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Abstract

The aim of this thesis is the discussion of mixed volumes, their interplay with algebraic
geometry, discrete geometry and tropical geometry and their use in applications such
as linkage configuration problems. Namely we present new technical tools for mixed
volume computation, a novel approach to Ehrhart theory that links mixed volumes with
counting integer points in Minkowski sums, new expressions in terms of mixed volumes of
combinatorial quantities in tropical geometry and furthermore we employ mixed volume
techniques to obtain bounds in certain graph embedding problems.

Mixed volumes. Mixed volumes arise naturally as the combination of the funda-
mental concepts of Minkowski addition and volume. Minkowski showed that for poly-
topes P1, . . . , Pn and non-negative real parameters λ1, . . . , λn the volume of the scaled
Minkowski sum voln(λ1P1 + · · ·+λnPn) depends polynomially on the parameters λi. The
coefficient of λ1 · · ·λn is called the mixed volume of P1, . . . , Pn.

In addition to their geometric significance mixed volumes can contain information
about algebraic-geometric objects. Let f1, . . . , fn be Laurent polynomials in C[x1, . . . , xn]
and denote by P(f1), . . . ,P(fn) their Newton polytopes, i.e. the convex hulls of their
support sets. Then Bernstein’s Theorem [Ber75] states that the number of common
isolated zeroes in the algebraic torus (C∗)n of the system fi = 0 (i = 1, . . . , n) is bounded
above by the mixed volume of P(f1), . . . ,P(fn). For generic coefficients in f1, . . . , fn this
quantity gives the exact number of common isolated solutions counting multiplicities.

Bernstein’s Theorem is a generalization of Bézout’s Theorem which bounds the number
of common solutions to fi = 0 (i = 1, . . . , n) by the product of the degrees of the fi. For
sparse systems Bernstein’s bound is significantly better. Therefore mixed volumes provide
an interesting technique to study sparse systems of polynomial equations.

Mixed volumes have been studied in several contexts before. The following choice
of literature references provides a discussion of those characteristics of mixed volumes
which are important for this work. Schneider [Sch93] outlines geometric properties,
Ewald’s book [Ewa96] describes the connection between algebraic geometry and convex
geometric objects, Emiris and Canny [EC95] as well as Huber and Sturmfels [HS95]
provide algorithmic tools for mixed volume computation, the appearance of mixed volumes
as intersection numbers in tropical geometry is characterized in the articles by Bertrand
and Bihan [BB07] and by Sturmfels, Tevelev and Yu [STY07] and the survey [MS83]
of McMullen and Schneider discusses mixed volumes as valuations. Even though mixed
volumes have been studied already for many decades they still provide a variety of open
questions.
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Mixed volume computation for large classes of polynomial systems. Sparse
systems of polynomial equations appear in a variety of applications. These systems often
inherit a special structure from the context that they were obtained from. In general,
solving systems of polynomial equations is an active area of research, cf. [DE05]. For
applications it often suffices to use numerical methods, e.g. homotopy continuation (see
[Li97, Ver99]), to approximate the common solutions to a polynomial system. For the
running time of numerical solvers it is of crucial importance to have a good estimate on
the number of solutions which are to be found. The mixed volume gives the best bound
for this quantity and it is therefore of fundamental interest to develop methods for its
efficient computation.

While for concrete systems of equations, the mixed volume can be computed algorith-
mically, studying the mixed volume for classes of polytopes is connected with a variety of
issues in convex geometry (such as understanding the Minkowski sum of the polytopes).
Determining the mixed volume is computationally very hard (#P-hard), cf. [GK94], and
hence it is furthermore desirable to exploit the special structure of specific systems of
polynomial equations to simplify the computation.

Using results of Betke [Bet92] on dissections of Minkowski sums, we provide a method
to decouple the computation of mixed volumes in the case when several polytopes lie in
a lower dimensional subspace (Lemma 2.6). Polynomial systems to which this statement
applies allow therefore a significantly easier approach as we demonstrate by applying
Lemma 2.6 on systems obtained from a simple class of minimally rigid graphs (Theo-
rem 5.1).

The most efficient method to compute the mixed volume of polytopes P1, . . . , Pn ⊂ Rn

known so far is to construct a mixed subdivision of P1 + · · ·+Pn and add up the volumes
of the mixed cells in this subdivision. Mixed subdivisions are constructed by lifting the
polytopes Pi to (n + 1)-dimensional space, building the Minkowski sum of the lifted
polytopes and then projecting the lower hull of this sum back to Rn. Those cells arising
in this process that can be described as a sum of edges from the polytopes Pi are called
mixed cells.

Employing the algorithmic methods of Canny and Emiris [EC95] we use linear pro-
gramming duality to show another result that is applicable to compute the mixed volume
of a system of polynomial equations. Namely, we give explicit conditions on sets of lin-
ear lifting vectors that induce subdivisions of Minkowski sums that contain a given cell
as a mixed cell (Lemma 2.9). This enables us to pick large cells and compute liftings
that induce these as mixed cells. Repeating this provides a method to approximate the
mixed volume from below. Furthermore we specify Lemma 2.9 in 2-dimensional space
(Corollary 2.10) which allows a nice geometric interpretation.

The tools described above are employed later in an actual application, namely they
help to establish bounds on the number of embeddings of minimally rigid graphs.

Mixed Ehrhart theory. Let P be a polytope with vertices in the integer lattice
Zn and denote by L(P ) the number of integer lattice points that lie in P . Ehrhart
showed [Ehr67] that for natural numbers t, the function L(t · P ) is a polynomial in t of
degree n, called the Ehrhart polynomial of P . Furthermore he found that some coefficients
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of this polynomial have a nice geometric interpretation. Namely the leading coefficient of
L(t · P ) equals the volume of P , the second highest coefficient is the sum of the relative
volumes of all facets of P and the constant term is always 1. In particular Ehrhart’s results
on the coefficients of the Ehrhart polynomial establish a fruitful connection between a
continuous quantity, vol(P ), and discrete quantities like the number of integer points in
P (cf. [BR07]). Studying the lattice point enumerator L, its generating function and
related questions is known as Ehrhart theory (cf. [Bar08,Gru07]).

In this work we introduce a mixed version of Ehrhart theory. Namely, for polytopes
P1, . . . , Pk with integer vertices we study the function

MEP1,...,Pk
(t) :=

∑
∅6=J⊂[k]

(−1)k−|J | L
(
t ·
∑
j∈J

Pj
)
.

Since this resembles the way mixed volumes are obtained from volumes we call this func-
tion the mixed Ehrhart polynomial of P1, . . . , Pk.

Surprisingly it turns out that mixed Ehrhart polynomials have a very simple struc-
ture. We show that the coefficient of tr in MEP1,...,Pk

(t) vanishes whenever 1 ≤ r < k
(Lemma 3.4) and prove furthermore that the highest two coefficients can be expressed in
terms of mixed volumes (Lemma 3.7 and Lemma 3.8). This allows in particular to explic-
itly state the mixed Ehrhart polynomial in the cases k = n and k = n− 1 (Theorem 3.9
and Theorem 3.12). Since it is an open problem to provide a geometric interpretation of
the intermediate coefficients of the classical Ehrhart polynomial these results were rather
unexpected.

As corollaries to the explicit description of MEP1,...,Pn(t) and MEP1,...,Pn−1(t) we ob-
tain formulas (Corollary 3.10 and Corollary 3.13) that compare alternating sums of in-
teger points in Minkowski sums and expressions in mixed volumes. The statement in
Corollary 3.10 was already conjectured by Kušnirenko [Kuš76] and then shown by Bern-
stein [Ber76] who used essentially different methods for his proof. On the other hand
Corollary 3.13 gives a novel formula which turns out to be the crucial ingredient in our
proof that the tropical and toric genus of an intersection curve with the same underlying
Newton polytopes coincide.

Combinatorics of tropical intersections. Tropical geometry allows to express cer-
tain algebraic-geometric problems in terms of discrete geometric problems using corre-
spondence theorems. One general aim is to establish new tropical methods to study the
original algebraic problem (see, e.g. [DFS07, Dra08, EKL06, Mik06]). A prominent
example is the work of Mikhalkin [Mik05] who gave a tropical formula for the number
of plane curves of given degree and genus passing through a given number of points; see
also [GM07, IKS03, NS06] for related theorems. Providing methods to establish these
correspondence statements is an important task of current research. Another important
objective in tropical geometry is to understand the combinatorial structure of the tropical
varieties which can be regarded as polyhedral complexes in n-dimensional space. See,
e.g. [Spe08,SS04].

In this work, we consider intersections of tropical hypersurfaces given by polynomials
g1, . . . , gk in Rn with Newton polytopes P1, . . . , Pk. For the special case k = n− 1 and all
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Pi standard simplices, Vigeland studied the number of vertices and unbounded edges as
well as the genus of this intersection [Vig07]. His methods strongly rely on the special
structure of the Newton polytopes.

Our contributions can be stated as follows. Firstly, we provide a uniform and system-
atic treatment of the whole f -vector (i.e. the vector of face numbers) of tropical transversal
and non-transversal intersections. In particular, we show how to reduce these counts to
well-established tropical intersection theorems. Generalizing the results in [Vig07], our
approach also covers the general mixed case, where we start from polynomials g1, . . . , gk
with arbitrary Newton polytopes P1, . . . , Pk. We obtain formulas expressing the number
of faces (Theorems 4.4 and 4.9) and the genus (Theorem 4.15) in terms of mixed volumes.

Secondly, we establish a combinatorial connection from the tropical genus of a curve
to the genus of a toric curve corresponding to the same Newton polytopes. In [Kho78],
Khovanskĭı gave a characterization of the genus of a toric variety in terms of integer
points in Minkowski sums of polytopes. We show that in the case of a curve this toric
genus coincides with the tropical genus (Theorem 4.20). In particular we think that the
methods to establish this result are of particular interest. Khovanskĭı’s formula is stated
using numbers of integer points in Minkowski sums of polytopes, whereas the mentioned
formula for the tropical genus is given in terms of mixed volumes. For the special case
n = 2 the connection boils down to the classical Theorem of Pick relating the number of
integer points in a polygon to its area. We develop a Pick-type formula for the surface
volume of a lattice complex in terms of integer points (Theorem 4.21) to show that in the
generalized unmixed case (n arbitrary, all Pi coincide) the connection reduces to certain
n-dimensional generalizations of Pick’s theorem (Macdonald [Mac63]). To approach the
general mixed case we employ the new aspects of mixed Ehrhart theory (Theorem 3.12)
that we presented earlier in this work.

Linkage configuration problems. A series of bars connected with joints that form
a closed chain is called a linkage. The joints are interpreted to be mobile such that they
allow motion between the bars. Linkages arise in various applications in engineering and
have as well been studied by mathematicians for over two centuries (cf. [ES97]). Our
focus is on linkage structures which have no degrees of freedom, i.e. linkages which are
designed such that no motion is possible. Linkages of this kind, as well as the graphs
that model them, will be called rigid. A graph is called minimally rigid if it is rigid and
becomes flexible if any edge is removed. In 2-dimensional space, minimally rigid graphs
are also called Laman graphs. Given generic positive lengths for the edges of a minimally
rigid graph G = (V,E), we are interested in counting the number of ways in which G can
be drawn in the plane or in higher dimensional spaces where we do not count drawings
separately if they differ only by rigid motions, i.e. translations and rotations.

Determining the maximal number of embeddings (modulo rigid motions) for a given
minimally rigid graph is an open problem. The best upper bounds are due to Borcea and
Streinu (see [Bor02,BS04]) who show that the number of embeddings in 2-dimensional

space is bounded by
(

2N−4
N−2

)
≈ 4N−2
√
N−2

where N denotes the number of vertices. Their

bounds are based on degree results of determinantal varieties.
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As seen above, a general method to study the number of (complex) solutions of systems
of polynomial equations is to use Bernstein’s Theorem [Ber75] for sparse polynomial
systems. Since the systems of polynomial equations describing the embedding problem
for minimally rigid graphs are sparse, the question arose how good these Bernstein bounds
are for the embedding problem.

We study the quality of the Bernstein bound on the minimally rigid graph embedding
problem using mixed volume techniques to handle the resulting convex geometric prob-
lems. In most cases, our bounds are worse than the bounds in [BS04], see Theorem 5.3
and Corollary 5.4. However, we think that the general methodology of studying Bern-
stein bounds nevertheless provides an interesting technique. It is particularly interesting
that for some classes of graphs, the mixed volume bound is tight, see Theorem 5.1 and
Corollary 5.2.

Thesis Overview. The thesis is structured as follows. Chapter 1 introduces the basic
concepts employed in this work. This includes polytopes, Minkowski sums, volume, mixed
volume, mixed subdivisions, tropical geometry and Bernstein’s Theorem. Readers with a
sound discrete geometric background may skip most of the material here. The methods
of Paragraph 1.2.5 on exploiting symmetries in mixed volume computation are less known
in the community and might be of interest to all readers.

In Chapter 2 we state and prove some technical tools for explicit mixed volume com-
putation. The main results are a lemma which allows to decouple the computation of
mixed volumes in certain situations and a lemma that states explicit conditions on lifting
vectors to induce certain cells in mixed subdivisions. The methods established in this
chapter are the crucial tools in dealing with systems of polynomial equations that arise
in linkage configuration problems.

Chapter 3 describes a new flavor of Ehrhart theory which we call mixed Ehrhart theory
since it resembles the way mixed volumes are obtained from volumes. We introduce the
mixed Ehrhart polynomial and show that coefficients of low order vanish while coefficients
of high order can be expressed in terms of mixed volumes. These results imply new iden-
tities for alternating sums of integer points in Minkowski sums which play an important
role in our proof for the equality of the toric and tropical genus of an intersection curve
presented in Chapter 4.

Chapter 4 studies the combinatorics of tropical intersections. In particular we deter-
mine the number of bounded and unbounded faces of a tropical intersection in terms of
mixed volumes. This leads as well to a new formula for the genus of a tropical intersection
curve. Using methods from Chapter 3 we show that the tropical genus coincides with the
toric genus defined by polynomials with the same Newton polytopes.

In Chapter 5 we discuss the problem of determining the number of embeddings of
minimally rigid graphs with generic edge lengths. Our focus is on the use of discrete
geometric techniques, in particular Bernstein’s Theorem, to provide upper bounds for the
number of embeddings.

Content published in advance. Some results of this work are published in the arti-
cles [ST10,ST09] and the extended conference abstract [ST08a]. In addition this thesis
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contains generalizations of the results in these papers and enhances the presentation of the
statements by providing more examples and, where appropriate, graphical illustrations of
important ideas that sustain a geometric intuition.
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Zusammenfassung

Ziel dieser Arbeit ist die Diskussion gemischter Volumina, ihres Zusammenspiels mit
der algebraischen Geometrie, der diskreten Geometrie und der tropischen Geometrie sowie
deren Anwendungen im Bereich von Gestänge-Konfigurationsproblemen. Wir präsentieren
insbesondere neue Methoden zur Berechnung gemischter Volumina, einen neuen Zugang
zur Ehrhart Theorie, welcher gemischte Volumina mit der Enumeration ganzzahliger
Punkte in Minkowski-Summen verbindet, neue Formeln, die kombinatorische Größen
der tropischen Geometrie mithilfe gemischter Volumina beschreiben, und einen neuen
Ansatz zur Verwendung gemischter Volumina zur Lösung eines Einbettungsproblems der
Graphentheorie.

Gemischte Volumina. Gemischte Volumina treten in natürlicher Weise als Kombi-
nation der fundamentalen Konzepte Volumen und Minkowski-Summation auf. Minkowski
zeigte, dass für Polytope P1, . . . , Pn und nicht-negative reelle Parameter λ1, . . . , λn das
Volumen der skalierten Minkowski-Summe voln(λ1P1 + · · · + λnPn) polynomiell von den
Parametern λi abhängt. Den Koeffizienten des Monoms λ1 · · ·λn nennt man das gemischte
Volumen von P1, . . . , Pn.

Zusätzlich zu ihrer geometrischen Bedeutung beinhalten gemischte Volumina Infor-
mationen über Objekte der algebraischen Geometrie. Seien f1, . . . , fn Laurent-Polynome
in C[x1, . . . , xn] und bezeichne mit P(fi) das Newton-Polytop von fi, d.h. die konvexe
Hülle der Exponenten der auftretenden Monome in fi. Dann gilt nach dem Satz von
Bernstein [Ber75], dass die Anzahl der isolierten gemeinsamen Nullstellen im algebra-
ischen Torus (C∗)n des Systems fi = 0 (i = 1, . . . , n) durch das gemischte Volumen von
P(f1), . . . ,P(fn) nach oben beschränkt ist. Falls die Koeffizienten der Polynome f1, . . . , fn
generisch gewählt sind, so gibt das gemischte Volumen sogar die exakte Anzahl isolierter
Nullstellen, unter Berücksichtigung von Vielfachheiten, an.

Der Satz von Bernstein stellt eine Verallgemeinerung des Satzes von Bézout dar, der die
Anzahl gemeinsamer Lösungen durch das Produkt der Grade der Polynome fi beschränkt.
Für dünnbesetzte Polynomgleichungssysteme gibt Bernsteins Satz eine deutlich bessere
Schranke an. Daher bieten gemischte Volumina eine interessante Technik zum Studium
dünnbesetzter Polynomgleichungssysteme.

Gemischte Volumina wurden bereits in zahlreichen Zusammenhängen studiert. Die
folgenden Literaturreferenzen geben einen guten Überblick über diejenigen Eigenschaften
gemischter Volumina, die für diese Arbeit relevant sind. Schneider [Sch93] diskutiert
geometrische Eigenschaften, Ewald’s Buch [Ewa96] beschreibt die Verbindungen zwi-
schen algebraischer Geometrie und Objekten der konvexen Geometrie, sowohl Emiris und
Canny [EC95] als auch Huber und Sturmfels [HS95] stellen algorithmische Methoden
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zur Berechnung gemischter Volumina bereit, die Interpretation gemischter Volumina als
Schnittmultiplizitäten tropischer Hyperflächen findet sich in den Arbeiten von Bertrand
und Bihan [BB07] und von Sturmfels, Tevelev und Yu [STY07] und der Übersichtsartikel
[MS83] von McMullen und Schneider diskutiert die Eigenschaften gemischter Volumina
im Kontext von Bewertungen. Obwohl gemischte Volumina schon seit vielen Jahrzehn-
ten studiert werden, sind dennoch viele Fragen offen und bieten daher ein weites Feld
zukünftiger Forschung.

Berechnung gemischter Volumina für große Klassen von Polynomgleichungs-
systemen. Dünnbesetzte Systeme polynomieller Gleichungen tauchen in einer Vielzahl
von Anwendungsproblemen auf. Solche Systeme beinhalten oft eine spezielle Struktur die
durch den Kontext bestimmt wird, welchen sie modellieren. Das Lösen von Polynom-
gleichungssystemen ist daher ein wichtiges Feld aktueller Forschung (vgl. [DE05]). In
Anwendungsproblemen ist es oft ausreichend mithilfe numerischer Verfahren, wie z.B.
homotopy continuation (siehe [Li97,Ver99]), die gemeinsamen Lösungen eines Polynom-
gleichungssystems zu approximieren. Für die Laufzeit solcher Verfahren ist es von entschei-
dender Bedeutung, gute Schätzungen der Anzahl von Lösungen zu haben, die berechnet
werden sollen. Das gemischte Volumen gibt die beste Schranke für diese Anzahl und
es ist daher von fundamentalem Interesse, Methoden für dessen effektive Berechnung zu
entwickeln.

Im Allgemeinen ist die Komplexität der Berechnung des gemischten Volumens sehr
hoch (#P-hart), vgl. [GK94]. Daher ist es erstrebenswert die spezielle Struktur mancher
Polynomgleichungssysteme auszunutzen, um die Berechnung zu vereinfachen.

Wir verwenden Betkes [Bet92] Resultate bezüglich Zerlegungen von Minkowski-Sum-
men um eine Methode zu beschreiben, die Berechnung gemischter Volumina zu entkop-
peln, für den Fall, dass einige der Polytope in einem niederdimensionalen Unterraum liegen
(Lemma 2.6). Polynomgleichungssysteme, auf die dieses Resultat anwendbar ist, erlauben
daher eine wesentlich vereinfachte Herangehensweise. Dies demonstrieren wir durch die
Anwendung von Lemma 2.6 auf Systeme, die einer bestimmten Klasse von minimal starren
Graphen zugrunde liegen (Satz 5.1).

Die zur Zeit effizienteste Methode zur Berechnung des gemischten Volumens der Poly-
tope P1, . . . , Pn ⊂ Rn ist es, eine gemischte Unterteilung der Minkowski-Summe P1 +
· · · + Pn zu berechnen und dann das Volumen der gemischten Zellen dieser Unterteilung
aufzuaddieren. Gemischte Unterteilungen wiederum werden konstruiert, indem man die
Polytope Pi in den Rn+1 anhebt, die Minkowski-Summe dieser angehobenen Polytope
bildet und die unteren Facetten dieser Summe zurück in den Rn projiziert. Diejenigen
Zellen, die in diesem Prozess entstehen und sich als Summen von Kanten der Polytope Pi
darstellen lassen, nennt man gemischte Zellen.

Wir verwenden die algorithmischen Methoden von Canny und Emiris [EC95] und die
Dualität linearer Programme, um ein weiteres Resultat zu erhalten, dass bei der Berech-
nung des gemischten Volumens großer Polynomgleichungssysteme hilfreich ist. Genauer
gesagt benennen wir explizite Bedingungen an Mengen von Lifting-Vektoren, die garan-
tieren, dass eine vorgegebene Zelle als gemischte Zelle der von den Vektoren induzierten
gemischten Unterteilung vorkommt (Lemma 2.9). Dieses Werkzeug ermöglicht es Zellen
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mit großem Volumen auszuwählen und Lifting-Vektoren zu berechnen, die diese Zellen
als gemischte Zellen induzieren. Durch Wiederholung dieses Prozesses erhalten wir eine
Methode gemischte Volumina von unten zu approximieren. Des Weiteren zeigen wir, dass
Lemma 2.9 im 2-dimensionalen Raum (Korollar 2.10) eine schöne geometrische Interpre-
tation zulässt.

Die Verwendung der hier entwickelten Methoden wird später in echten Anwendungen
demonstriert. Insbesondere werden mithilfe dieser Ergebnisse Schranken für die Anzahl
von Einbettungen minimal starrer Graphen bestimmt.

Gemischte Ehrhart Theorie. Sei P ein Polytop mit Knoten im Gitter Zn und sei
L(P ) die Anzahl der ganzzahligen Punkte in P . Ehrhart zeigte [Ehr67], dass die Funk-
tion L(t · P ) für natürliche Zahlen t ein Polynom in t vom Grad n ist. Dieses Polynom
bezeichnen wir als das Ehrhart-Polynom von P . Desweiteren haben einige Koeffizienten
dieses Polynoms eine interessante geometrische Bedeutung. Genauer gesagt ist der Leitko-
effizient von L(t · P ) gleich dem Volumen von P , der zweithöchste Koeffizient beschreibt
die Summe der Volumina der Facetten von P und der Absolutkoeffizient ist immer 1. Ins-
besondere beschreiben Ehrharts Resultate bezüglich der Koeffizienten von L(t · P ) einen
schönen Zusammenhang zwischen einer stetigen Größe, voln(P ), und diskreten Größen
wie der Anzahl der ganzzahligen Punkte in P (vgl. [BR07]). Das Studium des Git-
terpunktzählers L, seiner Erzeugendenfunktion und verwandter Fragestellungen wird als
Ehrhart Theorie bezeichnet (vgl. [Bar08,Gru07]).

In dieser Arbeit wird eine gemischte Version der Ehrhart Theorie eingeführt. Das
heißt, wir betrachten für Polytope P1, . . . , Pk mit ganzzahligen Knoten die Funktion

MEP1,...,Pk
(t) :=

∑
∅6=J⊂[k]

(−1)k−|J | L
(
t ·
∑
j∈J

Pj
)
.

Da dies die Art widerspiegelt, in der gemischte Volumina aus normalen Volumina gebildet
werden, bezeichnen wir diese Funktion als gemischtes Ehrhart-Polynom von P1, . . . , Pk.

Überraschenderweise stellt sich heraus, dass gemischte Ehrhart-Polynome häufig eine
sehr einfache Struktur besitzen. Wir zeigen, dass der Koeffizient von tr in MEP1,...,Pk

(t)
verschwindet falls 1 ≤ r < k (Lemma 3.4) und beweisen weiterhin, dass die höchsten
Koeffizienten durch gemischte Volumina ausgedrückt werden können (Lemma 3.7 und
Lemma 3.8). Insbesondere kann man durch diese Ergebnisse das gemischte Ehrhart-
Polynom in den Fällen k = n und k = n − 1 vollständig beschreiben (Theorem 3.9
und Theorem 3.12). Da eine geometrische Interpretation der mittleren Koeffizienten des
klassischen Ehrhart-Polynoms immer noch ein offenes Problem ist, waren Resultate dieser
Art eher unerwartet.

Als Folgerungen der expliziten Beschreibung von MEP1,...,Pn(t) und MEP1,...,Pn−1(t) er-
halten wir Formeln (Korollar 3.10 und Korollar 3.13), die alternierende Summen von
Gitterpunktanzahlen in Minkowski-Summen und Ausdrücke in gemischten Volumina ver-
gleichen. Die Aussage von Korollar 3.10 wurde bereits von Kušnirenko [Kuš76] vermutet
und später von Bernstein [Ber76] bewiesen, der für seinen Beweis essentiell andere Me-
thoden verwendete. Auf der anderen Seite ist Korollar 3.13 eine neue Formel, die sich
als wesentliches Werkzeug beim Beweis der Aussage herausstellt, dass das tropische und
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das torische Geschlecht von Kurven, denen die gleichen Newton-Polytope zugrunde liegen,
übereinstimmt.

Die Kombinatorik tropischer Schnitte. Tropische Geometrie ermöglicht es, mit-
hilfe sogenannter Korrespondenz-Sätze, Probleme der algebraischen Geometrie in Prob-
leme der diskreten Geometrie zu übersetzen. Dabei ist es ein generelles Ziel, neue tropische
Methoden zu erschließen, um die zugrunde liegenden Probleme der algebraischen Geome-
trie zu studieren (siehe z.B. [DFS07, Dra08, EKL06, Mik06]). Ein bekanntes Beispiel
dafür ist die Arbeit von Mikhalkin [Mik05], in der eine tropische Formel für die Anzahl
der ebenen Kurven eines bestimmten Geschlechts und Grades, auf der eine gegebene An-
zahl von Punkten liegt, beschrieben wird; siehe auch [GM07,IKS03,NS06] für ähnliche
Resultate.

Es ist eine wichtige Aufgabe zukünftiger Forschung, Methoden bereitzustellen, um
Korrespondenz-Sätze dieser Art zu ergründen. Tropischer Varietäten kann man als poly-
edrische Komplexe im n-dimensionalen Raum auffassen und es ist ein weiteres wesentliches
Ziel innerhalb der tropischen Geometrie, die kombinatorische Struktur tropischer Va-
rietäten zu untersuchen (siehe z.B. [Spe08,SS04].

In dieser Arbeit betrachten wir Schnitte tropischer Hyperflächen im Rn, die durch Poly-
nome g1, . . . , gk mit Newton-Polytopen P1, . . . , Pk beschrieben sind. Für den speziellen
Fall, dass k = n − 1 ist und alle Pi Standardsimplexe, hat Vigeland sowohl die An-
zahl der Knoten und unbeschränkten Kanten als auch das Geschlecht dieses Schnittes
studiert [Vig07]. Seine Methoden beruhen dabei stark auf der speziellen Struktur der
Newton-Polytope.

Unser Beitrag kann wie folgt beschrieben werden. Zum einen bieten wir ein ein-
heitliches und systematisches Studium des gesamten f -Vektors (d.h. des Vektors der Sei-
tenanzahlen) von tropischen transversalen und nicht-transversalen Schnitten. Insbeson-
dere zeigen wir, wie das Zählen von Seitenzahlen auf wohlbekannte tropische Sätze über
Schnittanzahlen zurückgeführt werden kann. Unsere Resultate verallgemeinern die Ergeb-
nisse in [Vig07] und decken weiterhin den allgemeinen gemischten Fall ab, in dem wir
von Polynomen g1, . . . , gk mit beliebigen Newton-Polytopen P1, . . . , Pk ausgehen. Dabei
erhalten wir Formeln, die die Anzahl der Seiten (Satz 4.4 und 4.9) sowie das Geschlecht
(Satz 4.15) durch Ausdrücke in gemischten Volumina beschreiben.

Zum anderen beschreiben wir einen kombinatorischen Zusammenhang zwischen dem
tropischen Geschlecht einer Kurve und dem torischen Geschlecht einer Kurve, der die
selben Newton-Polytope zugrunde liegen. Khovanskĭı gibt in [Kho78] eine Charakteri-
sierung des Geschlechts einer torischen Varietät in Termen von Gitterpunktanzahlen in
Minkowski-Summen der Newton-Polytope an. Wir zeigen, dass für den Fall von Kur-
ven das torische und das tropische Geschlecht übereinstimmen (Satz 4.20). Dabei sind
insbesondere die Methoden, die für dieses Resultat verwendet werden, von besonderem
Interesse. Während Khovanskĭıs Formel durch Ausdrücke in Gitterpunktanzahlen von
Minkowski-Summen gegeben ist, ist die Formel für das tropische Geschlecht durch ge-
mischte Volumina beschrieben. Im Spezialfall n = 2 ist dieser Zusammenhang durch
den klassischen Satz von Pick gegeben, der die Anzahl der Gitterpunkte in einem Poly-
gon mit dessen Fläche verbindet. Wir entwickeln eine neue Pick-artige Formel für das
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Oberflächenvolumen eines Gitterkomplexes (Satz 4.21) um zu zeigen, dass sich im allge-
meinen ungemischten Fall (n beliebig, alle Pi identisch) dieser Zusammenhang auf eine
bestimmte n-dimensionale Verallgemeinerung des Satzes von Pick (Macdonald [Mac63])
zurückführen lässt. Um den allgemeinen gemischten Fall zu behandeln verwenden wir
Resultate der gemischten Ehrhart Theorie (Satz 3.12), die wir an einer früherer Stelle
dieser Arbeit präsentiert haben.

Konfigurationen von Gestängen. Als ein Gestänge bezeichnet man eine durch
Gelenke verbundene Reihe von Stäben, die eine geschlossene Struktur bilden. Dabei sind
die Gelenke als beweglich anzusehen, so dass sie Bewegungen der Stäbe relativ zueinan-
der zulassen. Gestänge werden in diversen Anwendungen der Ingenieurwissenschaften
benötigt und wurden ebenfalls von Mathematikern seit mehr als zwei Jahrhunderten
studiert (vgl. [ES97]). Wir beschäftigen uns vornehmlich mit Gestängestrukturen, die
keine Freiheitsgrade haben, d.h. dass sie so gestaltet sind, dass Bewegungen der Stäbe
relativ zueinander verhindert werden. Sowohl Gestänge dieser Art, als auch Graphen die
solche Gestänge modellieren, nennt man starr. Ein Graph wird minimal starr genannt,
wenn er starr ist und durch Hinwegnahme eines Stabes beweglich wird. Minimal starre
Graphen im 2-dimensionalen Raum werden auch Laman Graphen genannt. Für gegebene
positive Kantenlängen eines minimal starren Graphen G = (V,E) interessieren wir uns für
die Anzahl von Möglichkeiten den Graphen G in der Ebene oder in höher-dimensionalen
Räumen zu zeichnen. Hierbei zählen wir Einbettungen, die sich lediglich durch starre
Bewegungen (d.h. Rotationen und Translationen) unterscheiden, nicht mehrfach.

Die Bestimmung der maximalen Anzahl von Einbettungen (modulo starrer Bewe-
gungen) eines gegebenen minimal starren Graphen ist ein offenes Problem. Die besten
bekannten oberen Schranken gehen zurück auf Borcea und Streinu (vgl. [Bor02,BS04]),

die beweisen, dass die Anzahl der Einbettungen durch
(

2N−4
N−2

)
≈ 4N−2
√
N−2

beschränkt ist,

wobei N die Anzahl der Knoten von G bezeichnet. Die Resultate von Borcea und Streinu
beruhen auf Grad-Berechnungen geeigneter Determinanten-Varietäten.

Wie bereits oben beschrieben ist der Satz von Bernstein [Ber75] eine Methode die
Anzahl komplexer Lösungen von dünnbesetzten Polynomgleichungssystemen zu studieren.
Da die polynomiellen Gleichungen, die die Einbettungen von minimal starren Graphen
beschreiben, dünnbesetzt sind, stellte sich die Frage, wie gut die Bernstein-Schranken
für dieses Problem sind. Während das gemischte Volumen konkreter Gleichungssysteme
algorithmisch behandelt werden kann, ist das Studium gemischter Volumina für ganze
Klassen von Polytopen mit einer Vielzahl von Fragestellungen der diskreten Geometrie
verknüpft (wie beispielsweise der Untersuchung von Minkowski-Summen).

Wir studieren die Qualität der Bernstein-Schranken für das Einbettungsproblem mi-
nimal starrer Graphen unter Verwendung von Techniken zur Berechnung gemischter Vo-
lumina der Polytope, die die Problemstellung beschreiben. In den meisten Fällen sind die
daraus resultierenden Schranken schwächer als die in [BS04], siehe Satz 5.3 und Korol-
lar 5.4. Allerdings denken wir, dass die generelle Methode des Studiums der Bernstein-
Schranken eine interessante Technik bietet. Es ist insbesondere hervorzuheben, dass die
Schranken, die durch das gemischte Volumen beschrieben werden, in einigen Fällen scharf
sind (vgl. Satz 5.1 und Korollar 5.2).
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Gliederung der Dissertation. Diese Arbeit ist wie folgt gegliedert. Kapitel 1
führt in die Konzepte ein, die dieser Arbeit zugrunde liegen. Dies beinhaltet: Polytope,
Minkowski-Summen, Volumina, gemischte Volumina, gemischte Unterteilungen, tropis-
che Geometrie und den Satz von Bernstein. Leser mit einem guten Hintergrundwissen
in diskreter Geometrie können diesen Teil getrost überspringen. Lediglich die Methoden
in Absatz 1.2.5, die das Ausnützen von Symmetrien in der Berechnung von gemischten
Volumina beschreiben, sind weniger bekannt und sind daher auch für erfahrene Leser
interessant.

In Kapitel 2 werden einige technische Methoden beschrieben, die bei der expliziten
Berechnung gemischter Volumina hilfreich sind. Die wesentlichen Resultate sind hierbei
ein Lemma zur Entkopplung der Berechnung gemischter Volumina in speziellen Fällen
und ein Lemma, dass explizite Bedingungen an Lifting-Vektoren beschreibt, die gegebene
Zellen als gemischte Zellen einer gemischten Unterteilung induzieren. Die Methoden
dieses Kapitels sind die entscheidenden Werkzeuge beim Studium der Polynomgleichungs-
systeme, die in Gestänge-Konfigurationsproblemen auftauchen.

Kapitel 3 beschreibt eine neue Variante der Ehrhart Theorie, welche wir als gemis-
chte Ehrhart Theorie bezeichnen, da sie die Art wie gemischte Volumina aus Volumina
gebildet werden widerspiegelt. Wir definieren das sogenannte gemischte Ehrhart-Polynom
und zeigen, dass Koeffizienten niedriger Ordnung dieses Polynoms verschwinden und Koef-
fizienten hoher Ordnung durch Ausdrücke in gemischten Volumina darstellbar sind. Diese
Resultate implizieren neue Formeln für die Anzahl ganzzahliger Punkte in Minkowski-
Summen. In unserem Beweis in Kapitel 4, der zeigt, dass das torische und das tropische
Geschlecht von Kurven, denen die selben Newton-Polytope zugrunde liegen, übereinstimmen,
spielen diese Formeln eine entscheidende Rolle.

Kapitel 4 widmet sich dem Studium der Kombinatorik tropischer Schnitte. Insbeson-
dere drücken wir die Anzahl der beschränkten und unbeschränkten Seiten eines tropischen
Schnittes durch Terme in gemischten Volumina aus. Dies führt ebenfalls zu einer neuen
Formel für das Geschlecht einer tropischen Schnittkurve. Mit den Methoden aus Kapitel 3
zeigen wir darauf, dass das tropische und das torische Geschlecht von Kurven, die durch
Polynome mit den gleichen Newton-Polytopen beschrieben werden, identisch sind.

In Kapitel 5 diskutieren wir die Bestimmung der Anzahl der Einbettung minimal
starrer Graphen mit generischen Kantenlängen. Dabei liegt das Hauptaugenmerk auf der
Verwendung diskret geometrischer Methoden, insbesondere des Satzes von Bernstein, um
Schranken für die Anzahl der Einbettungen bereitzustellen.

Bereits veröffentlichte Inhalte. Einige Ergebnisse dieser Arbeit wurden bereits
in den Artikeln [ST10, ST09] und dem Konferenzbeitrag [ST08a] veröffentlicht. Diese
Dissertation enthält zusätzlich einige Verallgemeinerungen der Resultate dieser Arbeiten.
Außerdem wurde die Präsentation der Aussagen durch zusätzliche Beispiele und grafische
Darstellungen wichtiger Ideen verbessert um dem Leser die Entwicklung einer geometri-
schen Intuition zu erleichtern.
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CHAPTER 1

Preliminaries

This chapter gives a short introduction to the basic concepts of this thesis. We begin
with an introduction to the language of polytopes and convex bodies, including basic facts
on volumes, Minkowski sums and polyhedral complexes. With these definitions mixed
volumes are introduced, followed by a discussion of those properties of mixed volumes
which are crucial for this thesis. Also we review a way to compute the mixed volume
using mixed subdivisions.

Furthermore the reader is familiarized with tropical geometry from two different view-
points. Here we stress in particular the duality between tropical hypersurfaces and poly-
hedral complexes which is of significant importance for later results. The chapter ends
with a discussion of Bernstein’s first and second theorem.

1.1. Polytopes

Most methods applied in this work are discrete geometric which implies that polytopes
will play a crucial role in everything we do. We give a brief introduction here and refer
readers with less background to [Grü03,Zie95] for polytopes in general and to [Ewa96]
concerning the interplay of discrete geometry and algebraic geometry.

In the following paragraphs we define the most important objects of this work and
clarify the notation that is used throughout this thesis.

1.1.1. Basic definitions and notation. A set A ⊂ Rn is called convex if with any
two points p, q ∈ A it also contains the straight line segment [p, q] := {λp+ (1− λ)q | 0 ≤
λ ≤ 1} between p and q. We say that p is a convex combination of p1, . . . , pr ⊂ Rn if there
are λ1, . . . , λr ∈ R such that

(1) p = λ1p1 + · · ·+ λrpr
(2)

∑r
i=1 λi = 1

(3) λi ≥ 0.

If condition (3) is dropped, p is called an affine combination of p1, . . . , pr, if condition (2)
is dropped p is called a positive combination of p1, . . . , pr and if both conditions (2) and
(3) are dropped p is called a linear combination of p1, . . . , pr. For a set A the set of all
convex combinations of points in A is the convex hull of A and denoted by conv(A). In
the same way we define the affine hull of A: aff(A), the positive hull of A: pos(A) (which
is also sometimes called the cone of A: cone(A)) and the linear hull of A: lin(A).

Each affine hull is the translate of a linear hull and the dimension of an affine hull is
defined as the dimension of the corresponding linear hull. Affine subspaces of dimensions
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20 1. PRELIMINARIES

0, 1, . . . , k, . . . , n − 1 in Rn will be called points, lines, k-planes and hyperplanes , respec-
tively. Each hyperplane H separates the space Rn into two halfspaces denoted by H+ and
H−. The intersection of a finite number of halfspaces is called a polyhedron.

Compact convex sets K ⊂ Rn are called convex bodies and a convex body P that is the
convex hull of a finite point set v1, . . . , vr ∈ Rn is a polytope. The space of all polytopes
in Rn is denoted by Pn. We say that a hyperplane H supports a closed convex set A if
H ∩ A 6= ∅ and A ⊂ H+ or A ⊂ H−. This intersection H ∩ A is called a (proper) face of
A. We make the convention to call ∅ and A itself faces of A as well but refer to them as
improper. Faces of dimensions 0, 1, . . . , k, . . . , n− 1 will be called vertex, edge, k-face and
facet . The convex hull of points v1, . . . , vr which are affinely independent , i.e. none of the

P

v1

v2

v3
v4

v5

v6

H
H−

H+

F1 = P ∩H

F2

F3

F4

F5

F6

Figure 1.1. A polytope P with a supporting hyperplane H.

points is an affine combination of the others, is called a simplex .

We chose to define polytopes as the convex hull of its vertices, i.e. P = conv{v1, . . . , vr}
but the following proposition states that another description is equivalent.

Proposition 1.1. A subset P ⊂ Rn is the convex hull of a finite point set (a V-polytope)
if and only if it is a bounded intersection of a finite number of halfspaces (an H-polytope).

To every proper face F of a closed convex set A corresponds a cone N(F ) of linear
functions v ∈ (Rn)∗ which are maximized in F on A. We identify (Rn)∗ with Rn and call
such a function v an (outer) normal vector of F on A. In the following the face that is
maximal with respect to v will be denoted by (A)v. The cone NF is called the normal
cone of F and the normal cones of all faces of a polytope P form a complete fan, the
normal fan, NP , of P . I.e. every non-empty face of a normal cone is also a normal cone
of some face of P , the intersection of two normal cones is a face of both and the union of
all cones covers Rn.

1.1.2. Volume. From basic calculus we know that every n-dimensional convex body
K ⊂ Rn has an n-dimensional Euclidean volume voln(K). In this work the volume is
normalized by assuming the volume of the unit cube in Rn to be 1.

Most convex bodies which are considered in this thesis are lattice polytopes , i.e. poly-
topes with vertices in a lattice Λ ⊂ Rn, i.e. a discrete subgroup of Rn, and often this
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NP

Nv1

Nv2

Nv3
Nv4

Nv5

Nv6

NF1

NF2

NF3

NF4

NF5

NF6

P

Figure 1.2. Left: The normal cones of vertices and edges of P . Right: The normal fan
of P .

lattice is Zn itself. We denote by Pn(Λ) the space of lattice polytopes in Rn. If Λ is
k-dimensional, then Λ ' Zk holds and Λ lies in a k-dimensional supspace ΛR of Rn. A
basis of Λ induces an isomorphism between Λ and Zk and also between ΛR and Rk. The
volume volΛ on ΛR is defined as the pull-back of the usual Euclidean volume on Rk under
this isomorphism. As the lattice will usually be clear from the context this volume will
often be denoted as just vol′k. Note that the definition of volΛ is independent of the choice
of the basis B of Λ since any other basis can be obtained from B by a volume preserving
linear map.

The parallelotope P that is generated by the basis of a k-dimensional lattice Λ is called
the fundamental lattice parallelotope of Λ . This notation allows to state the relation of
the volume with respect to Λ and the usual Euclidean volume in Rk as follows:

(1.1) vol′k(K) =
volk(K)

volk(P)
.

Example 1.2. Let Λ be the lattice spanned by v1 = (1, 3)T and v2 = (2, 1)T and let Q
be the polytope with vertices 0, v1, 2v2 (see Figure 1.3). For this choice we have that the
volume of Q with respect to Λ is vol′2(Q) = 2·1

2
= 1, the volume of Q with respect to the

lattice Z2 is vol2(Q) =
√

20
√

5
2

= 5 and the volume of the fundamental lattice parallelotope

P with respect to Z2 is vol2(P) =
√

5
√

5 = 5.

1.1.3. Polyhedral complexes. A polyhedral complex Γ is a finite collection of poly-
hedra such that the empty set is in Γ, if P ∈ Γ then all faces of P are in Γ as well, and
the intersection P ∩Q of two polyhedra P,Q ∈ Γ is a face of both. The largest dimension
of a polyhedron in Γ is set as the dimension of Γ and the k-dimensional complex Γ is
called pure if all inclusion maximal elements have dimension k. We already came across a
polyhedral complex in Paragraph 1.1.1 when we defined the normal fan NP of a polytope
P .
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Q
P

Figure 1.3. The lattice Λ from Example 1.2 with the fundamental lattice parallelotope
P and the polytope Q.

Let fk denote the number of k-dimensional elements of an n-dimensional complex
Γ. The vector (f0, . . . , fn) is then called the f -vector of Γ. If all elements of Γ are
polytopes or simplices then we have a polytopal complex or simplicial complex , respectively.
Furthermore, if all the vertices of a polyhedral complex Γ lie in a lattice Λ, e.g. in Zn,
then Γ is called a lattice complex .

1.1.4. Minkowski sums. The Minkowski sum of two sets A1, A2 ⊂ Rn is defined as

A1 + A2 = {a1 + a2 | a1 ∈ A1, a2 ∈ A2} .

The set Kn of convex bodies in Rn (as well as the set Pn of polytopes in Rn) together with
the Minkowski addition forms a commutative semi group with the set containing the origin
as the neutral element. It is possible to define a Minkowski difference (cf. Remark 1.3) as

A1 − A2 = {p ∈ Rn | p+ A2 ⊂ A1}

but this is not the inverse to Minkowski addition. In general we have A2 +(A1−A2) ( A1.
Only if A1 is itself a Minkowski sum A2 + A3, then A1 − A3 = A2.

Since Minkowski addition is commutative and associative it generalizes naturally to
more than two polytopes. If λ ∈ R and A ⊂ Rn

λA = {λ · p | p ∈ A}

is called a multiple of A and λ1A1 + · · ·+λrAr is called a linear combination of A1, . . . , Ar.
If A1, . . . , Ar are convex then all their linear combinations are as well. Note that the
combinatorics of a linear combination λ1A1 + · · · + λrAr only depends on which λi are
zero, which are negative and which are positive (see e.g. [HRS00]).

λ might be negative, but again this can not be interpreted as the inverse to Minkowski
addition. For λ ∈ N, λA can be pictured geometrically as either the scaling of A by a
factor of λ or as A+ · · ·+ A︸ ︷︷ ︸

λ−times

.
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Remark 1.3. Note that A1−A2 and A1 + (−A2) are two different things. Unless stated
otherwise we will always deal with the object A1 + (−A2). Some authors (e.g. [Sch93])
refer to the latter as Minkowski subtraction.

If P and Q are (lattice) polytopes, then P + Q is again a (lattice) polytope. Also it
holds that

(1.2) (P +Q)v = (P )v + (Q)v ,

which means in particular that each vertex of P + Q is the sum of vertices of P and
Q. Furthermore it can be shown (see e.g. [Zie95]) that the normal fan of P + Q is the
common refinement of the normal fans of P and of Q. I.e. we have

(1.3) NP+Q = {CP ∩ CQ |CP ∈ NP , CQ ∈ NQ} .

Example 1.4. Let

P = conv

{(
0
0

)
,

(
3
0

)
,

(
0
2

)
,

(
3
2

)}
, Q = conv

{(
1
0

)
,

(
0
3
2

)
,

(
3
3

)}
.

Figure 1.4 depicts P , Q, their Minkowski sum P +Q and the sum P + (−Q). Note that
P −Q is empty for these polytopes. In Figure 1.5 the normal fans of these polytopes are
shown

P Q
P +Q

P + (−Q)

Figure 1.4. From left to right: P , Q, P +Q and P + (−Q).

N (P ) N (Q) N (P +Q) N (P + (−Q))

Figure 1.5. From left to right: N (P ), N (Q), N (P +Q) and N (P + (−Q)).
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Remark 1.5. We chose a geometric approach to Minkowski summation to encourage
geometric intuition and to keep the notation pleasant. For precise combinatorial state-
ments it is often more convenient to keep track of information that is lost in the geometric
picture. Namely one gives each element p1 ∈ A1 and p2 ∈ A2 a label and assigns the
sum p = p1 + p2 the tuple of the labels of the summands. This way points having the
same geometric coordinates but arising as a sum of different combinations of points are
distinguished. For further background and examples see [LRS, Section 9.2].

A discussion on the computational complexity of Minkowski summation can be found
in [GS93] and in [FW09].

1.1.5. Hausdorff metric. Let B be the unit ball in Rn and let λ ≥ 0. The Hausdorff
distance of the convex bodies K1 and K2 is defined by

δ(K1, K2) := inf {λ |K1 ⊂ K2 + λ · B and K2 ⊂ K1 + λ · B} .
Note that the Hausdorff distance is a metric on Kn.

Proposition 1.6 (see [Ewa96]). For every convex body K there exists a sequence of
polytopes (Pj)j∈N that converges to K with respect to the Hausdorff metric.

With respect to δ the volume voln(K) and the Minkowski sum K1 + K2 depend con-
tinuously on the convex bodies K,K1 and K2.

1.2. Mixed Volumes

Mixed volumes have been studied for several decades, nevertheless many questions
about them remain open problems. The introduction here is far from being complete and is
intended to introduce the most important definitions and properties used in this work. To
obtain a solid background we refer the reader to [BZ88,Sch93] for a thorough geometric
discussion, to [CLO05] for an easy accessible introduction and to [Ewa96,Ful93] for a
treatment of mixed volumes in the context of algebraic geometry.

1.2.1. Definition and basic properties. Let K1, . . . , Kn be n convex bodies in Rn

and let λ1, . . . , λn be non-negative real parameters.

Proposition 1.7 (Minkowski, see e.g. [Sch93]). The function voln(λ1K1 + · · · + λnKn)
is a homogeneous polynomial of degree n in λ1, . . . , λn.

The coefficient of the mixed monomial λ1 · · ·λn is called the mixed volume ofK1, . . . , Kn

and is denoted by MVn(K1, . . . , Kn). The mixed volume can be explicitly computed as

(1.4) MVn(K1, . . . , Kn) =
n∑
j=1

(−1)j
∑

I⊂{1,...,n}, |I|=j

voln

(∑
i∈I

Ki

)
,

but for most practical purposes this is not a very useful expression. We will introduce a
more convenient method using mixed subdivisions in the next paragraph.

Example 1.8. Take the polytopes P and Q from Example 1.4. Then (1.4) states that
MV2(P,Q) = vol2(P +Q)− vol2(P )− vol2(Q) = 24− 6− 3 = 15. 1

1The volume computations were carried out using the polytope software polymake, see [GJ00].
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Remark 1.9. Note that some authors prefer to factor out n! in the definition of the
mixed volume. We choose to keep that factor since this scaling guarantees that the mixed
volume of polytopes with integer vertices is an integer.

We write MVn(K1, d1; . . . ;Kk, dk) to denote the mixed volume where Ki is taken di
times and

∑k
i=1 di = n. Actually all coefficients of voln(λ1K1 + · · ·+λkKk) can be written

as mixed volumes using this notation. Namely we have (see [Sch93, Section 5.1])
(1.5)

voln(λ1K1 + · · ·+ λkKk) =
1

n!

n∑
d1,...,dk=0

(
n

d1 . . . dk

)
λd11 · · ·λ

dk
k MV(K1, d1; . . . ;Kk, dk) ,

where the multinomial coefficient is defined by

(1.6)

(
n

d1 . . . dk

)
=

{
n!

d1!···dk!
if di ≥ 0 and

∑
i di = n

0 otherwise.

Remark 1.10. Since the volume and the Minkowski addition both depend continuously
on the convex bodies with respect to the Hausdorff metric, the mixed volume does as
well. Due to Proposition 1.6 it will hence often be enough to prove properties of the
mixed volume for polytopes and then use the continuity to extend the statement for
general convex bodies.

Mixed volumes are always non-negative (see [Ful93, Section 5.4]) and they are mono-
tone with respect to inclusion, i.e.

(1.7) MV(K1, . . . , Kn) ≥ MV(K ′1, . . . , K
′
n) if Ki ⊃ K ′i for all i .

Furthermore MV(K1, . . . , Kn) is strictly positive if and only if there exist segments Si ⊂ Ki

(i = 1, . . . , n) whose directions are linearly independent.

The mixed volume is invariant under permutation of its arguments, i.e.

(1.8) MV(K1, . . . , Kn) = MV(Kσ(1), . . . , Kσ(n)) for any permutation σ

and is linear in each argument, i.e.

(1.9) MVn(. . . , αKi + βK ′i, . . . ) = αMVn(. . . , Ki, . . . ) + βMVn(. . . , K ′i, . . . ) .

Also it generalizes the usual volume in the sense that

(1.10) MVn(K, . . . ,K) = n! voln(K)

holds (cf. [Sch93]).

It is possible to express the n-dimensional mixed volume in terms of (n−1)-dimensional
mixed volumes as stated in the next proposition. Here, we have to take care again that
the volume is taken with respect to the underlying lattice. Namely we set

(1.11) MV′n−1((P1)v, . . . , (Pn−1)v) :=
MVn−1((P1)v, . . . , (Pn−1)v)

voln−1(P)

where P denotes a fundamental lattice parallelotope in the hyperplane orthogonal to v.
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Proposition 1.11 (see e.g. [CLO05,EK08]). Let K be a convex, full-dimensional body
in Rn and let P1, . . . , Pn−1 ⊂ Rn be integer polytopes. Then

MVn(P1, . . . , Pn−1, K) =
∑
v

max
a∈K
〈a, v〉 ·MV′n−1((P1)v, . . . , (Pn−1)v)

where the sum is taken over all primitive outer normals v ∈ Zn, i.e. gcd(v1, . . . , vn) = 1,
of facets F of P1 + . . .+ Pn−1.

1.2.2. Mixed subdivisions. Let S = (S(1), . . . , S(m)) be a sequence of finite point
sets in Rn that affinely spans the full space. A sequence C = (C(1), . . . , C(m)) of subsets
C(i) ⊂ S(i) is called a cell of S. A subdivision of S is a collection Γ = (C1, . . . , Ck) of cells
such that

(i) dim(conv(Ci)) = n for all cells Ci,
(ii) conv(Ci) ∩ conv(Cj) is a face of both convex hulls and

(iii)
⋃k
i=1 conv(Ci) = conv(S)

where conv(A) := conv(A(1) + . . .+A(m)) for a sequence A of point sets. A subdivision is
called mixed if additionally

(iv)
∑m

i=1 dim(conv(C
(i)
j )) = n for all cells Cj in Γ

and it is called fine mixed if furthermore

(v)
∑m

i=1(|C(i)
j | − 1)) = n for all cells Cj in Γ

where |A| denotes the number of points in a finite set A ⊂ Rn. The type of a cell is defined
as

type(C) =
(
dim(conv(C(1))), . . . , dim(conv(C(m)))

)
and cells of type (d1, . . . , dm) with Di ≥ 1 for all i will be called mixed cells .

Example 1.12. Let S = ({(0, 0)T , (3, 0)T , (0, 2)T , (3, 2)T}, {(1, 0)T , (0, 3
2
)T , (3, 3)T}). Then

Γ = (C1, . . . , C6) where

C1 = ({(0, 2)T , (3, 2)T}, {(0, 3
2
)T , (3, 3)T}),

C2 = ({(3, 0)T , (3, 2)T}, {(0, 3
2
)T , (1, 0)T}),

C3 = ({(3, 0)T , (3, 2)T}, {(1, 0)T , (3, 3)T}),
C4 = ({(0, 0)T , (3, 0)T}, {(1, 0)T , (0, 3

2
)T}),

C5 = ({(0, 0)T , (3, 0)T , (0, 2)T , (3, 2)T}, {(0, 3
2
)T}),

C6 = ({(3, 2)T}, {(1, 0)T , (0, 3
2
)T , (3, 3)T})

is a mixed subdivision of S. C1, . . . , C4 are cells of type (1, 1), C5 is of type (2, 0) and C6

is of type (0, 2). The mixed subdivision Γ is not fine mixed since C5 violates condition
(v).

Remark 1.13. For technical reasons we prefer here to define mixed subdivisions on point
sets rather then on polytopes. These definitions extend naturally to sequences of polytopes
Pi by considering their vertex sets vert(Pi) as the point sets above. By abuse of notation
we speak then of a mixed subdivision of P := P1 + · · ·+Pm meaning a mixed subdivision



1.2. MIXED VOLUMES 27

C5

C6

C1

C2

C3

C4

Figure 1.6. A mixed subdivision Γ of P +Q.

of (vert(P1), . . . , vert(Pm)). As cells of such a subdivision we always consider sums of faces
F1 + · · ·+ Fm where Fi is a face of Pi. If all cells of a subdivision Γ of P1 + · · ·+ Pm are
simplices then Γ is called a triangulation.

With this terminology an explicit formula to calculate the mixed volume can be stated
(cf. [HS95]):

(1.12) MVn(P1, d1; . . . ;Pr, dr) =
∑

C cell type (d1,...,dr)
of a mixed subdivision

of (P1,...,Pr)

d1! · · · dr! voln (C) .

For a cell C = (C(1), . . . , C(r)) of type (d1, . . . , dr) in a mixed subdivision with C(i) =

{p(i)
0 , . . . , p

(i)
di
} we define the matrix M(C) to be the n×n matrix whose rows are p

(i)
j −p

(i)
0

for 1 ≤ i ≤ r and 1 ≤ j ≤ di. We have that

(1.13) |det(M(C))| = d1! · · · dr! · vol(C)

which simplifies the computation of (1.12).

Example 1.14. Consider again the polytopes P and Q from Example 1.4. Figure 1.6
shows a mixed subdivision of P+Q (which is of course the subdivision from Example 1.12).
By (1.12) we have that MV2(P,Q) = vol2(C1) + vol2(C2) + vol2(C3) + vol2(C4) = 9

2
+ 2 +

4 + 9
2

= 15.

To construct mixed subdivisions we proceed as in [HS95]. Not every subdivision can
be constructed in this way but for our purposes this construction suffices. For each of the
point sets S(i) from S choose a lifting function µi : S(i) → R and denote by Â the lifted
point set {(q, µi(q)) : q ∈ A} ⊂ Rn+1.

The set of those facets of conv(Ŝ(1) + . . .+ Ŝ(m)) which have an inward pointing normal
with a positive last coordinate is called the lower hull of the Minkowski sum. If we project
down this lower hull back to Rn by forgetting the last coordinate we get a subdivision of
(S(1), . . . , S(m)). We call such a subdivision coherent (or regular) and will say it is induced
by µ = (µ1, . . . , µm).

Example 1.15. Once more we consider the polytopes P and Q from Example 1.4. Now
the following lifting functions µ1, µ2 are chosen:

µ1(p) :=

〈
p,

(
1/5
2/5

)〉
, µ2(p) :=

〈
p,

(
1/2
1/2

)〉
.
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Figure 1.7. The lifted polytopes P̂ and Q̂.

Figure 1.8. The sum P̂ + Q̂ of the lifted polytopes and the projection of the lower hull
to R2.

Figure 1.7 shows the lifted polytopes P̂ and Q̂ and Figure 1.8 illustrates the sum and
its projection to the first two coordinates.

Not all coherent subdivisions are mixed but there are conditions on liftings which
guarantee that the induced subdivision is mixed.

Proposition 1.16 (See [HS95]). If for each n-dimensional cell C in the subdivision of

(S(1), . . . , S(m)) induced by µ we have that M(Ĉ) has maximal rank then the subdivision
is fine mixed.

A lifting µ that satisfies the condition of Proposition 1.16 is called sufficiently generic.
The maximal minors of M(Ĉ) give linear conditions on the values µ(q) for q ∈ S(i).

To achieve this sufficient genericity it is enough that every vertex of the lower envelope
can be expressed uniquely as a Minkowski sum and this can be achieved by considering
linear lifting functions µi : Rn → R (see [HS95,EC95]).

1.2.3. The Cayley-Trick and fiber polytopes. The Cayley-Trick relates mixed
subdivisions of a sequence of point sets S = (S(1), . . . , S(m)) to subdivisions of a single
point set that is constructed from S (see [GKZ94,HRS00,Stu94]). We sketch here the
basic ideas and refer to [LRS, Chapter 9] for a precise combinatorial treatment as well as
some nice graphical illustrations.
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Figure 1.9. A correspondence between cells in the Cayley-Trick.

The Cayley embedding C(S) ⊂ Rn×Rm of the sequence of point sets S = (S(1), . . . , S(m))
in Rn is defined as

(1.14) C(S(1), . . . , S(m)) :=
m⋃
i=1

(S(i) × ξi)

where ξi denotes the ith unit vector in Rm. The Cayley-Trick states now that there is a one-
to-one correspondence between subdivisions of C(S(1), . . . , S(m)) and mixed subdivisions
of (S(1), . . . , S(m)).

Figure 1.9 shows an example of how a cell of C(vert(P ), vert(Q)) corresponds to a
mixed cell of P +Q for the polytopes P and Q from Example 1.4.

Let P ⊂ RN be a polytope and let π : RN → Rn be a linear function that projects P to
the polytope Q ⊂ Rn. For any point x ∈ Q its fiber π−1(x) ∩ P is a (N − n)-dimensional
polytope and the fiber polytope Σπ(P ) ⊂ RN−n is defined as the following Minkowski
integral:

(1.15) Σπ(P ) :=
1

voln(Q)

∫
Q

(π−1(x) ∩ P ) dx.

The combinatorics of a fiber polytope contains a nice surprise. Namely the faces of Σπ(P )
are in bijection with the coherent polyhedral subdivisions of Q which are induced by the
boundary of P (cf. [BS92,Zie95]). Hence in particular, if P is a simplex then the vertices
of Σπ(P ) correspond to triangulations of Q and therefore fiber polytopes generalize the
secondary polytopes from Gel’fand, Kapranov and Zelevinsky [GKZ94].

Of course the question arises whether there is a similar combinatorial structure, a mixed
fiber polytope, which describes the mixed subdivisions of a set of polytopes. McDonald
[McD02] as well as Michiels and Cools [MC00] predicted the existence of such a structure
and McMullen [McM04] and independently Esterov and Khovanskii [EK08] were able
to give a construction. Namely, for polytopes P1, . . . , Pr and positive real parameters
λ1, . . . , λr the fiber polytope

Σπ(λ1P1 + · · ·+ λrPr)

depends polynomially on λ1, . . . , λr and this polynomial is homogeneous of degree n+ 1.
The mixed fiber polytope is defined as the coefficient of λ1 · · ·λr in Σπ(λ1P1 + · · ·+λrPr).



30 1. PRELIMINARIES

To compute fiber polytopes and mixed fiber polytopes Sturmfels and Yu provide the
software package TrIM, see [SY08].

1.2.4. The lift-prune algorithm. In this section a state of the art algorithm from
Emiris and Canny [EC95] to compute the mixed volume is sketched.2

Assume that we already have a sufficiently generic linear lifting µi for each polytope
Pi (i = 1, . . . , n) in the sense of Paragraph 1.2.2. The lifted polytopes will be denoted

by P̂i and the Minkowski sum of the Pi is denoted by P . The idea for the computation
of MV(P1, . . . , Pn) is then the following. For each combination of n edges from the given

polytopes it is tested whether their lifted Minkowski sum lies on the lower envelope of P̂ .
If so, compute the volume of the corresponding mixed cell and add it to the mixed volume.
To make this naive algorithm efficient we employ the fact (see [EC95]) that

∑
j∈J êj lies

on the lower envelope of
∑

j∈J P̂j only if
∑

t∈T êt lies on the lower envelope of
∑

t∈T P̂t for
every subset T ⊂ J .

So instead of performing a few expensive tests on the sum of n edges, many small tests
are done to build up valid sums of edges step by step. Each test for a k-tuple of edges
e1, . . . , ek is implemented as a linear program (LP) as follows. Let m̂i ∈ Rk+1 denote the

midpoint of the lifted edge êi of P̂i such that m̂ = m̂1 + · · · + m̂k is an interior point of
the Minkowski sum ê1 + · · ·+ êk. Consider the linear program

maximize s ∈ R≥0(1.16)

s.t. m̂− (0, . . . , 0, s) ∈ P̂1 + · · ·+ P̂k .

If we denote the vertices of Pi by v
(i)
1 , . . . , v

(i)
ri this can be written as

maximize s ∈ R≥0

s.t. m̂− (0, . . . , 0, s) =
k∑
i=1

ri∑
j=1

λ
(i)
j v̂

(i)
j(1.17)

ri∑
j=1

λ
(i)
j = 1 ∀ i = 1, . . . , n

λ
(i)
j ≥ 0 ∀ i, j .

s measures the vertical distance of m̂ to the lower envelope of the Minkowski sum. Hence
m̂ lies on the lower envelope of P̂1 + · · · + P̂k if and only if the optimal value of (1.16) is
zero.

See Algorithm 1 for a pseudo-code description. An implementation of this algo-
rithm can be found at: http://www-sop.inria.fr/galaad/logiciels/emiris/soft_

geo.html or in the PHCpack by Jan Verschelde, see [Ver99].

The worst case complexity of the algorithm arising from these ideas is in rO(n) where
r denotes the maximal number of vertices of the Pi (cf. [Emi96]). Computing the volume
of the convex hull of a point set is #P-hard (cf. [Kha93]). Since the mixed volume is a

2There are heuristic improvements of this algorithm, see [ZE05].

http://www-sop.inria.fr/galaad/logiciels/emiris/soft_geo.html
http://www-sop.inria.fr/galaad/logiciels/emiris/soft_geo.html
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Input: The vertex sets of polytopes P1, . . . , Pn ⊂ Rn

Output: MVn(P1, . . . , Pn)
begin

Enumerate the edges of all polytopes P1, . . . , Pn respectively into sets
E1, . . . , En ;
Compute random lifting vectors µ1. . . . , µn ∈ Qn;
for i ∈ {1, . . . , n} and ei ∈ Ei do

Compute the lifted edge êi;
end
MVn(P1, . . . , Pn)← 0;

∗ if E1 = ∅ then terminate;
else Pick any e1 ∈ E1;
E1 ← E1 \ {e1};
Create current tuple (e1);

∗∗ for j ∈ {2, . . . , n} do
E ′j ← Ej;

end
k ← 1;
for i ∈ {k + 1, . . . , n} do

for ei ∈ E ′i do

if
∑k

j=1 êj + êi does not lie on the lower envelope of
∑k

j=1 P̂j + P̂i then
E ′i ← E ′i \ {ei};

end
end

end
k ← k + 1;
if k > n then

MVn(P1, . . . , Pn)← MVn(P1, . . . , Pn) + voln(e1 + · · ·+ en);
Continue from line ∗ ;

end
if k ≤ n then

if E ′k = ∅ then Continue from line ∗;
else Add some edge ek ∈ E ′k to the current tuple (e1, . . . , ek−1);
E ′k ← E ′k \ {ek};
Continue from line ∗∗;

end
end

Algorithm 1: The Lift-Prune Algorithm from Emiris and Canny [EC95].

generalization of the volume (see (1.10)) this gives a lower bound on the complexity. For
further discussions of computational aspects see [GK94].

1.2.5. Exploiting symmetries. Let S = (S(1), . . . , S(n)) be a sequence of point sets
S(i) ⊂ Rn and let G be a finite group, e.g. a subgroup of the symmetric group Sn. We
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say that S is G-symmetric if

(1.18) g . S = S ◦ g ∀g ∈ G
where the operation on the left means a permutation of the support sets S(i) while the
operation on the right means a permutation of the vector components in all points of all
S(i).

Furthermore we call a lifting µ = (µ1, . . . , µn) G-symmetric if

(1.19) g . Ŝ = Ŝ ◦ ĝ ∀g ∈ G
where ĝ acts like g on the first n coordinates and leaves the (n+ 1) coordinate fixed. If a
support set or a lifting is G-symmetric then it is as well G′-symmetric for every subgroup
G′ of G.

The problem of finding a symmetric lifting that is still generic in the sense of Propo-
sition 1.16 is not fully understood. We investigate now conditions on lifting values that
arise from the symmetries. For a point q ∈ S(i) we will define the point orbit of the tuple
(q, S(i)) as

Oq,i := {(q ◦ g, g(i)) | g ∈ G} .
A lifting µ for a G-symmetric support set is G-symmetric if and only if in each point orbit
Oq,i every point has the same lifting value. The symmetries of a support set and a lifting
function imply the following properties of the cell structure.

Proposition 1.17 (See [VG95]). Let S and µ be G-symmetric and let C be a cell of

the µ-induced subdivision of S such that Ĉ has inner normal (γ, 1). Then we have for all
g ∈ G that

D := g−1 . C ◦ g
is a cell of the µ-induced subdivision as well and D̂ has inner normal (γ ◦ g, 1).

For a cell C we define the cell orbit of C under G by

OC := {g−1 . C ◦ g | g ∈ G} .
Then the following statement holds which simplifies the calculation of mixed volumes for
symmetric Newton polytopes.

Proposition 1.18 (See [VG95]). Let S = (S(1), . . . , S(r)) and µ be G-symmetric such
that µ induces a fine mixed subdivision on S. Then

(1.20) MVn(conv(S(1)), d1; . . . ; conv(S(r)), dr) =
∑
OC

d1! · · · dr! ·#Oc · voln(C)

where C is a cell in the µ induced subdivision of type (k1, . . . , kr) that generates the orbit
OC.

1.3. Tropical Geometry

There are several approaches to tropical geometry and each has its advantages. Trop-
ical hypersurfaces can be defined as the image under a (non-archemedian) valuation map
of varieties over an algebraically closed field (see e.g. [SS04]), as the corner locus of
piecewise linear functions (see e.g. [Vig07]), as limits of amoebas (see e.g. [EKL06]) or
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Figure 1.10. The function f and its non-linear locus.

as polyhedral complexes that satisfy certain balancing conditions (see e.g. [Mik04]). A
comparison of these approaches in 2-dimensional space and a discussion of the difficulties
or chances the different viewpoints inherit is given in [Gat06] (see also [Mik06]). The
focus of this work is on the first two approaches since they are the most suitable for the
techniques employed here.

1.3.1. Tropical hypersurfaces as corner loci. Let Rtrop := (R ∪ {−∞},⊕,�)
denote the tropical semiring . The arithmetic operations of tropical addition ⊕ and tropical
multiplication � are

(1.21) x⊕ y = max{x, y} and x� y = x+ y .

Equivalently tropical addition can be defined as min{x, y} (e.g. [RGST05]) but results
in either preferred notation can easily be translated into each other. A tropical Laurent
polynomial f in n variables x1, . . . , xn is an expression of the form

(1.22) f =
⊕
α∈S(f)

cα � xα1
1 � · · · � xαn

n = max
α∈S(f)

(cα + α1x1 + · · ·+ αnxn)

with real numbers cα. The support set S(f) is always assumed to be a finite subset of Zn,
and its convex hull P(f) ⊂ Rn is called the Newton polytope of f . A tropical polynomial
f(x1, . . . , xn) defines a convex, piecewise linear function f : Rn → R and we define the
tropical hypersurface X(f) as the non-linear locus of f (see Figure 1.10). These are those
points x ∈ Rn such that maxα∈S(f)(cα + α1x1 + · · ·+ αnxn) is attained at least twice.

Example 1.19. Let f = 4⊕ 4.7�x⊕ 5� y⊕ 4.5�x� y. Figure 1.10 shows the function
f and its nonlinear locus.
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1.3.2. Tropical hypersurfaces via Puiseux series. A Puiseux series is a formal
power series

(1.23) g =
∑
β∈Q

cβt
β

in the variable t with coefficients in C and such that the subset of those β ∈ Q with
cβ 6= 0 is bounded below and has a finite set of denominators. The Puiseux series form an
algebraically closed field (see e.g. [Wal50]) which we denote here by K. For a non-zero
element g ∈ K the minimum of all β ∈ Q with cβ 6= 0 is called the order of g and is
denoted by ord(g). Note that the order defines a so called valuation 3 on K∗ := K \ {0},
i.e.

(1.24) ord(g1 + g2) ≥ min{ord(g1), ord(g2)} and ord(g1 · g2) = ord(g1) + ord(g2) .

For a polynomial h ∈ K[x1, . . . , xn] we denote by trop(h) the tropicalization of h which
is the tropical Laurent polynomial obtained from h by replacing the usual multiplication
and addition by their tropical counterparts and by replacing the coefficients g ∈ K of h
by the negative value of their orders − ord g . Namely we have:

h =
∑
α∈S(h)

gαx
α ⇒ trop(h) =

⊕
α∈S(h)

− ord(gα)� xα1
1 � · · · � xαn

n .

Furthermore we denote by XK(h) the subset of (K∗)n on which h vanishes and V denotes
the map

V : (K∗)n −→ Qn

(g1, . . . , gn) 7→ (− ord(g1), . . . ,− ord(gn)) .(1.25)

Proposition 1.20 (Kapranov). With the notation from above we have

X(trop(h)) ∩Qn = V(XK(h)) .

This implies that we could have equivalently defined tropical hypersurfaces as the
closure in Rn of the image under the valuation map of a codimension 1 variety defined in
(K∗)n. Note that the minus sign in the definition of the valuation map (1.25) resembles
our choice of “max” over “min” in (1.21).

Remark 1.21. Note that instead of the field K of Puiseux series we could have done this
construction using any field with a non-archemedian valuation, e.g. the p-adic numbers
(cf. [JSY07]).

1.3.3. Tropical varieties. The correspondence from Proposition 1.20 becomes more
complicated when we deal with intersections of hypersurfaces. Let I = 〈h1, . . . , hk〉 be
an ideal in K[x1, . . . , xn], then the tropical variety of I, denoted by XI , can be defined as
the closure in Rn of V(XK(I)) just like above. Unfortunately it is not guaranteed that
the intersection of the tropical hypersurfaces I := X(trop(h1))∩ · · · ∩X(trop(hk)) equals
XI , and even worse, there does not even need to exist an ideal J such that I = XJ .
Hence an intersection I of tropical varieties, which is called a tropical prevariety , does
not need to be a tropical variety itself. It has been shown however, that every ideal I in

3The term “valuation” is used in a different way in Chapter 3.
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P(f) X(f) P(g)
X(g)

P(f) + P(g) X(f) ∪ X(g)

Figure 1.11. Top: P(f) and P(g) with the privileged subdivision and the tropical curves
X(f) and X(g). (Here bold edges indicate higher multiplicities.) Bottom: P(f � g) with
the privileged subdivision and the tropical curve X(f � g). (The shaded regions are the
mixed cells of the privileged subdivision.)

K[x1, . . . , xn] has a finite set of generators h1, . . . , hr, called a tropical basis of I, such that
XI = X(trop(h1)) ∩ · · · ∩X(trop(hr)). Concerning the computation of tropical bases for
a given ideal we refer to [BJS+07,HT08].

1.3.4. Privileged subdivisions and duality. Any tropical hypersurface X(f) is
a pure polyhedral complex of codimension 1 in Rn which has bounded and unbounded
cells. The set of m-dimensional cells of a polyhedral complex X will be denoted by X(m).
For tropical polynomials f1, f2 we have P(f1 � f2) = P(f1) + P(f2) and X(f1 � f2) =
X(f1) ∪X(f2), see [Vig07, Lemma 1.2]

Example 1.22. Consider the two tropical polynomials

f = −62� x⊕ 97� x2 ⊕−73� y2 ⊕−4� x3 � y ⊕−83� x2 � y2 ⊕−10� y4

g = −10� x2 � y ⊕ 31� x3 � y ⊕−51� x� y3 ⊕ 77� y4 ⊕ 95� x2 � y3 ⊕ y5 .

Figure 1.11 shows their curves and their Newton polytopes as well as the Newton polytope
of the product f � g and the union X(f) ∪X(g).4

4All 2-dimensional pictures of tropical hypersurfaces were made with the tropical maple package of
N. Grigg: math.byu.edu/tropical/maple

math.byu.edu/tropical/maple
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The Newton polytope P(f) of a tropical polynomial f comes with a privileged subdivi-
sion Γ(f). Namely we lift the points α ∈ S(f) into Rn+1 using the coefficients cα as lifting

values. The set of those facets of P̂(f) := conv{(α, cα) |α ∈ S(f)} which have an inward
pointing normal with a negative last coordinate is called the upper hull . If we project
down this upper hull back to Rn by forgetting the last coordinate we get a subdivision
of P(f) (see Figure 1.11 for examples). On a set of k tropical polynomials f1, . . . , fk the
coefficients induce a privileged subdivision Γ(f1, . . . , fk) of P(f1) + · · ·+ P(fk) by project-

ing down the upper hull of P̂(f1) + · · ·+ P̂(fk). For a generic choice of coefficients in the
system f1, . . . , fk this subdivision will be mixed (cf. [HS95]).

Remark 1.23. This is of course similar to the construction of a mixed subdivision as
described in Paragraph 1.2.2. That we use here the upper hull of the lifted Minkowski
sum instead of the lower hull is due to our choice of “max” over “min” in the definition
of the tropical addition (1.21).

The subdivision Γ(f1, . . . , fk) and the union X(f1)∪ · · · ∪X(fk) of tropical hypersur-
faces are polyhedral complexes which are dual in the sense that there is a one-to-one corre-
spondence between their cells which reverses the inclusion relations (see [BB07,Mik04]).
Each cell C in Γ(f1, . . . , fk) corresponds to a cell A in X(f1) ∪ · · · ∪ X(fk) such that
dim(C) + dim(A) = n, C and A span orthogonal real affine spaces and A is unbounded
if and only if C lies on the boundary of P(f1) + · · ·+ P(fk). Furthermore we have that a
cell A of X(f1) ∪ · · · ∪X(fk) is in the intersection I = X(f1) ∩ · · · ∩X(fk) if and only if
the corresponding dual cell C in Γ(f1, . . . , fk) is mixed.

A cell A in I can be written as A =
⋂k
i=1Ai where Ai ∈ Xi. If we require that A lies

in the relative interior of each Ai then this representation is unique. The dual cell C of A
has then a unique decomposition into a Minkowski sum C = F1 + · · ·+ Fk where each Fi
is dual to Ai. We will always refer to this decomposition if not stated otherwise.

1.4. Bernstein’s Theorem

One of the most important tools in this work is Bernstein’s Theorem. This result
provides a method to study the solutions of systems of polynomial equations by discrete
geometric methods. We state here Bernstein’s original work and discuss some general-
izations. Furthermore a proof of Bernstein’s Theorem using Puiseux series is sketched
(cf. [HS95]).

1.4.1. The BKK bound. For a Laurent polynomial f =
∑

α∈S(f) cαx
α ∈ C[x1, . . . , xn]

the Newton polytope P(f) ⊂ Rk is the convex hull of the monomial exponent vectors, i.e.
P(f) = convS(f). Let C∗ := C \ {0}.
Proposition 1.24 (Bernstein’s Theorem [Ber75]). Given Laurent polynomials f1, . . . , fn
∈ C[x1, . . . , xn] with finitely many common zeroes in (C∗)n and let P(fi) denote the Newton
polytope of fi. Then the number of common zeros of fi = 0 in (C∗)n is bounded above by
the mixed volume MVn(P(f1), . . . ,P(fn)). Moreover for generic choices of coefficients in
the fi, the number of common solutions is exactly MVn(P(f1), . . . ,P(fn)).
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Remark 1.25. Here, and throughout this work generic is interpreted as follows. A subset
A of Cm is called Zariski open if there is an algebraic variety V , i.e. a solution set to a
system of algebraic equations, such that A = Cm \ V . We say that a statement is true
for a generic choice in Cm if it is true for a non-empty Zariski open subset of Cm. This
implies that the statement is true “almost everywhere” in a measure theoretic sense.

The statement can be formulated even more general. Fulton [Ful93] showed that the
cardinality of the common isolated zeros of the system fi = 0 (i = 1, . . . , n) in (C∗)n is
bounded by MVn(P(f1), . . . ,P(fn)), regardless of the dimension of the variety. Canny
and Rojas [CR91,Roj94] showed furthermore that equality holds if a certain subset of
the coefficients corresponding to the vertices of the P(fi) is generic.

On a first view the statement of Bernstein’s Theorem is very surprising. The possibility
to obtain algebraic information from a discrete geometric object might be unexpected. To
give an intuition for this correspondence and since Bernstein’s Theorem is crucial for our
work we sketch the proof for the case of generic coefficients. The focus is on describing
the method of toric deformation which provides a nice way to understand the interplay of
discrete geometry and algebra here. The proof presented is not Bernstein’s original proof
from [Ber75] but an independent version of Huber and Sturmfels [HS95].

Proof. Assume the system

(1.26) fi(x) =
∑

α∈S(fi)

cαx
α, i = 1, . . . , n

has finitely many common zeroes in (C∗)n and choose a generic lifting µ = (µ1, . . . , µn) in
the sense of Paragraph 1.2.2 to obtain a fine mixed subdivision of P(f1) + · · ·+ P(fn).

We perform a toric deformation of the system (1.26) by introducing a new complex
variable t and setting

(1.27) f̂i(x, t) =
∑

α∈S(fi)

cαx
αtµi(α), i = 1, . . . , n .

The roots of (1.27) are algebraic functions x(t) = (x1(t), . . . , xn(t)) in t (cf. [Wal50])
whose branches can be expressed as Puiseux series

(1.28) x(t) = x̄ · tv + higher-order terms in t

with v ∈ Qn and x̄ ∈ (C∗)n and where x̄ · tv is interpreted as (x̄1t
v1 , . . . , x̄nt

vn). The idea
is to insert this expression into (1.27) and study the terms of lowest order in t. We denote

by P̂ (v) and P (v) the face of P̂ := P̂(f1)+ · · ·+P̂(fn) on which (v, 1)T is minimized and its
projection to a cell of P(f1) + · · ·+ P(fn), respectively. Plugging (1.28) into (1.27) yields

(1.29)
( ∑
α∈P(fi)(v)

cαx̄
α
)

︸ ︷︷ ︸
=: initv fi

·t〈v,α〉+µi(α) + h.o.t.(t), i = 1, . . . , n

where P (v) = P(f1)(v)+· · ·+P(fn)(v) is the decomposition of the cell P (v) into its Minkowski
summands.
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Let (d1, . . . , dn) by the type of the cell P (v). Suppose one of the di equals 0, then the
equation initv fi = 0 has no solution x̄ in (C∗)n. Since the subdivision induced by µ was
assumed to be fine mixed, all di must be equal to 1. Hence the system (1.27) has branches
of the form (1.28) if and only if P (v) has type (1, . . . , 1).

So pick v with corresponding cell P (v) of type (1, . . . , 1), i.e. P (v) = P(f1)(v) + · · · +
P(fn)(v) where all P(fi)

(v) are edges. We claim that the binomial face system with respect
to v,

(1.30) initv fi = 0 i = 1, . . . , n ,

has voln(P (v)) solutions in (C∗)n. We sketch briefly how this can be shown.

Without loss of generality assume that each edge contains the origin such that the
binomial system (1.30) is of the form

(1.31) cβ1x
β1 = · · · = cβnx

βn = 1 .

Set B :=
(
β1 · · · βn

)
and compute the Smith normal form (see [DF04, Chapter 12])

U ·B · V =


k1 0 . . . 0

0 k2
...

...
. . . 0

0 . . . 0 kn


where U and V are invertible integer matrices with determinant 1 and ki ∈ Z>0.Now the
matrices U and V are used to change the coordinate system such that the system (1.31)
becomes

(1.32) c′1x
k1
1 = · · · = c′nx

kn
n = 1 .

This system has k1 · · · kn = det(B) = voln(P (v)) solutions in (C∗)n and this proves the
claim.

Together with the previous considerations this shows that (1.27) has∑
C mixed cell

of P(f1)+···+P(fn)

voln(C)

many solutions in (C∗)n and this equals MVn(P(f1), . . . ,P(fn)) by formula (1.12). �

Remark 1.26. The proof by Huber and Sturmfels that is sketched here contains the idea
for a construction of Puiseux series solutions x(t) to systems of the form

fi(x1, . . . , xn, t) =
∑

α∈S(fi)

cα · xα1
1 · · ·xαn

n · tαn+1 = 0, i = 1, . . . , n .

McDonald [McD95, McD02] gives a detailed description of this construction in even
more general cases. Note that the construction for the case n = 1 goes back to Newton
(cf. [Wal50]) which gave rise to the term “Newton polytope”.

The bound on the number of solutions of a polynomial system arising from Bernstein’s
Theorem is also often referred to as the BKK bound due to the work of Bernstein [Ber75],
Khovanskĭı [Kho77] and Kušnirenko [Kuš75, Kuš76]. The 2-dimensional case of this



1.4. BERNSTEIN’S THEOREM 39

statement was already known to Minding [Min03, English translation] in 1841. For
a description of the BKK bound in the context of toric varieties see [Dan78, Ful93,
GKZ94].

1.4.2. Bernstein vs. Bézout. The BKK bound generalizes the Bézout bound (cf.
[CLO05, Chapter 7]) and for sparse polynomial systems it is often significantly better.
We will demonstrate this in an example below. For a discussion of the BKK bound in
comparison with the Bézout bound and multihomogenous Bézout bounds see [MSW95].

Example 1.27. We want to determine the number of unit length eigenvectors in Cn of
an n × n matrix A = (aij) (with generic entries aij) using Bernstein’s Theorem. The
following system of n+ 1 equations in the variables (x1, . . . , xn, λ) describes the setting.

n∑
j=1

aijxj − λxi = 0 for i = 1, . . . , n(1.33)

n∑
i=1

x2
i − 1 = 0(1.34)

Since each polynomial has total degree 2, the Bézout bound on the number of solutions
is 2n+1. The Newton polytopes of (1.33) and (1.34) are

(1.35) Pi = conv {ξ1, . . . , ξn, ξi + ξn+1} and Pn+1 = conv {2ξ1, . . . 2ξn, 0}
where ξi denotes the i-th unit vector in Rn+1. Since each eigenspace intersects the unit
sphere in two points the system (1.33), (1.34) has 2n solutions and therefore we have by
Proposition 1.24 that MVn+1(P1, . . . , Pn+1) = 2n.

1.4.3. A bound on the number of solutions in Cn. There are various works
which generalize Bernstein’s results to count all common roots in the affine space Ck (see
e.g. [EV99, HS97, LW96, Roj99]). We state here the result of Li and Wang [LW96]
which is not the tightest bound in every case but which is the most suitable for our
purposes.

Proposition 1.28 (see [LW96]). For a polynomial system f1(x) = · · · = fn(x) = 0, the
quantity

MVn(conv(P(f1) ∪ 0), . . . , conv(P(fn) ∪ 0))

is an upper bound for the number of isolated solutions in Cn counting multiplicities.

1.4.4. Bernstein’s Second Theorem. Bernstein also gives an explicit algebraic
condition that characterizes when a choice of coefficients is generic. Let v be a non-zero
vector and let (P )v denote as before the face of a polytope P which is maximal with
respect to the direction v. For a given f =

∑
α∈S(f) cαx

α we set initv f =
∑

α cαx
α = 0 to

be the face equation with respect to v, where the sum is over all integer points α ∈ (P(f))v.

Proposition 1.29 (Bernstein’s Second Theorem [Ber75]). If for all v 6= 0, the face
system initv f1 = 0, . . . , initv fn = 0 has no solution in (C∗)n, then the mixed volume of
the Newton polytopes of the fi gives the exact number of common zeros in (C∗)n and all
solutions are isolated. Otherwise it is a strict upper bound.
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The system initv fi = 0, (i = 1, . . . , n) has a solution in (C∗)n only if none of the
polynomials initv fi is a monomial. Hence it is necessary for a direction v to be a witness
of the degeneracy that for each i, maxα∈P(fi)(v1α1+· · ·+vnαn) is attained at least twice. So
in the language of Section 1.3 this implies that v must be in a certain tropical prevariety,
namely

v ∈
n⋂
i=1

X (trop (fi)) .

It is furthermore interesting (see [Roj97]) that the BKK bound is a strict upper
bound at most on a codimension 1 subset of the coefficient space. Rojas and Canny
[CR91,Roj99] give explicit combinatorial criteria for a system of polynomials to be non
degenerate in the sense of Proposition 1.29 but we will not make further use of these.



CHAPTER 2

Techniques for Explicit Mixed Volume Computation

This chapter introduces some new techniques for explicit mixed volume computation.
The motivation for these results came from their application in the study of embedding
numbers of minimally rigid graphs that will be presented in Chapter 5.

The goal of the first section is to present a tool to decouple the mixed volume compu-
tation of larger systems with a special structure. Namely Lemma 2.6 gives a method to
compute the mixed volume of a large system in two smaller steps if some of the polytopes
are contained in a lower dimensional subspace.

The second section describes how to obtain explicit conditions on a set of lifting vectors
that ensure that a chosen cell appears in the induced mixed subdivision (see Lemma 2.9).
We break down this result to the 2-dimensional case (Corollary 2.10) to give a better
geometric intuition and carefully study the implications in an example.

2.1. Separation Lemma

Let P ⊂ Rn be a polytope and denote faces of P by FP . The outer normal cone of
FP , will be denoted as N(FP ) (see Paragraph 1.1.1). We call v generic with respect to P
and Q if there is no face FP of P and no face FQ of Q such that

v ∈ N(FP )−N(FQ) and dim(FP ) + dim(FQ) > n

where N(FP ) − N(FQ) := {w1 − w2 |w1 ∈ N(FP ), w2 ∈ N(FQ)} (see Remark 1.3). In
particular a generic v can not be a point on the boundary of N(FP )−N(FQ).

Proposition 2.1 (Betke [Bet92]). Let P,Q ⊂ Rn be polytopes and let v be generic with
respect to P and Q. Then

(2.1) voln(P +Q) =
n∑
d=0

∑
type(FP ,FQ)=(d,n−d)

v∈N(FP )−N(FQ)

vol′d(FP ) · vol′n−d(FQ) · voln(P)

where P is the parallelotope spanned by the unit cubes in aff(FP ) and aff(FQ).

We give a rough sketch of Betke’s proof here since his approach was of significant
importance for the work of Huber and Sturmfels [HS95] in which they obtain the methods
to compute the mixed volume described in Paragraph 1.2.2, which are crucial for this work.

Proof. Let µ1 and µ2 ∈ Rn be linear lifting functions for P and Q respectively such
that µ2−µ1 = v. Clearly the volumes of the cells in the mixed subdivision induced by µ1

and µ2 add up to voln(P + Q). Betke showed that the cells C = FP + FQ of this mixed
subdivision correspond to those tuples (FP , FQ) of type (d, n− d) for which v ∈ N(FP )−

41
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N(FQ). Since C is full-dimensional the faces FP and FQ lie in complementary subspaces
and hence the volume of C can be computed as vol′d(FP ) · vol′n−d(FQ) · voln(P). �

Identity (1.5) from Paragraph 1.2.1 states for the case of two polytopes P and Q:

(2.2) voln(λ1Q+ λ2P ) =
n∑
d=0

λd1λ
n−d
2

d! (n− d)!
MVn(Q, d;P, n− d) .

Comparing coefficients in (2.1) and (2.2) yields the following statement.

Proposition 2.2 (Betke [Bet92]). Let P,Q ⊂ Rn be polytopes and let v be generic with
respect to P and Q. Then

MVn(P, d;Q, n− d) = d! (n− d)!
∑

type(FP ,FQ)=(d,n−d)

v∈N(FP )−N(FQ)

vol′d(FP ) · vol′n−d(FQ) · voln(P)

where P is defined as above in Lemma 2.1.

With these results we can formulate and prove the first tool to decouple mixed volume
computation.

Lemma 2.3. Let P ⊂ Rm+k and Q ⊂ Rm ⊂ Rm+k be polytopes. Then

(2.3) MVm+k(Q,m;P, k) = MVm(Q,m) ·MVk(π(P ), k)

where π : Rm+k → Rk denotes the projection on the last k coordinates.

Proof. By Proposition 2.2 and equation (1.10) it remains to show that

(2.4)
∑

type(FQ,FP )=(m,k)

v∈N(FP )−N(FQ)

vol′m(FQ) · vol′k(FP ) · voln(P) = volm(Q) volk(π(P ))

for a v that is generic with respect to P and Q. Since Q is m-dimensional it follows that
FQ = Q and N(Q) = Rk. Since Q ⊂ Rm we have that vol′m(Q) · vol′k(FP ) · voln(P) is
simply volm(Q) · volk(π(FP )) where π is defined as above. Hence (2.4) is equivalent to

(2.5)
∑

FP k-dim. face of P

v∈N(FP )−Rk

volk(π(FP )) = volk(π(P )) .

So let v be generic, i.e. if v ∈ N(FP ) − Rk then FP is at most k-dimensional. Denote

by F (k)
v the set of k-dimensional faces FP of P that satisfy v ∈ N(FP ) − Rk. With this

notation (2.5) is equivalent to

(2.6)
⋃

F∈F(k)
v

π(F ) = π(P ) and dim (π(Fi) ∩ π(Fj)) < k for all Fi, Fj ∈ F (k)
v .

So pick a point r ∈ π(P ). Then S := π−1(r) ∩ P is a polytope in an m-dimensional
subspace which is parallel to Rm. The normal cone of a vertex of S is of the form N(F )+Rk

where F is a face of P with dim(F ) ≤ k. v lies in exactly one of these normal cones since
the projection of the normal fan of S to Rm is a complete fan. We denote by F ∗ a face
of P such that π−1(r) ∩ F ∗ is the vertex of S for which v ∈ N(F ∗) + Rk. Then either F ∗
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P

π(P )

Q

P +Q

Figure 2.1. The polytopes P , Q and P +Q from Example 2.4

is k-dimensional and hence F ∗ ∈ F (k)
v or F ∗ is the proper face of some element of F (k)

v .

In either case we have r ∈ π(F (k)
v ). This shows the first statement in (2.6). Figure 2.2

depicts these ideas fro the polytopes from Example 2.4.

Assume now that dim (π(Fi) ∩ π(Fj)) ≥ k for some Fi, Fj ∈ F (k)
v . Then we can choose

a point r in this intersection which lies in the relative interior of both π(Fi) and π(Fj).
S := π−1(r)∩ P is again an m-dimensional polytope which is parallel to Rm. Since π(Fi)
and π(Fj) are k-dimensional, π−1(r)∩Fi and π−1(r)∩Fj are vertices of S. These vertices
are also distinct since r was chosen to lie in the relative interior of the projections π(Fi)
and π(Fj). But as seen above v lies in only one of the normal cones of the vertices of S

and this is a contradiction to Fi, Fj ∈ F (k)
v . �

Example 2.4. Let P := conv
{

(1, 1, 0)T , (2, 0, 2)T , (0, 0, 1)T , (0, 2, 3)T
}

, Q :=
{

(0, 0, 0)T ,

(3, 0, 0)T , (0, 2, 0)T
}

. See Figure 2.1 where P , Q and their Minkowski sum P + Q is
depicted. The mixed volume MV3(Q, 2;P, 1) equals 2 ·vol2(Q) ·vol1(π(P )) = 2 ·3 ·3 = 18
according to Lemma 2.3.

S := π−1(r) ∩ Pr

v

F (1)
v

Figure 2.2. Illustration of some notations of the proof to Lemma 2.3 using the polytopes
from Example 2.4

Remark 2.5. Lemma 2.3 can also be obtained as a special case of [Ewa96, Chapter IV,
Lemma 4.9] where essentially different methods are used.
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Exploiting the properties (1.8) and (1.9) of mixed volumes allows now to expand the
statement of Lemma 2.3 to the case where all polytopes are different.

Lemma 2.6 (Separation Lemma). Let P1, . . . , Pk be polytopes in Rm+k and Q1, . . . , Qm

be polytopes in Rm ⊂ Rm+k . Then

(2.7) MVm+k(Q1, . . . , Qm, P1, . . . , Pk) = MVm(Q1, . . . , Qm) ·MVk(π(P1), . . . , π(Pk))

where π : Rm+k → Rk denotes the projection on the last k coordinates.

Proof. We show that both sides of the desired equation define a symmetric multi-
linear function and then use combinatorial identities for symmetric multilinear functions
and Lemma 2.3 to show the full result.

Let Pm (resp. Pm+k) be the set of all m-dimensional (resp. (m + k)-dimensional)
polytopes and define two functions g1 and g2 on (Pm)m × (Pm+k)k via

g1(Q1, . . . , Qm, P1, . . . , Pk) := MVm+k(Q1, . . . , Qm, P1, . . . , Pk)

g2(Q1, . . . , Qm, P1, . . . , Pk) := MVm(Q1, . . . , Qm) ·MVk(π(P1), . . . , π(Pk)) .

Due to the properties of mixed volumes (see Paragraph 1.2) it is easy to see that g1 and
g2 are invariant under changing the order of the Qi and under changing the order of the
Pj. Furthermore it follows from (1.9) that both functions are linear in each argument.

Hence, for fixed P1, . . . , Pk the induced mappings

g̃
(P1,...,Pk)
i (Q1, . . . , Qm) := gi(Q1, . . . , Qm, P1, . . . , Pk) (i = 1, 2)

are symmetric and multilinear, and analogously, for fixed Q, the mappings

ḡ
(Q)
i (P1, . . . , Pk) := gi(Q, . . . , Q, P1, . . . , Pk) (i = 1, 2)

are symmetric and multilinear. For any semigroups A,B and any symmetric multilinear
function f : An → B, it follows from an inclusion-exclusion argument (see [Ewa96,
Theorem 3.7]) that

(2.8) f(a1, . . . , an) =
1

n!

∑
1≤i1<···<iq≤n

(−1)n−qf(ai1 + · · ·+ aiq , . . . , ai1 + · · ·+ aiq) .

Hence we have for i = 1, 2 that

gi(Q1, . . . , Qm, P1, . . . , Pk)

= g̃
(P1,...,Pk)
i (Q1, . . . , Qm)

=
1

m!

∑
1≤i1<···<iq≤m

(−1)m−q g̃
(P1,...,Pk)
i (Qi1 + · · ·+Qiq , . . . , Qi1 + · · ·+Qiq)

=
1

m!

∑
1≤i1<···<iq≤m

(−1)m−q ḡ
(Qi1

+···+Qiq )

i (P1, . . . , Pk) .

Since we can expand ḡ
(Qi1

+···+Qiq )

i (P1, . . . , Pk) by using (2.8) as well, we see that both
functions g1 and g2 are fully determined by their images of tuples of polytopes where
Q1 = · · · = Qm = Q and P1 = · · · = Pk = P . Hence the statement reduces to Lemma 2.3.

�
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In the special case where all polytopes Qi, Pj are lattice polytopes, i.e. their vertices
have integer coordinates, Lemma 2.6 can be shown independently of the results of this
section by using Bernstein’s Theorem (see Section 1.4).

Proof. Let f1 = · · · = fm = g1 = · · · = gk = 0 be a polynomial system of equations
with Newton polytopes Q1, . . . , Qm, P1, . . . , Pk and generic coefficients. We will count the
number of solutions in (C∗)m+k to this system in two ways using Bernstein’s Theorem. On
the one hand MVm+k(Q1, . . . , Qm, P1, . . . , Pk) gives this quantity according to Bernstein’s
Theorem. On the other hand, since Q1, . . . , Qm ⊂ Rm, the m-dimensional polynomial
system f1 = · · · = fm = 0 has MVm(Q1, . . . , Qm) solutions in (C∗)m. Each solution
to this smaller system can be plugged into the remaining polynomials gi to obtain the
system g∗1 = · · · = g∗k = 0 having Newton polytopes π(P1), . . . , π(Pk). Each of these new
systems has MVk(π(P1), . . . , π(Pk)) solutions in (C∗)k. Hence the number of solutions to
f1 = · · · = fm = g1 = · · · = gk = 0 is MVm(Q1, . . . , Qm) ·MVk(π(P1), . . . , π(Pk)) which
proves the desired identity. �

Corollary 2.7. Let K1, . . . , Kn be convex bodies in Rn such that the first m of them lie
in an m-dimensional subspace V of Rn. Then

MVn(K1, . . . , Kn) = MV′m(K1, . . . , Km) ·MV′n−m(πV̄ (Km+1), . . . , πV̄ (Kn))

where πV̄ denotes the projection to the orthogonal complement V̄ of V respectively.

Remark 2.8. This result was already mentioned in [BZ88] in which the authors refer
to [Fed78] (in Russian) for the proof which unfortunately we were unable to obtain and
therefore unable to check.

Proof. Note first that the mixed volume does not change if all arguments are mapped
under the same volume preserving function. So it suffices that m arguments lie in an m
dimensional subspace of Rn. To generalize Lemma 2.6 to the case where the arguments
are general convex bodies one can use the fact that for every convex body K there exists
a sequence of polytopes which converges to K (see Proposition 1.6) and that the mixed
volume is continuous with respect to the Hausdorff metric (see Remark 1.10). �

2.2. Lifting Lemma

In this section we take a closer look at the idea of Emiris and Canny [EC95] as seen in
Paragraph 1.2.4 to use linear programming and the formula (1.12) to compute the mixed
volume.1 This section’s main result is a technical lemma that describes explicit conditions
on linear lifting vectors to induce a certain cell as a mixed cell in a subdivision. To make
the statement more comprehensible we formulate it in the 2-dimensional case and study
it in a longer example.

Lemma 2.9. Given polytopes P1, . . . , Pk ⊂ Rk and lifting vectors µ1, . . . , µk ∈ Rk
≥0. De-

note the vertices of Pi by v
(i)
1 , . . . , v

(i)
ri and choose one edge ei = [v

(i)
ti , v

(i)
li

] from each Pi.
Then C := e1 + · · ·+ ek is a mixed cell of the mixed subdivision induced by the liftings µi
if and only if

1As pointed out by the second referee, some ideas of this section aprallel results by Emiris and
Verschelde [EV99] and Verschelde and Gatermann [VGC96].
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i) The edge matrix E := Vb − Va is non-singular (where Va := (v
(1)
t1 , . . . , v

(k)
tk

) and

Vb := (v
(1)
l1
, . . . , v

(k)
lk

)) and

ii) For all polytopes Pi and all vertices v
(i)
s of Pi which are not in ei we have:

(2.9) (〈µ1 − µi, ~e1〉, . . . , 〈µk − µi, ~ek〉) · E−1 ·
(
v

(i)
ti − v

(i)
s

)
≥ 0

where ~ei = v
(i)
li
− v(i)

ti .

Before beginning with the proof we start with some auxiliary considerations about
how to apply linear programming here. Recall from Paragraph 1.2.4 that the test whether
ê1 + · · · + êk lies on the lower envelope of P̂1 + · · · + P̂k can be formulated as the linear

program (1.17). Setting xT = (λ
(1)
1 , . . . , λ

(1)
r1 , . . . . . . , λ

(k)
1 , . . . , λ

(k)
rk , s) ∈ Rr1+···+rk+1, the

linear program (1.17) can be written in standard matrix form max{cTx : Ax = b, x ≥ 0}
with

A =



v
(1)
1 . . . v

(1)
r1 . . . . . . v

(k)
1 . . . v

(k)
rk 0k

〈µ1, v
(1)
1 〉 . . . 〈µ1, v

(1)
r1 〉 . . . . . . 〈µk, v(k)

1 〉 . . . 〈µk, v(k)
rk 〉 1

1Tr1 0Tr2 . . . 0Trk 0

0Tr1 1Tr2 . . . 0Trk 0
...

. . .
...

...

0Tr1 0Tr2 . . . 1Trk 0


,

bT = (m̂,1Tk ) ∈ R2k+1 ,

cT = (0Tr1+···+rk , 1) ∈ Rr1+···+rk+1 .

Here 0k and 1k denote the all-0-vector and the all-1-vector in Rk, respectively. In this

notation the point m̂ from (1.16) corresponds to x̄ = (λ
(1)
1 , . . . , λ

(k)
rk , s) where s = 0 and

λ
(i)
j = 1

2
if the edge êi contains the vertex v̂

(i)
j and λ

(i)
j = 0 otherwise.

Assume a feasible vertex x̄ ≥ 0 of the linear program (1.17) is given. For a subset
S ⊂ {1, . . . , r1 + · · ·+ rk + 1} let AS be the submatrix of A that consists of the columns
with indices in S. If v is a vector, then vS is understood as the vector where all entries
with indices which are not in S are deleted. Now let B be a (not necessarily unique)
choice of 2k + 1 indices such that A−1

B · b = x̄B and denote by N those indices which are
not in B. By linear programming duality (see, e.g. [GLS93]) x̄ is optimal if and only if

(2.10) cTN − cTB · A−1
B · AN ≤ 0 ,

where the equation is understood componentwise, i.e. each component of the vector on
the left hand side is non-positive.

To prove Lemma 2.9 we assume that x̄ is optimal and deduce conditions on the lifting
vectors µi by using the inequality (2.10).

Proof of Lemma 2.9. Note that C is full-dimensional if and only if E is non-singular. In
the following only this full-dimensional case will be considered. To simplify the notation
write µ(V ) to denote (〈µ1, v1〉, . . . , 〈µk, vk〉).
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We know that C is a mixed cell if and only if the following x̄ is the optimal solution
to the linear program defined above:

x̄ = (λ
(1)
1 , . . . , λ(k)

rk
, 0) where λ

(i)
j =

{
1
2
, j ∈ {ti, li}

0, else
.

The submatrices of A corresponding to x̄ are

AB =

 Va Vb 0k
µ(Va) µ(Vb) 1
Idk Idk 0k

 and AN =

 v
(i)
s

〈µi, v(i)
s 〉

ξi


1≤i≤k
1≤s≤ri
s 6=ti,li

where ξi denotes the ith unit vector. Since

A−1
B =

 −E−1 0k E−1 · Vb
E−1 0k −E−1 · Va

−µ(E) · E−1 1 µ(E) · E−1 · Va − µ(Va)


and cN = (0, . . . , 0) the criterion (2.10) implies that x̄ is optimal if and only if

(0, . . . , 0, 1) · A−1
B · AN ≥ 0 (componentwise) .

But the ith component of the vector on the left can be explicitly computed as

−
(
µ(E) · E−1

)
· v(i)

s + 〈µr, v(i)
s 〉+

(
µ(E) · E−1 · Vb − µ(Vb)

)
· ξi

which equals the left hand side of (2.9) since 〈µi, v(i)
s 〉 = (〈µi, ~e1〉, . . . , 〈µi, ~en〉) · E−1 · v(i)

s

and µ(Vb) · ξi = 〈µi, v(i)
li
〉. 2

Note that (2.9) is linear in the µj. Hence, for a given a choice of edges this condition
defines a cone of lifting vectors which induce a mixed subdivision that contains our chosen
cell as a mixed cell.

To get a better comprehension of Lemma 2.9 we consider the case n = 2. So let P

and Q be 2-dimensional polytopes and let eP = v
(P )
2 − v(P )

1 and eQ = v
(Q)
2 − v(Q)

1 be the
edges that sum up to the cell C. The first condition of Lemma 2.9 states that the edge
matrix E = (eP , eQ) has to be non-singular which is the case if and only if eP and eQ are
not parallel.

Then condition (2.9) states

(0, 〈µ2 − µ1, eQ〉) · E−1 · (v(P )
1 − v(P )) ≥ 0(2.11)

(〈µ1 − µ2, eP 〉, 0) · E−1 · (v(Q)
1 − v(Q)) ≥ 0(2.12)
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eP v
(P )
1

v
(P )
2

eP ·
(

0 1
−1 0

)

v(P )

P

Figure 2.3

for all vertices v(P ) of P and v(Q) of Q. In this case the matrix E−1 = (eP , eQ)−1 can be
explicitly described as

E−1 =
1

eTP · ( 0 1
−1 0 ) · eQ

 〈eQ,
(

0
1

)
〉 〈eQ,

(
−1
0

)
〉

〈eP ,
(

0
−1

)
〉 〈eP ,

(
1
0

)
〉



=
1

eTP · ( 0 1
−1 0 ) · eQ

−e
T
Q ·
(

0 1
−1 0

)
eTP ·

(
0 1
−1 0

)
 .(2.13)

Note that eTP ·
(

0 1
−1 0

)
is an outer or inner normal to P depending on the orientation

of the edge eP . Hence eTP ·
(

0 1
−1 0

)
· (v(P )

1 − v(P )) keeps the same sign when v(P ) runs

over all vertices of P except those in the edge eP (see Figure 2.3). Exactly the same
argumentation works for Q such that we can define

αP := sign

e
T
P ·
(

0 1
−1 0

)
· (v(P )

1 − v(P ))

eTP ·
(

0 1
−1 0

)
· eQ



αQ := sign

e
T
Q ·
(

0 1
−1 0

)
· (v(Q)

1 − v(Q))

eTP ·
(

0 1
−1 0

)
· eQ

 .

Hence using (2.13) in (2.11) and (2.12) shows that the following holds.
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C5

C6

C1

C2

C3

C4

Figure 2.4. A mixed subdivision Γ of P +Q.

Corollary 2.10. Let P,Q ⊂ R2 be polytopes and µ1, µ2 ∈ R2 be the corresponding lifting
vectors. If eP and eQ are edges of P and Q respectively which are not parallel, then
C = eP + eQ is a mixed cell of the subdivision induced by µ1, µ2 if an only if

〈µ2 − µ1, eQ〉 · αP ≥ 0

and 〈µ2 − µ1, eP 〉 · αQ ≥ 0

where αP and αQ are defined as above.

Example 2.11. We demonstrate the previous results in a 2-dimensional example. Take
once more the polytopes P and Q from Example 1.4. For the convenience of the reader
we repeat their definition here.

P = conv

{(
0
0

)
,

(
3
0

)
,

(
0
2

)
,

(
3
2

)}
Q = conv

{(
1
0

)
,

(
0
3
2

)
,

(
3
3

)}
The Minkowski sum of P and Q is depicted in Figure 1.4 and Figure 2.4 shows one of

the possible coherent mixed subdivisions.

The mixed cells C1, . . . , C4 of the mixed subdivision Γ shown in Figure 2.4 will now
be studied using Lemma 2.9. Fixing a cell Ci Lemma 2.9 describes a cone in R2 that
contains the difference µ2−µ1 for all linear lifting functions µ1, µ2 that induce a subdivision
containing Ci.

Denote the vertices of P by v1, . . . , v4 and the vertices of Q by w1, w2, w3 respec-
tively. Then the cell C1 is the sum of the edges {v3, v4} and {w2, w3}. Plugging these

values into Lemma 2.9 we obtain two conditions, namely

〈(
2
1

)
, µ2 − µ1

〉
≥ 0 and〈(

1
0

)
, µ2 − µ1

〉
≥ 0. Similarly C2 = {v2, v4} + {w1, w2} leads to the cone described

by the vectors

(
2
−3

)
and

(
0
1

)
, C3 = {v2, v4}+{w1, w3} yields

(
2
3

)
and

(
0
1

)
and finally

C4 = {v1, v2} + {w1, w2} results in

(
−2
3

)
and

(
1
0

)
. The cells and their corresponding

cones are shown in Figure 2.5.

We can also answer the question which linear liftings µ1, µ2 induce the whole subdi-
vision Γ. Since all cells C1, . . . , C4 have to be induced it is necessary that µ2 − µ1 lies in
the intersection of all four cones corresponding to C1, . . . , C4.
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Figure 2.5. The mixed cells C1, . . . , C4 of the subdivision Γ with their corresponding
lifting cones.

The same process can be applied to all coherent mixed subdivisions of P + Q which
leads to a fan of mixed subdivisions depicted in Figure 2.6.

Figure 2.6. The fan of coherent mixed subdivisions of P +Q.



CHAPTER 3

Mixed Ehrhart Theory

The motivation for the work in this chapter came from the desire to prove a theorem
that compares the toric and tropical genus of an intersection curve (see Section 4.4). Due
to the formula for the tropical genus (Theorem 4.15) and Khovanskii’s formula for the
toric genus (Proposition 4.19) this boils down to show that a certain alternating sum of
lattice points of polytopes equals an expression in mixed volumes of these polytopes. We
are able to show this result and even generalize it by studying a mixed version of the
Ehrhart polynomial EP (t).

This chapter begins with a short introduction to classical Ehrhart theory and the
theory of valuations (see the survey articles [GW93,MS83,McM93], the books [Bar08,
BR07,EGH89] or the collection [BBC+08] for more details). With these tools we define
and study the mixed Ehrhart polynomial MEP1,...,Pk

(t) which turns out to have a much
simpler structure then expected. In particular many coefficients vanish and the coefficients
of highest order allow an interpretation in terms of mixed volumes. As corollaries we get
formulas that compare the mixed volume to an alternating sum of integer points in a
set of polytopes. In each case we provide a graphic example to strengthen the geometric
intuition. To conclude the multivariate case is discussed briefly.

3.1. Ehrhart Theory and Valuations

3.1.1. Classical results. Let Λ ⊂ Rn be a lattice and let L(P ) and Lo(P ) denote the
number of lattice points and the number of interior lattice points of a lattice polytope P ,
respectively. First, the case Λ = Zn is treated.

Ehrhart showed (see [Bar08, Ehr67]) that the number of integer points in t · P for
t ∈ N is a polynomial in t of degree n, i.e.

(3.1) L(t · P ) = EP (t) for some polynomial EP (x) =
n∑
i=0

ei(P ) · xi .

The polynomial EP (t) is called the Ehrhart polynomial of P and its coefficients ei(P ) are
called Ehrhart coefficients. The following identities hold for the coefficients:

(3.2) en(P ) = voln(P ), en−1(P ) =
1

2

∑
F facet of P

vol′n−1(F ), e0(P ) = 1

For the remaining coefficients we do not have explicit expressions but the results in
[McM93] show that the coefficient ek(P ) can be expressed in terms of the faces of P .

51
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P

2 · P

3 · P

Figure 3.1. Integer points in P , 2 · P and 3 · P .

Concerning the number of interior integer points, similar results can be stated using
the reciprocity law (see [Ehr67,Sta80])

(3.3) Lo(t · P ) = (−1)nEP (−t) = (−1)n
n∑
i=0

(−1)iei(P ) · ti .

Note furthermore that it is equivalent to ask for the number of Zn-points in t · P or to
ask for the number of 1

t
Zn-points in P .

Example 3.1. Let P be the unit cube in Rn. Then L(t · P ) = (t + 1)n and Lo(t · P ) =
(t− 1)n. See Figure 3.1 for a 2-dimensional example.

3.1.2. Valuations. Suppose K1, K2 are convex bodies in Rn. ϕ is called a valuation1

if

(3.4) ϕ(K1 ∪K2) + ϕ(K1 ∩K2) = ϕ(K1) + ϕ(K2)

holds whenever K1 ∪K2 is convex. If it holds furthermore that for any convex body K

ϕ(t ·K) = trϕ(K) ,

then the valuation ϕ will be called homogeneous of degree r. Let ∆ be an additive subgroup
of Rn such that aff(∆) = Rn. Most of the forthcoming results just use the special case
∆ = Zn, however a more general treatment might be of independent interest to the reader.
ϕ is called a ∆-valuation if (3.4) holds for any elements of Pn(∆) and ϕ(P +a) = ϕ(P ) for
all a ∈ ∆. Furthermore, in the case that the additive subgroup is a lattice Λ, McMullen
[McM09] showed that Λ-valuations satisfy the inclusion exclusion principle.

Example 3.2. (1) The n-dimensional volume voln is a valuation which is homoge-
neous of degree n (see e.g. [McM93]).

1Note that the term “valuation” is used differently here then in Section 1.3.
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(2) For any 1 ≤ r ≤ n and any convex bodies K1, . . . , Kn−r the function

MV(r)
n : Kn → R

K 7→ MVn(K, . . . ,K︸ ︷︷ ︸
r−times

, K1, . . . , Kn−r)

is a valuation which is homogeneous of degree r (see e.g. [McM77]).
(3) For ∆ = Zn the number of lattice points L(P ) and the number of interior lattice

points Lo(P ) is a Zn-valuation (see e.g. [McM93]).
(4) For ∆ = Zn the Ehrhart coefficients er(P ) are Zn-valuations which are homoge-

neous of degree r (see [BK85,McM77]).

Many of the previous results can now be formulated more general with this new lan-
guage (see [McM77]). For example Ehrhart’s result (3.1) holds for any ∆-valuation ϕ.
Namely for P ∈ P(∆) we have that ϕ(tP ) =

∑n
i=0 ϕi(P ) ti is a polynomial in t of degree

at most n, whose coefficients ϕi are homogeneous ∆-valuations of degree i.

It is even possible to generalize Minkowski’s Proposition 1.7 from Section 1.2. Namely
for a valuation ϕ which is continuous with respect to the Hausdorff metric (see Para-
graph 1.1.5) and monotone with respect to inclusion, ϕ(λ1K1+· · ·+λrKr) with λ1, . . . , λr ≥
0 is a polynomial in the λi which is homogeneous of degree n.

In the following section it is of significant importance that we can decompose a
homogeneous ∆-valuation. The key ingredient is the following lemma by McMullen
(see [McM77]).

Proposition 3.3 (McMullen [McM77]). Let ϕr be a homogeneous ∆-valuation of de-
gree r and let t1, . . . , tk be integers. Then for any polytopes P1, . . . , Pk ∈ P(∆) we have

ϕr(t1 · P1 + · · ·+ tk · Pk) =
∑
r1,..,rk

(
r

r1 . . . rk

)
ϕ′r(P1, r1; . . . ;Pk, rk) t

r1
1 · · · t

rk
k .

The coefficients ϕ′r(P1, r1; . . . ;Pk, rk) are called mixed ∆-valuations . One can show
that

ϕr(P ) = ϕ′r(P, r) = ϕ′r(P, . . . , P︸ ︷︷ ︸
r−times

)

and that ϕ′r is independent of Pi if ri = 0 but we will not need this or any other explicit
expression of these coefficients.

3.2. The mixed Ehrhart polynomial

For lattice polytopes P1, . . . , Pk ⊂ Rn 2 in the integer lattice Zn and t ∈ N consider
the following version of a mixed Ehrhart polynomial 3 in one variable t:

MEP1,...,Pk
(t) :=

∑
∅6=J⊂[k]

(−1)k−|J | L
(
t ·
∑
j∈J

Pj
)
,

2k and n are independent throughout this chapter.
3We chose to call this the mixed Ehrhart polynomial since it resembles the way that mixed volumes

are obtained from volumes, see (1.4). The mixed Ehrhart polynomial equals the Ehrhart polynomial for
the case k = 1, but note that this is not true though in the case that k > 1 and where all Pi coincide.
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where we used the notation [k] := {1, . . . , k}. This alternating sum of Ehrhart polynomials
turns out to have a very simple structure as will be seen below. Namely all coefficients of
tr for 1 ≤ r < k vanish and in the case k = n and k = n − 1 the remaining coefficients
have a nice interpretation in terms of mixed volumes.

Clearly MEP1,...,Pk
(t) is a polynomial in t of degree at most n since it is the alternating

sum of Ehrhart polynomials:

MEP1,...,Pk
(t) =

∑
∅6=J⊂[k]

(−1)k−|J | EP
J Pj

(t)

=
n∑
r=0

tr

 ∑
∅6=J⊂[k]

(−1)k−|J | er(
∑

J Pj)

 .

We denote the coefficients of this polynomial by mer(P1, . . . , Pk).

If we have to consider the alternating sum of numbers of interior integer points Lo

instead of just integer points L, the Ehrhart reciprocity (3.3) allows to translate each
result. Namely we have that

(3.5)
∑
∅6=J⊂[k]

(−1)k−|J | Lo(t ·
∑
j∈J

Pj) =
n∑
r=0

tr (−1)n+r mer(P1, . . . , Pk) .

3.2.1. Coefficients of low order. Though the main focus of this work is on the
case ∆ = Zn, we state the first result for an arbitrary additive subgroup ∆ of Rn since it
might be of independent interest in other contexts.

Lemma 3.4. For any polytopes P1, . . . , Pk ∈ Pn(∆) and any ∆-valuation ϕr which is
homogeneous of degree r < k we have that∑

∅6=J⊂[k]

(−1)k−|J |ϕr(
∑
J

Pj) = 0 .

Remark 3.5. In particular this implies that mer(P1, . . . , Pk) = 0 for 1 ≤ r < k.

Proof. By McMullen’s result on homogeneous valuations (see Proposition 3.3) we
obtain∑
∅6=J⊂[k]

(−1)k−|J |ϕr(
∑
J

Pj) =
∑
∅6=J⊂[k]

(−1)k−|J |
∑

r1,...,r|J|

(
r

r1 . . . r|J |

)
ϕ′r(Pj1 , r1; . . . ;Pj|J| , r|J |) .

Here the ϕ′r(Pj1 , r1; . . . ;Pj|J| , r|J |) are mixed valuations which we do not need to state more
explicitly. We write the right hand side of the previous equation slightly different as

(3.6) (−1)k
∑
∅6=J⊂[k]

(−1)|J |
∑

s1,...,sk≥0P
si=r

si=0 if i∈[k]\J

(
r

s1 . . . sn−1

)
ϕ′r(P1, s1; . . . ;Pk, sk) .

Now fix s1, . . . , sk ≥ 0 and ask for which sets J does ϕ′r(P1, s1; . . . ;Pk, sk) appear in the in-
ner sum of (3.6). Denote by Js the set of indices i for which si 6= 0 then ϕ′r(P1, s1; . . . ;Pk, sk)
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appears whenever J ⊃ Js. Whenever this term appears it has the same multinomial co-
efficient but possibly different sign depending on the number of elements in J .

Let αs be the number of elements in [k] which are not in Js. Then we can write

(3.7)
∑
∅6=J⊂[k]

(−1)k−|J |ϕr(
∑
J

Pj) = (−1)k
∑

s1,..,sk≥0P
si=r

A(s) · ϕ′r(P1, s1; . . . ;Pk, sk)

where

A(s) = (−1)|Js|
(

r

s1 . . . sk

) αs∑
i=0

(−1)i
(
αs
i

)
.

Now
∑αs

i=0(−1)i
(
αs

i

)
equals 0 if αs > 0 and equals 1 if αs = 0. Since r < k the case αs = 0

can not occur and hence (3.7) vanishes for 1 ≤ r < k. �

Consider now again the specific case of Ehrhart coefficients and not the case of a
general homogeneous valuation.

Lemma 3.6. The absolute coefficient of MEP1,...,Pk
(t) equals (−1)k+1.

Proof. By (3.2) it is known that e0(P ) = 1 for any polytope P . Hence

me0(P1, . . . , Pk) =
∑
∅6=J⊂[k]

(−1)k−|J | · e0

(∑
j∈J

Pj
)

= (−1)k
∑
∅6=J⊂[k]

(−1)|J | = (−1)k+1 .

�

3.2.2. Leading coefficients. With the specific identities for Ehrhart coefficients
(3.2) and some knowledge about mixed volumes it is possible to determine the two leading
coefficients of MEP1,...,Pk

(t) by using a similar combinatorial methods as in the proof of
Lemma 3.4.

Lemma 3.7. The leading coefficient of the mixed Ehrhart polynomial MEP1,...,Pk
(t) equals

men(P1, . . . , Pk) =
∑

s1+···+sk=n
si≥1

MVn(P1, s1; . . . , Pk, sk)

s1! · · · sk!
.

Proof. Considering en(P ), (3.2) states that the coefficient of tn in the Ehrhart poly-
nomial equals voln(P ). Hence by definition

(3.8) men(P1, . . . , Pk) = (−1)k
∑

1≤i1<···<iu≤k

(−1)u voln(Pi1 + · · ·+ Piu) .

Using identity (1.5) from Section 1.2 shows

voln(Pi1 + · · ·+ Piu) =
∑

j1+···+ju=n
js≥0

1

j1! · · · ju!
MVn(Pi1 , j1; . . . ;Piu , ju) ;
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thus the right hand side of (3.8) can be written as

(−1)k
∑

1≤i1<···<iu≤k

(−1)u
∑

j1+···+ju=n
js≥0

1

j1! · · · ju!
MVn(Pi1 , j1; . . . ;Piu , ju)

= (−1)k
∑
∅6=J⊂[k]

(−1)|J |
∑

si≥0,
P
si=n

si=0 if i∈[k]\J

MVn(P1, s1; . . . ;Pk, sk)

s1! · · · sk!
(3.9)

With the same notation Js and αs as in the proof of Lemma 3.4 we see that MVn(P1, s1;
. . . ;Pk, sk) appears in the inner sum of (3.9) whenever Js ⊂ J . Using this in (3.9) we get

(3.10) men(P1, . . . , Pk) = (−1)k
∑

si≥0,
P
si=n

A′(s) ·MVn(P1, s1; . . . ;Pk, sk)

where A′(s) = (−1)|Js|

s1!···sk!

∑αs

i=0(−1)i
(
αs

i

)
. As seen before A′(s) = 0 for αs 6= 0. Hence only

terms with αs = 0 (i.e. Js = [k]) remain in which case
∑αs

i=0(−1)i
(
αs

i

)
= 1 and we obtain

men(P1, . . . , Pk) = (−1)k
∑

si≥1,
P
si=n

(−1)k
MVn(P1, s1; . . . ;Pk, sk)

s1! · · · sk!
.

�

Lemma 3.8. The coefficient of tn−1 in MEP1,...,Pk
(t) equals

men−1(P1, . . . , Pk) =
1

2

∑
v∈Sn

∑
si≥1

s1+···+sk=n−1

MV′n−1((P1)v, s1; . . . ; (Pk)
v, sk)

s1! · · · sk!
.

Proof. The coefficient of tn−1 can be computed using the same combinatorial trick
as in the proof of Lemma 3.7. The only difference is that we start here with the identity
en−1(P ) = 1

2

∑
F facet of P vol′n−1(F ) from (3.2).

men−1(P1, . . . , Pk) = (−1)k
∑

1≤i1<···<iu≤k

(−1)u
1

2

∑
F facet of
Pi1

+···+Piu

vol′n−1(F )

= (−1)k
∑

1≤i1<···<iu≤k

(−1)u
1

2

∑
v∈Sn

vol′n−1 ((Pi1 + · · ·+ Piu)v) ,(3.11)

where the last equation holds since vol′n−1 ((Pi1 + · · ·+ Piu)v) vanishes whenever v is not
a facet normal of Pi1 + · · ·+Piu . Since (Pi1 + · · ·+Piu)v = (Pi1)

v + · · ·+ (Piu)v holds, the
term in (3.11) can be written as

(3.12)
1

2

∑
v∈Sn

[
(−1)k

∑
1≤i1<···<iu≤k

(−1)u vol′n−1 ((Pi1)
v + · · ·+ (Piu)v)

]
.
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With the same method as before (starting from equation (3.8)) we can show that the term
in the large brackets in (3.12) equals∑

si≥1
s1+···+sk=n−1

MV′n−1((P1)v, s1; . . . ; (Pk)
v, sk)

s1! · · · sk!
.

Now finally using this in (3.12) yields

men−1(P1, . . . , Pk) =
1

2

∑
v∈Sn

∑
si≥1

s1+···+sk=n−1

MV′n−1((P1)v, s1; . . . ; (Pk)
v, sk)

s1! · · · sk!
.

�

3.2.3. The cases k = n and k = n− 1. For k = n, Lemma 3.4 states that the
coefficient mer(P1, . . . , Pn) vanishes for 1 ≤ r < n. Since we consider the case k = n,
Lemma 3.6 and Lemma 3.7 determine the remaining coefficients.

Theorem 3.9. MEP1,...,Pn(t) is a polynomial in t of degree n and we have

MEP1,...,Pn(t) = tn ·MVn(P1, . . . , Pn) + (−1)n+1 .

This theorem has a straight forward corollary by setting t = 1, which allows to express
an alternating sum of integer point cardinalities of Minkowski sums by a mixed volume.
Note that this statement appears already in [Kuš76] as a conjecture and is proven by
Bernstein in [Ber76] using significantly different methods.

Corollary 3.10. With the notation from above we have

MVn(P1, . . . , Pn) =
∑
∅6=J⊂[n]

(−1)n−|J | L
(∑
j∈J

Pj
)

+ (−1)n .

Example 3.11. Take the following two polytopes in P(Z2):

P := conv{(0, 0)T , (2, 0)T , (0, 1)T , (1, 2)T , (2, 1)T}
Q := conv{(1, 0)T , (0, 2)T , (3, 2)T , (2, 3)T} .

See Figure 3.2 for an illustration of P,Q and their Minkowski sum P +Q. The number of
integer points in P,Q and P +Q is L(P ) = 7, L(Q) = 8 and L(P +Q) = 24, respectively.
Furthermore we have that MV2(P,Q) = 10 which agrees with Corollary 3.10 since 10 =
24− 8− 7 + 1.

Similarly we can explicitly state the univariate mixed Ehrhart polynomial in the case
k = n− 1.

Theorem 3.12. MEP1,...,Pn−1(t) is a polynomial in t of degree n and we have

MEP1,...,Pn−1(t) = tn · 1

2
MVn

(
P1, . . . , Pn−1,

n−1∑
i=1

Pi

)
+ tn−1 · 1

2

∑
v∈Sn

MV′n−1((P1)v, . . . , (Pn−1)v) + (−1)n .
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Figure 3.2. Integer points of P , Q and P +Q.

Proof. By Lemma 3.4 the coefficients of tk vanish for 1 ≤ k < n − 1. The absolute
coefficient equals (−1)n by Lemma 3.6. Considering the highest coefficient Lemma 3.7
yields

men(P1, . . . , Pn−1) =
∑

si≥1,
P
si=n

MVn(P1, s1; . . . ;Pn−1, sn−1)

s1! · · · sn−1!

=
1

2
MVn

(
P1, . . . , Pn−1,

n−1∑
i=1

Pi

)
.

And finally Lemma 3.8 can be employed to determine the coefficient of tn−1:

men−1(P1, . . . , Pn−1) =
1

2

∑
v∈Sn

∑
s1+···+sn−1=n−1

si≥1

MV′n−1((P1)v, s1; . . . ; (Pn−1)v, sn−1)

s1! · · · sn−1!

=
1

2

∑
v∈Sn

MV′n−1((P1)v, . . . , (Pn−1)v) .

�

Of course this Theorem has as well a straight forward corollary. Surprisingly this
statement plays a crucial role in Chapter 4 where it is employed to show that the tropical
genus equals the toric genus of a curve depending on the same Newton polytopes.

Corollary 3.13. With the notation from above we have∑
∅6=J⊂[n−1]

(−1)n−1−|J | L(
∑
J

Pj)

=
1

2
MVn(P1, . . . , Pn−1,

n−1∑
i=1

Pi) +
1

2

∑
v∈Sn

MV′n−1((P1)v, . . . , (Pn−1)v) + (−1)n .
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Figure 3.3. The polytopes P and Q in the integer lattice Z3.

Example 3.14. To illustrate the use of Corollary 3.13 consider the following two poly-
topes in P(Z3):

P := conv
{

(0, 0, 0)T , (1, 0, 1)T , (0, 1, 1)T , (2, 0, 0)T
}

Q := conv
{

(0, 0, 0)T , (0, 0, 1)T , (1, 0, 0)T , (0, 1, 0)T , (1, 1, 0)T , (0, 1, 1)T , (1, 1, 1)T
}

Figure 3.3 shows the two polytopes and the integer lattice. Here we see that L(P ) = 5
and L(Q) = 7. The Minkowski sum of P and Q is depicted in Figure 3.4 from several
perspectives to simplify counting the integer points in it. After careful counting we see
that L(P +Q) = 22.

Figure 3.4. The sum P +Q shown from 3 different viewpoints.
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Furthermore MV3(P,Q, P +Q) = 12 as well as
∑

v∈S3 MV′2((P )v, (Q)v) = 1 + 1 + 1 +
1 + 1 + 3 + 2 = 10. Hence we have

1

2
MV3(P,Q, P +Q) +

1

2

∑
v∈Sn

MV′2((P )v, (Q)v) + (−1)3 =
12

2
+

10

2
− 1 = 10

and L(P +Q)− L(P )− L(Q) = 22− 5− 7 = 10

as predicted by Corollary 3.13.

3.2.4. The multivariate mixed Ehrhart polynomial. We conclude by discussing
briefly what is known about the multivariate version of the mixed Ehrhart polynomial

(3.13) MEP1,...,Pk
(t1, . . . , tk) :=

∑
∅6=J⊂[k]

(−1)k−|J | L(
∑

j∈J tj · Pj)

for lattice polytopes P1, . . . , Pk and integers t1, . . . , tk. To study this multivariate function
it is crucial to understand the number of lattice points in scaled Minkowski sums. The
following statement is known concerning this aspect.

Proposition 3.15 (McMullen [McM77] and Bernstein [Ber76]). Let ϕ be a ∆-valuation
and let P1, . . . , Pk ∈ Pn(∆). Then for integers t1, . . . , tk ≥ 0, ϕ(t1P1 + · · · + tkPk) is a
polynomial in t1, . . . , tk of total degree at most n. Moreover the coefficient of tr11 · · · t

rk
k is

a homogeneous ∆-valuation of degree ri in Pi.

So in particular we have that MEP1,...,Pk
(t1, . . . , tk) is a polynomial in t1, . . . , tk of total

degree at most n whose coefficients are alternating sums of homogeneous valuations. It is
possible to compute the absolute coefficient just like in the univariate case but obtaining
more information on the remaining coefficients is an open problem that deserves further
research.



CHAPTER 4

Combinatorics and Genus of Tropical Intersections

Let g1, . . . , gk be tropical polynomials in n variables x1, . . . , xn with Newton polytopes
P1, . . . , Pk and let Xi := X(gi) denote their tropical hypersurfaces in Rn (see Section 1.3).
In this chapter we study combinatorial questions on the intersection of the tropical hy-
persurfaces X1, . . . , Xk, such as the f -vector, the number of unbounded faces and (in case
of a curve) the genus. Our point of departure is Vigeland’s work [Vig07] who considered
the special case k = n − 1 and where all Newton polytopes are standard simplices. We
generalize these results to arbitrary k and arbitrary Newton polytopes P1, . . . , Pk. This
provides new formulas for the number of faces and the genus in terms of mixed volumes.
Furthermore using the results on mixed Ehrhart polynomials from Chapter 3 we show
that the genus of a tropical intersection curve equals the genus of a toric intersection
curve corresponding to the same Newton polytopes.

4.1. Intersection Multiplicities

An intersection I = X1 ∩ · · · ∩Xk is called proper if dim(I) = n− k. I is transversal
along a cell A of this complex if the dual cell C = F1+· · ·+Fk in the privileged subdivision
of P1 + · · ·+ Pk satisfies

dim(C) = dim(F1) + · · ·+ dim(Fk) .

We call the intersection transversal if for each subset J ⊂ {1, . . . , k} the intersection is
proper and transversal along each cell of the complex. In the dual picture a transversal
intersection implies that the privileged subdivision of P1 + · · ·+Pk is mixed. Note that in
a transversal intersection each cell A of I lies in the relative interior of each cell Ai from
Xi that is involved in the intersection.

In the case of a non-transversal intersection I we can perturb the hypersurfaces by a
small parameter ε to obtain again a transversal intersection Iε. The stable intersection
Ist is defined as the limit of these transversal intersections when ε goes to 0,

Ist := X1 ∩st · · · ∩st Xk := lim
ε→0

X
(ε1)
1 ∩ · · · ∩X(εk)

k

(cf. [RGST05]). Stable intersections are always proper and they have some more comfort-
able features. As mentioned above a tropical hypersurface X(g) ⊂ Rn is a pure polyhedral
complex of dimension n− 1. The stable intersection of X(g) with itself gives the (n− 2)-
skeleton of X(g). In particular we can isolate the vertices of X(g) by intersecting X(g)
n-times with itself.

61
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Every face of a tropical intersection I naturally comes with a multiplicity. We follow
the notation of Bertrand and Bihan [BB07], whose approach is consistent with those
in [Kat09,Mik06].

Definition 4.1 (Intersection multiplicity). Each cell A in an intersection I can be as-
signed a multiplicity (or weight) as follows. Let C = F1 + · · · + Fk be its dual cell in
P1 + · · ·+ Pk. If A is of dimension j then C is of dimension n− j and we denote its type
by (d1, . . . , dk). For a transversal intersection define

mA :=

(
k∏
i=i

di! · vol′di
(Fi)

)
· voln−j(P)

= MV′n−j(F1, d1; . . . ;Fk, dk)(4.1)

where P is a fundamental lattice polytope in the (n− j)-dimensional sublattice Z(F1) +
· · ·+Z(Fk) and where vol′di

denotes the volume in the lattice Z(Fi) spanned by the integer
vectors of Fi. (For more background on these relative volume forms and the proof that
equality holds in (4.1) see [BB07].)

In the non-transversal case we have that n− j ≤ d1 + · · ·+ dk and we define,

mA :=
∑

(e1,...,ek) s.t.P
ei=n−j; ei≤di

MV′n−j(F1, e1; . . . ;Fk, ek) .

Example 4.2. Take the tropical hypersurfaces defined by the following tropical polyno-
mials which do not intersect transversally.

f = 4� x2 ⊕ 6� x⊕ 9� y2 ⊕ 2, g = 2.6� y ⊕ 2.1� x⊕ 0.1

Small perturbations of the second hypersurface result in transversal intersections (see
Figure 4.1 above).

To obtain the multiplicity of the intersection point of f and g we study the cell
C = conv

{
(1, 0)T , (2, 0)T , (0, 2)T , (0, 3)T , (1, 2)T

}
in the subdivision of P (f) +P (g). Note

that this is the union of the cells which correspond to the intersection in the perturbed sit-
uations. C is of type (1, 2) and has the unique privileged decomposition C = F1+F2 where
F1 = conv

{
(1, 0)T , (0, 2)T

}
and F2 = conv

{
(0, 0)T , (1, 0)T , (0, 1)T

}
. According to Defini-

tion 4.1, the multiplicity of this intersection point is MV2(F1, 1;F2, 1)+MV2(F1, 0;F2, 2) =
2 + 0 = 2. This agrees with the multiplicity that would be assigned to this point as a
stable intersection since it is the limit of either two intersection points of multiplicity 1 or
one intersection point of multiplicity 2.

Proposition 4.3 (Tropical Bernstein, see [BB07, RGST05]). Suppose the tropical hy-
persurfaces X1, . . . , Xn ⊂ Rn with Newton polytopes P1, . . . , Pn intersect in finitely many
points. Then the number of intersection points counted with multiplicity is MVn(P1, . . . , Pn).
Furthermore the stable intersection of n tropical hypersurfaces X1, . . . , Xn always consists
of MVn(P1, . . . , Pn) points counted with multiplicities.
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P (f � gε1) X(f)
X(gε1)

P (f � gε2) X(f)
X(gε2)

P (f � g) X(f)
X(g)

0 1 2 3

1

2

3

Figure 4.1. Above: The Newton polytope P (f � gε) = P (f) +P (gε) with the privileged
subdivision and the hypersurface X(f � gε) = X(f) ∪ X(gε) for two choices of ε. Be-
low: The Newton polytope P (f � gε) = with the privileged subdivision and the tropical
hypersurface X(f � g).

4.2. The number of j-faces in I

Let I = X1 ∩ · · · ∩Xk be a transversal intersection. Hence the intersection is proper
which implies that the number of j-dimensional faces in I is 0 if j ≥ n− k. By using the
duality approach described in Section 1.3 the number of j-faces can be expressed in terms
of mixed volumes.

Theorem 4.4. The number of j-faces in I counting multiplicities is

(4.2)
∑
A∈I(j)

mA =
∑

(d1,...,dk) s.t.
di≥1;

P
i di=n−j

MV′n−j(P1, d1; . . . ;Pk, dk) ,

where MV′n−j(P1, d1; . . . ;Pk, dk) is interpreted as the sum over the relative volume of all
(n− j)-dimensional cells of type (d1, . . . , dk) in a mixed subdivision of P1 + · · ·+ Pk.

Note that this implies the tropical version of Bernstein’s Theorem (see Proposition
4.3) for k = n and j = 0.

Proof. Each j-dimensional cell C in the mixed subdivision of P1 + · · · + Pk is dual
to an (n− j)-dimensional cell A of X1 ∪ · · · ∪Xk. If C is a mixed cell, i.e. di ≥ 1 for all
i, its dual A is contained in every Xi. Hence, by Definition 4.1∑

A∈I(j)
mA =

∑
(d1,...,dk) s.t.

di≥1;
P

i di=n−j

∑
C=F1+···+Fk

MV′n−j(F1, d1; . . . ;Fk, dk)
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where the second sum runs over all cells C of type (d1, . . . , dk). If we denote by vol′di
(Fi)

the volume of Fi in the lattice spanned by the integer points of Fi and furthermore denote
by P the fundamental lattice parallelotope in Zn−j defined by F1, . . . , Fk then (4.1) implies

MV′n−j(F1, d1; . . . ;Fk, dk) = d1! · · · dk! vol′d1(F1) · · · vol′dk
(Fk) voln−j(P)

= d1! · · · dk! voln−j(C) .

Hence we have ∑
A∈I(j)

mA =
∑

(d1,...,dk) s.t.
di≥1;

P
i di=n−j

∑
C of type
(d1,...,dk)

d1! · · · dk! voln−j(C)

=
∑

(d1,...,dk) s.t.
di≥1;

P
i di=n−j

MV′n−j(P1, d1; . . . ;Pk, dk)

where we used (1.12) for the last identity. �

In Section 4.4 we focus on the number of vertices in tropical intersection curves. Hence
we state Theorem 4.4 for k = n− 1 and j = 0 again which gives a much nicer expression.

Corollary 4.5. Let I = X(f1) ∩ · · · ∩X(fn−1) be a transversal intersection curve in Rn

of n − 1 tropical hypersurfaces with corresponding Newton polytopes P1, . . . , Pn−1. Then
the number of vertices in I counting multiplicities is

(4.3)
∑
A∈I(0)

mA = MVn(P1, . . . , Pn−1, P1 + · · ·+ Pn−1) .

Remark 4.6. Corollary 4.5 generalizes [Vig07, Theorem 3.3] where each Pi is a standard
simplex of the form conv{si · ξ(i)∪{0} : 1 ≤ i ≤ n} where ξ(i) denotes the i-th unit vector
and si ∈ Z>0. In this case (4.3) gives s1 · · · sn−1 · (s1 + · · ·+sn−1) as the number of vertices
counting multiplicities.

Proof. For k = n − 1 the sum in (4.2) runs over all cells of type (2, 1, . . . , 1),
(1, 2, 1, . . . , 1), . . . , (1, . . . , 1, 2). Using the linearity of the mixed volume (1.9) we get∑

A∈I(0)
mA = MVn(P1, 2;P2, 1; . . . , Pn−1, 1) + · · ·+ MVn(P1, 1;P2, 1; . . . , Pn−1, 2)

= MVn(P1, . . . , Pn−1, P1 + · · ·+ Pn−1) .

�

We can also prove Corollary 4.5 independently of the dual approach by using stable
intersections.

Proof. Define J := X(f1 � · · · � fn−1) = X(f1) ∪ · · · ∪ X(fn−1). We know that
J ∩st · · · ∩st J︸ ︷︷ ︸

n-times

= J (0). Since I ⊂ J (1) holds, this implies that I ∩st J ⊂ J (0). Further-

more we have I ∩st J ⊂ I ∩ J = I and J (0) ∩ I = I(0) such that

I(0) = I ∩st J .
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The Newton polytope of f1�· · ·�fn−1 is P1+· · ·+Pn−1. Now using the tropical Bernstein
Theorem for stable intersections (Proposition 4.3) we have that the number of points in
I(0) counted with multiplicities is MVn(P1, . . . , Pn−1, P1 + · · ·+ Pn−1). �

Example 4.7. We illustrate Corollary 4.5 in a 3-dimensional example. Let

f := 7� x⊕ 6� y ⊕ 8� z ⊕ 5� x� z ⊕−7� x� y ⊕−2� y � z
g := 9⊕ 9� x⊕ 7� y ⊕−7� x� z ⊕−17� y � z ⊕−5� x� y � z

be two tropical polynomials. Figure 4.2 shows the intersection I = X(f) ∩ X(g) of the
hypersurfaces defined by f and g. We have that MV3(P(f),P(g),P(f)+P(g)) = 12 which
equals the number of vertices in I as can be seen in Figure 4.2 when counted carefully.

Figure 4.2. The intersection curve I = X(f) ∩X(g) of Example 4.7 from four different
viewpoints.

For a non-transversal intersection I the same argumentation as in the proof of Theorem
4.4 leads to the following statement expressing the number of faces via mixed volumes.
Note that for non-transversal intersections the privileged subdivision is in general not a
mixed subdivision.
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Theorem 4.8. Let I = X1 ∩ · · · ∩ Xk be an intersection in Rn (where n ≥ k) of k
tropical hypersurfaces with corresponding Newton polytopes P1, . . . , Pk. Then the number
of j-faces in I counting multiplicities is

(4.4)
∑
A∈I(j)

mA =
∑

C=F1+···+Fk

∑
t1+···+tk=n−j

and ti≥0

MV′n−j(F1, t1; . . . ;Fk, tk) .

where the first sum goes over all (n−j)-dimensional cells C = F1+· · ·+Fk of the privileged
subdivision of P1 + · · ·+ Pk such that dim(Fi) ≥ 1 for all i.

4.3. The number of unbounded j-faces in I

With similar techniques we count the number of unbounded faces in I = X1∩· · ·∩Xk.
Again, we formulate the result in a general manner though our main interest will later be
the case k = n−1 and j = 1, i.e. the number of unbounded edges in a tropical intersection
curve.

Theorem 4.9. The number of unbounded j-faces in I is

(4.5)
∑

F=(P1)v+···+(Pk)v

MV′n−j((P1)v, . . . , (Pk)
v) .

Here the sum is taken over all (n− j)-faces F of P := P1 + · · ·+ Pk, v ∈ Sn is the outer
unit normal vector of F and MV′n−j denotes the (n− j)-dimensional mixed volume taken
with respect to the lattice defined by the face F .

Proof. As seen in Section 1.3 the unbounded j-faces of the union X1 ∪ · · · ∪ Xk

correspond to (n− j)-dimensional cells in the boundary of P = P1 + · · ·+Pk. So to count
the unbounded j-faces in the intersection I we count mixed cells in all (n − j)-faces of
P . Each face F of P has an outer unit normal vector v and F = (P1)v + · · · + (Pk)

v

where (Pi)
v denotes the face of Pi which is maximal with respect to v. So the number of

unbounded j-faces counted with multiplicity (see Definition 4.1) which are dual to cells
in F is MV′n−j((P1)v, . . . , (Pk)

v) and the result follows. �

Example 4.10. Take the tropical polynomials f and g from Example 4.7. We would
like to count the unbounded rays of I = X(f) ∩ X(g). Careful counting in Figure 4.2
yields 12 rays. Theorem 4.9 states that this number can be obtained by computing the
mixed volume on the facets of P(f) + P(g). To simplify this for the reader we depict in
Figure 4.3 the Newton polytopes of f and g as well as their Minkowski sum. The sum
P(f) + P(g) has 10 facets. 4 of those arise as the sum of a point and a facet and have
therefore mixed volume 0. The remaining 6 facets have relative mixed volume 2 and hence
we have

∑
F=(P(f))v+(P(g))v MV′2((P(f))v, (P(g))v) = 12 as predicted by Theorem 4.9.

The focus of Section 4.4 is on unbounded rays of an intersection I. So let j = 1. To
simplify the terms in the formulas we obtain it would be desirable to express the term in
(4.5) as a single mixed volume. A tool to achieve this is Proposition 1.11 which states
that for a full-dimensional convex body K

MVn(P1, . . . , Pn−1, K) =
∑
v

max
a∈K
〈a, v〉 ·MV′n−1((P1)v, . . . , (Pn−1)v)
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Figure 4.3. The Newton polytopes P(f) and P(g) and their Minkowski sum.

where the sum is taken over all primitive outer normals v ∈ Zn of facets F of P1+. . .+Pn−1.

The goal is now of course to find a convex body K such that maxa∈K〈a, v〉 = 1 for all
primitive outer facet normals v. Unfortunately such a body does not exist in general, see
Example 4.13.

Corollary 4.11. Denote by v1, . . . , vs the primitive outer facet normals to P := P1 +. . .+
Pn−1. If none of the vi lies in the convex hull of the remaining s − 1 primitive normals
then the number of unbounded rays in I = X1 ∩ . . . ∩Xn−1 is

(4.6) MVn(P1, . . . , Pn−1, Q)

where Q is the polar polytope of conv {v1, . . . , vk}, i.e.

Q =
s⋂
i=1

{x ∈ Rn : 〈x, vi〉 ≤ 1} .

Remark 4.12. In the situation that at least one of the primitive outer normals, say vi, is
in the convex hull of the remaining vj, then (4.6) still gives a lower bound on the number
of unbounded edges, since then maxa∈Q〈a, vi〉 < 1.

Example 4.13. The tropical polynomial f defined below is a 2-dimensional example that
shows that the conditions of Corollary 4.11 do not always apply. Let

f := 2⊕ 7� x7 ⊕ 2� x3 � y ⊕ 3� x4 � y
then P (f) = conv

{
(0, 0)T , (3, 1)T , (4, 1)T , (7, 0)T

}
. The tropical line X(f) has∑

F facet of P (f)

MV′1(F ) = 1 + 1 + 1 + 8 = 11

unbounded rays counted with multiplicities. The primitive outer normals of P (f) are
(0,−1)T , (0, 1)T , (1, 3)T , and (−1, 3)T such that Q = conv

{
(4,−1)T , (−4,−1)T , (0, 1

3
)T
}

and therefore MV2(P (f), Q) = 28
3
< 11. The situation is illustrated in Figure 4.4

4.4. The Genus of Tropical Intersection Curves

Suppose we are given the intersection curve of n− 1 smooth tropical hypersurfaces in
Rn, where a tropical hypersurface X is called smooth if the maximal cells of its privileged



68 4. COMBINATORICS AND GENUS OF TROPICAL INTERSECTIONS

Figure 4.4. From left to right: P (f) with privileged subdivision. The hypersurface
X(f). The fan of primitive outer normals of P (f) and Q.

subdivision are simplices of volume 1
n!

. We apply the results of the last section to express
its tropical genus g (as defined below) in terms of mixed volumes of the Newton polytopes
corresponding to the defining hypersurfaces. Our goal is to prove that this genus coincides
with the genus ḡ of a toric variety X that was obtained using the same Newton polytopes.
Due to a result by Khovanskĭı [Kho78] the toric genus can be expressed via alternating
sums of interior integer point numbers. To show that the combinatorial expressions for g
and ḡ are equal we employ our results on mixed Ehrhart theory from Chapter 3.

4.4.1. The genus via mixed volumes. Assume in the following that the inter-
section curve I is connected and was obtained by a transversal intersection of n − 1
hypersurfaces X1 ∩ · · · ∩ Xn−1 with Newton polytopes P1, . . . , Pn−1. For a transversal
intersection curve I in Rn define the genus g = g(I) as the number of independent cycles
of I, i.e. its first Betti number.

Since I is a transversal intersection each vertex A in I is dual to a cell C of type
(1, . . . , 1, 2, 1, . . . , 1) in the privileged subdivision of P1 + · · · + Pn−1 . So C is a sum of
n − 1 edges and one 2-dimensional face Fi of Pi. The degree (or valence) of A is the
number of outgoing edges (bounded and unbounded) in I. Each such outgoing edge A′ is
dual to an (n − 1)-dimensional mixed cell C ′ which is a facet of C. Hence the degree of
A equals the number of edges of the 2-dimensional face Fi.

Vigeland gave in [Vig07] an expression for the genus of a 3-valent curve in terms of
inner vertices and outgoing edges. The proof does not apply tropical properties of I and
works for any 3-valent graph with unbounded edges. Note that the vertices and edges are
not counted with multiplicities in this statement.

Proposition 4.14 (see [Vig07]). For a 3-valent tropical intersection curve I we have

2g − 2 = #{vertices in I} −#{unbounded edges in I} .

If I is obtained as an intersection of smooth hypersurfaces, then I is 3-valent and each
vertex and unbounded edge has multiplicity 1.

Theorem 4.15. Let I be a connected transversal intersection of n − 1 smooth tropical
hypersurfaces in Rn with Newton polytopes P1, . . . , Pn−1. Then the genus g of I is given



4.4. THE GENUS OF TROPICAL INTERSECTION CURVES 69

by

(4.7) 2g − 2 = MVn

(
P1, . . . , Pn−1,

n−1∑
i=1

Pi

)
−
∑
v

MV′n−1((P1)v, . . . , (Pn−1)v)

where v runs over all outer unit normal vectors of P1 + · · ·+ Pn−1.

Remark 4.16. If the smoothness condition of the hypersurfaces Xi is dropped, the right
hand side of (4.7) still gives an upper bound for 2g − 2.

Proof. Using Corollary 4.5, Theorem 4.9 and Proposition 4.14 we immediately get
the result. �

In particular we see that under the conditions of Theorem 4.15 the genus only depends
on the Newton polytopes P1, . . . , Pn−1 and we will write g(P1, . . . , Pn−1) to denote this
value.

Example 4.17. Consider this theorem in the case n = 2. Here we just have one smooth
tropical hypersurface X with corresponding Newton polytope P . The genus g of this
curve equals the number of interior integer points of P , see e.g. [RGST05]. So Theorem
4.15 states that

2 ·#
{

interior integer
points of P

}
− 2 = MV2(P, P )−

∑
v∈S2

MV′1((P )v)

= 2 · vol2(P )−#
{

integer points on
the facets of P

}
.

Hence Theorem 4.15 implies that

vol2(P ) = #
{

interior integer
points of P

}
+

1

2
·#
{

integer points on
the facets of P

}
− 1

which is known as Pick’s theorem for convex polygons (see [AZ04]).

Example 4.18. Take once more the two tropical polynomials f and g from Example 4.7.
As can be seen in Figure 4.2 the intersection curve I = X(f) ∩ X(g) has genus 1. In
Example 4.7 it was shown that MV3(P(f),P(g),P(f)+P(g)) = 12 and in Example 4.10 we
saw that

∑
v MV′2((P(f))v, (P(g))v) = 12. Hence we have that 2·g−2 = 2·1−2 = 0 equals

MV3(P(f),P(g),P(f) + P(g))−
∑

v MV′2((P(f))v, (P(g))v = 12− 12 = 0 as predicted by
Theorem 4.15.

4.4.2. Khovanskĭı’s toric genus. An introduction to toric varieties is beyond the
scope of this work and we refer the reader to [Ful93]. In [Kho78], Khovanskĭı gave a
formula for the genus of a complete intersection in a toric variety. Let the variety X in
(C∗)n be defined by a non-degenerate system of equations f1 = · · · = fk = 0 with Newton
polyhedra P1, . . . , Pk where each has full dimension n. Let X̄ be the closure of X in a
sufficiently complete projective toric compactification.

Proposition 4.19 (Khovanskĭı [Kho78]). If X̄ is connected and has no holomorphic
forms of intermediate dimension, then the geometric genus ḡ of X can be calculated by
the formula

(4.8) ḡ =
∑
∅6=J⊂[k]

(−1)k−|J | Lo(
∑
j∈J

Pj)
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where Lo(P ) denotes the number of interior integer points of the lattice polytope P and
[k] := {1, . . . , k}.

Thus for any variety satisfying the conditions of Proposition 4.19, the genus only
depends on P1, . . . , Pk. We call this value ḡ(P1, . . . , Pk).

4.4.3. Toric genus equals tropical genus. We are ready now to state and proof
our theorem comparing the genus of tropical and toric intersection curves.

Theorem 4.20. Let P1, . . . , Pn−1 ⊂ Rn be full-dimensional lattice polytopes. Then the
tropical and the toric genus with respect to P1, . . . , Pn−1 coincide, i.e.

ḡ(P1, . . . , Pn−1) = g(P1, . . . , Pn−1) .

We prove this theorem by showing that the combinatorial quantities of Proposition
4.19 and Theorem 4.15 are the same, i.e.

1

2
MVn

(
P1, . . . , Pn−1,

n−1∑
i=1

Pi
)
− 1

2

∑
v∈Sn

MV′n−1((P1)v, . . . , (Pn−1)v) + 1

=
∑

∅6=J⊂[n−1]

(−1)n−1−|J | Lo
(∑

J

Pj
)
.(4.9)

That (4.9) holds for n = 2 can be seen in Example 4.17 when we take Pick’s theorem as
given.

Proof. Corollary 3.13 almost states the desired equation. Namely we have that

1

2
MVn

(
P1, . . . , Pn−1,

n−1∑
i=1

Pi
)

+
1

2

∑
v∈Sn

MV′n−1((P1)v, . . . , (Pn−1)v) + (−1)n

=
∑

∅6=J⊂[n−1]

(−1)n−1−|J | L
(∑

J

Pj
)
.

Using the Ehrhart reciprocity (3.3) in the same way as in (3.5) yields the result. �

Even though Theorem 4.20 is already proved we would like to give another independent
proof for the unmixed case P1 = · · · = Pn−1 of (4.9) that does not need the heavy
machinery of mixed Ehrhart theory. The results obtained here on the surface volume and
the number of integer points of a lattice complex , i.e. a bounded polyhedral complexes
with vertices in Zn, might be of general interest in other contexts.

Let χ(Q) denote the Euler-Poincaré characteristic of a polyhedral complex Q. For
simplicity we set L(0 ·Q) := χ(Q) and by ∂Q we denote the boundary complex of Q.

Theorem 4.21. Let Q be a pure n-dimensional lattice complex. Then

(4.10)
∑

F facet of Q

(n− 1)! vol′n−1(F ) = (−1)n−1

n−1∑
k=0

(−1)k
(
n− 1

k

)
L(k · ∂Q) .
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Proof. We subdivide the facets of k · Q into fundamental lattice simplices 1 (i.e.
simplices ∆ of volume 1

(dim ∆)!
) with respect to the lattices defined by the facets. Let fi

be the number of i-dimensional faces of this simplicial complex. Note that the left hand
side of (4.10) counts the number of (n− 1)-dimensional faces, i.e.

fn−1 =
∑

F facet of Q

(n− 1)! vol′n−1(F ) .

Each i-dimensional face of our complex is a fundamental lattice simplex. The number of
interior integer points of a fundamental lattice simplex ∆ of dimension i stretched by a
factor of k ≥ 1 is equal to

#

{
x ∈ Ni : xj ≥ 1 and

∑
j

xj ≤ k − 1

}
=

(
k − 1

i

)
.

Hence we have for k ≥ 1 that

L(k · ∂Q) =
k−1∑
i=0

(
k − 1

i

)
fi .

Up to the term for k = 0 the sum on the right hand side of (4.10) evaluates to

n−1∑
k=1

(−1)n−1−k
(
n− 1

k

) k−1∑
i=0

(
k − 1

i

)
fi

= (−1)n−1

n−2∑
i=0

fi

n−1∑
k=1+i

(−1)k
(
n− 1

k

)(
k − 1

i

)

=
n−2∑
i=0

fi

n−2−i∑
r=0

(−1)r
(
n− 1

r

)(
n− 2− r

n− 2− i− r

)
(4.11)

where we substituted r = n − k − 1 to obtain the last equation. Using the following
binomial identity (see e.g. [Grü03, p. 149])

For 0 ≤ c ≤ a :
c∑
i=0

(−1)i
(
b

i

)(
a− i
c− i

)
=

(
a− b
c

)
yields that the right hand side in (4.10) equals

(−1)n−1χ(∂Q) +
n−2∑
i=0

fi

(
−1

n− 2− i

)
= (−1)n−1χ(∂Q) +

n−2∑
i=0

(−1)n−2−ifi .

By the Euler-Poincaré formula χ(∂Q) =
∑n−1

i=0 (−1)ifi (see [Bre93]) this expression sim-
plifies to fn−1 which proves the theorem. �

1We assume here that Q allows such a subdivision. If not choose an N ∈ N such that N ·Q allows a
subdivision into fundamental lattice simplices. Then our proof shows that (4.10) holds for N ·Q. Since
both sides of (4.10) are polynomials in N the equation holds as well for Q. We thank Benjamin Nill for
helpful remarks on this point.
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By combining Theorem 4.21 and the generalization of Pick’s theorem by Macdonald
(see Reeve [Ree57] for the 3-dimensional case) we get the unmixed version of (4.9).

Proposition 4.22 (Macdonald [Mac63]). Let P be a pure n-dimensional lattice complex,
let L(0 · P ) := χ(P ) be the Euler-Poincaré characteristic of P and denote by ∂P the
boundary complex of P . Then we have

n− 1

2
n! voln(P ) =

n−1∑
k=0

(−1)n−1−k
(
n− 1

k

)[
L(k · P )− 1

2
L(k · ∂P )

]
.

Corollary 4.23. For n-dimensional lattice polytopes P we have

n− 1

2
n! voln(P )− 1

2

∑
F facet of P

(n− 1)! vol′n−1(F ) + 1 =
n−1∑
k=1

(−1)n−1−k
(
n− 1

k

)
Lo(k · P ) .

Proof. Knowing Proposition 4.22 and the fact that L(P ) − 1
2

L(∂P ) = Lo(P ) +
1
2

L(∂P ) we still have to show that

(−1)n−1

n−1∑
k=1

(−1)k
(
n− 1

k

)
L(k · ∂P ) + 2(−1)n−1(χ(P )− χ(∂P ))

=
∑

F facet of P

(n− 1)! vol′n−1(F ) − 2 .

Since the Euler-Poincaré formula implies χ(P ) = χ(∂P )+(−1)n, the last equation reduces
to the statement of Theorem 4.21. �



CHAPTER 5

The Number of Embeddings of Minimally Rigid Graphs

Determining the number of embeddings of minimally rigid graph frameworks is an
open problem which corresponds to understanding the solutions of the resulting systems
of equations. In this chapter we investigate the bounds which can be obtained from the
viewpoint of Bernstein’s Theorem (see Section 1.4). To do this, the techniques to study the
mixed volume of systems of polynomial equations described in Chapter 2 are employed.
While in most cases the resulting bounds are weaker than the best known bounds on the
number of embeddings, for some classes of graphs the bounds are tight.

The focus here is on the 2-dimensional case. With respect to 3 and higher dimensions
we give a brief discussion at the end of this chapter.

5.1. Laman graphs

Let G = (V,E) be an undirected and loop-free graph with no multiple edges on N
vertices with 2N −3 edges. If each subset of k vertices spans at most 2k−3 edges, we say
that G has the Laman property and call it a Laman graph (see [Lam70]). A framework
is a tuple (G,L) where G = (V,E) is a graph and L = {li,j : [vi, vj] ∈ E} is a set of
|E| positive numbers interpreted as edge lengths. For generic edge lengths, Laman graph
frameworks are minimally rigid (see [Con93]), i.e. they are rigid and they become flexible
if any edge is removed. Note that some authors call such frameworks isostatic.

A Henneberg sequence (cf. [Hen11]) for a graph G is a sequence (Gi)3≤i≤r of Laman
graphs such that G3 is a triangle, Gr = G and each Gi is obtained by Gi−1 via one of the
following two types of steps: A Henneberg I step adds one new vertex vi+1 and two new
edges, connecting vi+1 to two arbitrary vertices of Gi. A Henneberg II step adds one new
vertex vi+1 and three new edges, connecting vi+1 to three vertices of Gi such that at least
two of these vertices are connected via an edge e of Gi and this certain edge e is removed
(see Figure 5.1).

Any Laman graph G can be constructed via a Henneberg sequence and any graph
constructed via a Henneberg sequence has the Laman property (see [ST08b,TW85]). We
call G a Henneberg I graph if it is constructable using only Henneberg I steps. Otherwise
we call it Henneberg II .

Given a Laman graph framework we want to know how many embeddings, i.e. maps
α : V → R2, exist such that the Euclidean distance between two points in the image
is exactly li,j for all [vi, vj] ∈ E. Since every rotation or translation of an embedding
gives another one, we ask how many embeddings exist modulo rigid motions. Due to the
minimal rigidity property, questions about embeddings of Laman graphs arise naturally in

73
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v1 v2 v1 v2

v3 v3

v4 v4v5 v5

v6

Figure 5.1. A Henneberg I and a Henneberg II step. New edges are dashed and the
deleted edge is pointed.

rigidity and linkage problems (see [HOR+05,TD99]). Graphs with less edges will have
zero or infinitely many embeddings modulo rigid motions, and graphs with more edges do
not have any embeddings for a generic choice of edge lengths.

Please note that we do allow edges to cross in the embeddings. For methods to
enumerate non-crossing minimally rigid frameworks see [AKO+07,AKO+08].

To use these algebraic tools for the embedding problem we formulate that problem as
a system of polynomial equations in the 2N unknowns (x1, y1, . . . , xN , yN) where (xi, yi)
denote the coordinates of the embedding of the vertex vi. Each prescribed edge length
translates into a polynomial equation. I.e. if ek := [vi, vj] ∈ E with length li,j, we require
hk(x) := (xi−xj)2+(yi−yj)2−l2i,j = 0. Thus we obtain a system of |E| quadratic equations
whose solutions represent the embeddings of our framework. To get rid of translations
and rotations we fix the points (x1, y1) = (c1, c2) and (x2, y2) = (c3, c4) (Here we assume
without loss of generality that there is an edge between v1 and v2.) For practical reasons
we choose ci 6= 0 and c3, c4 are chosen such that the embedded points (x1, y1) and (x2, y2)
have distance l1,2. Hence we want to study the solutions to the following system of 2N
equations.

(5.1)



h1(x) := x1 − c1 = 0

h2(x) := y1 − c2 = 0

h3(x) := x2 − c3 = 0

h4(x) := y2 − c4 = 0

hk(x) := (xi − xj)2 + (yi − yj)2 − l2i,j = 0 ∀ek = [vi, vj] ∈ E − {[v1, v2]}



5.2. Application of the BKK theory on the graph embedding problem

Our goal is to apply Bernstein’s results to give bounds on the number of embeddings
of Laman graphs. A first observation shows that for the formulation (5.1) the Bern-
stein bound is not tight. Namely, the system (5.1) allows to choose a direction v that
satisfies the conditions of Bernstein’s Second Theorem (Proposition 1.29). The choice
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v = (0, 0, 0, 0,−1,−1, . . . ,−1) yields the face system

initv h1 = x1 − c1 = 0

initv h2 = y1 − c2 = 0

initv h3 = x2 − c3 = 0

initv h4 = y2 − c4 = 0

initv hk = x2
i + y2

i = 0 ∀ek = [v1, vi], [v2, vi] ∈ E
initv hk = (xi − xj)2 + (yi − yj)2 = 0 ∀ek = [vi, vj] ∈ E with i, j 6= 1, 2


which has (x1, y1, . . . , xN , yN) = (c1, c2, c3, c4, 1, i, 1, i, . . . , 1, i) as a solution with non-zero
complex entries. So the mixed volume of the system in (5.1) is a strict upper bound on
the number of graph embeddings.

To decrease this degeneracy we apply an idea of Ioannis Emiris1 (see [Emi94]). Sur-
prisingly the introduction of new variables for common subexpressions, which increases
the Bézout bound, can decrease the BKK bound. To the best of our knowledge it is
an open problem to characterize in general when substitutions can be applied to remove
degeneracies and reduce the mixed volume.

Here we introduce for every i = 1, . . . , N the variable si together with the new equation
si = x2

i + y2
i . This leads to the following system of equations.

(5.2)



x1 − c1 = 0

y1 − c2 = 0

x2 − c3 = 0

y2 − c4 = 0

si + sj − 2xixj − 2yiyj − l2i,j = 0 ∀[vi, vj] ∈ E − {[v1, v2]}
si − x2

i − y2
i = 0 ∀i = 1, . . . , N


Experiments show that the system (5.2) is still not generic in the sense of Proposition 1.29
for every underlying minimally rigid graph. Hence the upper bound on the number of
embeddings given by the mixed volume might not be tight in every case.

5.2.1. Henneberg I graphs. For this simple class of Laman graphs the mixed vol-
ume bound is tight as we will demonstrate below. Our proof exploits the inductive struc-
ture of Henneberg I graphs which is why it cannot be used for Henneberg II graphs.

Theorem 5.1. For a Henneberg I graph on N vertices, the mixed volume of system (5.2)
equals 2N−2.

Proof. Each Henneberg sequence starts with a triangle for which system (5.2) has
mixed volume 2. Starting from the triangle we consider a sequence of Henneberg I steps
and show that the mixed volume doubles in each of these steps.

In a Henneberg I step we add one vertex vN+1 and two edges [vr, vN+1], [vq, vN+1]
with lengths lr,N+1 and lq,N+1. So our system of equations (5.2) gets three new equations,

1Personal communication at EuroCG 2008, Nancy.
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namely

sN+1 − x2
N+1 − y2

N+1 = 0(5.3)

sr + sN+1 − 2xrxN+1 − 2yryN+1 − l2r,N+1 = 0(5.4)

sq + sN+1 − 2xqxN+1 − 2yqyN+1 − l2q,N+1 = 0.(5.5)

In the new system of equations these three are the only polynomials involving xN+1, yN+1

and sN+1, so Lemma 2.6 can be used to calculate the mixed volume separately. The
projections of the Newton polytopes of equations (5.3), (5.4) and (5.5) to the coordinates
xN+1, yN+1 and sN+1 are

conv
{(

2 0 0
)T
,
(
0 2 0

)T
,
(
0 0 1

)T}
and twice

conv
{(

1 0 0
)T
,
(
0 1 0

)T
,
(
0 0 1

)T
,
(
0 0 0

)T}
.

The mixed volume of these equals 2. So by Lemma 2.6 the mixed volume of the new
system is twice the mixed volume of the system before the Henneberg I step. �

To get two new embeddings in every Henneberg I step we choose the new edge lengths
to be almost equal to each other and much larger then all previous edge lengths (larger
then the sum of all previous is certainly enough).

Corollary 5.2 (Borcea and Streinu [BS04]). The number of embeddings of Henneberg I
graph frameworks is less than or equal to 2N−2 and this bound is sharp.

Of course the elementary proof described in [BS04] of this statement does not need
such heavy machinery as Bernstein’s Theorem. The purpose of Theorem 5.1 is to show
that the techniques described in this work apply here and that the BKK bound is tight
in this case.

5.2.2. Laman graphs on 6 vertices. The first Laman graphs which are not con-
structable using only Henneberg I steps arise on 6 vertices. A simple case analysis shows
that up to isomorphisms there are only two such graphs, the Desargues graph and K3,3

(see Figure 5.2).

Figure 5.2. Left: Desargues graph. Right: K3,3.

The number of embeddings of both graphs has been studied in detail. The Desargues
graph is studied in [BS04] where the authors show that there can only be 24 embeddings
and that there exists a choice of edge lengths giving 24 different embeddings. This is
obtained by investigating the curve that is traced out by one of the vertices after one
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Figure 5.3. 12 embeddings of the Desargues graph. (Edge legths used in this exam-
ple: l1,2 = 4, l1,3 = 2.667, l2,3 = 1.622, l1,4 = 3.2, l2,5 = 3.244, l3,6 = 2, l4,5 = 2.4, l4,6 =
1.778, l5,6 = 2.889.)

incident edge is removed. Figure 5.3 shows a situation with 24 embeddings. 12 of them
are shown here and the remaining 12 are obtained by reflecting each embedding at the
horizontal axis.

Husty and Walter [HW07] apply resultants to show that K3,3 can have up to 16
embeddings and give as well specific edge lengths leading to 16 different embeddings.

Both approaches rely on the special combinatorial structure of the specific graphs. The
general bound in [BS04] for the number of embeddings of a graph with 6 vertices yields
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2·(6−2)

6−2

)
= 70. In this case the BKK bound gives a closer estimate. Namely the mixed

volume of the system (5.2) (which uses the substitution trick to remove degeneracies) can
be shown to be 32 for both graphs.

5.2.3. General case. For the classes discussed above (Henneberg I, graphs on six
vertices) as well as some other special cases, the BKK bound on the number of embeddings
resembles or even improves the general bound of

(
2N−4
N−2

)
. For the general case, the mixed

volume approach for the system (5.1) without the substitutions suggested by Emiris pro-
vides a simple, but very weak bound. However, it may be of independent interest that
the mixed volume can be exactly determined as a function of N and that in particular
the value is independent of the structure of the Laman graph.

Theorem 5.3. For any Laman graph on N vertices, the mixed volume of the initial
system (5.1) is exactly 4N−2.

Proof. The mixed volume of (5.1) is at most the product of the degrees 22N−4 of the
polynomial equations because it is less than or equal to the Bézout bound (see [Stu02]).
To show that the mixed volume is at least this number we will use Lemma 2.9 to give a
lifting that induces a mixed cell of volume 4N−2.

For i ∈ {1, . . . , 4} the Newton polytope P(hi) is a segment. We claim that the polyno-
mials hi can be ordered in a way such that for i ≥ 5, P(hi) contains the edge [0, 2ξi] where
ξi denotes the ith unit vector. To see this, note first that every polynomial hj (1 ≤ j ≤ 2N)
has a non-vanishing constant term and therefore 0 ∈ P(hj). For i ∈ {1, . . . , N}, each of
the monomials x2

i and y2
i occurs in hj (for j ≥ 5) if and only if the edge which is modeled

by hj is incident to vi.

Let E ′ := E \ {[v1, v2]}. The Henneberg construction of a Laman graph allows to
orient the edges such that in the graph (V,E ′) each vertex in V \ {v1, v2} has exactly two
incoming edges (see [BJ03, LS08]). Namely, in a Henneberg I step the two new edges
point to the new vertex. For a Henneberg II step we remember the direction of the deleted

edge
−→

[vr, vs] and let the new edge, which connects the new vertex to vs, point to vs. The
other two new edges point to the new vertex. (Figure 5.4 depicts this in an example where
vr = v3 and vs = v4.)

This orientation shows how to order the polynomials h5, . . . , h2N in such a way that the
polynomials h2i−1 and h2i model edges which are incoming edges of the vertex vi within
the directed graph. Remembering that the order of the variables was (x1, y1, . . . , xN , yN)
this implies that 2ξ2i−1 ∈ P(h2i−1) and 2ξ2i ∈ P(h2i).

Now Lemma 2.9 can be used to describe a lifting that induces a subdivision that has

(5.6) [ξ1, 0] + · · ·+ [ξ4, 0] + [2ξ5, 0] + · · ·+ [2ξ2N , 0]

as a mixed cell. In the notation of Lemma 2.9 the chosen edges give rise to the edge

matrix

(
Id4 0
0 2Id2N−4

)
, where Idk denotes the k × k identity matrix. Substituting this

into the second condition (2.9) of Lemma 2.9 we get that for each Newton polytope P(hi)
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v1 v2 v1 v2

v3 v3

v4 v4v5 v5

v6

Figure 5.4. A Henneberg I and a Henneberg II step with directed edges.

all vertices v
(i)
s of P(hi) which are not 0 or 2ξi have to satisfy

(µ11 − µi1 , . . . , µ2N2N
− µi2N

) · v(i)
s ≤ 0 ,

where we denote by µj = (µj1 , . . . , µj2N
) ∈ Q2N the lifting vector for P(hj). Since all the

entries of each v
(i)
s are non-negative this can easily be done by choosing the vectors µj

such that their jth entry is sufficiently small and all other entries are sufficiently large.
Note that for i < 5 the Newton polytope P(hi) is an edge and therefore is part of any
full-dimensional cell.

Since the cell (5.6) has volume 22N−4 = 4N−2, this proves the theorem. �

Since the Newton polytopes of system (5.1) all contain the point 0 as a vertex, the
mixed volume of (5.1) yields, according to Proposition 1.28, a bound on the number of
solutions in C rather than only on those in C∗.
Corollary 5.4. The number of embeddings of a Laman graph framework with generic
edge lengths is strictly less then 4N−2.

Examples like the case study of Laman graph frameworks on 6 vertices in Section 5.2.2
suggest that the mixed volume of the system (5.2) gives a significantly better bound on
the number of embeddings than the one analyzed in Theorem 5.3. However it remains
open to compute the mixed volume of the system (5.2) as a function of N like it was done
for the system (5.1) in Theorem 5.3.

5.3. Minimally rigid graphs in higher dimensions

We discuss briefly what the BKK techniques yield in the 3-dimensional and higher
dimensional cases. Borcea and Streinu [BS04] as well as Emiris and Varvitsiotis [EV09]
gave bounds for embeddings into 3-dimensional and general n-dimensional spaces. Since
for these 3- and n-dimensional problems the resulting polynomial equations are sparse as
well, the BKK techniques are also applicable. With regard to the Bernstein bounds there
are straightforward analogs of Theorem 5.1 and Theorem 5.3 to higher dimensions as we
sketch below.
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Unfortunately the combinatorics of minimally rigid frameworks in dimensions higher
than 2 is not fully understood (cf. [Hen92,TW85]). Namely, so far no general Henneberg-
type construction for an arbitrary n-dimensional minimally rigid graph is known. Nev-
ertheless there is an n-dimensional generalization of the Henneberg I steps that leads to
minimally rigid graphs (cf. [Whi96]). We start with the 1-skeleton of an n-dimensional
simplex and add in each step one new vertex and n new edges connecting the new vertex
to arbitrary old vertices of the graph. Graphs obtained in this fashion will be called Hen-
neberg I graphs . In the special case n = 3 we have furthermore that 1-skeleta of simplicial
polyhedra are minimally rigid (see [Glu75]).

Clearly the 1-skeleton of an n-dimensional simplex has 2 embeddings in Rn up to rigid
motions differing by a reflection. So let G = (V,E) be an n-dimensional Henneberg I
framework on N vertices with generic edge lengths. We employ the same techniques as in
the proof of Theorem 5.1 to show that an n-dimensional Henneberg I step at most doubles
the mixed volume of the underlying system of polynomial equations. Let vN+1 be the new
vertex and let vk1 , . . . , vkn be the vertices which are connected to the new vertex. Then a
Henneberg I step adds the following equations to the polynomial system, describing the
embeddings:

sN+1 −
n∑
i=1

(x
(N+1)
i )2 = 0(5.7)

skj
+ sN+1 − 2

n∑
i=1

x
(kj)
i x

(N+1)
i = 0 for j = 1, . . . , n(5.8)

where (x
(j)
1 , . . . , x

(j)
n ) denote the coordinates of the embedded vertex vj. These are again

the only n + 1 equations which involve the n + 1 variables sN+1, x
(N+1)
1 , . . . , x

(N+1)
n and

hence Lemma 2.6 can be used to decouple the mixed volume computation.

The projection of the Newton polytope of the polynomials in (5.7) and (5.8) to the

coordinates sN+1, x
(N+1)
1 , . . . , x

(N+1)
n yields Q := conv{ξ1, 2ξ2, . . . , 2ξn+1} and the (n+ 1)-

dimensional standard simplex ∆n+1, respectively. It holds that Q ⊂ 2 ·∆n+1 and therefore
the monotonicity of the mixed volume implies

MVn+1(Q,∆n+1, . . . ,∆n+1) ≤ MVn+1(2 ·∆n+1,∆n+1, . . . ,∆n+1)

= 2 ·MVn+1(∆n+1,∆n+1, . . . ,∆n+1)

= 2 · (n+ 1)! voln+1(∆) = 2 .

Hence a Henneberg I step at most doubles the number of embeddings. Again, it is possible
to pick edge lengths for which 2 new embeddings occur. Namely we let the lengths of all
new edges be almost equal and sufficiently larger then the lengths of the old edges.

Corollary 5.5. An n-dimensional Henneberg I framework with generic edge lengths on
N vertices has at most 2N−n embeddings and this bound is sharp.

To conclude we discuss now how Theorem 5.3 can be generalized to 1-skeleta of simpli-
cial 3-polytopes. In [BF67] Bowen and Fisk show that each such graph can be constructed
starting with the 1-skeleton of a tetrahedron and then adding vertices in three sorts of
steps. The first possible step is a Henneberg I step that connects the new vertex to the
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three vertices of a facet of the simplicial 3-polytope (see Figure 5.5, left). Taking two
adjacent facets and replacing the bordering diagonal by a 4-valent vertex (see Figure 5.5,
middle) will be called a 3-dimensional Henneberg II step and replacing the two border-
ing diagonals of three neighboring facets by a 5-valent vertex (see Figure 5.5, right) is a
3-dimensional Henneberg III step.

Figure 5.5. From left to right: A 3-dimensional Henneberg I, II and III step.

Theorem 5.6. The mixed volume of the initial system modelling the 1-skeleton of a
simplicial 3-polytope with N vertices is exactly 23N−3.

Proof. The proof is a straight forward analog of the proof of Theorem 5.3 except that
we have to show that each vertex, that was not fixed to avoid translations and rotations,
has exactly three incoming edges. We employ the Henneberg construction to show this.
It is obvious that in a Henneberg I step all new edges have to be oriented such that they
point to the new vertex. In a Henneberg II step we remember the direction of the deleted
edge and let one of the new edges point to the vertex that lost an incoming edge due to
the removal of the diagonal.

Finally in a Henneberg III step we have to separate two cases. If the two deleted
diagonals do not point to the same vertex then two of the new edges can be oriented such
that each vertex that lost an incoming edge gets a new one (see Figure 5.6, above). In
the case that both deleted edges point to the same vertex v we have to let one new edge
point to this vertex, one new edge point to a vertex w that had a deleted diagonal as an
outgoing edge and then we have to reverse the orientation of all edges on a simple path
between v and w (see Figure 5.6, below). �

Figure 5.6. Edge orientation in a Henneberg III step.





CHAPTER 6

Open Problems

In the following we present some open questions that arose during the preparation of
this thesis.

Chapter 2: Techniques for Explicit Mixed Volume Computation. We briefly
described in Section 1.2.3 the correspondence of faces of fiber polytopes and subdivisions.
It is an open problem to establish a correspondence like that for mixed subdivisions
(compare Example 2.11). Some work in this direction has been done by Michiels and
Cools, see [MC00]. However it remains unclear how the recent results on mixed fiber
polytopes by McMullen [McM04] and Esterov and Khovanskĭı [EK08] relate to this
question.

Chapter 3: Mixed Ehrhart Theory. It remains open to describe the coefficients
of the multivariate mixed Ehrhart polynomial in terms of mixed volumes and to study
the mixed Ehrhart (quasi-)polynomials for polytopes with rational coordinates.

In Section 3.2.3 we gave a full description of the mixed Ehrhart polynomial in the
cases k = n and k = n−1. What can be said about different valuse of k? For k > n there
might be a straight forward extension. For k ≤ n−2 we do not see a way to approach this
problem at the moment without knowing more about the classical Ehrhart coefficients.
Hence obtaining results for arbitrary k ≤ n− 2 might be a very hard problem.

One general direction of future research is to study the generating functions of mixed
Ehrhart polynomials which has been a very fruitful techniques in classical Ehrhart theory.
In particular it would be an interesting project to achieve a result paralleling Stanley’s
work [Sta92] who established a connection between the generating function of the classical
Ehrhart polynomial of a polyhedral complex and the h-vector of this complex. It is an
open problem if there is a similar connection between the h-vector of a mixed subdivision
of the underlying polytopes and the generating function of the mixed Ehrhart polynomial.

Chapter 4: Combinatorics and Genus of Tropical Intersections. We studied
the genus of a tropical intersection curve in Section 4.4 under rather restrictive conditions.
It is open to study the genus of general tropical intersections of arbitrary dimension. In
particular it would be interesting to have an interpretation of this genus in terms of mixed
volumes or in terms of integer point cardinalities of Minkowski sums. This could also lead
to a generalization of Theorem 4.20 that states the equality of the tropical and toric genus
for a larger class of intersections.

It also remains open to provide a proof of Theorem 4.20 which is independent of our
results about mixed Ehrhart polynomials by studying the amoebas of toric varieties.

83
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Chapter 5: The Number of Embeddings of Minimally Rigid Graphs. We
have presented techniques to study the embedding problem of Laman graph frameworks
using the BKK theory. As already mentioned in Section 5.2 it is an open question whether
the Bernstein bounds can be improved by applying suitable transformations (such as
substitutions) on the system of equations. Examples like the case study of Laman graph
frameworks on 6 vertices in Section 5.2.2 suggest that the mixed volume of the system (5.2)
gives a significantly better bound on the number of embeddings than the one analyzed in
Theorem 5.3. However it also remains open to compute the mixed volume of the system
(5.2) as a function of n like it was done for the system (5.1) in Theorem 5.3.
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