert (Fukuda 2005, Shirakawa et al. 2004). Rab27 besitzt zwei Isoformen Rab27a und 

Rab27b, die 71 % in ihrer Aminosäuresequenz übereinstimmen (Pereira-Leal und Seabra 

2001). Beide Isoformen kommen in Thrombozyten vor (Barral et al. 2002). In der 

vorliegenden Arbeit wurde die direkte Interaktion zwischen Slp1 und Rab27 in Pulldown- und 

Koimmunpräzipitationsexperimenten bestätigt. Dabei konnte festgestellt werden, dass Slp1 

unabhängig vom gebundenen Nukleotid an Rab27 bindet. Desweiteren konnte gezeigt 

werden, dass ein trimärer Komplex aus Slp1, Rab27 und Rap1GAP2 sowohl bei 

Überexpression in Säugerzellen als auch endogen in Thrombozyten gebildet wird. Um 

weitere Slp1-assoziierte Proteine, die an der Komplexbildung um Slp1, Rab27 und 

Rap1GAP2 in Thrombozyten beteiligt sein könnten, zu identifizieren, wurde ein 

affinitätschromatographisches Screening durchgeführt. Durch die anschließende massen-

spektrometrische Analyse (Conway Institut, Dublin, Irland) konnten insgesamt 14 neue 

putative Slp1 Interaktionspartner in Thrombozyten ermittelt werden. Unter den identifizierten 

Proteinen befand sich beispielsweise das kleine G-Protein Rab8, dessen Bindung an Slp1 

bereits in transfizierten HeLa Zellen beschrieben war (Hattula et al. 2006). In der 

vorliegenden Arbeit wurde jedoch die Bindung von Rab8 an Slp1 erstmalig in Thrombozyten 

nachgewiesen.  

 

Slp1 und Rap1GAP2 sind an der Sekretion der dichten Granula in Thrombozyten beteiligt 

 

Um die funktionale Bedeutung der Interaktion zwischen Rap1GAP2 und Slp1 zu analysieren, 

sollte die Interaktion (i) im Hinblick auf die Rap1GAP2-Funktion in Rap1-vermittelter 

Zelladhäsion und (ii) im Hinblick auf die Slp1-Funktion in Rab27-vermittelter Sekretion 

untersucht werden (Bos et al. 2001, Johnson et al. 2005, Shirakawa et al. 2004). Es konnte 

kein Einfluss der Interaktion zwischen Rap1GAP2 und Slp1 auf die Adhäsion von 

transfizierten HeLa Zellen festgestellt werden. Zudem zeigten in-vitro GAP Assays, dass die 

Bindung von Slp1 an Rap1GAP2 die katalytische GAP-Aktivität von Rap1GAP2 nicht 
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beeinflusst. Demgegenüber deuteten Sekretionsversuche in transfizierten LNCaP Zellen 

darauf hin, dass Rap1GAP2 einen positiven Effekt auf die Sekretion von 

prostataspezifischem Antigen hat. Um dieses Ergebnis im endogenen System der 

Thrombozyten zu bestätigen, wurde ein Assay entwickelt, bei dem die Sekretion von 

Serotonin (5-Hydroxytryptamin, 5HT) aus dichten Granula der Thrombozyten fluorometrisch 

gemessen wurde. Da Thrombozyten kernlose Zellen sind, eignen sie sich nicht zur 

Transfektion. Um dennoch Proteine oder Peptide in das Innere von Thrombozyten zu 

bringen, wurden Thrombozyten mit dem bakteriellen Toxin Streptolysin-O permeabilisiert. 

Die nachfolgende Zugabe von rekombinantem Slp1-Protein hemmte konzentrationsabhängig 

sowohl die Ca2+- als auch die GTPγS-induzierte Sekretion der dichten Granula. Die Zugabe 

von rekombinantem Rap1GAP2-Protein dagegen verstärkte die Sekretion. Der Rap1GAP2 

Effekt konnte zusätzlich durch Experimente mit kurzen synthetischen Rap1GAP2-Peptiden 

bestätigt werden. Durch Deletion des Slp1-bindenden -TKXT- Motivs sowohl im Rap1GAP2-

Protein als auch im Rap1GAP2-Peptid wurde die sekretionsfördernde Wirkung von 

Rap1GAP2 in Thrombozyten vollständig aufgehoben. Die Zugabe von rekombinantem Rap1 

zu permeabilisierten Thrombozyten hatte keinen Einfluss auf die Sekretion. 

Zusammenfassend weisen diese Ergebnisse darauf hin, dass sowohl Slp1 als auch 

Rap1GAP2 an der Sekretion der dichten Granula in Thrombozyten beteiligt sind. Der 

Einfluss von Rap1GAP2 auf die Sekretion war dabei nicht auf die GTPase-aktivierende 

Wirkung von Rap1GAP2 gegenüber Rap1, sondern vielmehr auf die -TKXT- vermittelte 

Bindung von Rap1GAP2 an Slp1 zurückzuführen. Der genaue molekulare Mechanismus 

sowohl des Rap1GAP2 als auch des Slp1 Effekts auf die Sekretion der dichten Granula in 

Thrombozyten bleibt jedoch in zukünftigen Studien zu klären. 

 

4. Fazit 
 
Die Ergebnisse der vorliegenden Arbeit zeigen, dass das Rab27-bindende Protein Slp1 ein 

neuer direkter Interaktionspartner des GTPase-aktivierenden Proteins Rap1GAP2 in 

Thrombozyten ist. Die Expression von Slp1 wurde in Thrombozyten nachgewiesen. Damit ist 

Slp1 neben Munc13-4 das zweite bisher bekannte Rab27-bindende Protein in diesen Zellen. 

Der Nachweis der Interaktion von  Slp1 mit GTP-gebundenen Rab27 legte eine Funktion von 

Slp1 als Rab27-Effektorprotein nahe und es konnte in dieser Arbeit gezeigt werden, dass 

Slp1 die Sekretion der dichten Granula in Thrombozyten beeinflusst.  

Darüber hinaus zeigen die Ergebnisse der vorliegenden Arbeit, dass Rap1GAP2, zusätzlich 

zu seiner bereits bekannten Funktion bei der Thrombozytenaggregation durch die Regulation 

des kleinen G-Proteins Rap1, auch an der Sekretion der dichten Granula in Thrombozyten 

beteiligt ist.  Der Rap1GAP2 Effekt auf die Sekretion in Thrombozyten beruht auf der -TKXT- 
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vermittelten Wechselwirkung mit Slp1, welche Teil eines komplexen Netzwerks von Protein-

Protein-Interaktionen in Thrombozyten ist. Rap1GAP2 könnte somit eine zentrale Rolle bei 

der Koordination der wichtigen Funktionen Aggregation und Sekretion in Thrombozyten 

spielen. 
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