Semi-Automatic Generation of
Three-Dimensional Visual Algorithm
Simulations

DISSERTATION ZUR ERLANGUNG DES

DOKTORGRADES DER NATURWISSENSCHAFTEN

VORGELEGT BEIM
FACHBEREICH INFORMATIK UND MATHEMATIK (12)

DER GOETHE-UNIVERSITAT FRANKFURT AM MAIN

Von
Ashraf Abu Baker
April, 2009

Dedication

This dissertation is gratefully dedicated to my

late loving mother:

Niyme Fuad Aref Hmaidy
(28.06.1990)

11

v

Acknowledgements

Although this dissertation is the result of the author’s research, without the
encouragement and support of some people the completion of this thesis
would have been much more difficult, if not impossible. To all those people I would
like to express my deepest gratitude, especially to my advisers: Prof. Dr. Detlef
Krémker, who granted me the opportunity to launch this research, as well as Prof.

Dr. Georg Schnitger for their patience, support and guidance.

I also owe my sincere gratitude to all those with whom I have published a number
of useful papers, for their great cooperation: Borislav Milanovic, Dr. Alexander

Tillmann, Dipl.-Inf. Stefan Kappes and Dipl.-Inf. Dirk Grunwald.

vi

Publications

ome parts of this research have already been published in several papers. In
Sparticular, Section draws on the work presented in [13] and [12]. Sec-
tion and are based on the research published in [II] and [14], respectively.
Two further papers on the visualisation of parallel algorithms and the development
of reversible 3D applications were submitted recently to the InfoVis-2009 confer-
ence [I] and will not have been reviewed before submitting this thesis. Additionally,
four papers were published on topics, not directly related to this research, but to

e-learning themes, and are therefore not included in this thesis [17, [16} [15], T21].

Vil

viil

Abstract

Algorithmsﬂ and data structures constitute the theoretical foundations of com-
puter science and are an integral part of any classical computer science cur-
riculum. Due to their high level of abstraction, the understanding of algorithms
is of crucial concern to the vast majority of novice students. To facilitate the un-
derstanding and teaching of algorithms, a new research field termed “algorithm
visualisation” evolved in the early 1980’s. This field is concerned with innovating
techniques and concepts for the development of effective algorithm visualisations

for teaching, study, and research purposes.

Due to the large number of requirements that high-quality algorithm visualisa-
tions need to meet, developing and deploying effective algorithm visualisations from
scratch is often deemed to be an arduous, time-consuming task, which necessitates

high-level skills in didactics, design, programming and evaluation.

A substantial part of this thesis is devoted to the problems and solutions related
to the automation of three-dimensional visual simulation of algorithms. The sci-
entific contribution of the research presented in this work lies in addressing three

concerns:

e Identifying and investigating the issues related to the full automation of visual

simulations.

e Developing an automation-based approach to minimising the effort required

!The term algorithm derives from “Muhammad ibn Musa Abu Ja’far Al-Khwarizmi”, the name
of a mathematician and astronomer. He is considered to be the father of algebra and was among
the first to use zero as a place holder in positional base notation [75] [74].

1X

for creating effective visual simulations.

e Designing and implementing a rich environment for the visualisation of arbi-

trary algorithms and data structures in 3D.

The presented research in this thesis is of considerable interest to (1) researchers
anxious to facilitate the development process of algorithm visualisations, (2) edu-
cators concerned with adopting algorithm visualisations as a teaching aid and (3)

students interested in developing their own algorithm animations.

Zusammenfassung

Is fundamentale abstrakte Konzepte der theoretischen Informatik sind Al-
A gorithmen und Datenstrukturen ein integraler Bestandteil jedes klassischen
Kurrikulums eines Informatik-Studiums. Aufgrund ihrer abstrakten Eigenschaften
stellt das Verstehen der Arbeitsweise von Algorithmen fiir viele Studierende eine
grofle Herausforderung dar. Um das Lernen, Lehren und Erforschen von Algo-
rithmen und Datenstrukturen zu vereinfachen, wurde Anfang der 80er Jahre ein
Forschungsgebiet namens Algorithmenvisualisierung geschaffen. Als Teildisziplin
der Softwarevisualisierung befasst sich dieses Forschungsfeld mit der dynamischen
Visualisierung des abstrakten Verhaltens von Algorithmen und den diesen zugrunde-
liegenden Datenstrukturen. Algorithmenvisualisierung gilt als ein modernes
e-Learning- und e-Teaching-Instrument, das Computergraphiktechniken einsetzt,

um das Verstehen, Vermitteln und Erforschen von Algorithmen zu erleichtern.

Ein Hauptziel dieser Dissertation besteht darin, Ansétze zur Automatisierung
von dreidimensionalen visuellen Algorithmensimulationen zu entwickeln und zu
implementieren. Fine visuelle Simulation eines Algorithmus ist eine interaktive
Animation seines Verhaltens und der Zustandsanderungen seiner Daten, der eine
Echtzeitsimulation des Algorithmus zugrunde liegt. Der wissenschaftliche Beitrag
dieser Arbeit besteht darin, die bislang unerforschten Probleme der vollautomati-
schen Visualisierung von Algorithmen zu identifizieren und zu analysieren, mogliche
Losungswege und -ansétze zu entwickeln und diese in eine zu schaffende Algo-

rithmenvisualisierungsumgebung zu implementieren. Desweiteren prasentiert die

x1

Arbeit einen Ansatz zur Minimierung des Aufwands fiir die Entwicklung von vi-
suellen Simulationen paralleler Algorithmen und einen Ansatz zur passiven Anima-

tion von Algorithmen zu AP-vollstandigen Problemen.

Die Motivation der Arbeit resultiert zum einen aus dem fiir viele unbefrie-
digenden aktuellen Stand der Technik, zum anderen aus dem erheblichen Aufwand,
der benotigt wird, um lerneffektive visuelle Algorithmensimulationen von Grund

auf zu entwickeln und bereitzustellen.

Die Arbeit wird eingeleitet mit einer Einfithrung in Terminologie und Geschichte
der Algorithmenvisualisierung, gefolgt von einem Uberblick {iber reprisentative Al-
gorithmenvisualisierungssysteme und den aktuellen Stand der Forschung. In Kapi-
tel |2l werden die wesentlichen Design- und Entwicklungsaspekte von dreidimensio-
nalen Algorithmensimulationen dargelegt und erlautert. In Abschnitt werden
Motivation und Notwendigkeit fiir eine dreidimensionale Visualisierung von Al-
gorithmen erlautert. Aufgrund der zahlreichen Anforderungen, welche von lern-
effektiven Algorithmensimulationen erfiillt werden miissen, gilt deren Entwicklung
als eine arbeitsaufwendige Aufgabe, die Erfahrung in Didaktik, Design, Program-
mierung und Evaluation erfordert. In Abschnitt werden essentielle Anforderun-
gen formuliert, die die Lerneffektivitdat von visuellen Simulationen erheblich beein-

flussen [95] ©99].

Um dem Leser eine klare Vorstellung von der Schwierigkeit des Entwicklungs-
prozesses zu vermitteln, wurde im Rahmen dieser Dissertation ein Workflow zur
Generierung von hybriden visuellen Simulationen entwickelt und in Abschnitt
vorgestellt. Der Workflow sieht vor, vier Beteiligte in den Entwicklungsprozess
zu involvieren: einen Padagogen, einen Designer, einen Programmierer und einen
oder mehrere Evaluierer. Desweiteren wird im gleichen Abschnitt eine Terminologie
eingefiihrt, die es ermdglicht, die einzelnen Bestandteile eines Algorithmus fiir eine
Visualisierung prazise zu spezifizieren und die Komponenten einer Simulation zu
charakterisieren. Die Einfithrung dieser Terminologie war notwendig, um die bei

einer vollautomatischen Visualisierung auftretenden Probleme zu charakterisieren.

xii

Abschnitt 2.8 untersucht in wie weit die Entwurfsmethoden Greedy-Algorithmen,
Divide-&-Conquer und Dynamische Programmierung die Visualisierungskomplexitét

von Algorithmen beeinflussen.

Zur Einfithrung in die Automatisierungsprobleme von Simulationen werden in
Abschnitt die wesentlichen Unterschiede zwischen Programm- und Algorith-
menvisualisierung erlautert. In Abschnitt werden zahlreiche Probleme ermit-
telt und ausfiihrlich dargelegt, die eine vollautomatische quellcodebasierte Visuali-

sierung beliebiger Algorithmen aus praktischer Sicht fast unmoglich machen.

Die identifizierten Probleme werden in Abschnitt[4.1]je nach ihrem Schwierigkeits-
grad in einzelne Cluster unterteilt und anschliefend analysiert. Basierend auf der
resultierten Analyse wird in Abschnitt [4.2] ein Ansatz zur halbautomatischen Gene-
rierung beliebiger dreidimensionaler Simulationen prasentiert. Dieser Ansatz ist
eine Kombination aus Vollautomatisierung, Halbautomatisierung und manuellem
Eingreifen in den Simulationscode. Der Ansatz wurde umgesetzt und in eine im
Rahmen der Arbeit entwickelte Algorithmenvisualisierungsumgebung implemen-

tiert. Diese wird in Kapitel [5] vorgestellt.

Aufgrund ihrer enormen Laufzeit lassen sich rechenintensive Algorithmen und
Algorithmen zu NP-vollstandigen Problemen nicht fiir Eingaben beliebiger Lange
in Echtzeit simulieren. Algorithmen zu Problemen dieser Klasse konnen nur passiv
animiert werden. Bei einer passiven Animation wird der Algorithmus als animierter
Film visualisiert, der aus einer konstanten, nicht veranderbaren Folge von visuellen
Frames besteht. Im Gegensatz zu einer visuellen Simulation erlaubt eine passive
Animation keinerlei Interaktionen, die es dem Benutzer ermoglichen, die Daten
des Algorithmus zu verdndern bzw. sein Verhalten zu simulieren und somit Ein-
fluss auf den Inhalt der Animation zu nehmen. Der in Abschnitt prasentierte
Ansatz zur Animation von rechenintensiven Algorithmen und Algorithmen zu NP-
vollstéandigen Problemen basiert auf der Entwicklung einer 3D-Animationssprache

und einer Animationsengine (Animationsplayer). Die hierfiir entwickelte Sprache

xiil

verfiigt iiber Elemente zur Modellierung von Datenstrukturen, graphischen Primi-
tiven und zur Erstellung von Komponenten, die von passiven Animationen benotigt
werden. Visualisierungen von Algorithmen aus dieser Klasse konnen in XML-

Dateien spezifiziert und vom Animationsplayer abgespielt werden.

Bekanntermaflen stellen sowohl das Lernen als auch das Lehren von paralle-
len Algorithmen eine grofie Herausforderung dar. Dies gilt entsprechend fiir deren
Visualisierung. Bei der Visualisierung von parallelen Algorithmen miissen fiinf
zusatzliche Aspekte berticksichtigt werden, die fiir parallele Algorithmen spezifisch
sind: Synchronisation der verarbeitenden Prozesse, Visualisierung der Kommunika-
tionsmuster, Visualisierung der Kommunikationsroutinen sowie Visualisierung der
Datenzerlegung und -zuordnung. In Abschnitt [4.4] prasentieren wir einen clusteri-
sierungsbasierten Ansatz zur Aufwandsminimierung beim FErstellen von visuellen

Simulationen paralleler Algorithmen.

Kapitel[d wird mit einem Abschnitt abgeschlossen, der interessante Visualisierungs-
aspekte von Computergraphikalgorithmen beleuchtet. Zusammen mit Bioinfor-

matikalgorithmen gelten diese im Allgemeinen als besonders aufwendig zu simulieren.

Kapitel 5| ist der Implementierung der zuvor vorgestellten Ansatze gewidmet.
Das Kapitel beginnt mit einer kurzen Vorstellung der im Rahmen dieser Forschung
entwickelten und implementierten Algorithmenvisualisierungsumgebung. Diese be-
steht aus drei Komponenten: Einer Algorithmenvisualisierungsbibliothek, einem

Codegenerator und einem Algorithmenvisualisierungssystem namens 3D-Visian.

Der Codegenerator ermoglicht Entwicklern eine halbautomatisierte Generierung
beliebiger 3D-Simulationen. 3D-Visian ist eine Algorithmenvisualisierungsplattform,
in der beliebige Simulationen und passive Animationen geladen und ausgefiihrt wer-
den konnen. Nach einer kurzen Einfithrung in die eingesetzten Implementierungs-
technologien wird der Codegenerator vorgestellt, in dem der in Abschnitt [4.2] priasen-
tierte Halbautomatisierungsansatz umgesetzt wurde. Abschnitt stellt einen
Mechanismus vor, der entwickelt wurde, um die Anzeige und die Hervorhebung

(highlighting) von Algorithmencodezeilen zu automatisieren.

Xiv

Die manuelle Implementierung einer Undo/Redo-Funktionalitit fiir eine Algo-
rithmensimulation hat sich als eine der aufwendigsten Teilaufgaben erwiesen. Aus
diesem Grunde haben wir diesem Problem besondere Aufmerksamkeit gewidmet
und die Java 3D API so erweitert, dass sie eine vollautomatische Realisierung von
Undo/Redo-Funktionalitdten nicht nur fiir Algorithmenvisualisierungen, sondern
auch fiir beliebige 3D-Anwendungen, unterstiitzt. Das zu diesem Zweck entwickelte
Konzept wird in Abschnitt ausfithrlich behandelt. Abschnitt stellt eine
universelle Architektur fiir das Design und die Implementierung von Algorithmen-
visualisierungssystemen vor. Diese Architektur wurde zur Implementierung von

3D-Visian entworfen.

Im letzten Kapitel werden die zuvor vorgestellten Ansétze evaluiert. Das Kapitel

wird mit einem Ausblick auf ein zukiinftiges Forschungsthema abgeschlossen.

Anhang A enthalt Beispielalgorithmen, die in der Arbeit zur Erlauterung von
abstrakten Definitionen und Konzepten verwendet wurden. In Anhang B wurden
Codeausschnitte aus der Implementierung angehangt. Anhang C enthélt eine kurze

Einfiihrung in Java 3D.

XV

Xvi

Contents

[Dedicationl

[Acknowledgements|

[Zusammenfassung|

(I__Introduction|

IL.L7 Related Workl

[2

Development and Design Aspects|

Xvil

iii

vil

ix

xi

11

12

14

15

17

[2.2 Features and Requirements|. 22

2.2.1 3D immplementation 22
[2.2.2 Code listing display|. 22
[2.2.3 Control points|. 23
[2.2.4 Collapsible blocks| 24
[2.2.5 User interfaces for input and simulation parameter settings| . 24
[2.2.6 Direct manipulation] 26
[2.2.7 Capturing and displaying of runtime information| 26
[2.2.8 Undo/Redo facility| 27
[2.2.9 Embedding explanatory text|. 27
2.210 Documentationl Lo 28
[2.2.11 Capturing and export facility] 28
[2.2.12 Simplicity and consistency |, 29

[2.3 Design Aspects of Visual Simulations| 29
[2.4 Hybrid Simulations| 0000 31
[2.5 Participants (Involved Parties) 32
[2.6 Sample Algorithms| 33
[2.7 A Workflow tor Constructing Visual Simulations 34
[2.7.1 Steps carried out by the pedagogue|. 34
[2.7.2 Steps performed by the designer and programmer |. 40

[2.8 Algorithm Design Paradigms and Visualisation Complexity| 48
BT 52 Visual Simulations 53
[3.1 Programme Visualisation vs Algorithm Visualisation| 53
3.2 levels of Abstractionlo 57

xviil

3.4 Conclusions 65

[4 Semi-Automatic Approach| 67
[4.1 Problem Analysis|. 68
[4.2 Semi-Automated Approach|.o 70
[4.2.1 Visual objects| 71

[4.2.2 Code augmentation| 72

[4.2.3 Reusable parameterised components|. 73

[4.3 Animation of Computation-Intensive Algorithms and Algorithms for |

[NP-Complete Problems| 76
[4.3.1 An algorithm animation language for 3D algorithms|. 76

[4.3.2 Animating the TSP with xmI3DVig 81

[4.4 Visual Simulation of Parallel Algorithms| 83
[4.4.1 Parallel algorithms| 84

[4.4.2 Visualisation aspects of parallel algorithms| 85

[4.4.3 Clustering approach|] 86

[4.5 Simulation of Computer Graphics Algorithms| 90

[> Implementation| 91
[>.1 Implementation Technologies{. 92
[5.1.1 Abstract Syntax Tree (AST)[. 93

[>.2 Code Augmentation Techniques| 93
h.3 Code Generatorl 95
[>.4 Automatic Code Highlightingl 97

Xix

[5.4.1 Source code-based automatic highlighting|. 97

[>.4.2 Set-wise code line mapping|. 98
[>.4.3 Highlighting of pseudo and non-Java code| 101

[0.5 Automatic Undo/Redo| 0L 102
[5.5.1 Undo design patterns| 103
Hb.0.2 Undomodel oo 105
[5.5.3 Concept tundamentals| 105
[5.5.4 Undo/Redo containers| 108

[5.6 An Algorithm Visualisation Environment| 110
.7 3D-Visian — An Algorithm Visualisation Plattorm| 111
[b.7.1 System Architecture| oL 111

[6 Summary, Evaluation and Perspectives| 115
[6.1 Summary| 115
[6.2 Evaluation of the Approach| 117

[6.3 Evaluation of the Approach for Animating Algorithms to NP-Complete |

[Problemsd 118
[6.4 Evaluation of the Undo/Redo Facility|. 120
6.5 FEvaluation ot 3D-Visian | 124
6.6 Future Work | 124

(Bibliography| 125

Append 139

[A° Sample Algorithms| 139

[A.1 Dijkstra’s Algorithm for the SSSP-Problem|. 139

XX

[A.2 Mergesort|.

(B Source Code Listings|

[B.1 Augmented Code Example|

[B.2 Python Scanner|

[B.3 Visual Merge sort|

(B.5 Visual Array|.

[B.6 Undo/Redo Snapshot|.

xXx1

List of Tables

(1 An overview of some algorithm and programme visualisation systems| 7
[2 Requirements for algorithm visualisations and visualisation systems| 10
3 Problem overview|o o 68
[4 Clustering of the investigated algorithms| 89
[5 Memory consumption of three distinct applications| 121

xxil

List of Figures

(1 Algorithm, Programme and Software Visualisation|. 4
[2 oSnapshots ot Sorting Out Sortingl 6
[3 3D visualisation of Dijkstra’s algorithm in JCAT}. 20
[4 Code display|. 23
(5 A snapshot of a selection sort simulation in 3D-Visian|. 30
(§ 3D graph editor| 43
(7 Conceptual structure of a visual simulation|. 45
8 A wvisual simulation of a red-black tree in 3D-Visian| 46
[9 A simulation of a ray tracer in 3D-Visian| 47
(10 A simulation of Dijkstra’s algorithm in 3D-Visian| 61
(1T A screenshot of a merge sort simulation in 3D-Visian| 64

(12 Grouping the simulation components based on their creation method| 74

(13 Semi-automatic approach for creating visual simulations] 75
(14 Conceptual structure of xmI3DVis|. 80
(15 Animation of the TSP in 3D-Visianl 81

[16 Travelling-salesman problem on a textured sphere created in xml3DVig| 83

(17 Ilustration of an Abstract Syntax Treel 93

[18 Structure of the code generator| 96

xxiii

(19 A tool for code listing mapping | 102
20 Undoable interface hierarchy| 106
21 An illustration of the structure of the undo/redo manager| 107
[22 Container interface hierarchyl. 109
23 A graphical user intertace tor C,,|. 112
24 A graphical user intertace tor Cy| 113
[25 A simple illustration of the architecture ot 3D-Visian| 114
26 A segment of an RNA animation| 119
27 Memory consumption of an application with 2300 objects after 100 |

XX1v

Chapter 1

Introduction

his chapter reviews both, earlier and current research related to the field of
T algorithm visualisation and algorithm visualisation systems. It is intended
to give readers an overview of the topic and make them familiar with this area of
research. The first section defines the terminology associated with the topic and
describes its relation to software visualisation. Section gives a brief history of
algorithm visualisation and outlines iconic systems, which have been developed over
the past two and half decades. In Section [I.3] we describe a fundamental aspect
of algorithm visualisations that determines their didactical quality. A survey of
current algorithm visualisations and classical visualisation systems is presented in
Section [1.4] followed by a discussion on the motivation behind our research. Finally,
we define the goals of this thesis, outline related work, and provide an overview of

the organisation of the entire work.

2 CHAPTER 1. INTRODUCTION

1.1 Terms and Definitions

Visualisation is the process of transforming abstract data into visual represen-
tation, in order to simplify understanding of the data’s meaning. It is a means
of enhancing the visual perception of abstract information. There are three types
of visualisations which are of interest to us: information visualisation, scientific
visualisation, and software visualisation. Information Visualisation focuses on
the use of techniques for visualising large-scale non-physically-based data, such as
economic and textual or structural information. Scientific Visualisation is the
visualisation of physically-based spatial data of scientific processes or phenomena,
such as geographical and biomedical data, chemical processes, weather simulations,
etc. Software Visualisation (SV) is the art and science of using computer graph-
ics technologies to generate visual representations of various aspects of software and
its development process [49]. SV can be separated into two subfields — algorithm vi-
sualisation and programme visualisation. Programme Visualisation (PV) refers
to mapping the static and dynamic aspects of programmes to graphical represen-
tations in order to enhance human’s understanding of their actual implementation
and structure. Algorithm Visualisation (AV) on the other hand, is the process
of graphically illustrating the abstract behaviour of an algorithm and the internal
changes of the state of its underlying data structures. It uses computer graphic
techniques to extract the algorithm’s data and operations to produce well-designed
graphic representations and animations of these abstractions. AV can be consid-
ered as a modern e-learning instrument or technique, which can greatly aid learners
to easily understand, and instructors to comprehensively explain the non-trivial
behaviour of an algorithm or a data structure. They serve as a powerful supple-
ment or in some circumstances even as an alternative to conventional learning and
teaching tools, such as static textbooks, blackboards and transparencies, and thus,
contribute to enhancing the quality of education. Not only students and instructors
can benefit from this technology, but also researchers and algorithm designers can

make use of it to investigate and enhance algorithms and data structures (A&DS)

1.1. TERMS AND DEFINITIONS 3

and develop new ones. Brown [25] stated ”Experimenting with an animation with
Knuth’s dynamic Huffman trees [78] revealed strange behaviour of the tree dynamics
with a particular set of input. This lead to a new, improved algorithm for dynamic
Huffman trees [124]. A variation of Shellsort was discovered in conjunction with
static colour displays of Bubblesort, Cocktail-Shaker Sort, and standard Shellsort
[66]”.

There are two kinds of systems related to algorithm visualisations:

e Algorithm Visualisation Design Tools, which are constructed to aid the

design of new algorithm visualisations; and

e Algorithm Visualisation Systems (AVS), which serve as an execution

environment to launch and explore pre-designed algorithm visualisations.

In related literature, the term ”algorithm animation” is widely used to de-
scribe any form of animated algorithm visualisation. In our work, however, we dis-
tinguish between two distinct types of algorithm visualisations: passive algorithm
animations (static animations) — or simply animations, and interactive algorithm

animations, hereafter referred to as visual simulations — or simply simulations.

In a passive algorithm animation an algorithm is visualised as an animated
film consisting of a constant, unchangeable sequence of frames. The animation
does not support any user interactions that allow for a modification of the input
data, which could consequently influence the behaviour of the animation. The
input of the algorithm or the data structure has already been fixed and hard coded
by the animation author at the time of creation and can not be modified later.
The behaviour of the algorithm or data structure is identical in each run of the
animation. Learning commonly takes place by watching the animation film in a

passive way.

Visual algorithm simulations on the other hand, are interactive animations
with an underlying real-time simulation of the algorithm or the data structure. Un-

like passive animations, visual simulations allow users to interactively modify the

4 CHAPTER 1. INTRODUCTION

input data of the algorithm, or access and manipulate the elements of the simu-
lated data structure before or during the execution of the simulation. Furthermore,
they support the implementation of various levels of interactions and overcome the

limitations inherent in passive animations.

Software Visualisation

Algorithm Visualisation Programme Visualisation

Static Algorithm Visualisation Data Animation

Static Code Static Data
Visualisation Visualisation

Visual Programming

Dynamic Algorithm Visualisation
(Algorithm Animation)

Passive Algorithm Animation

Visual Algorithm Simulation Code Animation

Figure 1: Algorithm and Programme Visualisation as subfields of Software Visuali-
sation

Figure 1| shows the relationship between SV, AV, and PV based on an extension
of the taxonomy of Price et al. [91]. The static algorithm visualisation in
the figure refers to the non-animated presentation of algorithms using formatted
text, flowcharts [58], diagrams [85] and images. This approach is widely used in
textbooks and transparencies, and is not to be confused with the static animation
of algorithms. Dynamic algorithm visualisation (algorithm animation) denotes
any kind of computer-animated visualisation of algorithms. Visual Programming
(VP) is a relatively modern approach to creating programmes. The approach seeks

to make programmes easier to specify by using a visual notation. In this approach,

1.2. HISTORY OF ALGORITHM VISUALISATION SYSTEMS bt

a developer creates a programme using so called visual programming languages or

graphical tools rather than specifying it textually [126].

Although a visualisation is not necessarily animated, in the following, we use
the expression ”algorithm visualisation” as a generic term to denote both forms of
algorithm animations — passive animations and visual simulations. This expression
can be understood as a synonym to the term “algorithm animation”, which is

prevalent in most SV literature.

1.2 History of Algorithm Visualisation Systems

A significant effort on the development of novel algorithm visualisation techniques
and systems has been made over the past two and half decades. The computer
graphics pioneer Kenneth Knowlton [76] was the first to develop the earliest com-
puter animation language BEFLIX [77] in 1963 and to use it to produce bitmap
animations of dynamically changing data structures. The history of algorithm vi-
sualisations, however, can be traced back to the early 1980’s. Probably the first
well-known algorithm animation is the thirty-minute film entitled ”Sorting Out
Sorting” [10], which was introduced by Ronald Baecker at the SIGGRAPH con-
ference in 1981. The colour-sound-film introduces nine distinct sorting algorithms

and illustrates the differences in efficiency of the various algorithms (see Figure .

Afterwards, a large number of algorithm and programme visualisation systems
and hundreds of individual visualisations were developed and made available on-
line [T09]. In what follows, we briefly introduce some noteworthy representative

systems with a special focus on well-known recent systems.

The first two algorithm visualisation systems, which have significantly influenced
subsequent systems are BALSA (Brown ALgorithm Simulator and Animator) and
TANGO (Transition-based ANimation GeneratiOn). BALSA [26] is an inter-

active monochrome algorithm animation system developed by Marc Brown and

6 CHAPTER 1. INTRODUCTION

Figure 2: Four snapshots of Sorting Out Sorting [10]

Robert Sedgewick at the Brown University. It provides support to multiple simulta-
neous views of an algorithm’s data structures and displays multiple algorithms, be-
ing executed simultaneously. TANGO [113] was developed in 1989 by John Stasko
also at the Brown University. It introduced the path-transition paradigm, which
enables creating smooth and continuous image movement. Further, TANGO intro-
duced a new framework for algorithm animation systems, which has been success-
fully adopted by many subsequent systems as their fundamental architecture. Both
systems have been extended to BALSA-II and XTANGO, respectively. BALSA-IT
was developed in 1988 for Apple Macintosh computers and extended with step and
break points, in addition to a number of other features. XTANGO [I14] is an
X-Window version of TANGO, which utilises a path-transition paradigm to pro-
duce smooth animations. POLKA [90] is a further development of XTANGO and
was designed to create concurrent animations for parallel programmes. SAMBA
is a classical interactive ASCII-based animation system, which served as a front-
end of POLKA. The system has a widely used classical architecture, which com-
prises an animation interpreter that reads graphical ASCII-commands and trans-
lates them into corresponding animation actions. JSAMBA [71] is the Java ver-
sion of SAMBA. While SAMBA can run only on Unix and Windows, JSAMBA is

platform-independent. More recent and up-to-date systems, which are noteworthy

1.2. HISTORY OF ALGORITHM VISUALISATION SYSTEMS 7

are ANIMAL, MatrixPro and JHAVE [83], all of which are platform-independent
systems and are still in use. ANIMAL [95, 06] is an algorithm animation sys-
tem and algorithm animation design tool developed by Guido Rofiling. The tool
is used to design several types of algorithm and data structure animations. The
system is the environment used to play the created passive animations. ANIMAL
was developed in Java and introduced several new advanced features, not found
in earlier systems. MatrixPro [73] is a system designed for instructors to create
visual simulations of data structures and algorithms using a flexible drag and drop

implementation.

Counting all developed systems would go beyond the scope of this work. Instead,
Table [1] gives an overview of some of the algorithm and programme visualisation

systems developed so far.

’ System ‘ Year ‘ Programming Language Platform ‘ 2D /3D ‘
Balsa 1985 Pascal MacOS 2D
Zeus 1989 Modula Unix 2D
XTango 1990 C Unix 2D
UWPI 1990 Pascal Unix 2D
Pavane 1991 Prolog MacOS 3D
Polka 1992 C++ Unix 2D
SAMBA 1995 C++ Unix/NT 2D
eliot 1996 C Unix 2D
CAT/JCAT | 1996 Java platform-independent 3D
GASP-II 1996 Fortran Unix 3D
Leonardo 1997 C MacOS 2D
Gawain 1998 Java platform-independent 2D
JAnim 1999 Java platform-independent 2D
Algorithma | 1999 Java platform-independent 2D
Jeliot 2000 Java platform-independent 2D
ANIMAL 2001 Java platform-independent 2D
JSAMBA 2003 Java platform-independent 2D
JHAVE 2005 Java platform-independent 2D
MatrixPro | 2005 Java platform-independent 2D

Table 1: An overview of some algorithm and programme visualisation systems

8 CHAPTER 1. INTRODUCTION

1.3 Effectiveness of Algorithm Visualisations

The ultimate target of any algorithm visualisation is to maximise its learning ef-
fect in an efficient way by conveying hidden information regarding the abstract
behaviour and the fundamental operations of its underlying algorithm. The effec-
tiveness of an AV is measured by its pedagogical impact or learning effect. The
learning effect can be objectively assessed by measuring the increase in knowledge
per a given unit of time. A considerable number of independent empirical studies
and experiments have been conducted to examine the benefits of AV [65]. Brown,
for example, who used BALSA [20] to teach an introductory course in computer pro-
gramming, has reported that the use of visualisations as an additional teaching aid
"has led to demonstrable gains in speed of comprehension”. Stasko’s students who
used SAMBA [I12] to study a computer science algorithm course ”have enjoyed us-
ing the animation. The animation engaged students’ creativity and expressiveness

and enhanced the students’ understanding of the algorithms.”

Although further studies [46], 62] [79, 10, 57] have shown similar results, there
are some experiments [61, 98|, [[T6], which have concluded that there has been no
significant difference between using animations and traditional teaching materials.
Hansen believes that the disappointing results in some studies are not due to the
algorithm visualisation as a technique, but due to the approach used to convey
the visualisations [62]. No doubt, the results of any study are highly dependent
upon the quality of the visualisation being used. Nevertheless, in spite of these
conflicting results, it is widely perceived that AV can indeed, significantly facilitate
the understanding of the fundamentals of algorithms and data structures, shorten
the time required to analyse them and thus, improve the entire learning process.

To keep this promise, however, AVs need to be pedagogically effective.

The important question which arises at this point is: What constitutes an effec-
tive AV and what features should an effective AVS provide? In other words, which

characteristics determine the effectiveness of AV?

1.3. EFFECTIVENESS OF ALGORITHM VISUALISATIONS 9

To be effective an AV needs to meet a large number of requirements: An AV,
for example, is effective when it encourages learners to interact with it and engages
them actively in the entire learning process. Naps et al. [84] argue ”a visualization
technology, no matter how well it is designed, is of little educational value unless it

engages learners in an active learning activity.”

Besides providing a high-level of interaction, there are numerous aspects that
have an influence on the effectiveness of the visualisations. Drawing on the work
published by RoBling and other researchers [95], 57, 92], Sabi [99] has prepared a
helpful table summarising over 40 requirements for AV and AVS, which can be
used as a guide for future developments (see Table [2). RoBling [95] has given a
detailed explanation of most of them, and therefore we are not going to discuss
them further in this work. We encourage interested readers to learn more about

these requirements in the cited works.

10 CHAPTER 1. INTRODUCTION

Z
s 2 3
E18 |8 ie
£l g8 g
HIEINE
Q| 0O |’ | = 3
~ °elE |2
— |3 || E | &
ArAEAl
28| 5| E
Q) o | B =]
OlA &S|

1 Platform-independence °

2 | Internet-independence °

3 Easy installation and maintenance °

4 | Internationalisation °

5 Topic overview °

6 | Integrated auditive and textual explanation o

7 | Linking to documentation °

8 | Navigation support °

9 | Visualisation-wide consistent presentation °

10 | Usability of the graphical user interface .

11 | Usage of colour and other graphical representations)

12 | 3D visualisation]

13 | Highlighting .

14 | Smooth transitions .

15 | Focusing attention °

16 | Adaptable GUI .

17 | Clarity of the didactical goal)

18 | Adequate media synchronisation .

19 | Interesting events °

20 | Adjustable granularity °

21 | Small input data sets .

22 | Predefined interesting input data °

23 | Adjustable level of difficulty .

24 | Contact to reality °

25 | Exercise support °

26 | Animation export and storage °

27 | Embedded analysis and comparison °

28 | Undo/Redo facility .

29 | Input data manipulation .

30 | Next step prediction °

31 | Quizzes °

32 | Feedback generation .

33 | Level of detail .

34 | Creation of user-defined animations °

35 | Direct manipulation °

36 | Video player control .

37 | Enabling/Disabling of sound and text °

38 | Animation speed control °

39 | Breakpoints °

40 | Embedded delay points °

Table 2: Requirements for algorithm visualisations and visualisation systems

1.4. STATE OF THE ART 11

1.4 State of the Art

At the time they were developed, all the previously mentioned systems were con-
sidered as revolutionary systems, which greatly helped improve computer science
education. Nowadays, most of them are either considered outdated, or they are very
domain-specific. Meanwhile, the technologies they had applied have become obso-
lete. Particularly those which are platform-dependent are difficult to install and run
due to advances in operating systems and computer technologies. Some of them
are not even available anymore. Indeed, advances in computer graphic technologies
and hardware have enabled us to develop new and powerful graphic APIs and visu-
alisation tools, both of which have considerably facilitated the development of new
algorithm visualisations and systems. Meanwhile, a number of recent visualisations
have been developed and provided online. Since the introduction of Java and Flash
in 1996 there has been a conspicuous trend in the late 1990’s towards developing
individual web-based visualisations. A noticeable amount of visualisations has been
designed as web-based applications in Java, Flash, SVG [117], X3D [0}, 130}, 131],
and surprisingly in Excel [123]. They range from an individual visualisation of one
single algorithm or data structure to collections of visualisations mostly on related
topics taught in undergraduate courses. We estimate the number of published visu-
alisations at over 700. In a recent study on the state of the field Shaffer et al. [109]
managed to catalogue over 350 distinct algorithm visualisations. According to Shaf-
fer, most existing AVs are of a poor quality and the topic coverage is mostly confined
to easier topics, such as sorting, conventional data structures and graph algorithms.
Obviously, these seem to be the most popular subjects of visualisations. Visuali-
sations of algorithms in advanced fields such as computer graphics, bioinformatics,
cryptography, etc. are under-represented or not even available. Ro8ling et al. [97]
argue "despite the abundance of algorithm visualization tools now available, their
promise as a pedagogical tool is largely unfulfilled.” Thus, the questions that arise
are: Why are most existing visualisations either of poor pedagogical value or largely

ineffective? Why have not AVs been satisfactorily adopted in teaching despite the

12 CHAPTER 1. INTRODUCTION

significant effort made so far? The answers to these two questions form the main

motivation of our work.

1.5 Motivation and Objectives

Despite the significant effort made so far by a number of researchers and despite the
increasing popularity of AVs among learners and educators, algorithm visualisation
has failed to catch on as a recognised effective teaching and learning technology in
computer science education. This fact explains why many educators and learners

still stick to traditional materials such as textbooks and transparencies.

Not surprisingly, people tend to underestimate the effort required for construct-
ing visual simulations. Experience, however, has shown that developing and deploy-
ing effective and high-quality AVs can be a difficult and time-consuming task (see
Section[2.7). If one examines how much effort is required to implement each feature
listed in Table [2] an average developer might need up to a few weeks to design and
develop a powerful effective visualisation from scratch. And once the visualisation
has been constructed, it still needs to be tested and deployed in order to be capable

of running in a suitable environment and to be accessible online.

Taking part in an annual internship at our Department of Computer Graph-
ics [54], 19 students needed roughly two and half months to develop 38 three-
dimensional visual simulations of moderate quality, two simulations each. The
students stated that the time needed merely to implement an undo/redo facility
was twice as much as the time necessitated to develop the rest of the simulation.
Postgraduate students working on Master’s theses related to this topic reported
similar troubles. The difficulties regarding developing visual simulations will be

made apparent in later chapters.

Unquestionably, the intricacy of implementing visualisations explains the poor

quality of many visualisations. This, indeed, affects the attitude of both, instructors

1.5. MOTIVATION AND OBJECTIVES 13

and students towards the technique. Additionally, instructors are not truly inter-
ested in making so much effort to develop their own visualisations, probably because
they lack the time. They are rather interested in ready-made, easy-to-use, enlight-
ening visualisations, which they can use in their lectures to demonstrate their ideas
without extra effort. Likewise, students are often neither interested in spending a
lot of time looking for adequate visualisations that suit their needs nor to cope with
the installation of already found ones. The huge variety of available visualisations
makes finding appropriate ones very time-consuming. They are more interested in
having access to visualisations that help them master their work faster than with
books, rather than wasting their time searching for good visualisations at random;
not to mention the time needed to learn how to use them. Furthermore, different
visualisation authors have different design styles. Consequently, hopping from one
visualisation to another always entails re-adapting to the new design style of the
others and requires the user to familiarise themselves with the new visualisation or

system.

Apparently, the development complexityﬂ of algorithm visualisations and the
absence of a comprehensive and widely accessible visualisation system are two issues
which have significantly contributed to the failure of algorithm visualisations to be

adopted as a recognised teaching and learning technology.

Hence, there is a high necessity for inventing novel techniques and methods for
minimising the effort required to create algorithm simulations. Furthermore, there
is an urgent need for a globally available algorithm visualisation system. These are
the very two issues being addressed in this work. Hence, the primary three goals of

our research are:

— To identify the problems related to the full automation of algorithm visualisa-

tion.

IThroughout this work, when we talk about development complexity of visualisations, we mean
the intricacy of constructing them. The term is used to express the huge effort required for their
implementation. It has nothing to do with the computational complexity of algorithms, known
from theoretical computer science.

14 CHAPTER 1. INTRODUCTION

— To develop an approach towards semi-automating the process of constructing
three-dimensional simulations of algorithms and data structures, whereby the

ultimate goal is to minimise the total required effort.

— To design and develop a modern universal algorithm visualisation environment

for developing, executing and hosting arbitrary algorithm visualisations.

1.6 Thesis Outline

Section of this chapter introduces some work related to the automation of pro-
gramme and algorithm visualisations. The target of Chapter 2] is to make the
reader familiar with the development process and to give them a notion of how
effective simulations are usually constructed. This is achieved by discussing essen-
tial development and design aspects of algorithm visualisations, defining a list of
requirements, and presenting a workflow for the development of arbitrary simula-
tions. Furthermore, Chapter [2| also examines whether or not there is a link be-
tween the common design paradigms: Greedy-Algorithms, Divide-&-Conquer and

Dynamic-Programming, and the visualisation complexity of algorithms.

In Chapter 3| we identify and investigate the issues related to visualising algo-
rithms fully automatically, and show why the full automation of meaningful visual
simulations is extremely difficult. This finding has lead us to develop an approach
for generating simulations semi-automatically. This approach will be presented in
Chapter[dl In the same chapter we go a step further and present an approach for an-
imating computation-intensive 3D algorithms and 3D algorithms for A/P-complete
problems, which inherently cannot be simulated for arbitrary input length. Fur-
thermore, we present a clustering-based approach for facilitating the development
of parallel algorithms and conclude the chapter with a discussion on the simula-

tion of computer graphics algorithms. Chapter [5|is devoted to the implementation

1.7. RELATED WORK 15

of the previously developed approaches. In particular, the chapter introduces an
algorithm visualisation environment consisting of a code generator, an algorithm
visualisation programming interface, and an algorithm visualisation system termed
3D-Visian. We conclude this thesis with a chapter evaluating the entire work and

indicating some topics for future research.

1.7 Related Work

The implementation complexity of effective AVs has induced researchers to think

of ways for automating the visualisation process or at least for making it easier.

The most common approach of automation is to develop a domain-specific al-
gorithm animation design tool that can be used to ease the production of passive
algorithm animations. Such tools are comparable to general purpose animation
tools, such as Flash, with the difference that they are geared to the animation of
a narrow range of algorithms. Generating animations is usually accomplished by
starting the tool as a GUI-based design environment or as a wizard and providing it
with the appropriate parameters. These tools are highly specialised and commonly
limited to a narrow domain of algorithms. They are best suited for high school
students or in general for persons with poor programming skills. Their outcomes

are passive animations with little pedagogical value.

The second approach of automation is to develop domain-specific visualisation
systems with embedded knowledge regarding the types of objects and operations
prevalent in the domain. As a result, the system provides integrated mechanisms
that allow for an automatic visualisation of the objects and the animation of the
operations. At any rate, this kind of systems is always limited to a selected collection

of algorithms.

Another widely used approach for automation is the on-the-fly visualisation of
programme codes [69]. Jeliot3 is an excellent programme animation application

that is intended to be used to visualise the way Java programmes are interpreted.

16 CHAPTER 1. INTRODUCTION

The programme to be visualised is typed or loaded into a source pane. While the
programme is being executed, method invocation, variables, expressions, etc. are
displayed on the screen. Students can thus follow the step-by-step execution of the

programme.

However, as Jeliot, like any other programme visualisation system, visualises
low-level programming-language-specific concepts, such as the execution of loops,
method invocations and expressions, as well as data changes to variables, arrays,

etc., it is unsuitable for simulating the more abstract aspects of an algorithm.

Unfortunately, apart from a few additional works related to programme visu-
alisation, not much work addressing the automation problem has been published.
There is also one system called Algorithma [30]. It uses a special pre-defined pseudo
code language. Students can use the language to write their own algorithms, which

are then automatically executed.

Since we are mainly concerned with creating visual simulations of arbitrary al-

gorithms, all these systems are quite out of the question for us.

Chapter 2

Development and Design Aspects

of Visual Simulations

t is often difficult for people who have never developed visualisations on their
Iown, or have never had a look into the code of already implemented ones, to imag-
ine how visualisations gradually evolve. In this chapter we would like to share with
the reader our practical experience in designing and developing three-dimensional
simulations that we have collected during our research work. Our aim is to give
the reader an insight into the development process and highlight its most funda-
mental aspects. Our primary goal in doing so is to communicate how to construct
adaptabldl| simulations that ensure a maximum learning effect and provide a high
degree of simplicity and usability. We will first start by illustrating why using 3D
graphics in algorithm visualisation is essential and beneficial. Section charac-
terises a set of features and requirements which our to-be-constructed’ simulations
are expected to meet, and explain the pedagogical motivation behind each of them.
Section briefly discusses some design aspects that should be minded when de-

signing algorithm simulations. In Section [2.5] we introduce the parties involved in

LA simulation is adaptable if it exhibits features that enable the user to adapt it to their level
of knowledge, and if it can be turned from a self-study to a teaching simulation and vice versa
without intrusion into the source code (see Section and .

17

18 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

the development process and define their individual roles. Finally, we present a
workflow for creating visual simulations and assign each step to a particular party
involved. The chapter is not only geared to researchers, but also to visualisation
designers and developers, such as students who are willing to work on theses re-
lated to the topic, as well as to educators who are interested in offering courses or

internships concerning algorithm visualisations.

2.1 2D vs 3D Visualisation

The advantages of using the third dimension to produce three-dimensional visu-
alisations are numerous. From a visual point of view, algorithms can be divided
into three classes: two-dimensional algorithms, three-dimensional algorithms and

augmented two-dimensional algorithms.

Two-dimensional algorithms in the context of visualisation are algorithms
that can be satisfactorily visualised in a two-dimensional scene. Visualising them
in a three-dimensional space might enhance their beauty and make them look more
artistic; though it comes with little or no additional pedagogical benefit. Most well-
known sorting, planar graph, and string-matching, polygon clipping algorithms,

raster graphics algorithms, etc. fall into this category.

Three-dimensional algorithms in this context are algorithms that can, strictly
speaking, only be visualised in a three-dimensional scene. There are many reasons

why an algorithm cannot be visualised unless the third dimension is available:

e The algorithm operates on inherent three-dimensional objects. This applies,
for example, to three-dimensional shading algorithms and algorithms for hid-

den surface removal [51].

e The algorithm uses two-dimensional objects located in a 3D space. This ap-
plies, e.g., to the algorithm of 3D triangulation [18], the shortest line between
two lines in a 3D space [22] and the 3D Voronoi diagram problem [48§].

2.1. 2D VS 3D VISUALISATION 19

e The algorithm works on two-dimensional objects plotted on a two-dimensional
plane; however, the operations carried out by the algorithm can only be graph-
ically depicted in a 3D scene. The best example for this is shading a plane by

applying a ray tracer where tracing the rays can only be depicted in 3D.

Plenty of examples for 3D algorithms and structures can be found in the field of
bioinformatics and computer graphics: Many biological processes can only be sim-
ulated comprehensively using 3D. Enzymes, for example, which are large molecules
that control particular chemical reactions, are mostly proteins and have a three-
dimensional structure, which can only be modelled and rendered using three-dimen-
sional geometry. Any physical interaction between enzymes and the molecules they
affect is simulated in 3D. Algorithms for three-dimensional protein folding [122] and
RNA structure predicting algorithms [94] are further examples for 3D simulations

in bioinformatics (see the animation of the ILM-algorithm in Figure 26).

Computational geometry is a subfield of the computer graphics discipline which
is concerned with solving geometrical problems. Most geometrical algorithms in this
field are inherently 3D. Examples thereof are: calculating the area of a 3D poly-
gon, delaunay triangulation of a set of 3D points, the 3D surface mesh generation

algorithm [72], computation of the convex hull for a set of 3D points, etc.

Much more interesting is the group of augmented two-dimensional algorithms.
Obviously, there is no point in using the third dimension in the Graham scan
algorithm [I25] to compute the convex hull for a set of 2D points. However, there
are various advantages of augmenting other 2D algorithm visualisations to 3D.
The major purpose in doing so is to use the third dimension to encode additional
useful information that can usually not be rendered in 2D. This supplementary
information aims to raise the level of expressiveness of the visualisation and to
increase the quality and quantity of information conveyed. Algorithms, which fall
into this category are called augmented two-dimensional algorithms. Examples
of augmented two-dimensional algorithms are Dijkstra’s algorithm [100, 34], the

closest-pair problem [59], and the travelling-salesman problem (see below).

20 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

The approach of using the third dimension to produce three-dimensional visuali-
sation for 2D algorithms has been satisfactorily explored by Brown and Najork [23].

According to Brown there are three distinct applications of 3D:

e Expressing fundamental information about structures that are inherently two-

dimensional.
e Uniting multiple views of an object.

e Capturing a history of a two-dimensional view.

We will only discuss the first point using Dijkstra’s algorithm, which is, according
to our classification, an outstanding example of an augmented two-dimensional
algorithm (see Appendix. Interested readers are encouraged to learn more about

the remaining two points in [23].

The main idea behind point one is to augment the 2D data structure of the

algorithm to incorporate additional data. Figure 3| shows an animation of the

algorithm in JCAT [82].

Figure 3: 3D visualisation of Dijkstra’s algorithm in JCAT

Image 1 in the upper left corner of the figure shows the initial graph. Each edge
in image 2 leaves a vertex at height 0, and enters the other vertex at a height pro-

portional to its cost (distance). The distance associated with each vertex is shown

2.1. 2D VS 3D VISUALISATION 21

as a green column sticking out of the vertex. The column height is proportional to

the cost of the vertex.

Whenever an edge (u,v) is visited to compute the estimated minimal distance
from the source node to v, the edge is highlighted in yellow, and lifted by an amount
proportional to the distance of u. The edge is lifted so that its start point hits the
tip of the green column above u. If the endpoint of the lifted edge is lower than
the green column above v, this column is lowered to the endpoint, reflecting the
lowering of the distance of v by the algorithm, and the colour of the edge changes
from yellow to red (see Image 3). Otherwise, the yellow edge simply disappears
(see Image 4). When the algorithm terminates, the graph has been replaced by the
shortest path tree. The height of each column above a vertex v reveals the length of
the shortest path from the designated source vertex to v. Image 5 shows the graph

after the complete execution.

Another example of an augmented 2D-algorithm is the travelling-salesman al-
gorithm [45]. Tlustrating the nodes of the algorithm as cities placed on a globe
makes the algorithm intuitive and increases the quality of the visualisation, which
in turn has a positive psychological impact, thus, leading to an improvement of its

didactical quality.

Unfortunately, apart from a few individual 3D visualisations implemented as
applets, it seems like there has been very little work done on three-dimensional
visualisation of algorithms over the past years; although the importance of 3D
visualisation was identified early in 1992. Polka3D [115], and Zeus3D [24] which
are further developments of Polka and Zeus, respectively, were the first systems
to enable the creation of three-dimensional animations. GASP-II [110] is another
algorithm animation system developed in 1997 which allows the presentation and
interactive exploration of 3D geometric algorithms over a network. The most recent
three-dimensional animation system is JCAT [82], which was developed in 1996 as
web-based Java implement of CAT. CAT in turn is a web-based further development

of Zeus3D. However, all these systems are, like most other systems of short life or

22 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

considered antiquated.

Within the scope of our investigation, we were primarily concerned with the
creation of three-dimensional visual simulations. The scope of the system we will
introduce in Section [5.7, however, is universal in terms of its ability to be used for

three-dimensional as well as for two-dimensional simulations and animations.

2.2 Features and Requirements

In what follows, we specify the fundamental requirements of our 'to-be-constructed’

simulations:

2.2.1 3D implementation

To further the developments of unconventional algorithms, particularly 3D algo-
rithms in computer graphics and bioinformatics, and not to restrict the scope of
the implemented algorithms to two dimensions (see Section above), we require
that our simulations be implemented using a powerful 3D graphics API. Such sim-

ulations are scarce and almost unavailable.

2.2.2 Code listing display

For a student, it is very helpful, if the simulation is accompanied with a textual
representation of the algorithm’s source code listing, specified in pseudo code as
well as in at least one object-oriented programming language. When the algorithm
executes a step, the simulation highlights the corresponding code lines in the ac-
companying code listing display. The learner then can observe which part of the
algorithm’s code has triggered the most recent visual changes in the simulation.

Conversely, they can recognise which visual operation corresponds to which set of

2.2. FEATURES AND REQUIREMENTS 23

instructions in the code. Nicely formatted code listing using syntax colouring in-

creases the readability of the code and lets the entire simulation look vivid (see

Figure E[)

Java psd
insert(root, key): -

]

public wvoid insert(RedBlacklNode x, Integer key) {

+—| collapsible block,

RedBlackNode y = NIL;

swhile (x != NIL) {
¥y = X;
if (key.comparelo(x.getkey()]

delay point X = X.getlefrChild

else if (key.comparelo(x.getl =

o m L3

Figure 4: Code listing display, collapsible blocks and control points

2.2.3 Control points

To manage the abstract details of an algorithm, students should be given the option
to adjust the granularity of each simulation step and to merge several steps into
a single one. The granularity of a step is defined by the number of its contained
operations (see Section). This can be achieved best by allowing the user to add
and remove break and delay points, and enabling them to convert a breakpoint
into a delay point and vice versa, all at execution time. When a breakpoint is
reached, the simulation suspends its execution and waits until the user prompts
it to proceed, e.g., by clicking on the ’resume’ button. A delay point forces
the simulation to delay its execution for a period of time, adjustable by the user.

Breakpoints and delay points are termed control points (see Figure [4)).

24 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

2.2.4 Collapsible blocks

A collapsible block is a collection of successive code lines that can be collapsed
and expanded at runtime to vary the simulation’s level of detail (see Figure [)).
Whenever necessary, the learner can vary the simulation’s level of detail by hiding
or exposing the operations’ details of its underlying algorithm. A remarkable aspect
of collapsible blocks and control points is that they allow an educator to turn a self-
study simulation into a teaching simulation and vice versa simply by making few
mouse clicks without the need to intrude into the simulation’s source code. Together
with control points, they have proven to be an excellent means to make simulations

adaptable and to govern the execution of the simulation at runtime.

2.2.5 User interfaces for input and simulation parameter

settings

As our goal is to build interactive real simulations rather than passive animations,
the user should be given the possibility to customise three kinds of input parameters:
the algorithm’s input data, the algorithm’s conceptual parameters, and the anima-
tion parameters. The latter are the configuration parameters of the simulation that
do not affect the actual behaviour or flow of the algorithm. An animation param-
eter might be used to control the animation pace or to fine tune its appearance.
It may indicate whether a simulation should use spheres/circles or cubes/squares
to render the fields of an array. It might also indicate which colour should be used
to denote the currently visited path in the DFS algorithm [103] B3], or whether the

simulation should prompt the user to answer quizzes or not.

Conceptual parameters are algorithm-specific mostly non-input parameters
that affect its behaviour and flow, such as the increment sequence of shellsort [66],
or whether quicksort should select its pivot element randomly or always pick the
element at a fixed position. A further example is whether a simulation of a volume

ray tracer should use BSP tree or Rope tree as a data structure [64]. Furthermore,

2.2. FEATURES AND REQUIREMENTS 25

they can be parameters for a specific type of simulations such as setting the number

of processes for a simulation of a parallel algorithm.

Input parameters are the input data of the algorithm or parameters that affect
them. An input parameter, e.g., indicates whether the input set of a sorting algo-
rithm should be generated randomly. Another parameter can be used to indicate

the length of the randomly generated input.

The interface should also permit selecting predefined input data, for example,
input sets that demonstrate different aspects of the algorithm, such as its worst-
case, average-case and best-case behaviour. The viewer can thus observe how a
given input set can affect the performance of distinct algorithms solving the same
problem. Additionally, the interface should enable the user to restore default values.
If the simulated algorithm uses a hierarchical data structure that cannot simply be
typed by hand, e.g., a graph, the interface should allow the user to model the data
structure in a convenient way. Moreover, it should support them, if necessary, in

laying out the modelled data structure automatically.

Note that permitting the user to regulate the animation speed is a further possi-
bility for enabling them to adjust the simulation’s level of detail. People obviously
learn at different rates. Some learners take longer to capture an algorithm step than
others. It is therefore of great importance to allow the learner to set the pace of the
animation to a value that fits their individual capabilities. Furthermore, if a learner
has comprehended an animated step or a loop, they will prefer in the next run to
see its result rather than its details. This can simply be achieved by temporarily

setting the animation duration to zero.

The usability aspect of a user interface is also of great importance; any user
interface should be quick to learn and easy to use [4, [107]. For this reason, we
demand that the design of any user interface comply with well-known usability

guidelines.

26 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

2.2.6 Direct manipulation

Using the keyboard to perform certain operations on a simulation, such as supplying
it with input or changing its conditions is not as convenient as using the mouse.
Direct manipulation is a mechanism, which offers the user additional options to
interact with the simulation by picking objects directly. It is frequently, but not
only, used in computer graphics simulations. Per direct manipulation, one can, for
example, specify the clipping area of a polygon clipping algorithm, reposition the
light sources of a shading simulation or perform geometrical transformations on
objects in a ray tracing simulation. This mechanism may also allow the user of
an AVL-tree [103, 111] simulation to explore how a left-rotation or a right-rotation
operation works using the mouse and a context menu [129], though doing so might
lead to violating the AVL-properties. Note that not every simulation needs to

support direct manipulation.

2.2.7 Capturing and displaying of runtime information

Understanding the runtime analysis and the asymptotic behaviour of algorithms is
a challenging task, especially for novice students. Not only in theory, but also in
practice, it is important to know for a given problem and a particular input set with
certain characteristics, which algorithm among all of those that solve the problem
is the most efficient one. Consider, for example, sorting algorithms. Due to its
average runtime of #(n logn), quicksort is considered one of the fastest comparison-
based sorting algorithms. The non-randomised version of quicksort, however, has a
miserable runtime when processing a pre-sorted input set, and is slower than bub-
ble sort, which in reality has a bad average runtime of #(n?). Programmers are
expected to be aware of this unexpected behaviour of quicksort and such unobvious
phenomena. Thus, understanding the runtime behaviour is crucial, not only from

a theoretical but also from a practical point of view. Capturing and displaying

2.2. FEATURES AND REQUIREMENTS 27

runtime information is especially beneficial, if the algorithm simulation system al-
lows executing multiple simulations simultaneously. Using the same input set, the
user can run several simulations in parallel, compare their performance and gain a

deeper understanding of their runtime behaviour.

2.2.8 Undo/Redo facility

One of the most fundamental and useful aspects of a simulation, which considerably
improves its effectiveness, is its ability to support reversing (undoing) and redoing of
performed actions. A simulation which does not implement this fundamental feature
is likely to fail to hold its promise of being effective. We require, therefore, that our
simulations allow the user an unlimited undo/redo of the algorithm’s events and the
user’s actions. Implementing an individual undo/redo facility for each simulation
has turned out to be a time-consuming laborious task. In Section[5.5|we will present

an automated solution to this problem.

2.2.9 Embedding explanatory text

Mapping the algorithm’s state and operations to visual abstractions synchronised
with code listing highlighting might not always help the student to capture each
activity of the algorithm. Both features should be supplemented with a textual
explanation of the operations in action. Each action and each step should be de-
scribed clearly in a textual form and presented synchronously with the visualisation
and the code listing highlighting as an informative narrative. The explanatory text
is particularly helpful whenever the viewer fails to take in a step just by watch-
ing the visual changes and the code listing highlights. Additionally, as we will see
in Section and [3.3] a well-designed simulation typically uses a specific colour
encoding to efficiently convey information regarding the current state of its under-
lying algorithm. Explanatory text can be used to clarify the association between

the colours and the algorithm’s states.

28 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

Note that teaching simulations usually do not need explanatory text as the in-

structor can provide a better explanation than a simulation projected on the wall.

2.2.10 Documentation

We require that our simulations provide access to offline and online hypertext doc-
umentation. A documentation can possibly include an introductory tutorial on the
algorithm and, if necessary, a simple manual on how to run the simulation and

interact with it.

2.2.11 Capturing and export facility

This feature is intended to be used by educators to prepare their teaching materi-
als, and is a requirement for the visualisation system rather than for the simulation
itself. A powerful algorithm visualisation system is typically implemented as an
online or a stand-alone application, which can be readily linked to any presenta-
tion materials used by an educator. In order to demonstrate a simulation of an
algorithm live in a lecture, the educator initially needs to navigate to the location
of the visualisation system, launch it, select the simulation from a repository, and
finally, enter the input data and set animation parameters before they can start
the demonstration. This procedure lasts too long to be performed live in a lecture.
It additionally needs a prior training and may fail if unexpected technical troubles
suddenly emerge. Alternatively, the educator can perform the procedure prior to
their lecture and use the capturing feature to record each step, and subsequently
export the recording in a platform-independent format that they can incorporate
into their teaching materials. This feature can additionally enable the educator
to create manuscripts and digital hypertextbooks [21] for their courses, containing

passive algorithm animations.

2.3. DESIGN ASPECTS OF VISUAL SIMULATIONS 29

2.2.12 Simplicity and consistency

Simplicity and consistency are two key design aspects of visual simulations that sig-
nificantly affect the user’s acceptance, and the effectiveness of a simulation. “Sim-
plicity” means that each simulation should be as easy to use and as quick to learn
as possible while preserving a high degree of effectiveness. A superior simulation
is an enlightening one which not only offers a maximal learning effect, but is also
straightforward to learn and to use. Consistent design means that all simulations
ought to be designed in the same style, and consequently communicate with the
user in the same manner. From a user’s perspective, it is not worthwhile reading
long manuals just to learn how to use a simulation or a simulation system. For
this reason, simulations should be designed in such a way, that once the user has
learned how to handle one, they should be able to know how to deal with all others.
Indeed, this can easily be achieved if simulations are implemented and designed in

the same visualisation context (visualisation system).

Other requirements that are frequently demanded in the literature are in our
opinion taken for granted and will not be explicitly discussed in this work. These
include: incorporation of a control panel to control the flow of the simulation, using

smooth animations, supporting a high degree of interactivity, etc.

2.3 Design Aspects of Visual Simulations

Obtaining uncomplicated and easy to use simulations necessitates employing a con-
sistent design throughout all simulations. This entails a uniform use of colour and
graphical primitives, a uniform animation style, and a uniform interface design. In

what follows, we discuss these four design aspects:

e Uniform use of colour

A well-designed simulation usually uses a colour encoding to communicate

30 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

with the user. A colour encoding assigns a specific colour to a set of sim-
ulation objects reflecting their current state. When a simulation is being
executed, the data upon which the algorithm operates is logically partitioned
into three parts: the part which has finally been processed, the part being
processed, and the part which still needs to be processed. One simple way to
denote each of these three parts is to assign a unique colour to each one. For
example, one can use gold, red and grey to denote the already sorted elements,
the elements being sorted, and the unsorted elements of a sorting algorithm
simulation, respectively. A uniform use of colour means in this case that once
the designer has decided to use, say grey to mark the unsorted elements, this
colour should be adopted for marking these elements in all other sorting sim-
ulations. Figure [5] shows a snapshot of a selection sort simulation in which
each data part is coloured as described above. Additionally, the portion of the
array being currently processed is denoted using a rectangular border. This

colouring scheme has been adopted for all sorting algorithms.

Figure 5: A snapshot of a selection sort simulation in 3D-Visian

e Uniform use of graphical primitives
It is also of big importance that different algorithm simulations sharing the
same data structures consistently use the same visual representation for these
structures. That is, simulations should use identical geometrical shapes and
appearance for similar data structures. For example, once an array has been
modelled as a sequence of 3D spheres, this design style should be adopted for

all simulations using arrays.

e Uniform animation

2.4. HYBRID SIMULATIONS 31

Consistent animation means that identical actions or events of different sim-
ulations should be animated in the same manner independent of the underly-
ing algorithm. If a visual comparison of two elements is implemented, say by
shaking the elements or letting them blink simultaneously, then this imple-
mentation should be applied to all simulations using comparisons. Likewise,
animated objects should always move along the same path when demonstrat-
ing the same event. This allows the learner to instantly recognise a repetitive

event and associate it with its corresponding algorithm step.

e Uniform use of graphical interfaces
All simulations that expect the same input type or format should employ the

same input interface. The same applies to the simulation’s control interface.

2.4 Hybrid Simulations

We distinguish between two types of simulations: self-study and teaching sim-
ulations. The main characteristic of self-study simulations, which are basically
intended to be used by students, is that they are implemented at a low level of
abstraction. That is, they expose the individual low-level details of the algorithm’s
behaviour and state. Teaching simulations, on the other hand, are implemented
at a higher level of abstraction. Depending upon how abstract they are, they hide
the individual details of the behaviour of their underlying algorithm. A teaching
simulation of, e.g., a parallel algorithm will not visualise how the processors process
the tasks assigned to them, but will rather show the results of the computation. A

self-study simulation, on the other hand, would do so.

A hybrid simulation is a simulation that can work in both modes (self-study
and teaching mode) and can be readily switched from one mode to the other without

any intrusion into its code. We seek to realise hybrid simulations.

32 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

2.5 Participants (Involved Parties)

In this section we present a classification of the parties involved in the development

of simulations and give a description of their individual roles.

Each simulation has the ambition of communicating knowledge to the viewer
in an efficient way. As producing simulations which serve this purpose assumes a
broad spectrum of knowledge in various fields of computer science and education,
we recommend involving four parties in the development process: a pedagogue, a
designer, a programmer and evaluators. The pedagogue, who ideally is an expe-
rienced educator, is responsible for developing a didactical concept that precisely
specifies the pedagogical goal of the simulation and describes how it can be achieved.
Among others, they specify the fundamental elements (operations and data) of the
algorithm that are to be rendered, subdivides the algorithm into logical steps, and
specifies where break and delay points are to be set. They predefine well-conceived
input data sets that reveal various phenomena of the algorithm and allow the user
to freely explore its aspects. Each simulation has a default setup, i.e., default val-
ues for the input and the animation parameters (see Section which should be
appropriately set by the pedagogue. Strictly speaking, all simulation aspects that
have an effect upon its didactical quality should be conceived by the pedagogue or

at least under their direction.

Designing simulations is an artistic challenge, which should be carefully carried
out by a competent designer. The role of the designer is to sketch effective design
concepts for the system and the simulations. They consult the programmer how
to visualise the various aspects of the algorithms and how to model and render the
data structures in a consistent style. In particular, they define how a simulation
can visually communicate with the viewer and always keep their attention focused
on the region currently being processed. A well-designed simulation will increase

the user’s desire to learn.

An experienced programmer with advanced programming skills is responsible

2.6. SAMPLE ALGORITHMS 33

for providing a stable, extensible, portable and bug-free implementation of the
system and the simulations, with respect to the design guidelines proposed by the
designer, and the pedagogical aspects. Separating the design from the programming
role allows the programmer to primarily concentrate on the programming task. This

increases the performance and the stability of the implementation.

Finally, both the system and the simulations should be ’certified” by evaluators
who are possibly end-users. Their key task is to inspect the simulations for correct-
ness, effectiveness as well as consistency. They also check the system for usability,
stability and suitability. Further, they identify possible weak spots, report concep-

tual and programmatic shortcomings, and make suggestions for improvement.

Strictly speaking, simulations and simulation systems should be conceived, de-
signed, implemented and evaluated by professionals, not by inexperienced program-
mers. Our proposal for the individual roles does not exclude that one and the same
person may assume more than one role, i.e., the programmer and the designer might

be the same person.

2.6 Sample Algorithms

As software visualisation is a discipline of the practical computer science, it is not
always straightforward to describe the aspects of the visualisation process using
precise formal definitions. For this reason, and in order to increase the comprehen-
sion of this thesis and to decrease its level of abstraction, we will often introduce
informal definitions and explain them using concrete algorithms as explanatory ex-
amples. The algorithms that we will frequently use for this purpose are Dijkstra’s
algorithm, merge sort and red-black trees. As we prefer not to assume that the
reader is familiar with the details of these algorithms, we briefly introduce these
algorithms and highlight their fundamental aspects. The introduction of these three
algorithms is attached to Appendix[A] Readers would be well-advised to learn about

the algorithms before proceeding with reading the remainder of this work. We have

34 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

thoughtfully chosen the algorithms above all for the following three reasons:

e They cover numerous aspects of our approach to solving the problem of auto-

mation.

e They are quite good representatives of four classes of algorithms: graph algo-

rithms, sorting algorithms, recursive algorithms and trees.

e As they are usually taught in undergraduate courses of computer science, we
assume that someone who is reading this thesis has come across them or at

least heard of them.

2.7 A Workflow for Constructing Visual

Simulations

Although a vast number of research studies on algorithm visualisations have been
conducted and published, the details of how an algorithm simulation systematically
is built, has not been satisfactorily exhibited. In the following, we define the steps
of a workflow for the development of algorithm simulations and assign each step to
one of the participants involved in the development process. The implementation

details will not be covered here, but rather left to Chapter
2.7.1 Steps carried out by the pedagogue

Step 1: Identifying the fundamental data objects

The fundamental data objects] of an algorithm are exclusively data objects that
are subject to visualisation. From a visualisation perspective, we classify the data

objects of an algorithm into primary and secondary objects. The former are the

2When we talk about the data objects of an algorithm, we mean all kinds of data upon which
the algorithm operates. They vary from simple variables or hierarchical data structures to three-
dimensional objects used in computer graphics or bioinformatics.

2.7. A WORKFLOW FOR CONSTRUCTING VISUAL SIMULATIONS 35

data objects of the algorithm upon which the essential operations of the algorithm
act, and should therefore be rendered. The secondary data objects are objects that
may or may not need to be visualised. This is because rendering these objects
not always leads to an enhancement in understanding the algorithm. In some
cases, they should not be visualised as they might distract the learner and could
therefore contribute to reducing the learning effect of the simulation. Secondary
data objects are mostly auxiliary objects used temporarily to perform particular
subtasks or operations. It is the task of the pedagogue to decide whether or not the
visualisation of a particular secondary data object will contribute to an increase of

the didactical quality of the simulation.

Primary objects are, for instance, arrays used in sorting algorithms, graphs
utilised in graph algorithms or trees used in tree algorithms. In general, an al-
gorithm has at least one primary, and anywhere from none to several secondary

data objects.

Accordingly, the primary data object of Dijkstra’s algorithm is the input graph

G; for merge sort it is the input array A; and for a red-black tree it is the tree itself.

The secondary data objects of Dijkstra’s algorithm are the priority-queue @,
the distance array d and the predecessor array II. Note that () does not need to
be visualised at all. The same applies to the predecessor array, which is not even
contained in the simulation code. This is because the predecessor of a node in a
visual graph can be identified immediately. As can be seen in the visualisation of
the algorithm in Figure[10] the estimated distance of a node is labeled on the node.

Thus, there is no need at all to visualise the distance array.

In merge sort, we used the pile-metaphor to explain how the merge procedure
works. In the implementation of the algorithm, the piles correspond to the auxiliary
subarrays L and R (see line 3 in listing . According to our classification, these
subarrays are secondary data objects. A simulation at a high level of abstraction,
which commonly hides a large part of the algorithm’s details, would not render

them, while on the contrary a less abstract simulation with more details would.

36 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

Red-black trees have no secondary data objects.

Step 2: Identifying the fundamental abstract operations

We will now cover this topic in depth, due to its importance.

The behaviour of an algorithm is determined by the collection of the abstract
operations accessing and modifying its underlying data objects. An abstract op-
eration in turn is a sequence of low-level actions (code instructions) that the al-
gorithm executes to perform a certain task. Akin to the fundamental data objects,
the fundamental operations of an algorithm are those abstract operations which
should be visualised, and thus, constitute the entire visual activities of the simula-
tion. There are two types of abstract operations: atomic and compound operations.
An atomic operation is an algorithm operation that cannot be further broken into
smaller ones. A compound operation is made up of a collection of atomic or a

mixture of atomic and compound ones.

The atomic operations of merge sort are:

1. Splitting the array into two subarrays

This operation results from the recursion call of the algorithm at lines 3 and
4 of listing [A.4}

MERGE-SORT(A, p, q);
MERGE-SORT(A,q + 1,7);
This operation was visualised by depicting the resulting subarrays below their

parent (see merge sort visualisation in Figure .

2. The assignment operations at lines 5 and 7 that copy a field value from the
split subarray into its corresponding pile:
L[i] = Alp+i—1], Rlj] — Alg +J].
This operation has been animated by having the field value fly smoothly to
its target field in the pile.

2.7. A WORKFLOW FOR CONSTRUCTING VISUAL SIMULATIONS 37

3. The compare operation at line 13, which compares the two top elements of
the piles prior to copying the smallest of them into the sorted array:

if Lli] < R[j]

4. The assignment operations at lines 14 and 16, which copy an element from a

pile into the sorted array as a result of the comparison operation:

Alk] « L[i] , Alk] < R[j]
5. The field access operations at lines 8 and 9

The only compound visual operation of merge sort is the merge procedure.

As for Dijkstra’s algorithm, apart from the implementation effort needed to visu-
alise and lay out a directed graph, this algorithm is one of the most straightforward
algorithms to visualise. Once the graph has been rendered and correctly laid out,

there are only two fundamental atomic operations to animate:

1. Adding the vertex with the minimum distance to S:

u «— ExtractMin(Q), S «— S U {u}
We visualise the set S by assigning a uniform colour to all its members along
with the edges connecting them. Hence, we illustrate the insertion of a vertex

v to S by assigning v and (u,v) the same colour that the elements of S have.

2. Highlighting the adjacent nodes of the recently added vertex v:
for each vertex v € Adjlu] do Relax(u, v, w) (see listing |A.2)
This is achieved by simply highlighting all of the adjacent nodes along with

every edge connecting them with v using a predefined colour.

Updating the distances inside the relax procedure is a computational operation,
which does not need to be visualised. Figuring out how the minima are updated
is not essential for understanding how the algorithm works. The student basically
needs to see its result, not how it is computed. Note that the values of the min-
ima are labeled on their corresponding nodes. Any value changes will be visually

reflected automatically.

38 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

As for red-black trees, the compound operations of the delete procedure are:

Finding the successor, the delete-fizup routine and the delete operation itself.
Finding the successor s of a node x can be simply visualised by highlighting the
search path from z to s. Thus, this method has two atomic operations: highlight
a node and highlight an edge. The delete-fizup operation comprises two interesting
atomic operations: leftRotate and rightRotate. Understanding how they work is a

requisite for comprehending red-black trees.

Note that the level of abstraction that a simulation is based on, will determine
which operations should be visualised (see Section [3.2). Simulations at a low level
of abstraction such as self-study simulations normally visualise atomic operations.
Simulations at a higher level of abstraction, such as teaching simulations, usually
omit the visualisation details of atomic operations. Instead, they depict compound
operations that consist exclusively of atomic ones. A simulation at a much higher
level of abstraction, such as a teaching simulation, might only display compound

operations that are composed of other lower-level compound operations.

Note that an algorithm may include operations that do not need to be visualised
or should not even be visualised. Consider, for example, the interval scheduling

problem described in [105] and [3§]:

Given n tasks and one processor, each task has a start time ¢; and a finish time
fi, and thus the time interval [¢;,f;]; two tasks are compatible if their intervals do

not overlap; find a maximum subset of mutually compatible tasks.

A simple algorithm, which solves the problem starts by sorting the input tasks
according to their finish time. The algorithm subsequently executes the task ¢ that
has the minimal finish time provided, and then removes 7 and each task j with ¢; <,
from the task list. The algorithm repeats this step until the task list is empty. Note
that the initial sorting step is irrelevant for understanding the algorithm and should

not be visualised.

Furthermore, not all fundamental visual operations can be derived directly from

2.7. A WORKFLOW FOR CONSTRUCTING VISUAL SIMULATIONS 39

the algorithm’s source code. Consider the red-black tree. Each delete or insert
operation may affect the geometrical structure of the tree and consequently prompts
the tree to be redrawn or laid out again. The layout operation is a visual operation

that has no matching instructions in the source code.

Additionally, there are visual operations, which increase the quality of the vi-
sualisation, but are not directly contained in the code: Consider selection sort as
a second example. At each step i the array is separated into two subarrays: the
sorted subarray A[l,7— 1] and the unsorted one A[i, n]. Step ¢ selects the minimum
in A[i,n] and exchanges it with the element A[i]. From a didactical point of view,
it is helpful to set the sorted subarray apart from the unsorted one by highlighting
at least one of them differently. This can be achieved, for instance, by framing the
subarray as in Figure)l Indeed, this visual operation also has no corresponding

operation in the code.

Highlighting the pivot element of quicksort is a further example of a visual op-

eration that has no match in the source code.

Step 3: Defining logical steps and setting collapsible blocks

Any algorithm simulation should be logically subdivided into several logical steps.
From a visual point of view, a step is a collection of an arbitrary number of atomic
or compound operations, or both. The granularity of a step is defined by the num-
ber of its enclosed operations and is dependent upon the abstraction level of the
simulation. Obviously, a step of a self-study simulation typically has a lower gran-
ularity than the steps of teaching simulations. Hence, a teaching simulation of an
algorithm often has fewer steps than a self-study simulation of the same algorithm.
We mark the start and the end of a step by surrounding it with breakpoints (see
Section . A breakpoint simultaneously marks the end of a step, and the start
of the following one. Note that giving the user the flexibility to set, remove and
convert control points at runtime allows them to refine a step by splitting it into

several ones. Conversely, the user can coarsen the granularity of steps by merging

40 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

several steps into a single one.

In addition to defining the logical steps, we need to set the bounds of each
collapsible block. The way in which we combine several operations into a single
step has a great impact on the pedagogical effectiveness of the simulation and

should be well thought out by the pedagogue.

Step 4: Defining interesting input data sets and default parameters

Step 5: Identifying the algorithm’s operations that affect the runtime of
the algorithm

Step 6: Preparing the explanatory text

The pedagogue needs to prepare the explanatory text to display when a step is
being executed. If any colour encoding is being used to focus the attention of the
viewer on certain parts of the simulation, this encoding should also be explained

and presented at the beginning of the simulation.

Step 7: Preparing quiz questions

We do not demand that our simulation should implement quizzes. However, if a
simulation is to be equipped with its own quiz interface, the pedagogue needs to

conceive and prepare meaningful questions [63].

2.7.2 Steps performed by the designer and programmer

Note that one of the most challenging aspects when constructing visual simulations
is designing the graphics portion of the visualisation. What follows are the steps

carried out by the programmer and the designer.

2.7. A WORKFLOW FOR CONSTRUCTING VISUAL SIMULATIONS 41

Step 1: Implementing the algorithm in a high-level programming lan-

guage

Step 2: Designing and implementing a visual presentation of the funda-

mental data objects and operations

This step additionally involves implementing mechanisms that enable disparate data
structures to communicate with each other. We call these mechanisms bridges. Let
us consider, for example, a simulation that utilises a visual array and a visual matrix.
Suppose, at a particular step during execution, that we need to visualise an array
element assignment to a field in the visual matrix. As both visual structures are of
different types, we need to implement a bridge that allows both of them to visualise

this assignment.

Step 3: Providing pseudo code listing and a simplified implementation
of the algorithm in at least one object-oriented programming language
These implementations will be shown in the code listing display each in a separate
tab.

Step 4: Designing and implementing a code listing display with an inte-
grated syntax colouring facility

The display should allow the setting of control points and defining collapsible blocks
as required in Section [2.2] under Point and See also Figure

Step 5: Implementing a code listing highlighter

A code listing highlighter is a programme that maps each step of the simulation to
its corresponding code lines in the code listing display, and highlights them at the

very beginning of a step.

42 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

Step 6: Designing and implementing a narrative manager

A narrative manager is the component used to display the explanatory text.

Step 7: Implementing an undo/redo facility that enables the user to

undo and redo the algorithm’s performed actionf] and operations

This step has turned out to be quite laborious. This explains why many visualisa-
tion systems provide no support for this fundamental feature. For this reason, we
devoted this problem a special attention and developed an automated solution. We

will return to it in Section [5.5

Step 8: Designing and implementing a graphical user interface for con-

ceptual and animation parameters

Step 9: Designing and implementing an input interface for the creation

and selection of input data sets

Depending on the input type of the algorithm, this step might imply the implemen-
tation of a powerful input tool, such as a graph modelling editor. An input interface
may also need to provide an export and import facility for saving and editing gen-
erated input structures using platform-independent formats, such as XML [132].
Figure [0]is a screenshot of the 3D graph editor [20], which we employ for modelling
input graphs.

3Actions are performed by the user; operations are conducted by the algorithm.

2.7. A WORKFLOW FOR CONSTRUCTING VISUAL SIMULATIONS 43

 Erstellung von Graphen i T e W [l e S
Graph Bearbeiten | 3D - Lavout| Ansicht Hilfe

=, ® 0 - Kreis -
3[5)[a]eli*e 8
O 1 - Grid

2 2 - SourceToSink_Grid
2 3 - SourceToSink_Kreis

|| Graph Eigens.

Kontenanzahl: |g

Kanten: gerichtet

[] gewichtet

m

[

| New LA Edit | o Resat

Schnelle Kantenerstellung:

Marne:
= Lete | [E] Matrix | [F] Random |
Gewicht:
KnotenListe
s = @ Knoten der Kante:
G Clear 2, Resst o Create ||, = : & New || &f Del. | [sa... | &8 Re..

% Graph Export. Auswahl abgebrochen

Figure 6: 3D graph editor

Note that input and conceptual parameters should often be set prior to running
the simulation. Some visualisation-specific parameters can be set while a simulation

is running. The interface should be able to handle both cases.

Step 10: Implementing input validation functions and tools

The prior two steps entail the implementation of input validation functions that
read the input data and check it for validity and constraints. Additionally, we need
to provide a means for modelling structured input data, especially graphs. As we
know, some graph algorithms expect graphs with specific properties. Dijkstra’s
algorithm, e.g., expects a connected directed graph with positive weights. The
Floyd-Warshall algorithm [35], on the other hand, allows negative weights but no
negative-weight cycles. Other algorithms expect acyclic graphs. A powerful graph

editor, which can be applied as an interface for constructing graphs will certainly

44 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

allow the user to model graphs with arbitrary properties. Hence, the user might
produce a graph whose properties violate the expected ones. In this case, the input
data interface must provide validation functions that check the graph for validity
and constraints and alert the user in case they are about to launch the simulation
on meaningless or incorrect input. A good data input interface is one that restricts

in advance the possibilities for entering or creating invalid input.

Step 11: Implementing an error manager

A simulation should implement an error manager to capture user’s input errors and
view them on a special error display. For example, when the user creates invalid
input, the simulation should alert them and give an explanation why the input is
inaccurate. If a simulation crashes due to an implementation bug, the error manager
collects all necessary information regarding the current state of the simulation that
enables tracking the cause of the error, and reports it immediately to the simulation

developer to fix it.

Step 12: Implementing a facility for capturing and displaying runtime

information

Step 13: Implementing quiz interface

Step 14: Implementing a simulation control panel

This is the interface with which the user can govern the flow of the simulation
(start, stop, pause, backward, etc.). Note that this work can be deferred to the
implementation of the visualisation system and does not need to be implemented

individually for each simulation.

2.7. A WORKFLOW FOR CONSTRUCTING VISUAL SIMULATIONS 45

Step 15: Implementing additional components

In addition to the features listed above, a simulation may need to implement its
additional individual features. For example, a complex simulation, which is also
not so straightforward to adjust, might need to provide an animated introduction

or a demo.

The figure below shows the structure of a typical simulation. The simulation
core includes the source code of the simulation. All other rectangular compo-
nents (coloured in blue) are graphical components. Oval components represent

non-graphical components

Code Listing Display

Simulation View
(Visual Objects Display)

Control

i Syntax
Points

Colourer
——
Collapsible Code Narrative
Blocks Highlighter Display

Runtime v Documentation

Display

Info_rm iz Simulation
Display ._ Core -

Quiz
_ Input
Undo/Redo ' Validator
Manager
Error

= Manager Additional Input
Display Components ul

Animation Simulation Control
Setting Ul Interface

Figure 7: Conceptual structure of a visual simulation

We do not request a simulation to implement its own capturing and export
facility as required in[2.2.11, This work can also be shifted away to the visualisation

system.

46 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

From the steps above, one can infer how much work and experience is required
to produce a useful simulation. The work needed for evaluating the simulation,
developing an algorithm visualisation system, making the system available online
and accessible from everywhere has not been mentioned yet. As pointed out earlier
in Chapter [I} our belief is that the intricacy of implementing such simulations is

the main reason for the poor quality of many visualisations available online. This

fact forms one of the key motivations to launch this research.

The following figure shows a simulation of a red-black tree in 3D-Visian (see

Section .

File Capture Repository Setting Help

KYES ¥ [poovdocodersb | T

Java de Code listing display

ublic void inse:
Expandable
blocks RedBlackNode y =

¥ I

while (x '= NIL)
¥y = X

if (key.com

X = x.getl

else if (key

" =ow getk -«

" [Delay point ;

ambientColor
o diffuseColor

Background cok
Muster | psg | Ra|

\ Error Error display

4 Red-black tree simulationtab J TabbedPane for additional components |

.:. VisualRedBlackTree - !HeapSort% Heap sort simulationtab ‘

Qlindo €. search 4: Insert * Delete (¥ Redo

- Inputinterface

i undo/redo facility

Control bar

Figure 8: A visual simulation of a red-black tree in 3D-Visian

2.7. A WORKFLOW FOR CONSTRUCTING VISUAL SIMULATIONS 47

Figure [0 shows a ray tracing simulation.

File Repository Capture Setting Help

QEE=

_? Open Scene 9 Save Scene [ﬂ, Goto camera view 'ﬂ‘li Render @ Kd-Tree 0 Shading
r = L | -
psd |£| Raytracing Render d|—|—‘:' =2 -__2_3 | L Info
GICWIETT GT MNarratives
(£ obiect o “‘l‘ Start... 9 Save to file... [ﬂ, Goto camera view @?}Dnmmen'ﬁﬁnn
if objec
caleulat i Properties
ray orig Transformation =
attenuat Object: !
ShootRay 3
if refle | b
1 L 0.0
Calculate ar Z001m 0.0
if ckject | -
ace 1z Material
incremsr Diffuse Color
calculat Diffuse Amount|
elae - —— -
1 [3 LT i

! Raytradng
@ Stop _:’ Backward ‘I Previous Step II Pause I" Next Step h Forward

Figure 9: A simulation of a ray tracer in 3D-Visian

48 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

2.8 Algorithm Design Paradigms and Visualisa-
tion Complexity

In this section we investigate the relation between design paradigms (techniques)
and the visualisation complexity of algorithms. In particular, we address the ques-
tion whether algorithm design techniques can affect the visualisation complexity or
not. That is, given different algorithms that solve the same problem and are im-
plemented according different design paradigms. Does the visualisation complexity
differ from one algorithm to another? The answer to this question is important
when educators who are supervising programming internships on algorithm visual-
isations wish to distribute the algorithms to the students in a more fair measured

way.

Algorithm design paradigms are design methods that can be utilised to develop
optimising solutions for problems to obtain an improvement in their computational
runtime. We are mainly concerned with three well-known paradigms: Greedy-

Strategy, Divide-&-Conquer and Dynamic-Programming.

Algorithm designers apply the greedy-strategy when the algorithm has at each
stage a sequence of choices that it can select from. A greedy-algorithm always
makes the choice that looks best at the moment. It attempts to construct an optimal
solution by repeatedly making the ’best’ feasible choice. A solution that has already
been taken into the solution set is never given back. Greedy-algorithms may not
always yield optimal solutions, yet they are often straightforward to understand and
to implement. Examples of greedy-algorithms include Dijkstra, Huffman-code [36],
Prim and Kruskal algorithm [104], 44].

The divide-&-conquer strategy is a recursive top-down approach that divides the
problem into smaller ones, solves them recursively and combines the computed so-

lutions into a complete one. Well-known divide-&-conquer algorithms are quicksort

2.8. ALGORITHM DESIGN PARADIGMS AND VISUALISATION COM- 49
PLEXITY

and merge sort.

Dynamic-programming is a bottom-up approach, that breaks up a problem into
smaller (overlapping) subproblems. The smallest subproblems are explicitly solved
first; their results are then used to construct solutions of progressively larger sub-
problems. Dynamic-programming algorithms generally solve a problem in a more
compact sophisticated way and are therefore more abstract and generally difficult
to understand. They are, however, straightforward to implement. Typical exam-
ples for dynamic-programming-algorithms are Matrix-multiplication [41], Floyd-

Warshall algorithm [35], and polygon triangulation.

In order to explore the relationship between the design paradigms and the visual-
isation complexity, we examined a set of algorithms that can be implemented, once
according to the brute-force method, and once according to one or more of the design
techniques presented above. We next compared the effort required to produce each
visualisation separately. The problems investigated were the following: the coin ex-
change problem (greedy), string matching problem (divide-&-conquer) [43], matrix
multiplication (dynamic-programming) [41], longest common subsequence problem
(dynamic-programming) [40] and polygon triangulation (dynamic-programming).
For the same problem, the investigated brute-force algorithm always uses the same
types of operations used by the other algorithms and naturally the same data struc-
tures. All the algorithms only differ in the manner in which they approach the
solution. A brute-force algorithm solves a problem in the simplest and apparent
way. A dynamic-programming algorithm does it in a more sophisticated manner.
It "carefully thinks” which part of the input is best suited to be accessed or modified
prior to accessing it. A greedy-algorithm is normally “short-sighted” and acts in a
less sophisticated manner than a dynamic-programming algorithm. This fact, how-
ever, affects the order in which the operations are performed, yet not their type. In
other words, a brute-force, a greedy and a dynamic-programming algorithm when
solving the same problem always perform the same operations, yet, in a different

order. From a visualisation point of view, reordering the visualisation operations

50 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

of an algorithm does not affect its visualisation complexity. Consequently, using
greedy or dynamic-programming has no significant impact on the complexity of

visualisation.

On the other hand, a good visualisation of a divide-&-conquer algorithm will
often depict the entire recursion tree and illustrate each recursion step visually.
This makes divide-&-conquer algorithms slightly harder to visualise due to issues
related to properly layouting the recursion tree. This is especially true when the
recursion tree cannot be computed prior to the termination of the algorithm as is

the case with recursive randomised algorithms.

From the last discussion, one can infer that the implementation complexity of
a simulation is highly dependent on the data structures used, as well as its visual
operations. Apart from the effort required to understand an algorithm before it
can be simulated, trivial algorithms that are straightforward to understand are not
necessarily easier to simulate than those which are much more abstract and diffi-
cult to comprehend. It turned out that algorithms, which use tree data structures,
such as AVL-trees and red-black trees, (a,b)-trees, HuffmanCode, Heapsort, etc.
were the most difficult to simulate among conventional algorithms. This is because
they require implementing specific layout algorithms. The more an operation af-
fects the structure of a tree and the more dynamic it is, the more difficult is its

implementation.

Graph algorithms also require the implementation of layout algorithms. How-
ever, many graph algorithm operations are static in the sense that they do not affect

the structure of their graph(s).

Non-recursive sorting algorithms and linear data structures, such as stacks, lists

and queues, are the easiest to visualise.

Recursive algorithms require more work, when the visualisation of the recursion

tree is desired.

In general, simulations that support direct manipulation and lot of dynamics,

2.8. ALGORITHM DESIGN PARADIGMS AND VISUALISATION COM- 51
PLEXITY

movements and repositioning of visual objects have proven to be the most diffi-
cult to animate. These are typical visualisation characteristics for many computer
graphics and bioinformatics algorithms. This fact may be an explanation why Shaf-
fer et al. [109] found catalogue 134 visualisations of sorting algorithms, but only 57

visualisations of search trees and no visualisations of computer graphics algorithms.

52 CHAPTER 2. DEVELOPMENT AND DESIGN ASPECTS

Chapter 3

Towards Automatic Visual

Simulations

he objective of this chapter is to identify and examine the issues that arise
T when trying to visualise simulations fully automatically. We begin by con-
trasting the ways of how humans and machines tend to perceive programmes and
algorithms, and illustrate how this influences the visualisation process. After a
short introduction into the theme ’levels of abstraction’ in Section we reveal a
set of key problems that aggravate the automatic visualisation of algorithms. This
chapter acts as a preamble for Chapter [4] where we will introduce an approach for

generating simulations semi-automatically.

3.1 Programme Visualisation vs Algorithm Visu-

alisation

Programme visualisation encompasses the extraction and visualisation of infor-

mation regarding the static and the dynamic aspects of a programme. Depending

93

54 CHAPTER 3. TOWARDS AUTOMATIC VISUAL SIMULATIONS

upon the goall| of the visualisation, one or more of the following distinct aspects of

a programme can be visualised:

e Code
e Structure
e Data

e Execution

The first aspect concerns the visualisation of the programme’s source code
listing by presenting it in a textual form, well-laid-out and well-formatted for

human reading.

The second aspect refers to the visualisation of the programme’s structure,
which is defined by the programming-language-specific entities and their associated
relationships. Programme entities are variables, expressions, loops, data structures,

methods, classesﬂ etc.

The programme’s data is determined by the values of its corresponding data
objects. In essence, the state of a programme is defined by the occupancy of these

data objects.

The execution aspect relates to the dynamic behaviour of the programme at
runtime. Visualising the behaviour of a programme typically includes mapping the
programme’s state to a graphical representation and illustrating how expressions
and method invocations constantly transfer the current state of the programme into

a new one.

In addition to the four aspects above, programme visualisation is often used
for illustrating general programming concepts and showing the programme’s con-

trol flow. Programming concepts include call trees, recursions, loops, conditional

!Programmes are mostly visualised for the purpose of teaching, analysing, debugging or testing.

°In the remainder of this work we will often use the terminology of the object-oriented pro-
gramming paradigm when describing programmes’ or algorithms’ units.

3.1. PROGRAMME VISUALISATION VS ALGORITHM VISUALISATION 55

statements, etc.

From a machine’s point of view, each algorithm is nothing else than a pro-
gramme consisting of a sequence of instructions. This sequence entails a mixture of
field declarations, type definitions and method invocations that access the fields and
modify their values. From a user’s point of view, however, an algorithm is a high-
level abstraction of a programme containing a set of abstract data structures and
abstract operations. Akin to a programme, an algorithm has a state determined
by the collection of the values of its underlying data objects. The behaviour of an
algorithm is determined by the set of operations it performs upon its underlying

data objects.

In general, the basis of a programme visualisation entirely differs from that of
an algorithm visualisation. We now highlight the fundamental differences using a

practical example:

SelectionSort1(A[l..n]) SelectionSort2(A[l..n]) SelectionSort3(A[l..n])
1 fori« lton-I 1 fori«—1ton-I 1 fori« 1 tolength[A]-1
2 donext—i 2 donexteI 2 do min «—findMin(4,i)
3 forje—i+iton 3 forj—i+Iton 3 swap(A.imin);
4 do if Alnext]=A[j] | 4 do if A[next]=A[j] | 4
5 next—j 5] next—j
@ e Afi] © swap(A.inext); findMin{A[1..n].i)
7 Afi] — Afnext] 1 min=i
8 Afnext] —e swap(A[l..n],i.j) 2 forj < i+1 to length[4]
1 temp — A[i]; 3 do if (A[min] > A[§])
2 Afi] < Afj]; 4 min <
3 Afj] « temp; 5 returnmin
swap(A[l..n].i.j)
1 temp — A[i];
2 ALi] —Afj];
3 Alj] — temp;

Listing 3.1: Selection sort listings

Listing |3.1| includes three distinct code listings representing the selection sort
algorithm [I06, T1I]. They all differ in their level of abstraction, which increases
from left to right. The way a human reader grasps this algorithm will differ in the

56 CHAPTER 3. TOWARDS AUTOMATIC VISUAL SIMULATIONS

manner in which a machine (computer) interprets it. The left listing illustrates how
a machine may capture the algorithm. For a computer, the previous algorithm is a
programme containing an array, two nested loops and an if-clause. A computer does
not know that the inner loop detects the minimum of the subarray A[j..n|, nor that
the last three code lines constitute a swap operation. Furthermore, a computer
"with a standard degree of intelligence” would not identify the left code listing
as an implementation of a sorting algorithm. From the machine’s point of view,
the fundamental instructions used in this programme are: variable declarations,
variable assignments, array field accesses, and array field assignments; all of which
are interpreted as instructions at a low level of abstraction which cannot be further

disassembled.

On the other hand, a human reader will tend to capture the given programme in
a more abstract way. That is, a human does not see the programme as a sequence
of low-level instructions but as one that performs n — 1 steps on an abstract data
structure (array). In each step, it processes a portion of the array, compares
elements to each other and selects a particular element in the array. At the end
of each step the programme exchanges the first element of the subarray with the
recently picked one. A human reader with moderate or elementary programming
skills is likely to recognise the last three assignments as an implementation of a
swap operation, while a computer would not. After a closer look at the inner loop,

they might identify it as an implementation of the “findMin” method.

Therefore, when we compare the way a computer interprets a programme to how
a human attempts to understand it, we will often conclude that the human’s per-
ception of programmes is based on aggregating several instructions (actions/events)
into one abstract operation, rather than seeing it as a sequence of elementary in-
structions. In the example above, these abstract operations are: compare, find
minimum, and exchange (see the words in bold). Furthermore, a human tends
to think in terms of abstractions that correspond to real-world concepts or objects,

such as step and minimum. These very abstractions constitute the artefacts of a

3.2. LEVELS OF ABSTRACTION o7

typical algorithm visualisation. As a result, the artefacts of an algorithm visualisa-
tion are high-level abstractions of operations and data objects, rather than low-level
instructions and programming-paradigm-specific constructs, as is the case with pro-
gramme visualisation. For this reason, algorithms are commonly taught at higher

levels of abstractions than programmes.

As we will see in Section [3.3] the fact that humans and machines have differ-
ent views of programmes and algorithms, and use distinct levels of abstraction to
capture them, fundamentally affects the followed visualisation approach, and con-
sequently determines to what extent the visualisation process can be accomplished

automatically.

3.2 Levels of Abstraction

Any programme or algorithm visualisation is grounded upon a certain level of ab-
straction. In terms of the terminology used in Chapter [2 the level of abstraction
determines the artefacts (the abstract operations and objects) of the visualisation.
The higher the abstraction level of a visualisation, the more abstract are its arte-
facts. We denote the level of abstraction on which a given programme or algorithm

visualisation is based, by programme level or algorithm level, respectively.

Note that there can be more than one algorithm level for the same visualisation
and that the distance between the programme level and an algorithm level varies
depending upon the purpose of the visualisation. A visualisation of insertion sort
for teaching purposes will probably hide the details of the findMin() method and

thus resides at a higher level of abstraction than a self-study visualisation.

58 CHAPTER 3. TOWARDS AUTOMATIC VISUAL SIMULATIONS

3.3 Issues and Difficulties

Visualising both the dynamic and static aspects of a programme can indeed be
accomplished fully automatically. The static structure of the programme and its
entities can be directly derived from the source code. This is possible, in particular,
because all potential entities of a programme are well-defined in the programming
language. Furthermore, the types of potential dynamic changes of each programme
entity are limited as well. A variable, for example, can be allocated, accessed,
modified and deallocated. A method can be loaded, entered, executed, exited and
perhaps uploaded but not modified. The changes that constitute the dynamic
behaviour of the programme can be inferred from the runtime environment and
traced back by monitoring the values of the programme’s data. Thus, it is possible
to map the code, the structure, the data and the dynamic changes of a programme
to static and dynamic views automatically. The main challenge here is more often

than not to arrange the corresponding views on the screen due to its limited size.

Unlike programme visualisation, the automatic visualisation of algorithms is
problematic and cannot be accomplished without the availability of additional in-
formation regarding the abstractions used in the algorithm. As mentioned earlier,
an algorithm is essentially visualised by rendering its high-level abstract operations
and objects. Often these are not directly denoted as such and can not always be
deduced automatically from its source code. We have investigated a large number
of algorithms in regard to the possibility of visualising them automatically, and

identified, among others, the following problems:

Problem 1: Identification and visualisation of fundamental abstract op-

erations

On top of all the problems associated with automatic visualisation is the deter-
mination of the instructions that comprise a particular operation. Usually, to au-

tomatically visualise a certain operation, a visualiser (visualising engine) should

3.3. ISSUES AND DIFFICULTIES 29

be capable of identifying all its constituent instructions. This might be possible
for common operations, but not generally. One can, for example, encapsulate the
instructions of the findMin operation of selection sort or the swap operation of a
sorting algorithm into a method, which can be readily identified. Even though the
visualisation remains a problem. Visualising the swap operation is namely data-
structure-dependent. That is, swapping two array elements visually differs from
swapping two matrix or two nodes of a tree structure. As a result, to fully auto-
mate a swap operation, a visualiser is expected to identify the corresponding code
instructions, recognise the data structure being used and implement the visualisa-

tion accordingly. This is, however, not feasible for arbitrary data structures.

Let us additionally, consider a red-black tree. How can a visualiser be made to
recognise a left-rotate operation [39] as such? Or, how can it identify a ray tracing
operation of a ray tracer, which is typically included in the algorithm’s code as a
linear equation system whose solution computes the intersection of a line with the

surface of the object being ray traced [52]7

Beyond that, there are visual operations that have no corresponding instructions

in the algorithm’s code such as the layout operations of some tree structures.

Problem 2: Identification of primary and secondary data objects

A similar problem applies to the abstract data objects of an algorithm. How can a
visualiser distinguish between the primary and secondary data objects of an algo-
rithm? Even if it could, how would it decide which of the secondary data structures
should be visualised and which should not? Recall from Section that a pri-
mary data object always needs to be visualised, but a secondary object may or may
not need to. It is clear that a visualiser cannot anticipate this just based on the

source code.

60 CHAPTER 3. TOWARDS AUTOMATIC VISUAL SIMULATIONS

Problem 3: Identification of access semantics

A visualisation typically employs different methods to communicate with the viewer
and to signalise that a certain data object is being accessed. One of the most effec-
tive and therefore most used methods to indicate an access is object-highlighting.
Whenever an object is being accessed, it is highlighted using a particular colour that
depends on the semantics of the access. Consider, for example Dijkstra’s algorithm.

After initialisation, the nodes of the graph are accessed at four different locations

in the code (see listing [A.3):

e at line 5 when computing the node with the minimal estimated distance:

u<«— EXTRACT — MIN(Q)

e at line 6 when the node with the minimal estimated distance is removed from
V and added into S:
S — SuU{u}

e and finally at line 7 and 8 before and inside the relax-procedure:
for each vertex v € Adj[u]
doRELAX (u,v,w)

Thus, the same access operation has, depending on its location in the code, three
different contextual semantics, each of which should be indicated using a distinct
colour (see Figure|l0|below). How can a visualiser recognise which access has which
semantics and decide accordingly how to treat it? Furthermore, there are accesses
to nodes at other locations that should not be visualised (for example, accesses
inside the initialisation routine). How can a visualiser identify which access should

be visualised and which should not?

Problem 4: Focusing attention

One way to help the user comprehend a step is to call their attention to the part

of the simulation currently being processed. There are two ways to achieve this:

3.3. ISSUES AND DIFFICULTIES 61

e Encoding the state of the algorithm’s data.

e Highlighting the area of interest.

Encoding the state of an algorithm’s data is usually accomplished by using distinct
colours denoting the portion of data which has been, is being or has not yet been
processed. In Dijkstra’s algorithm, for example, we use the following colour encod-
ing: Nodes and edges that have not yet been finally processed are grey. All nodes
and edges of the shortest path are permanently coloured in gold (see Figure .
During the relax step, whenever the shortest distances of the adjacent nodes of a
node u are being updated, all these nodes, and the edges connecting them with
are temporarily highlighted in red. After the relaxation, all adjacent nodes except
the one that has recently been added to S turn grey. From the visualisation in
Figure [10, one can see that S contains two nodes, and that the node being relaxed

is the upper left one.

Extract-Min: 9
Relax:2

Figure 10: A simulation of Dijkstra’s algorithm in 3D-Visian

To highlight the area of interest, one can draw two-dimensional frames around

the data objects or fill small regions with transparent colours (see Figure |5)).

The major problem with focusing attention is that a visualiser cannot define
a reasonable colour encoding and determine the area of interest on its own. Fur-
thermore, it cannot infer from the algorithm’s code when temporarily highlighted

data objects should be unhighlighted, or when the area of interest changes. Hence,

62 CHAPTER 3. TOWARDS AUTOMATIC VISUAL SIMULATIONS

focusing attention is a further obstacle towards automatic visual simulations.

Problem 5: Cloning data objects

Rendering the recursion tree of a recursive algorithm is necessary to gain a better
understanding of the simulation in particular, and to understand the concept of
recursion in general. To render the recursion tree, however, a simulation often
needs to clone parts of its data objects. Consider for example, merge sort. The
partition step of the algorithm, which subdivides the array into two subarrays,
is demonstrated by cloning both subarrays and rendering them underneath their
parentﬂ (see Figure [11] below). The information to clone the partitions of the array
is, however, not explicitly included in the source code of the algorithm. This presents

a problem for the visualiser.

Note that the need to duplicate data objects is not restricted to recursive algo-
rithms. Consider for example, insertion sort. Initially, before the i-th step starts,
the algorithm creates a copy of the array element at position ¢ + 1, and assigns it
to a variable called "key’ [106] B7]. Tt then compares the key to the elements of the
sorted subarray A[0..7] in order to pinpoint the position at which the key is to be
inserted. To visualise the key, the simulation needs to clone the (i + 1)-th element
of the array (see simulation of insertion sort at [2]). Here too, the instruction to
duplicate the element is not explicitly contained in the source code of the algorithm

and cannot be identified by a visualiser.

Problem 6: Computation of geometrical coordinates and layout informa-

tion

Problem five leads to a further one. Before a visual data object can be rendered, the

simulation must compute its geometrical coordinates to know where to place it. The

3Note that the recursion tree does not need to be rendered for every recursive algorithm. There
are simulations of recursive algorithms that do not need to clone any of their data objects. An
example for this is the recursive algorithm for computing the convex hull [32].

3.3. ISSUES AND DIFFICULTIES 63

data objects of an algorithm, however, generally do not include such information.
Therefore when modelling a data object as a visual object, the latter is assigned
default geometrical coordinates that appoint its default position in the scene. How-
ever, when visual objects of the same type are dynamically created at execution
time, as is the case with the subarrays of merge sort, the simulation is forced to
compute their appropriate positions at runtime, otherwise they will overlap. In this

case the default coordinates are meaningless and unhelpful.

Similarly, hierarchical data structures, such as trees and graphs do not store
layout information required to lay them out properly. Using default hard-coded
layout values will not suffice, particularly if the data structures change dynamically.
Thus, the problem requires implementing specific layout algorithms. However, there
are various layout algorithms, each of which is mostly tailored to a specific layout
problem. How can a visualiser anticipate which layout algorithm is geared for which

structure?

Furthermore, the alignment of visual data objects in a scene has, in particular,
in computer graphics algorithms, a great impact on the quality of the visualisation.
Arranging objects in a visual scene randomly may result in a meaningless alignment

of these objects.

Hence, automatically computing meaningful geometrical coordinates and layout
information for arbitrary algorithms is quite problematic. This is particularly true

if the algorithm uses dynamically changing structures or objects.

Problem 7: Displaying conceptual information

It is common that a simulation displays additional information that increases the
understanding of the algorithm, but this usually cannot be directly derived from the
source code. The merge sort simulation, e.g., depicts the number of the recursion
step on the right corner of each subarray as can be seen in Figure [11] Likewise,

the merge step is indicated by a red arrow which appears above each subarray. A

64 CHAPTER 3. TOWARDS AUTOMATIC VISUAL SIMULATIONS

simulation of quicksort or Dijkstra needs to denote the pivot element or the start
node, respectively. Showing additional useful information will no doubt ease the
understanding of the algorithm. However, as the information is not included in the

algorithm’s source code, this process can definitely not be automated.

Figure 11: A screenshot of a merge sort simulation in 3D-Visian

Problem 8: Extracting runtime information

Visualising the runtime information of an algorithm is crucial for understanding its
efficiency. A convenient way to visualise the runtime information of an algorithm is
to depict the exact number of performed key operations at the end of each step. The
determination of the key operations, however, differs from one class of algorithms to
another. Whereas the key operation of comparison-based sorting algorithms is the
compare operation, we usually count the number of visited nodes along the travers-
ing path, when analysing the performance of tree data structures. To automate the
visualisation of runtime information, a visualiser should be able to automatically
extract this information by identifying the key operation(s), which is particularly

difficult when the algorithm performs various kinds of operations.

3.4. CONCLUSIONS 65

Problem 9: Defining logical steps

As mentioned earlier, the way in which we separate an algorithm into logical steps
has a great impact on the effectiveness of the simulation. For this reason and because
subdividing an algorithm into reasonable logical steps requires knowledge regarding

the semantics of the operations, this task cannot be reasonably automated.

Problem 10: Mapping data objects to visual objects

Different simulations using the same data object may use distinct visual represen-
tation to depict it. Almost each simulation of a sorting algorithm operating on an
array renders the array as a sequence of same visual objects, such as spheres. A
heap sort visualisation also operates on an array, but additionally uses a "heap-tree’

as a view of the array.

Similarly, consider the 3D bin packing [I11] and the 3D convex hull algorithm [32].
At programme level, the input of both algorithms is given as a set of triples. That
is, the volume of an object in the bin packing algorithm and a point of the convex
hull problem are given as a volume (height, width, depth) or as a point (x,y,z),
respectively. A simulation of the bin packing algorithm, however, is likely to use
3D boxes to visualise the bins; and the points of the convex hull are usually ren-
dered as points or tiny spheres in a 3D space. Hence, different simulations may
apply distinct views of the same data object. The question is: How can a visualiser

automatically recognise when to use which view?

3.4 Conclusions

The problems above are just a few of the problems we have encountered in our at-
tempt to fully automate the visualisation of algorithms and data structures based
only on their source code. There are many other problems that are difficult or

often impossible to solve either due to lack of knowledge concerning the algorithm’s

66 CHAPTER 3. TOWARDS AUTOMATIC VISUAL SIMULATIONS

nature or because the semantics of the algorithm’s operations cannot be deduced
unambiguously. Implementing an undo/redo facility, defining meaningful input
data, creating input validation functions, recognising conceptual input parameters,
composing explanatory text, setting collapsible blocks, creating quizzes, etc. are
just a few of them. Moreover, there is a strong coherence between the quality of a
simulation and the automation’s complexity. The more sophisticated a simulation
should be, and the more requirements it is expected to meet, the more difficult is
the automation. Nevertheless, just because a problem is difficult does not mean
that it is insolvable. There is one class of algorithms that can be automatically
simulated. These are the algorithms whose visualisation is a one-to-one mapping of
the programme code and instructions to visual representations. In terms of the ab-
straction levels defined in Section [3.2] this is exactly the case when the programme
level and the algorithm level of the simulation are the same. Apart from that, solv-
ing the problem of automation for arbitrary algorithms is equivalent to constructing
artificial software that ultimately aims to emulate our own pedagogical and design
abilities. In other words, it is equivalent to the problem of developing a machine
which is able to understand an algorithm at the algorithm’s level of abstraction, to

think as a pedagogue, and to act as a programmer and a designer.

Chapter 4

An Approach to Semi-Automatic

Generation of Visual Simulations

In this chapter, we present an approach to minimising the overall effort required
for producing visual simulations. As it is not within the scope of this chapter to
discuss the actual implementation details of the approach, these will be covered in

the subsequent chapter.

We start by analysing the automation problems discussed in Chapter [3.3] and
classify them into three groups. Based on this analysis, we introduce the key no-
tion behind our approach and present its underlying concepts and mechanisms. In
the second part of this chapter we go a step further and pay special attention to
the three-dimensional passive animation of computational-intensive algorithms and
algorithms for AN’P-complete problems, as well as to the visualisation of parallel al-
gorithms. In Section we introduce an XML-based [133] approach for visualising
the former class of algorithms. Section introduces an approach for the easy de-
velopment of visual simulations of parallel algorithms. The last section is dedicated
to the visualisation of computer graphics algorithms. Here we will highlight some

fundamental aspects of the development of visual simulations in this field.

67

68 CHAPTER 4. SEMI-AUTOMATIC APPROACH

4.1 Problem Analysis

Our analysis of the problems we encountered while attempting to visualise algo-

rithms automatically revealed the following observations:

[. Tt turned out that in order to solve 15 of the 17 problems identified in the
previous chapter, a visualising engine is required to be capable of understand-
ing the abstractions, the semantics, and the overall logic of the algorithm as
a human would do. In terms of the levels of abstraction introduced in Sec-
tion [3.2] this means that the visualising engine is expected to understand the
algorithm at the algorithm level rather than at the programme level, which is,

indeed, a serious issue. These problems are 1-5, 7-9 and 11-17 (see Table |3)).

Problem | Description

1 Identification and visualisation of fundamental ab-
stract operations
2 Identification of primary and secondary data ob-
jects
3 Identification of access semantics
4 Focusing attention
5
6

Cloning data objects

Computation of geometrical coordinates and lay-
out information

7 Displaying conceptual information

8 Extracting runtime information

9 Defining logical steps

10 Mapping data objects to visual objects

11 Defining meaningful input data

12 Creating input validation functions

13 Recognition of conceptual input parameters
14 Composing explanatory text

15 Setting collapsible blocks

16 Creating quizzes

17 Absence of data objects

Table 3: Problem overview

4.1. PROBLEM ANALYSIS 69

II. 12 of the 15 problems in the previous point (1-3, 5, 7-9, 11 and 13-16) relate
to steps carried out by the pedagogue. It seems that the role of the pedagogue

is difficult to automate.

III. Problems 2, 5, 8-10 and 15 can be comfortably eliminated if we incorporate
simple additional information into the source code. Often, this information
cannot be extracted from the source code, but can contribute to solving a

large part of the problems.

IV. The automation of problems 11, 12, 14, 16 and 17 is extremely intricate and
not recommended. It is unlikely that a machine can solve these problems

better than a human could.

Based on these observations, and as a first step towards our approach, we classify

the problems into three distinct clusters:

1. Cluster A includes all problems that can be easily solved by augmenting the
source code of the algorithm with additional information regarding the nature
of the included objects and operations. Augmenting the code is straightfor-
ward to accomplish, does not require much work and enables solving over half

of the problems.

Cluster A contains the following problems: Identification of primary and sec-
ondary data objects, cloning data objects, extracting runtime information,
defining logical steps, mapping data objects to visual objects and defining

collapsible blocks.

2. Cluster B comprises problems that can be automatically solved if the domain
of the algorithms to be simulated is limited and well-known in advance. If
our goal, for example, is to simulate a certain group of computer graphics
algorithms or, say a group of sorting algorithms, then it would be possible to
develop an automated domain-specific solution. It is, however, too difficult to

automatically solve the problems for arbitrary algorithms.

70 CHAPTER 4. SEMI-AUTOMATIC APPROACH

The problems contained in cluster B are:

Identification and visualisation of fundamental abstract operations, identifi-
cation of access semantics, focusing attention, computation of geometrical co-
ordinates and layout information, displaying conceptual information, creating

input validation functions and recognition of conceptual input parameters.

3. Cluster C consists of four intricate problems: 11, 14, 16 and 17. It is not
recommended to solve these problems automatically, not only because they
are too complex to be solved, but also because an automated solution would

not always produce appealing results.

Hence, as we are concerned with simulating arbitrary algorithms, we will not
attempt to solve these problems, and we will not consider the automation of vi-
sual simulation as our main goal. But rather, we seek to develop an approach to
semi-automate the creation of visual simulations, and not to (semi)-automate the
visualisation of simulations. In other words, we will not semi-automate the sim-
ulation process itself, but the process of creating simulations (see this chapter’s
title).

This has lead us to develop an approach that circumvents all 'B-problems’ and,

at the same time, solves the ’A-problems’ simply by using a code augmentation

technique. In the following section we introduce this approach.

4.2 Semi-Automated Approach

Our approach is a combination of full automation, semi-automation and manual
intervention. The approach is geared towards eliminating the problems of the first
cluster, getting around the problems of the second and manually solving the prob-
lems of the third one. It is based on the idea of transforming the algorithm’s
code into simulation code by using three concepts: visual objects, source code aug-

mentation and reusable parameterised components. The resulting simulation code

4.2. SEMI-AUTOMATED APPROACH 71

encloses the visual instructions that constitute the entire visualisation or at least
a substantial part of it. Some of the simulation’s components can be constructed
fully automatically based on the information included in the source code after aug-
mentation. Others are generated semi-automatically with the aid of meta-data and
reusable parameterised components. The rest, which can neither be created au-
tomatically nor semi-automatically, is constructed manually. Thus, the approach

requires some degree of manual intervention into the algorithm’s source code.

We now introduce the three aforementioned concepts.

4.2.1 Visual objects

A visual object is a graphical representation of a data object. It exhibits a set of
visual operations that mirror its current state and allow for the modification of its
data, appearance and location. Our approach involves replacing all key data objects
of the algorithm by visual objects, and replacing any interesting data operation
by its corresponding visual one. Recall from Section that each algorithm
operates on a set of data objects (variables, arrays, graphs, trees, etc.). Depicting
these objects and their operations constitutes a large part of the visualisation.
Thus, the replacement process will help generate a large fragment of the simulation
code. It is important to note at this point that the simulation does not need
to be concerned about how visual objects work. It handles them as black boxes
that provide interfaces representing the visual operations that they can perform on
themselves, or to communicate with each other (bridges). Listing shows the

code of a visual array implemented as a visual object.

By using the concept of visual objects, we reduce the effort required for imple-
menting the visualisation part of each individual simulation, to the work needed
to find and replace the data objects and operations by their corresponding visual

onesﬂ. To automate this process, we need a mechanism that helps us easily identify

'Remember that implementing the graphics portion of the visualisation is the most laborious
part of the entire process.

72 CHAPTER 4. SEMI-AUTOMATIC APPROACH

these objects in the algorithm’s code. The mechanism we use for this purpose is

code augmentation.

4.2.2 Code augmentation

Code augmentation is a technique that refers to the incorporation of meta-data and
annotations into the algorithm’s source code. The purpose of the augmentation is

to enrich the source code with supplementary information regarding its artefacts.

Given the source code of an algorithm in a high-level programming language,
we annotate the code to provide the code generator (see below) with the ability to
identify crucial elements and construct parts of the simulation. Among others, we

mark the following elements:

1. Key data objects and their abstract operations

2. Data objects that need to be cloned

3. Locations of the control points

4. Start and end of logical steps

5. Collapsible blocks

6. Operations that affect the runtime analysis of the algorithm
7. Narratives

8. Links to documentations or tutorials

A code generator processes the augmented source code and transforms it into
simulation code. This is primarily achieved by replacing the marked data objects
and operations by their visual matches. In addition, it replaces some meta-data

directives by code instructions. These instructions enable the simulation to bind

4.2. SEMI-AUTOMATED APPROACH 73

and use parameterised graphical components and provide them with the accurate

data.

When applying the meta-data, we automatically eliminate all the problems of

cluster A and enable the code generator to bind the following components:

Runtime information display, control points, collapsible blocks, documentation
display, narrative display, and graphical view. All these components except the last

one are referred to as reusable parameterised components.

Listing shows a simplified example of an augmented source code excerpt of

binary search trees.

4.2.3 Reusable parameterised components

Reusable parameterised components are graphical or non-graphical components
that can be readily adjusted to be used by any simulation. A good example of
a reusable component is the source code listing display (see Figure . It obtains,
as a parameter, several listings of the source code of the algorithm that a simulation
wishes to display. The listings can be given in a pseudo code notation and/or vari-
ous notations of programming languages, in which case, each will be displayed in a
separate tab. The code listing display uses an integrated non-graphical component
called syntax colourer. The syntax colourer is a reusable parameterised component
that receives two parameters: a source code listing and a flag indicating the pro-
gramming language in which the code is written. The output of the syntax colourer
is a specification of how the code listing display should colour the syntax of the
given code. It is obvious that we use meta-data to specify the locations of the files

containing the various source code forms.

A code scanner is another example of a reusable component. Listing shows

the source code of a Python scanner implemented in Java.

Figure [12] shows arrangements of the components in groups indicating how each

component is created according to our approach.

74 CHAPTER 4. SEMI-AUTOMATIC APPROACH

Code ¥ Undo/Redo Automatically generated
Highlighter £ Facility reusable components
Input Animation Input Manually generated
Validator Setting Ul ul components

Syntax Error
Colourer Manager

Reusable

Simulation Control Additional Error CompanRgntE

Interface Components Display

o i
I Control

Points
b

Code Listing Display

Meta-Data-based
Narrative Display _generated reusable
components

Runtime Information
Display

Documentation Display

Figure 12: Grouping the simulation components based on their creation method

Thus, according to our approach the parts of a simulation are constructed in

three ways:

e Using special meta-data notation:

The meta-data marks the data objects and operations, and specifies which
components a simulation needs and which input these components should be
fed with. A code generator fetches the components from a library and binds

them in the simulation code.

e Automatically:

The code generator creates the component fully automatically based on the
source code of the algorithm. The only two components that can be created
in this way are the code listing highlighter and the undo/redo manager; both
of which will be covered in Section and respectively.

e Manually:

4.2. SEMI-AUTOMATED APPROACH 75

In many circumstances the code generator will not be able to create simula-
tions tailored for each purpose. Some components of the simulation have to
be coded manually. This applies particularly to the interesting data input,
the user interfaces for input and settings parameters, and the quiz component.
Additionally, the developer might wish to extend the default implementation

of some components, or to enhance or complete some code parts.

Figure [13| shows an illustration of the approach.

Meta-
Data

| Reusable Parametrised
Components

Algorithm'’s
Source Code

Augmented
Source Code

Initial Simulation
Code

» Manual Completion

Final Simulation
Code

Figure 13: Semi-automatic approach for creating visual simulations

76 CHAPTER 4. SEMI-AUTOMATIC APPROACH

4.3 Animation of Computation-Intensive Algorithms

and Algorithms for A/P-Complete Problems

The visual simulation approach is applicable to algorithms with reasonable run-
time. It is, however, completely inappropriate for computation-intensive algo-
rithms [50, 128]. Due to their potentially enormous execution time, computation-
intensive algorithms and algorithms for NP-complete problems (hereafter referred
to as ANPP), cannot be simulated in real time for arbitrary input length. Anima-
tion authors are here often forced to follow the passive animation approach, even

though this form of visualisation is not considered notably effective [13].

There are two methods for designing passive 3D animations of algorithms:
e Using a 3D high-level programming language
e Using a 3D animation language

Both approaches have advantages and drawbacks that will be covered in the eval-

uation Section [6.3]

In our work, we follow the second approach. Thus, in order to broaden the
scope of visualisable algorithms, we have developed the first 3D algorithm animation
standard (an algorithm animation language) and an animation engine (an animation
player) which have enabled us to design and play passive animations of ANPP. The
work presented in this section covers the essential aspects of the language and draws

on the following two publications: [12], [60].

4.3.1 An algorithm animation language for 3D algorithms

Although the language we are introducing in this subsection can be used to animate
arbitrary 3D algorithms, it is primarily intended to be used for designing animations
of ANPP. It is our belief that non-computational-intensive algorithms should be

simulated using a high-level graphics API rather than being animated passively.

4.3. ANIMATION OF COMPUTATION-INTENSIVE ALGORITHMS AND 77
ALGORITHMS FOR NP-COMPLETE PROBLEMS

Prior to developing a new standard or a language, a set of requirements should

be specified:

One of the key requirements for a flexible and powerful animation language is
its ability to support modelling and utilisation of data structures and their asso-
ciated operations. This means that complex data structures (trees, graphs, multi-
dimensional arrays, etc.) should be fully supported or at least easy to construct.
Furthermore, the language should be easy to learn. Authors with none or only
sparse programming skills, should be given the opportunity to create animations
without additional effort. For the syntax of the language, a platform-independent
and portable format should be used which not only supports the manual, but also
the tool-based animation creation (creation of scripts)ﬂ. Likewise, it should be pos-
sible to readily parse, interpret and exchange scripts and convert them into scripts
specified in other animation languages. Since the widespread XML standard [133]

supports the last requirement, it forms the basis of the syntax of our new language.

An already existing XML standard, which supports the creation of general ani-
mations, is the well known X3D standard [I31]. X3D is an XML-based 3D descrip-
tion language for interactive 3D content, which could also be used for the animation
of algorithms and data structures. Before we started developing a new standard,
we took the application of X3D into consideration. An extensive analysis, however,

has revealed its unsuitability as an algorithm animation standard for many reasons:

e X3D is too powerful. In order to be applicable, the entire scheme must be

first learned. This contradicts our demand for an easy-to-learn language.

e In order to use complex data structures, a huge number of graphic primitives
must be instantiated and carefully combined to constitute the desired data

structures.

e Algorithm-animation-specific concepts, like displaying source code listings,

2The term “script” is used to denote the file that includes a specification of an algorithm
animation written in a certain animation language.

78 CHAPTER 4. SEMI-AUTOMATIC APPROACH

code-highlighting, syntax-colouring, quizzes, narratives, etc. must be coded

manually.

e The embedding of an existent X3D interpreter into an existing algorithm
animation system can be very complicated. A complete reprogramming of an
X3D interpreter would be too complex, not only due to the implementation
of an undo/redo functionality, but also due to the efforts needed to embed it

into an existing system.

Anslow et al. who recently used X3D to develop web-based animations reported
more problems [7]. For all these reasons we decided to develop a new XML standard
which we named xml3DVis. A brief introduction of xml3DVis’ most important
components is given in the following subsection. Interested readers are encouraged

to read more about the standard in the cited works.

Conceptual structure

An xmlI3DVis animation is specified in an xml3DVis script which is a file with the

extension “x3v” that can include a collection of the following segments:

<xml3DVis>
<metadata> ... </metadata>
<boundings> ... </boundings>
<objects> ... </objects>
<scene: ... </scene>
<sounds> . .. </sounds>
<operations> ... </operations>
<codeFormatters> ... </codeFormatters:>
<code> ... </code>
<keyframes> ... </keyframes>
<documentation> ... </documnentation>

</xml3DVis>

The segment “MetaData” can be used not only to store information regarding
the data file, such as author, version, etc., but also general information concern-

ing the animation parameters and speed. Boundings-elements are elements for the

4.3. ANIMATION OF COMPUTATION-INTENSIVE ALGORITHMS AND 79
ALGORITHMS FOR NP-COMPLETE PROBLEMS

definition of the visibility scope of objects and their activation region. The seg-
ment 'Objects’ can be used to globally define objects that will be bound later on
during the animation. Features for modifying the appearance of graphical objects
(e.g., colour, texture, illumination parameters, etc.) can be defined with the aid
of Appearance-elements. xml3DVis supports 21 graphic primitives and geometri-
cal structures for composing more complex objects or for the definition of complex
data structures if needed. Together with the support of conventional data struc-
tures (such as multidimensional arrays, trees, graphs, etc.) xml3DVis fulfils one of
the essential requirements we specified earlier. Operations supported by xmI3DVis

can be divided into the following three categories:

e Animation operations which can be performed on graphic primitives.

e Event-dependent operations which can be executed at the beginning or at the
end of a keyframe [127] whenever a certain event occurs, such as playSound,

showQuiz, setAppearance, setText, etc.

e Data structure operations for the manipulation of data structures, e.g., add,

remove, search, etc.

xml3DVis also supports the display of test assignments in the form of single- or

multiple choice questions (quiz), as well as narrative texts.

The segment 'Code’ can be used to define code listings. The language also
provides mechanisms for highlighting code lines during the animation. xml3DVis
provides syntax colouring support for pseudo code listings as well as for codes

written in various notations.

An animation specified in xmI3DVis includes a sequence of time segments called
keyframes. A keyframe encompass specifications of all visual objects and operations
that will be rendered later in a visual frame. When the xml3DVis animation player
plays an animation, it maps each of its keyframes to a visual frame. This results in

a film composed of a sequence of visual frames that build the entire animation.

80 CHAPTER 4. SEMI-AUTOMATIC APPROACH

For a better understanding of the animated algorithm or data structure, xml3DVis
offers the animation author the possibility to display learning materials and docu-

mentations.

With the support of the aforementioned features, xml3DVis allows the animation
of a wide range of algorithms and data structures. However, we will show in Sub-
section that there are also algorithms which stretch every algorithm animation

language to its limits.

Figure [[4] shows the conceptual structure of xml3DVis.
Geometry Primitives
DataStructures Operations

MetaData CodeFormatters

KeyFrames xml3DVis Quiz

Narrative Sound
Documentation Boundings

Objects Appearances

Figure 14: Conceptual structure of xmI3DVis

In addition to the language, we have implemented a visualisation engine consist-
ing of an interpreter, a mapper and an animation player. The interpreter includes
an XML parser that parses xml3DVis files and checks them for validity and con-
sistency. The mapper maps xml3DVis elements to a data model. The animation
player is responsible for analysing the data model, transforming it into 3D graphic

primitives and animated operations.

4.3. ANIMATION OF COMPUTATION-INTENSIVE ALGORITHMS AND 81
ALGORITHMS FOR NP-COMPLETE PROBLEMS

4.3.2 Animating the TSP with xml3DVis

To demonstrate the strength of xml3DVis, we present a visualisation of the travelling-
salesman problem (TSP) [45] for eight vertices. According to our classification in
Section [2.1] the algorithm of the TSP is an augmented two-dimensional algorithm.

We chose this problem for the following three reasons:

e To demonstrate the application of xmI3DVis on a real world example.
e To show how complex the creation of animations can become.

e To give an impression of how powerful xmI3DVis is.
The TSP is NP-complete [45, [128], 81], and thus not solvable by any algorithm in

polynomial time. All known algorithms for solving this problem require exponential

runtime.

M 3D-VISIAN
File Repository Capture Setting Help

[F=7 Open animation $€ Close

Java | Pzeudo-Code ¢ Narratives |
1 setTrivialDists(); > s Settings I 1{ Info_|
2 forfintk=1k<r Documentation ‘
3 IntegerSet set N
% Iterator <BitSe| = \
5: while(jit.hasNe Tl‘ﬁl"elllllg
& Bitseta = g

alesman
7 for (inti] .
8: if (2. Algorithm Using
S .
10:) Dynamic
- * N ™ . =
4 LU r 4 1 P

IAnimation ! QuickSort

g .Sb:np _;‘Bad(ward Previous Step I I?'c:s-s Ib Mext Step h‘nzc--'-.'c'-': Step: 35|/0
|

Figure 15: Animation of the TSP in 3D-Visian

82 CHAPTER 4. SEMI-AUTOMATIC APPROACH

Even using a small number of vertices, a non-visual simulation of this problem
reaches enormous execution time. Néaher [81] has shown that for eight vertices only
a few minutes are needed to compute the optimal route when using the brute-force
method, i.e., computing all possible paths, while for 16 vertices approximately 20
years are needed. It is impossible to get the complexity problem completely under
control even by using an alternative design paradigm. A different approach for
16 vertices using dynamic programming [45] requires a running time of a couple
of hours. A simulation for eight vertices requires 1145 steps (nine vertices require
5623 steps). In order to avoid the gigantic execution time, a static animation has
been used to visualise the problem. All intermediate steps have been computed in
advance, several steps have been combined during the animation into a representa-
tive one. Thus the actual computation time has been reasonably reduced. As the
computation of the intermediate steps could not be done manually, we created a
separate programme to compute them. Another programme was needed to generate
the xml3DVis file of the whole animation. Obviously, in the case of eight vertices
it is also possible to simulate the algorithm instead of using a static animation.
However, from a didactical point of view, it neither makes sense to see the same
steps again and again, nor is it acceptable to wait until the computation of the
next interesting step has been completed. For this reason, it seems to be more
reasonable to select some pedagogically valuable steps, than showing every single
one. Omitting all the non-interesting steps has not only minimised the execution
time of the animation and improved its performance, but has also increased the

learning effect.

An evaluation of this approach will be conducted in Section[6.3] Figure[16|shows
all possible connections between the eight vertices on the left side and the optimal

route on the right side.

4.4. VISUAL SIMULATION OF PARALLEL ALGORITHMS 83

Figure 16: Travelling-salesman problem on a textured sphere created in xml3DVis

4.4 Visual Simulation of Parallel Algorithms

Parallel and distributed algorithms constitute an advanced topic in theoretical and
practical computer science that has gained much interest recently. It is generally
known that studying and teaching the fundamentals of parallel algorithm’s concepts
present a constant challenge to both learners and educators. Due to the additional
abstract concepts applied in the implementation of parallel algorithms, designing
visualisations of parallel algorithms is far more arduous than visualising sequential
ones (single process). At the same time, the pedagogical gain of parallel algorithm

visualisations is much higher than that of sequential algorithms.

In this section we introduce a new approach to minimising the effort needed to
create effective visual simulations of parallel algorithms. The work presented in
this section is greatly influenced by a joint research done together with Maksim
Mosgowoi [80]. Given there is a chance that some readers will not be familiar with
parallel algorithms, we have provided a brief introduction about the topic. This
introduction is necessary to understand this section and is based on [102]. It is by
no means comprehensive and should not be assumed as a substitution for the cited

literature.

84 CHAPTER 4. SEMI-AUTOMATIC APPROACH

4.4.1 Parallel algorithms

A parallel algorithm is an algorithm which can be simultaneously executed by sev-
eral different processesﬂ. Each process handles a part of the input data and com-
municates with the other processes to compute the final result in a more efficient
way [102] [67, 19, ©O3]. In order for the processes to communicate with each other,
they use a so-called communication pattern. A communication pattern describes
the structure employed to distribute the information among the processes efficiently.
Formally, a communication pattern is an undirected graph, whose nodes each corre-
spond to a process. Each graph edge represents a connection between two commu-
nicating processes. The most frequently used communication patterns are binary
trees, meshes, hypercubes and butterfly networks [102]. Apart from communica-
tion patterns, parallel algorithms also differ from sequential algorithms in the way
in which the data is distributed among the processes. To send and receive data, pro-
cesses use special operations called communication routines. A widely used library
containing a number of communication routines is the MPI [89]. This interface
comprises primitive and collective communication routines. Primitive communica-
tion routines consist of simple send and receive operations, which can be applied
in several modes (e.g. buffered, synchronous, immediate, etc.) between two par-
ticular processes. Collective communication routines are far more complicated, as
they make powerful communications possible, involving many (or even all) pro-
cesses at once. The most used collective communication routines are: Broadcast,
Scatter, Gather, Reduce, Scan, AllGather, AllToAll and AllReduce (see [102] for

more details).

Another two aspects, which parallel algorithms (but not sequential ones) need to

be concerned with, are partitioning and mapping. Prior to a computation step, the

3 In the literature two models of parallel computing are often distinguished: multi-computers
using distributed memory where each computer has only access to its own separate memory; and
multiprocessors with one single shared memory [I0I]. As this distinction bears no impact on
the visualisation, we have not taken this differentiation into account throughout this section and
assume that input data will be in the end processed by processes, regardless of the underlying
model.

4.4. VISUAL SIMULATION OF PARALLEL ALGORITHMS 85

processes need to obtain their respective parts of input data. This step is separated
into two phases: the partitioning and the mapping phase. The former refers to the
decomposition of data into fragments and assigning the fragments to primitive tasks
(parts of the computations). The latter denotes the process of combining primitive
tasks into larger ones and assigning them to corresponding processes. There are
several decomposition methods designed to support various data structures. When
it comes to matrix-based algorithms there are four major decomposition methods:

row-wise, column-wise, diagonal, and checkerboard decomposition [102].

4.4.2 Visualisation aspects of parallel algorithms

The visualisation of parallel algorithms poses stronger demands than does the visu-
alisation of sequential algorithms. In addition to the large number of requirements
for visual simulations of sequential algorithms (see Section , there are four further

essential requirements a visualisation of a parallel algorithm is expected to fulfil:

e Synchronisation:

In a real visual simulation of a parallel algorithm, the processes are normally
executed using threads. As the goal of a visualisation is not just to show
the results of the executing tasks, but to illustrate how these results gradu-
ally evolve in a certain order, we demand a synchronisation of the executing
threads. The purpose of the synchronisation is to yield a controlled visualisa-

tion of the computation rather than to obtain a random one.
e Providing an appropriate representation of the communication pattern.

e Providing an appropriate visualisation of the data decomposition and map-

ping.

e Providing an appropriate visualisation of the primitive and collective commu-

nication routines.

86 CHAPTER 4. SEMI-AUTOMATIC APPROACH

4.4.3 Clustering approach

Our approach to reducing the effort required to design visual simulations for parallel
algorithms is based on analysing a reasonable number of parallel algorithms and
clustering them in respect to the effort required for the visualisation. All members
of a cluster are, from a visualisation perspective, very similar and can be visualised
in the same manner. Providing a visualisation of just any one, this visualisation can
be adopted to derive new ones for all other members. Thus, the effort required to
visualise the entire cluster is reduced to the work needed to implement one algorithm

and adapting the implementation so that it fits to each of the remaining algorithms.

Although we considered all the following classes of algorithms, we examined the

ones listed below bold.

e Matrix-Multiplication: (Matrix Vector Algorithm, Fox Algorithm, Can-
non Algorithm, DNS Algorithm)

e Systems of Linear Equations: (Back Substitution, Gaussian Elimina-

tion, Iterative Methods, Finite Difference Methods)

e Discrete Fourier Transformation: (FFT, Binary Exchange Algorithm, Trans-

pose Algorithm)

e Sorting with Divide-&-Conquer: (Parallel Quicksort, Hyperquicksort,
Sample Sort, Parallel Merge Sort)

e Dynamic Programming: (Warshall Algorithm, Floyd Algorithm, Global
Pairwise Alignment, RNA Secondary Structure Prediction)

e Miscellaneous: (Prefix Evaluation Problem, Odd-Even Transposition

Sort, Shearsort)

We chose these algorithms for the following reasons:

4.4. VISUAL SIMULATION OF PARALLEL ALGORITHMS 87

e The selected algorithms of the category “Sorting with Divide-&-Conquer” use
sophisticated communication routines, such as BCast, Gather and Scan. This

allows for a visual illustration of these forms of communication.

e The algorithms Fox, Cannon, Warshall, Floyd, Back Substitution, and Gaus-

sian Elimination cover several aspects of data decomposition and mapping.

e The Matrix-Vector Algorithm combines sophisticated communication routines

with elaborate decomposition and mapping.

e The Prefix Evaluation Problem on the one hand, and the Odd-Even Trans-
position Sort and Shearsort on the other, use a binary tree and a mesh as

communication patterns, respectively.

Thus, the selection allows for a demonstration of many visualisation aspects of

parallel algorithms.

Our investigation focuses on the visualisation aspects of the algorithms. We
examined how the visualisation of the data structures, the data decomposition and
mapping, the communication patterns and the communication routines can affect

the visualisation complexity.

All algorithms of the categories Matrix-Multiplication, Linear Systems and Dy-
namic Programming use matrices as data structures. Thus, row-wise, column-wise
and checkerboard decomposition are typical decomposition methods that can be
used for all these algorithms except the Back Substitution algorithm, which uses
diagonal decomposition. Similarly, the algorithms of the categories Sorting with
Divide-&-Conquer, and Miscellaneous use arrays. These algorithms divide the ar-

ray into blocks (subarrays) and distribute these subarrays among the processes.

As for communication routines, the choice of an appropriate communication
routine for an algorithm strongly depends upon its design. We could not find any
link between the utilised communication routine on the one hand and the used

data or the type of the problem on the other. Both matrix-based and array-based

88 CHAPTER 4. SEMI-AUTOMATIC APPROACH

algorithms, e.g., use primitive and collective communication routines.

One can also observe that there is no connection between the data structures
used and the communication routines. Algorithms that use matrices arrays apply

the same communication routines.

The communication pattern employed depends in many cases on the underlying
data structure and the applied data decomposition method. A matrix-based algo-
rithm uses row-wise or column-wise decomposition and one-dimensional mesh as
communication pattern. If the data in the matrix is partitioned using checkerboard
decomposition, the utilised communication pattern is a two-dimensional mesh. This
was noticed, e.g., in the categories Matrix-Multiplication and Sorting with Divide-
&-Conquer. The communication pattern of Fourier Transformation, Hyperquicksort
and the Prefix Evaluation Problem, however, are determined independently of the
data structures. These algorithms use a butterfly network, hypercube and binary

tree, respectively.

Examining the algorithms from a visualisation perspective has revealed the fol-

lowing;:

The visualisation complexity highly depends upon the data structure rather

than the communication pattern, or the communication routines.

e As the data decomposition is dependent upon the data structure, its visuali-

sation is dependent, accordingly, on the visualisation of the data structure.

e Since any communication pattern can be modelled as a graph and because the
visualisation of any graph does not present a huge challenge, communication

patterns do not considerably affect the visualisation complexity.

e The visualisation of the communication routines can be basically accomplished
by drawing the path which the data travels towards its destination processes.
Hence, the visualisation of the communication routines does not considerably

affect the overall complexity of the visualisation.

4.4. VISUAL SIMULATION OF PARALLEL ALGORITHMS 89

Based on these observations, four clusters were constructed (see Table [4]).

Cluster Algorithm(s)
Matrix- Matrix-Vector Multiplication, Fox Algo-
Algorithms rithm, Canon Algorithm, Back Substitution,

Gaussian Elimination, Warshall Algorithm,
Floyd Algorithm

Array- Parallel Quicksort, Hyperquicksort, Sample-
Algorithms sort, Odd-Even Transposition Sort, Shear-
sort

Miscellaneous]1 | Prefix Evaluation Problem
Miscellaneous?2 | Fast Fourier Transform

Table 4: Clustering of the investigated algorithms

The Matrix-Algorithms cluster encompasses algorithms that use a matrix as a

data structure.

The second cluster includes algorithms which operate on arrays. These algo-

rithms use one-dimensional meshes and block decomposition.

The last two clusters contain one algorithm each. None of these analysed al-
gorithms can be assigned to any of the first clusters. They apply specific data

structures that are not used by any of the remaining algorithms.

By using this clustering strategy, we have successfully created effective visualisa-
tions of the algorithms presented in this section with little effort. The clustering of
similar algorithms has proven to greatly facilitate the visualisation process. When
we compare how much effort usually needed to visualise each algorithm separately
to the effort required to implement our approach, one can see that our method has
significantly reduced the work needed to implement this rather complex group of al-
gorithms. This approach is not restricted to a particular class of parallel algorithms,

but can be applied to arbitrary classes as well.

90 CHAPTER 4. SEMI-AUTOMATIC APPROACH

4.5 Simulation of Computer Graphics Algorithms

Computer graphics algorithms pose more visualisation difficulties than conventional
algorithms do. Most computer graphics algorithms are inherently individual, have
little in common and operate on distinct geometrical objects using various ap-
proaches and techniques. Raster graphics algorithms for drawing 2D primitives,
e.g., operate on 2D pixel grids and draw their primitives by setting individual pix-
els of the grid. 2D clipping algorithms work also in a 2D plane, even though they
operate on points, lines and polygons, and compute intersections by solving lin-
ear equation systems. Volume ray tracing algorithms operate on three-dimensional
spatial data to compute coloured 2D projections of it. Ray tracing is not the only
technique employed for volume rendering. Other techniques such as marching cubes
and rendering voxels in binary partitioned space are also for the same purpose; how-
ever, they follow completely different approaches. We use the ray tracing technique
not only for volume rendering, but also for visible surface determination, and in
illumination and shading in combination with shading models. In addition to ray
tracers, the Z-Buffer and the painter’s algorithm are further algorithms for hidden
surface removal in 3D and have only two things in common: the goal and the ge-
ometrical object they work on. Implementing a radiosity simulation to illuminate
a scene requires the use of a completely different approach than implementing the

same simulation for the same scene using ray tracing.

From the recent discussion one can infer that, due to the fact that computer
graphics algorithms are very different, they are harder to visualise, compared to
conventional algorithms, which have a lot in common. Even graphics algorithms
that solve the same problem could quickly stretch our proposed approach to its

limits (see the evaluation of the approach in Section .

Chapter 5

Implementation

r I \his chapter focuses on the implementation aspects of the semi-automatic ap-
proach as well as the concepts introduced in the previous chapter. In particu-
lar, we will introduce an environment for the development of arbitrary 3D algorithm

visualisations. This environment is composed from the following units:

e A code generator for the semi-automatic creation of simulations, as proposed

in the previous chapter.

e An algorithm visualisation 3D programming interface (VPI). This VPI is a
3D library comprising a large collection of auxiliary components and serves as

a rich programming interface for the development of algorithm visualisations.

e A modern algorithm visualisation system that we have designed and imple-
mented to serve as an execution platform for arbitrary passive animations and

visual simulations.

After briefly introducing the technologies used in the development, we describe
the specification techniques we have employed to implement the code augmenta-
tion concept. Next, we give an insight into the interior of the code generator and
highlight its key components. Section introduces a facility for the automatic
highlighting of code listings. Section presents an extension of the Java API

91

92 CHAPTER 5. IMPLEMENTATION

that we have developed for the construction of undoable 3D applications in general,
and undoable algorithm visualisations in particular. We conclude this chapter by
proposing an architecture for the design and implementation of algorithm visual-
isation systems. As an application of this proposal, we present 3D-Visian — our

algorithm visualisation system/platform.

5.1 Implementation Technologies

The primary steps towards implementing an algorithm visualisation environment
entail deciding on appropriate implementation techniques and technologies. In our
development we primarily employ two implementation technologies (Java and Java

3D) and one technique (AST).

So far our experiences have shown, Java [120] and Java 3D [9], 29] are outstanding
technologies for implementing algorithm visualisations and visualisation systems.
This is due to their platform independence and web compatibility. In particular,
Java 3D has become one of the most popular 3D APIs, which in recent times
has been widely used to develop both web-based and standalone 3D applications.
Introducing Java and Java 3D in depth is not within the scope of this work. In order
to understand some of the subsequent sections, the reader should have familiarity
with Java 3D’s basic terminology and concepts. Therefore we have prepared a
brief introduction to the fundamentals of Java 3D and included it in Appendix [C.]
This introduction, however, is in no way comprehensive. For detailed literature,
the reader is advised to consult the Java 3D specification or one of the following

resources: [108, 119, [68].

An AST [3] is an abstraction for parsing, processing and modifying the source
code of a programme. As it forms a key component of the code generator, it will

be dealt with in the following subsection more closely.

5.2. CODE AUGMENTATION TECHNIQUES 93

5.1.1 Abstract Syntax Tree (AST)

In general, an Abstract Syntax Tree is a tree representation of the structure and the
content of a source code written in a certain programming language. It is used to
parse, process, modify and perform structural and semantic analyses of programme
code. In particular, we use an AST to parse the source code of an algorithm written
in Java and map it to a tree model. Each node in the resulting tree corresponds to a
Java element (a field declaration, an assignment, a method, a loop, etc.). The AST
offers a wealth of methods and properties that can be used to access and modify
these nodes. Any modification to the tree model is transmitted to its underlying
Java code (see Figure . The code generator uses an AST as a facility to transform

the algorithm’s source code into simulation code.

| AST |
o1
S g parse
ource
Code |ummmr g
modify
seridlise

Modified

Code

Figure 17: Illustration of an Abstract Syntax Tree

To see an example of an AST, refer to the class “OwnerSetter” in Listing [B.4]

5.2 Code Augmentation Techniques

The purpose of code augmentation is to annotate the algorithm’s source code with
meta information that assists the code generator understand the semantics of par-

ticular elements in the code to automatically generate parts of the simulation code.

94 CHAPTER 5. IMPLEMENTATION

We use two techniques to augment the source code without violating the syntax of

the language:

e Ordinary Java comments (implementation comments), and

e Java annotations

The term “ordinary” is used to distinguish between the implementation com-
ments and the documentation comments (Doc comments) used in Java. The latter
describe the specification of the code from an implementation-free perspective, to

be read by developers who might not necessarily have the source code at handﬂ.

The implementation comments we used to augment the code are called Visian
comments. To be distinguishable from other comments, Visian multiple line com-

ments start with /*~ and end with */. A line comment start with // .

Java annotations [5] are meta-data about Java programme units. Java allows
programmers to define their own annotation types and to use them at different
places in their code. Java, additionally, provides a set of built-in annotations which
are frequently used in programming; among these are @Deprecated and @Quverride.
The @OQverride annotation informs the compiler that the annotated element is
meant to override an element declared in a superclass. The @Deprecated annotation
indicates that the marked element is deprecated and should no longer be used. As

can be seen, each annotation starts with an @-sign.

Both methods (using comments and using annotations) have advantages and dis-
advantages. The advantage of using annotations over using comments is that Java
provides a built-in annotation processor, which can readily be used to process anno-
tations at compile and runtime. However, unlike Java comments, annotations have
the restriction that they can only be used to annotate classes, methods, variables,
parameters and packages. Comments, on the other hand, can be placed nearly ev-

erywhere in the source code. However, using comments to incorporate meta-data

ITo learn more about the difference between the two types of comments, visit the following
site [28].

5.3. CODE GENERATOR 95

in a code has two drawbacks:

e [t requires us to define a special syntax for the tags that will be included in

the comments (see Listing as an example for an augmented code snippet).

e [t imposes the implementation of a processor with which the tags can be

processed and made accessible for the code generator.

Among others, we use annotations as markers to denote, the key data objects
and their abstract operations which will be visualised, the data objects that need

to be cloned, and the methods whose lines should be highlighted at execution time.

Java comments are used for denoting the following items and many others: loca-
tions of control points, beginnings and endings of logical steps, collapsible blocks,

narratives, and runtime information.

Code listing shows an augmented code of the delete operation of binary
search trees. Code listing shows the implementation of the Visian comment
parser class. The class uses an AST to parse and process the Visian comments

included in an augmented code.

5.3 Code Generator

The code generator is the facility used to parse the augmented version of the al-
gorithm’s source code into an abstract syntax tree. To exploit the useful services
of some Eclipse [50] tools, the code generator has been implemented as an Eclipse
plug-in [27]. Instead of discussing all details of the code generator, we will present

its essential components and briefly highlight their functions:

The code generator is instrumented with the following tools:

e Preprocessor

e Code listing mapper

96 CHAPTER 5. IMPLEMENTATION

e Component generator

The conceptual structure of the code generator is illustrated in Figure

Augmented
Source Code

Simulation Code

Figure 18: Structure of the code generator

The preprocessor is a component composed of two units: a meta-data pro-
cessor and an annotation processor. The former is responsible for processing
the meta-data included in the Visian comments and mapping it to internal data
objects called 'meta objects’. The meta objects constitute the input for the compo-
nent generator. With their aid, the code generator will be able to create instances
of the components specified in the meta-data, supply them with the appropriate
parameters, and enclose them in the simulation context. The annotation processor
has the same functionality, however, it generates the meta objects based on the

provided annotations.

The code listing mapper (CLM) is the code generator’s component which

creates a mapping of the algorithm’s source code to the algorithm’s code listing.

5.4. AUTOMATIC CODE HIGHLIGHTING 97

This mapping is later passed to the component generator and used to create the

code highlighter (see Section .

As the name indicates, the component generator is the facility of the code
generator which is responsible for creating instances of simulation components and

visual objects, and binding them in the simulation code.

5.4 Automatic Code Highlighting

The code highlighter is the facility that ties the simulation core to the code listing
display. Whenever a set of instructions in the simulation code is executed, the
simulation requests the highlighter to highlight the corresponding code lines in the
code listing display. To do so, the simulation passes the line numbers as a parameter
to the code highlighter. The highlighter maintains a table that includes mappings
of the simulation instructions to the source code lines. Each set of code instructions
is mapped there to a set of lines in the display. Creating this mapping by hand
is tedious, and fortunately unnecessary. We have developed a mechanism that
generates this mapping automatically based on the source code of the algorithm.

What follows is an illustration of this mechanism.

5.4.1 Source code-based automatic highlighting

As previously mentioned, the Code Listing Mapper (CLM) is the component
of the code generator which is responsible for generating the mapping passed to
the highlighter. After the preprocessing of the meta-data, the CLM is the first
component that the code generator sets into action. The first task that the CLM
performs is to extract a legible copy of the algorithm’s code. To do so, the CLM
creates a copy of the source code and cleans it by removing all meta-data and
unnecessary documentation comments. The resulting text is the listing that will

appear later in the code display. No meta-data or annotations appear anymore.

98 CHAPTER 5. IMPLEMENTATION

While cleaning the source code, the CLM uses a table to note the numbers of the
lines that have been removed. With the aid of this table, it can later recognise
which code instructions in the original code correspond to which code lines in the
copy. Suppose, for example, that the line number of a code instruction that stands
in the original source code at line n needs to be mapped to line number m in the
source code copy. Suppose further, that & unnecessary code lines following line n
have been removed, and are therefore not present in the copy. With the help of
the table, the CLM will be able to recognise that line n in the original code should
be mapped to line n — k = m in the copy. This sounds obvious, which is true
if we do line-wise mapping. This would be, however, inefficient. Fortunately it is
unnecessary. That is because, if we assume that a code line contains one single
instruction; whenever this instruction has been finally executed, the code generator
will indicate this by highlighting the corresponding line in the code listing display.
This means that the simulation code must include a call to the code highlighter

after each instruction.

Hence, a simulation of an algorithm with 50 code lines would include 50 highlight
calls. This would slow down the performance of the simulation and make its code
look bulky. Instead, the CLM maps the original code to the copy set-wise, and not
line-wise. That is, it collects a set of consecutive code lines in the original code and
maps them to their correspondences in the copy. The question is: Which strategies
does the CLM apply to perform this mapping? This is a question that we will

answer in the following subsection.

5.4.2 Set-wise code line mapping

To create a set-wise code line mapping we use the AST of the code generator. To
simplify the discussion, we will assume that the code instructions we seek to map

are enclosed in a method (a routine or a procedure).

5.4. AUTOMATIC CODE HIGHLIGHTING 99

The CLM distinguishes between three classes of code statements: jump state-
ments, block statements and standard statements. A jump statement is a state-
ment that can cause the execution flow of a method to be interrupted and/or to
be continued at a code line outside the method. In Java, a jump statement can be
a method invocation statement, a return, a break, an assert, a throw or a continue
statement. The latter is the only statement that causes the execution of a method
to be interrupted and continued at a line inside the method. A block statement
is any statement that has a body enclosed by curly brackets. In Java, this can be
a while, a for, or a do loop, an if, a switch, a try, or a synchronized statement.
A standard statement denotes any other statement, such as an assignment, a
field declaration, a cast statement, etc. A code segment has a start and an end
statement. An end statement can either be a jump or a block statement or it can
be the end of a method or a block. A start statement can be the start of a method
or the first statement following an end statement. We now illustrate how the CLM

acts using the code example in listing [5.1}

The left listing shows the source code of the successor and minimum methods
used by a binary search tree. For convenience, we will assume that the original
source code and the copy created by the CLM are identical. In other words, the left
listing represents the code which the CLM receives as input and at the same time
it is the code that will later appear in the code listing display. The source code’s
jump statements are: the method invocation at line 5 and the return statements at
the lines 14, 20 and 26. The block statements are: the if-statements at lines 4 and
19, and the while-statements at lines 9 and 22. All other statements are standard
statements. According to our explanation above, the CLM will partition the code
into ten segments. Each segment has been denoted in the listing by framing it in a

green rectangle.

100 CHAPTER 5. IMPLEMENTATION

Source Code

1 public BinaryNode successor(BinaryNode x) {

2 S1 2
3 BinaryNode v = null; 3 VisualBinaryNode v = null;
4 if (x.rightChild != null){ 4 codeHighlighter highlightT.ines(1.4);
5 v=minimum(x rightChild); |S2 | 5
6 ¥ & 6 if (x.getRightChild() != null) {
7 7 codeHighlighter highlightlines(5,5);
g v =x.getParent(); 33 8 vy = minimum(x. getRightChild());
9 while (v !=null && x == y.rightChild) { o 1
10 X=Y; 10
11 v =y.getParent(): S4 | 11 y =x.getParentNode();
12 } 12 codeHighlighter highlightl.ines(8.9);
13 13
14 returny; S5 | 14 while (y = null && x = y.getRightChild()) {
15 3 15 X=Y;
16 16 vy =vy.getParentNode();
17 private BinaryNode S6 17 codeHighlighter highlightT.ines(10,12);
18 minimum(BinaryNode node) { 18
19 if (node == null){ 19 codeHighlighter highlightLines(13,15);
20 return null; S7 20 returny;
21} 21}
22 while (node leftChild = null}{ S8 | 22
23 node =node leftChild; S9 23 public VisualBinaryNode minimum(VisualBinaryNode node) {
24} 24
25 25 codeHighlighter highlightLines(17.19);
26 returnnode; 26
27} i S10 27 if (node ==mnull) {
28 codeHighlighter highlightl ines(20,21);
29 return null;
30 !
31
32 codeHighlighter highlightl.ines(22.22);
33
34 while (node_getLeftChild() !'= null) {
35 node =node getLefiChild();
36 codeHighlighter highlightLines(23.24);
37}
38
39 codeHighlighter highlightT.ines(26.27):
40 returnnode;
41}

Simulation Code

1 public VisualBinaryNode successor(VisualBinaryNode x) {

Listing 5.1: Set-wise code line mapping

5.4. AUTOMATIC CODE HIGHLIGHTING 101

Note, that each highlighting statement inserted by the CLM into the simulation
code in the right listing (codeHighlighter. HighlightLines(..))corresponds to exactly
one segment in the left context. The highlightLines method of the highlighter (see
right listing) works as follows. It initially unhighlights the currently highlighted
lines in the display. Next, it highlights the lines of the passed segment. And
finally, it calls an internal wait method. This method pauses the execution of the
simulation for a few seconds to enable the user to realise that possibly different lines

are highlighted.

5.4.3 Highlighting of pseudo and non-Java code

In the previous subsection, we quietly assumed that the source code passed to the
code display is given in Java. We know, however, that novice students are most
likely not familiar with the syntax of Java. Further, in Subsection we required
that the source code of the algorithm be displayed in pseudo code notation and in
at least one object-oriented-programming language. Assuming that there is a map-
ping between the simulation code and the Java source code, in order to highlight the
lines of the pseudo code, we just need to map each segment of the Java code to its
corresponding segment in the pseudo code. Further, we need to modify the imple-
mentation of the highlightLines method so that it can highlight simultaneously the
lines of the Java code, the pseudo code and the codes of the other programming lan-
guages, if any. Unfortunately, it is extremely difficult to fully automate the process
of mapping the Java source code line segments to their corresponding segments in
the pseudo code or codes in other programming languages. Therefore, we perform
the mapping manually using a graphical tool called code mapper (see Figure .
We use the code mapper to map each line in the Java code to its corresponding line
in the pseudo code and any code expressed in the following supported programming

languages: Python, C++, C and C#.

102 CHAPTER 5. IMPLEMENTATION

|£| Code Mapper E@ﬁ

File

C&EHY

GJ Update mapping [Java VisualRedBlackSearchTree.java (source) [31]] t VisualRedBlackSearchTree . py |
o U T VIO LT O WL WL s T LG IR G LGSO Ce R Gy

24 limport wisian3d.api.utilities.VisuzlDataStructureSimulatio

import visian3dd.api.utilities.Navigator:; | —

import visian3d.undo.container.UndoRedoManager;

]

[0 S S T R]

[ELR FLR SLE L} [2L)
(= T AL I o L I S i Y e e R B A |
——

public class VisualBRedBlackSearchTree extends VisualDataS:

34732 public VisualRedBlackTree<Int,Integer> redBlackIree:

[2L)
=1

38 private Random r = new Random()r b
F] 1 | 3

Figure 19: A tool for code listing mapping

5.5 Automatic Undo/Redo

A special attention was given to the development of an automated undo/redo facil-
ity, because this greatly facilitates the creation of algorithm visualisations. As pre-
viously mentioned, in an internship at our Department of Computer Graphics [54]
the students stated that the time needed merely to implement an undo/redo facility

was twice as much as the time necessitated to develop the rest of the simulation.

This section introduces an extension of the Java 3D API as an implementation of
an efficient undo/redo framework and shows how this framework can be readily used
in the automatic creation of three-dimensional visual simulations. The framework
uses the memento design pattern to implement a linear multiple-undo/multiple-
action model with an unlimited undo of performed actions. In Section we
will evaluate the framework and discuss its advantages and drawbacks. The work

presented here draws on a research that we have recently published in [I1].

5.5. AUTOMATIC UNDO/REDO 103

In order to ensure a comprehensive understanding of the framework’s underly-
ing concept, the reader will initially be made familiar with the basic terminology
of Java 3D. Therefore, we will briefly outline the fundamentals of Java 3D in Ap-
pendix and introduce the terms that will be used when explaining the concept
in detail. Before proceeding with the remainder of this section, the reader is en-
couraged to take a quick review through this introduction. For detailed literature,
the reader is advised to consult the Java 3D specification [68] or one of the following

resources: [108] [119].

5.5.1 Undo design patterns

When developing a concept for an undo/redo facility, there are two design pat-
terns [55] that can be taken into consideration: the memento and the command
pattern [53]. The command design pattern is a pattern that enables us to encap-
sulate each operation (command) that causes changes to the scene graph, into an
object called command object. According to this pattern, every change in the state
of an application is captured in an undoable command. Reversing the i-th step of
an application involves the reversion of all commands generated in step (i —1). The
memento design pattern, on the other hand, is a pattern that helps store the recent
internal state (memento) of an object and enables the application to restore the ob-
ject’s state later on, if needed. According to the memento pattern, an application
consists of a number of objects, each of which has an internal state determined by
the occupancy of its fields or the values of its attributes. The state of an application
at a specific moment is the overall state of its underlying objects at that moment.
An application step ¢, which commonly consists of a set of actions, transfers the
(i — 1)-th state of the application into state 7. Reversing step i requires restoring

the application’s (i — 1)-th state.

Both patterns have advantages and disadvantages. In order to decide in favour
of one of them, we first need to define some requirements that our concept has to

meet:

104 CHAPTER 5. IMPLEMENTATION

We require that the concept is generic and allows a straightforward usage of the
implemented undo/redo facility and also enables an effortless upgrading of already
existing 3D applications. Furthermore, the concept should allow a memory-friendly
implementation and support a large number of changes without affecting the appli-
cation’s overall performance or causing memory problems. Being memory-friendly
is a very crucial aspect of undo/redo facilities. Since keeping track of the previ-
ous changes of an application always requires saving the complete information, the
design of memory-friendly undo/redo interfaces has always been considered a huge
challenge. In this work, we considered the implementation of both patterns. Imple-
menting the command pattern requires that every action should be encapsulated
into a command object and subsequently saved, regardless of whether it affects the
scene graph or not [47]. The current release of Java 3D is quite large, and consists of
hundreds of classes and interfaces, and thousands of fields and methods. Therefore,
the number of actions that can potentially affect the scene graph is enormous. En-
capsulating each event into a command object would result in an implementation
impossible to handle. Another issue is that there are actions that, in some steps, do
not really affect the scene graph. Overriding the geometrical coordinates of a visual
object with the same value produces a command which is practically useless for an
undo step. Apparently, the command pattern is only geared for applications with a
manageable amount of distinct actions. The memento pattern, on the other hand,
is straightforward to implement and allows a very efficient and memory-friendly
implementation. Therefore, inferring from this observation and from our own expe-
rience, we believe that the memento design pattern is more suitable for a wide range
of applications than the command pattern. However, it does have a disadvantage

that we will explain later in Section

5.5. AUTOMATIC UNDO/REDO 105

5.5.2 Undo model

Apart from a design pattern, an undo/redo concept needs to implement an ap-
propriate undo/redo model. An undo/redo model specifies four aspects of an un-
do/redo concept: repetition, granularity, limit and linearity. Repetition denotes
the number of steps the model allows to be undone. There are single-undo (one
step) and multiple-undo (multiple steps). The granularity specifies the number of
actions that are allowed to be reversed in each step. If the model allows reversing
only one action, it is a single-action model; otherwise it is a multiple-action model.
As a consequence of this classification, there are four different undo/redo models:
single-undo/single-action, single-undo/multiple-action, multiple-undo/single-action
and multiple-undo/multiple-action, each of which can be implemented in a linear
or non-linear way. Linear undo requires the user to undo the latest action before
undoing earlier ones. With non-linear undo, the actions to be undone can be picked
freely from a maintained list of completed actions. In contrast to web browsers,

which mostly implement a non-linear model, most text editors support linear undo.

A limited undo/redo model allows for only a limited number of steps to be re-
versed at once during the execution of the application. An ideal undo/redo concept
is one that would support a hybrid unlimited multiple-undo/multiple-action model.
Hybrid, in this context, means that the underlying model can be accessed in a linear
as well as in a non-linear way. Due to the high flexibility of such a model, it forms

the foundation frame of our concept.

5.5.3 Concept fundamentals

Our concept to extend the Java 3D API, so that it can enable a straightforward
development of efficient reversible 3D applications, is scene graph-based and inde-
pendent of the application type. It applies the memento pattern and builds on the
following simple thought: We extend the classes of the API and make each of them

undoable. An object is undoable if it is capable of sequentially recovering its earlier

106 CHAPTER 5. IMPLEMENTATION

states; in other words, when it is able to autonomously reverse any actions that
have affected and changed its state. Based on the assumption that the scene graph
of an application is assembled from undoable objects, each of which can be reached
from the root, the traversing of the scene graph only once, and in doing so requiring
each object to restore its, say i-th state, this will result in restoring the entire state

of the application at time 7.

To become undoable, any scene graph object or a NodeComponent in Java 3D
is required to implement a specific undoable interface. Figure 20| shows a hierarchy

of undoable interfaces that can be implemented by Java 3D classes.

IUndoableObject

IUndoableSceneGraphObject

IUndoableNodeComponent IUndoableNode

IUndoableGroup
; —
a

IUndoableTransformGroup IUndoableBranchGroup

Figure 20: Undoable interface hierarchy

As can be seen, IUndoableObject is the super interface of all other undoable
interfaces. It defines, among others, the following two methods saveState() and
restoreState(). During the execution, the application is supposed to take a snapshot
of the scene graph at the end of each step using a special object called undo/redo
manager. To do so, it uses a method called takeSnapshot(). The procedure for
taking a snapshot is straightforward: whenever a snapshot is to be taken, the
undo/redo manager creates a unique snapshot id. It then traverses the scene graph
in pre-order starting at its root, visits every node of the scene graph exactly once

and requires it to save its current state by invoking its saveState() method and

5.5. AUTOMATIC UNDO/REDO 107

passing the snapshot id to it.

Each undoable object is expected to implement its own saveState(snapshotID)
method in such a way that the method saves the values of the object’s attributes in
special containers (see Subsection . Saving the states of all objects, however,
will enable us to restore their previous states, yet not their relation amongst each
other, i.e., the structure of the scene graph. Therefore, each time the undo/redo
manager traverses the graph, it collects structural information that makes the sub-
sequent rebuilding of its structure possible. This information involves, for example,
the id of each groupﬂ and the types of its children nodes. All of this information
is saved in a special data structure called Snapshot. When the undo/redo manager
creates a snapshot object, it assigns it a unique id and saves it in a special ordered

list (see Figure . The undo/redo manager is the only object that is allowed

Undo Manager

-

Scene \'Step1 Step2 Step3 Stepn

LN Y Ye¥a'

Snapshot1 Snapshot n

(Snapshots_lu \ VAR VAWV

List undo undo undo undo

s

Figure 21: An illustration of the structure of the undo/redo manager

to create snapshot objects. Therefore it is important to stress that a scene graph
object does not use instances of the Snapshot class to take snapshots of itself, but

uses special containers for this purpose instead.

In addition to the structural information, a snapshot object maintains a refer-
ence to each node of the scene graph and implements the method reconstructScene-

Graph(). To reverse the i-th step of the application, the undo/redo manager needs

2Every undoable scene graph object has a unique id assigned to it at instantiation time. The
id of a non-undoable object is its hash code.

108 CHAPTER 5. IMPLEMENTATION

to reconstruct the content and structure of the scene graph which was present be-
fore executing step (i+1). This is the moment in which a snapshot of the i-th state
was taken. To do so, the undo/redo manager invokes reconstructSceneGraph() of
snapshot i. This method uses the structural information saved in the snapshot
object to reconstruct the entire scene graph of step i. During this process, each
time a node is added to the graph being reconstructed, this node is required to in-
voke its own restoreState() method. This method replaces the values of the current
node’s attributes by those which were saved when snapshot ¢ was taken. Listing[B.0]
in the appendix shows an implementation of the Snapshot class and the recently

mentioned methods.

The question that now arises is: When should an application take a snapshot
of its scene graph or, in other words, how is an application step to be defined?
Actually, this is fully dependent upon the application itself. In fact, it is the task of
the application programmer to decide where a step starts and where it terminates.
Generally speaking, all actions between two consecutive calls of the takeSnapshot()
method belong to one and the same step. The first call marks the start and the
second call marks the end of the step. In a 3D modelling tool, for example, adding
a geometrical primitive should be captured as one step. In a 3D visualisation of
a sorting algorithm, swapping two array elements should also be captured in one

step. Hence, a snapshot should be taken before and after a complete action.

5.5.4 Undo/Redo containers

As previously mentioned, scene graph objects and NodeComponents use special
generic data structures called containers to keep track of the values of their fields.
Our concept distinguishes between two types of fields: comparable and reference
fields. Hence, there are two types of containers: C-containers and R-containers.
The former are used to store values of arbitrary comparable data types, i.e. data
types which implement the Comparable-interface [§]. These can be, characters,

strings, numerical types, or others. R-containers, on the other hand, are used to

5.5. AUTOMATIC UNDO/REDO 109

keep track of reference values (pointers). For efficiency reasons, there are single
and multiple value containers which are used to monitor single or multiple values
of several fields simultaneously (see Figure . An object can have one or more

containers depending on the number and the types of its fields.

IUndoRedoContainer

IComparableSingleValue IReferenceMultiValue
UndoRedoContainer UndoRedoContainer

IComparableMultiValue IReferenceSingleValue
UndoRedoContainer UndoRedoContainer

Figure 22: Container interface hierarchy

The most important methods of a single-value container are:

takeSnapshot(int snapshotID, T field), getSnapshot(int snapshotID) and wval-
ueChanged(int snapshotID), where T is a generic type. The first two methods
correspond to the saveState() and restoreState() methods of the IUndoableObject
interface, respectively, and are invoked when a scene graph object calls the corre-
sponding method. In other words, the saveState() method of an undoable object
simply calls takeSnapshot() of its container to save its current state. When an ob-
ject is asked by the undo/redo manager to recover its i-th state, it simply invokes
the getSnapshot() method of its container and overwrites its own current value by
the returned one. wvalueChanged(snapshotID) is an essential method which is used
to increase the performance of the undo/redo framework. The concept specifica-
tion requires that when a snapshot of a field in step ¢ is being taken, the current
field value is only captured if it differs from the value of step (i — 1). Thus, val-
ueChanged(i) only returns true if the current value of the field and its value in step

(¢ — 1) are different. Unless valueChanged() returns true, no entry is added to the

110 CHAPTER 5. IMPLEMENTATION

container. This guarantees optimal memory usage and contributes to the fulfilment

of our initial demand for a memory-friendly implementation.

Moreover, containers can be deactivated. The application can invoke the set-
Active() method of the IUndoRedoContainer interface to activate and deactivate
a container. As long as a container is inactive, it will not be able to take further
snapshots of its fields. This is a very useful feature, particularly when an application
knows that the values of some fields monitored by a container will not change after

a particular step.

5.6 An Algorithm Visualisation Environment

The environment we are presenting now is composed of an algorithm visualisation
programming interface (VPI), an algorithm visualisation platform and a code gen-
erator (CG). The latter has already been presented in Section The VPl is a
rich collection of Java and Java 3D classes, which are arranged in several packages
and serve as a library for developing algorithm visualisations. It contains a large
number of implementations of reusable components and visual objects. Unless this
VPI is provided, visualisations are often arduous and difficult to design and imple-
ment. It ensures that programmers do not need to reinvent or reimplement facilities

common to all or most simulations.

There are two types of components available in the VPI, which can be borrowed
by all simulations — graphical and non-graphical components. The graphical com-
ponents are either visual components implemented in Swing [I18], such as graphical
views, text displays, control panels, icon bars, tabs, etc., or visual objects imple-
mented in Java 3D, such as visual arrays, graphs, trees, data structure editors,
etc. The non-graphical components include input validators, scanners for syntax
colouring, code parsers, and many other components. In the following section we

will elaborate on the platform and describe its fundamental architecture.

5.7. 3D-VISIAN — AN ALGORITHM VISUALISATION PLATFORM 111

5.7 3D-Visian — An Algorithm Visualisation Plat-

form

3D-Visian stands for “three-dimensional Visual Simulation and Animation of al-
gorithms” and denotes a general purpose platform for the development and deploy-
ment of 3D algorithm visualisations. It acts primarily as an execution environment
for any kind of visualisations, especially 2D and 3D visual simulations and passive
animations. In contrast to many AV systems, 3D-Visian is not domain-specific. It
is a universal system in the sense that it allows the visualisation of algorithms of
any topic related to computer science, computer graphics, bioinformatics, chem-
istry or any other field. This is due to its visualisation-independent and extensible

architecture, which we will introduce in the following subsection (see also [14]).

5.7.1 System Architecture

In order for an AVS to be applied as an effective e-learning and teaching system,
it needs to meet two fundamental requirements which concern the domain and the

type of the visualisations:

e The system should be domain-independent and applicable for the visualisation

of algorithms of any field.

e The system should allow any type of visualisation, especially interactive and

passive animations.

The key idea to meet these requirements is to decouple the implementation of
the system from the implementation of the visualisations. To achieve this, we
defined an extensible set of predefined interfaces. To be executable in 3D-Visian,
a visualisation is obliged to implement one of these interfaces. Implementation in
this context means that the visualisation should provide a concrete implementation

for each method included in the interface.

112 CHAPTER 5. IMPLEMENTATION

At the same time, for each interface there is a corresponding graphical user in-
terface or UI for short, which is incorporated in the system. The Ul is the graphical
component of the system that allows the user to control and interact with the vi-
sualisation via the interface. It consists of simple widgets, such as input fields and
buttons that provide the user with the ability to influence the animation flow (see
Figure . Whenever a visualisation that implements an interface is about to be
loaded into the system, the corresponding graphical user interface is automatically
loaded and placed as a control bar at the bottom of the system’s frame (see Fig-
ures [23| and [24] below). Each widget in the Ul is linked to a method in the interface.
When the user clicks on a button or a field in the Ul, the corresponding method
of the visualisation will be invoked. Note that for all visualisations that implement
the same interface, there is only one instance of the UI and not one instance for

each. The question that now arises is: How are these interfaces to be defined?

In order to support an unlimited domain of algorithm visualisations, we utilised
a simple method to group algorithms and data structures into classes. Each class
includes only algorithms or data structures (or both) which can be controlled by the
same graphical user interface. To clarify the basic concept behind the architecture,

we will take two classes of algorithms and data structures as an example:

According to our concept, conventional algorithms such as sorting, graph, and
matrix calculation algorithms form the first class, denoted as C,. This is because
the execution of these algorithms can be controlled in the same manner. The
corresponding user interface provides controls for starting, stopping, pausing the
animation, and playing it backwards and forwards either in stepwise or continuous

mode, as can be seen in Figure [23]

@ - Stop ‘s Backward ‘l Previous Step I I

Figure 23: A graphical user interface for C,

A second group of algorithms contains tree-like data structures, such as Binary,

AVL, Splay, (a,b) and red-black trees, which all fall into the second class, denoted

5.7. 3D-VISIAN — AN ALGORITHM VISUALISATION PLATFORM 113

as (. The Ul for this class consists of one input field and many control buttons
for performing the typical operations of these data structures, such as insert, delete

and lookup in addition to undo and redo (see Figure [24)).

¥) undo € Search v.%-! Insert P Delete (¥ Redo 4;6;-19;10

Figure 24: A graphical user interface for C

Again, according to the concept, all algorithm visualisations of the same class
must implement a programming interface which includes among others methods
that correspond to the UI’s widgets. The programming interface for class C,, for
example, contains the following methods: start(), stop(), nextStep(), previousStep(),
pause(), forward() and backward(). The interface of Cj, includes accordingly, an
insert(), a delete(), a lookup(), an undo() and a redo() method.

In order for a visualisation to be loaded into the system, it must additionally
provide a simple text file called vis-file, which contains the name of the main-class
(the starting point of the visualisation). The visualisation classes together with
the vis-file do not have to be stored on the same machine as the system. They
can be stored locally in the file system or on any other host. For example, a
student in South Africa who has developed their own visualisation and stored it on
their university’s host, can start the system, which is hosted on a remote server in
Germany via the Internet, and use it at home to load their visualisation, or even a
visualisation developed by a student in the United States and stored on yet another
host, simply by typing the URI of the corresponding vis-file. The facilities for web

access to visualisations are managed by the system.

Another remarkable feature of the system is its ability to load and execute several
visualisations simultaneously. Each visualisation is loaded into a separate tab and
has its own user control interface. An illustration of the architecture can be seen
in Figure 25 A simple evaluation of the system can be found in Section [6.5] The

reader is invited to explore the system by visiting the following location [2].

114 CHAPTER 5. IMPLEMENTATION

C1 C2
Algorithms Algorithms
Data Structures Data Structures

Interface 1 Interface 2

Visualisation
System

Cn
Algorithms
Data Structures

Interfacen

GUI n

Figure 25: A simple illustration of the architecture of 3D-Visian

Chapter 6

Summary, Evaluation and

Perspectives on Future Work

: ;imply claiming that a certain research is a success, is less than convincing

unless this claim is substantiated by an evaluation.

In addition to a summary, this concluding chapter contains an overall evaluation
of the entire work. Some of the sections evaluate the semi-automatic approach, the
approach for the animation of computational-intensive algorithms, the undo/redo
framework and 3D-Visian. Each evaluation starts by listing the advantages and
concludes with discussing any drawbacks. Finally, we will call the reader’s attention

to an unexplored research area.

6.1 Summary

Motivated by a deep conviction that visual algorithm simulations are a powerful
means to overcome problems that arise when studying and teaching the abstract
aspects of algorithms, and believing that current techniques to craft meaningful

algorithm visualisations are far from being practical and efficient, we launched this

115

116 CHAPTER 6. SUMMARY, EVALUATION AND PERSPECTIVES

research to investigate, identify and break through the obstacles that make the de-
velopment of algorithm visualisation such a hard task. In the introductory chapter
we defined the terminology associated with the field of software and algorithm visu-
alisation, and gave an overview of a couple of representative algorithm visualisation
systems in addition to a survey of the state of the art in this research area. We
next discussed the motivating problems of our research and defined the objectives
of this work. In Chapter [2]we presented some development and design aspects of al-
gorithm visualisations, such as 2D vs 3D visualisations and the importance of using
a uniform design style when designing algorithm visualisation. Next, we defined
a list of requirements we seek to meet when developing algorithm visualisations,
introduced the term “hybrid simulations”; made a proposal for the parties involved
in developing algorithm simulations and presented a workflow for developing the
anticipated visual simulations. Later, we investigated whether or not there is a link
between the common design paradigms Greedy-Algorithms, Divide-&-Conquer and
Dynamic-Programming, and the visualisation complexity of algorithms. To explore
the issues concerning the automation of algorithm simulations we investigated a
large number of algorithms and examined them in respect to automation. Through
this investigation, we gained an insight into a number of intricate problems that
made the automation complexity much more apparent. This finding lead us to
develop an approach to partially automate the process of creating visual simula-
tions instead of automating the visualisation process itself. The approach is based
on three concepts: visual objects, code augmentation and reusable parameterised
components. We then went a step further and presented an approach for animating
computation-intensive 3D algorithms and 3D algorithms for NP-complete prob-
lems, which by nature cannot be simulated for arbitrary input length. Further, we
developed a clustering-based approach for facilitating the development of parallel
algorithms. Finally, in an implementation chapter, we covered the implementa-
tion aspects of our approach and presented a powerful scene graph-based API for
equipping algorithm visualisations with undo/redo facilities. Additionally, we pre-

sented an environment for three-dimensional visualisations of arbitrary algorithms

6.2. EVALUATION OF THE APPROACH 117

and data structures. The environment consists of three major units: An algorithm
visualisation programming interface (VPI), a code generator (CG), and an algo-
rithm visualisation system (AVS) called 3D-Visian. We now evaluate our work and

conclude this thesis with a brief discussion on a topic for future research.

6.2 Evaluation of the Approach

The approach introduced in Section is intuitive, serves its purpose, and allows
for generating arbitrary simulations with an expandable number of requirements. It
however, suffers from a serious disadvantage: The approach is based on the notion
of exploiting synergies in the development process. The more algorithms there
are that share the same data structures (visual objects) and reusable components,
the higher the synergies. This is because for each group of algorithms that share
the same data structures — and hence similar operations — it was necessary to
encapsulate the structures into visual objects and implement their operations only
once. All group members can later share these implementations. However, once we
encountered an algorithm with an ’extraordinary’ data structure, initially we were
forced to implement this data structure as a visual object, and to make it available
in the VPI, before being able to use it. Additionally, we had to extend the code
generator and make it familiar with this new object. This is often the case with
computer graphics algorithms. Most computer graphics algorithms, we have worked
with so far have little in common. Moreover, they have proven to gain little from
this approach. We conjecture that this will also be the case with bioinformatics

algorithms.

118 CHAPTER 6. SUMMARY, EVALUATION AND PERSPECTIVES

6.3 Evaluation of the Approach for Animating
Algorithms to NP-Complete Problems

Despite all the disadvantages of passive animations, this kind of graphical pre-
sentation is the only possibility to visualise computation-intensive algorithms and
algorithms to AN/P-complete problems (ANPP). In our opinion, non-computation-
intensive algorithms should only be visualised using real-time simulations. As men-
tioned earlier, algorithm animation languages are not the only way to create passive
animations of algorithms. High-level programming languages can also be used for
this purpose. However, both alternatives have their own advantages and draw-
backs. One of the advantages of applying animation languages is that no program-
ming skills are required for designing animations. For example, novice students and
designers without any programming skills can create professional and visually at-
tractive animations that comply with many design guidelines [107], whereas the use
of programming languages requires both design and programming experience. This
allows animation authors to focus on the didactical and design aspects of the ani-
mation. On the other hand, high-level programming languages are more powerful
than algorithm animation languages, as the latter normally support neither loops
nor conditional assignments. The question that arises is whether to use a high-level
programming language or an algorithm animation language to animate a given algo-
rithm or data structure. To answer this question, we now examine another example

of a computation-intensive and graphically demanding bioinformatics algorithm.

The iterated loop matching algorithm (ILMA) [70] is a bioinformatics algorithm,
which can predict the RNA secondary structure including pseudo knots. It is based
on the loop matching algorithm introduced by Nussinov et al. [86], which uses
dynamic-programming as well as thermodynamic and comparative (covariance) in-
formation. This algorithm can predict any type of pseudo knots both in aligned
and single-stranded sequences. The worst-case running time of the ILM algorithm

is O(n*), where n is the length of the input sequence. Figure [26|shows a segment of

6.3. EVALUATION OF THE APPROACH FOR ANIMATING ALGO- 119
RITHMS TO NP-COMPLETE PROBLEMS

an animation of this algorithm implemented using a script programming languageﬂ.

-

S g

Figure 26: A segment of an RNA animation

Obviously such graphically demanding algorithms cannot be efficiently visualised

using an algorithm animation language, regardless of how powerful the language is.

Theoretically, each algorithm can be visualised using a powerful 3D algorithm
animation language, but the question is: To what degree of effort and quality. In
our opinion, such kinds of algorithms can only be reasonably visualised in a high-
level programming language. The creation of computation-intensive algorithms
using an algorithm animation language is at least as complex as using a high-level
programming language, and in some cases, e.g., the travelling-salesman problem,
requires almost as much programming skills. Therefore, we consider the approach of
creating computation-intensive algorithms using an algorithm animation language
as impractical and inefficient. Even if we had used tools like XML editors to generate
the 1873 lines of our T'SP example, the computation of the intermediate steps would
still be unavoidable. Therefore, we recommend the use of high-level programming

languages for both passive animations and dynamic simulations of algorithms.

1Source: http://www.youtube.com/watch?v=MI00qAUzEXU and
http://rufusrajadurai.wetpaint.com/?t=anon

120 CHAPTER 6. SUMMARY, EVALUATION AND PERSPECTIVES

6.4 Evaluation of the Undo/Redo Facility

The introduced concept and its implementation, as an extension of the Java 3D
API, have both advantages and drawbacks. Perhaps one of the greatest advantages
of the concept is that it is scene graph-based. This means that it can be applied to
any scene graph-based 3D API, such as OGRE [87], OpenSceneGraph [88], etc. Fur-
thermore, the resulted API is not restricted to a particular application type. It can
be used to implement an undo/redo functionality for an arbitrary 3D application
at minimal effort. Another key advantage of the concept lies in its memory-friendly
and efficient implementation. When a snapshot of the scene graph is being taken,
only values of fields which have changed in the most recent step are saved. Appli-
cations with little changes to the scene graph will only consume a little memory.
Moreover, the containers can be switched on and off at any time. Deactivating
a container is particularly useful when changes to the values of fields maintained
by the container are irrelevant and can be ignored, or when the application knows
that the values of the fields are not going to change after a particular step. This
will make it unnecessary to attempt to compare all recent values with the previous
ones, to find out whether they have changed or not. For example, when comparing
two (4 x 4) transformation matrices of an Undoable TransformGroup, deactivating
a container will save up to 16 floating point comparisons, thus reducing the impact

that the undo/redo feature has on the application runtime.

Taking a snapshot of the scene graph requires traversing the entire graph only
once in each step. This can be achieved in ©(n) where n represents the number
of the graph nodes plus the objects they are referencing (the NodeComponents).
When one considers that the renderer of the Java 3D API traverses the scene graph
continuously in a loop to update scene graph changes, one can then infer that one
additional cycle in each step will definitely not slow down the application. The
objects of a 3D scene are never cloned. Each object exists only once. Keeping track

of an object is realised by using references/pointers to it. A reference in Java or

6.4. EVALUATION OF THE UNDO/REDO FACILITY 121

Application | Number of undoable objects | 0 steps | 20 steps | 40 steps | 60 steps | 80 steps | 100 steps
1. 1000 1.7 MB | 3.0 MB 4.2 MB 59MB | 7.2 MB | 8.6 MB
2. 2000 3.4 MB | 5.9 MB 8.7MB |11.5 MB | 14.2 MB | 17.2 MB
3. 5000 8.2 MB | 15.4 MB | 21.75 MB | 28.9 MB | 35.6 MB | 43.3 MB

Table 5: Memory consumption of three distinct applications

a pointer in C++ is usually either represented by four or eight bytes, depending
upon whether the underlying operating system is a 32 or 64-bit-system. It can be
easily shown that saving the additional structural information that is essential for
reconstructing the scene graph, only requires saving 2m + k id’s, where m is the
number of the leafs of the graph and k& the number of its inner nodes. Expressed in
asymptotic notation, 2m + k is equivalent to ©(n) references. Hence, the additional
memory consumption remains linear in regards to the size of the scene graph. We
use integers as keys to uniquely identify undoable objects. Integers in Java and
C++ are four bytes. Table |5| demonstrates the growth of the memory consumption

of three distinct applications with different amounts of undoable objects.

Figure 27| illustrates the memory consumption of a reversible application using
2300 undoable objects after taking 100 snapshots. After analysing the memory
consumption of several applications, it turned out that the memory usage in each

step increases by 0.0063% on average per undoable object.

The undo/redo manager maintains an ordered list for arranging the snapshots
of the graph. Accessing the list chronologically results in an implementation of the
linear undo/redo model, accessing it randomly, using the snapshot ids, will result in
an implementation of a non-linear undo/redo model. Hence, the implemented un-
do/redo model is hybrid and, due to its memory-friendly implementation, supports
an unlimited amount of reversals. The usage of the undo/redo APT is straightfor-
ward. An application needs to create an instance of the undo/redo manager and
make it globally available. Whenever an undoable object is needed, the application
creates an instance of the corresponding class, sets its capabilities, and invokes its

initContainers() method prior to adding it to the scene graph. At the end of each

122 CHAPTER 6. SUMMARY, EVALUATION AND PERSPECTIVES

step the application needs to invoke the takeSnapshot() method in order to enable

the undoing of this step later on.

| £/ Java Monitoring & Management Console - pid: 3456 visian3d. platform. ui.VisianFrame g@

|| Conmection Window Help =

Overview Memory | Threads | Classes | WM Summary | MBeans ==

Chart: | Heap Memory Usage v: Time Range: |All v

30 Mb

Used
4 20.559.952

15 Mb

10 Mb

5,0 Mb

0,0 Mb

Details

Time: 2002-10-31 23.00:11 100% -

Used: 19,780 kbytes —
Committed: 35. 428 khytes
Max: 260. 160 Foytes

GC time: 0,083 seconds onCopy (43 collections) 259 -

1 minute on MarkSweepCompact (812 collectinns) 0% -

Figure 27: Memory consumption of an application with 2300 objects after 100 steps

To reverse a step, the application merely needs to call the undo() method of
the undo/redo manager when it wants to have a linear undo/redo, or it invokes

restoreSnapshot(snapshotID) when it wants to apply a non-linear undo/redo.

Redoing a step is achieved by calling either the redo() or the restoreSnap-
shot(snapshotID) method. An application can have a mixture of undoable and
non-undoable objects. This makes upgrading earlier applications straightforward.
Replacing undoable objects can be done simply by using the find & replace feature
of an IDE editor.

Despite all of these advantages, this concept suffers from some drawbacks. The

major disadvantage of the concept is related to the usage of the memento pat-

tern. Using the snapshot approach makes undo steps become static. Reversing

6.4. EVALUATION OF THE UNDO/REDO FACILITY 123

animated actions happens in a discrete unanimated way. For example, when an
application utilises an animation to smoothly move an object from position p; to
position ps via an intermediate position py, the undo/redo manager undoes this
action by instantly putting the object to its original position (p;). This problem,
however, can be solved by combining the memento pattern with an implementation
of the command pattern which then enables a smooth reversal of animated actions.
A further disadvantage is, that whenever a snapshot is being taken, each active
container performs one comparison for each field it maintains, in order to decide
whether the value of the field has changed or not. This costs runtime. However,
if the runtime performance of an application is more important than the memory
consumption, then the application developer can overwrite the containers, so that
the current field value is not compared to the previous value and is always saved,
regardless of whether it has changed or not. There is another disadvantage, which
actually relates to a restriction in some 3D APIs, such as Java 3D. Children of
compiled groups are not allowed to be detached. To reconstruct the scene graph
of step 7, however, each group child must be detached from its current parent and
attached to the parent it had at time 7. This is because the undo/redo manager
always operates on the objects themselves and does not create duplicates of them.
Therefore, none of the descendants of a scene graph object that are in the path
from the object to the scene graph root, are allowed to be compiled. According
to the Java 3D specification, compiling a group object increases the performance
of the application. The specification, however, does not comprehensively specify
at what level it might affect the overall performance of the application. There is
another issue relative to the maintenance of the API. The implementation of the
undo/redo concept is entirely based on the current release of the used API. Future
releases of the API, which include new objects, require upgrading of the current
implementation. Changes to the API implementation, such as deprecating fields,

methods or classes might force a slight adaptation of the current implementation.

Nevertheless, we do believe that our framework will aid many 3D application

124 CHAPTER 6. SUMMARY, EVALUATION AND PERSPECTIVES

developers in creating new reversible applications and upgrading earlier ones.

6.5 Evaluation of 3D-Visian

As mentioned previously, 3D-Visian is not domain-specific. This was made possible
by decoupling the implementation of the visualisations from the system’s imple-
mentation. It is extensible, as it allows defining new interfaces and thus providing
visualisation support to new classes of algorithms. Once a new class, say for the vi-
sual simulation of formal languages and automata, needs to be supported, simply a
new interface should be defined and linked to a conforming graphical user interface.
The disadvantage of partially implementing the system and the VPI in Java 3D is
that only developers with more or less advanced Java 3D skills are able to produce
their own simulations. Further, users of the system must have Java 3D installed on
their client, which might limit the range of users. If this is not the case, integrated
routines can recognise this and offer the user an automatic installation. The reader
is invited to evaluate the system by themselves by launching it from the following

location [2].

6.6 Future Work

Our research has concentrated on creating adaptable algorithm simulations; in other
words, simulations that can be adapted by the user to their own level of knowledge.
Much more research can be conducted to develop adaptive algorithm simulations.
That is, simulations that can autonomously adapt themselves to the user’s level of
knowledge in direct response to their learning progress. This is an unexplored area
in the world of algorithm visualisation which requires the employment of methods

from the field of artificial intelligence.

Bibliography

InfoVis 2009. http://vis.computer.org/VisWeek2009 /infovis/papers.html.
3D-Visian. http://www.3dvisian.de.

Alfred Aho, Ravi Sathi and Jeffrey Ullman. Compilers, Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

Janet E. Finlay (and Gregory D. Abowd Alan J. Dix (Author), Russell Beale
and Janet E. Finley. Human-Computer Interaction. Prentice Hall, 3 edition

edition, 2003.

Java Annotations.

http://java.sun.com/docs/books/tutorial /java/javaOO /annotations.html.

Craig Anslow, James Noble, Stuart Marshall and Robert Biddle. X3D Web
Based Algorithm Animation, 2007.

Craig Anslow, James Noble, Stuart Marshall and Robert Biddle. X3D Web
Based Algorithm Animation. In Technical Report CS-TR-07/1, May 2007.

Java API. http://download.java.net/jdk7/docs/api/.
Java3D APIL. https://javadd.dev.java.net. Sun Microsystems.

Ronald Baecker. Sorting Out Sorting: A Case Study of Software Visualization
for Teaching Computer Science. In Software Visualization: Programming as

a Multimedia Experience, chapter 24, pages 369-381. The MIT Press, 1998.

125

126 BIBLIOGRAPHY

[11]

[12]

[14]

[15]

[18]

Ashraf Abu Baker. An Efficient Undo/Redo-Framework for Three-Dimen-
sional Visual Simulation of Algorithms and Data Structures.

GRAPP (to appear) hitp://grapp.org/GRAPP2009/, February 2009.

Ashraf Abu Baker, Dirk Grunwald and Stefan Kappes. XML-based Three-
Dimensional Animation of Algorithms and Data Structures (In German). In

DeLFI, pages 401-412, 2008.

Ashraf Abu Baker and Stefan Kappes. Three-Dimensional Static Animation
of Computation-Intensive 3D-Algorithms. In IEEE-CSSE (5), pages 434-437.
IEEE Computer Society, 2008.

Ashraf Abu Baker and Boris Milanovic. A Universal Extensible Architecture
for Algorithm Visualisation Systems. In IEEE-CSSE (5), pages 737-740.
[EEE Computer Society, 2008.

Ashraf Abu Baker and Alexander Tillmann. Ein generisches Konzept zur
Realisierung von Self-Assessments zur Studienwahl und Selbsteinschéatzung

der Studierfdhigkeit (In German). In DeLFI, pages 79-90, 2007.

Ashraf Abu Baker, Alexander Tillmann and Detlef Kromker. Conception, Im-
plementation and Evaluation of Self-Assessments. The International Confer-
ence on Technology, Communication & FEducation, IEEE-I-CTE 2008, April
2008.

Ashraf Abu Baker, Alexander Tillmann and Detlef Kromker. Using Self-
Assessments for Predicting the Success of Study. Information and Communi-
cation Technologies: From Theory to Applications, 2008. IEEE-ICTTA 2008.
3rd International Conference on Information € Communication Technologies,

pages 1-5, April 2008.

J. Timothy Baker. Three dimensional mesh generation by triangulation of
arbitrary point sets. Computational Fluid Dynamics Conference, Number 8,

pages 255271, June 1987.

BIBLIOGRAPHY 127

[19]

[20]

[21]

[22]

23]

[24]

D. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation. In
Numerical Methods. Prentice Hall, 1989.

Peter Biela. Simple 3D Data Structure Editor (Master’s thesis in German).
Department of Computer Science and Mathematics, Goethe Universitat

Frankfurt/Main, April 2008.

Christopher M. Boroni, Frances W. Goosey, Michael T. Grinder and Rock-
ford J. Ross. Engaging students with active learning resources: hypertext-

books for the web. SIGCSE Bull., Volume 33, Number 1, pages 65—69, 2001.

Paul Bourke. The shortest line between two lines in 3D.

http://local.wasp.uwa.edu.au/pbourke/geometry/lineline3d/.

M. H. Brown and M. A. Najork. Algorithm animation using 3D interactive
graphics. In UIST ’93: Proceedings of the 6th annual ACM symposium on
User interface software and technology, pages 93-100, New York, NY, USA,
1993. ACM.

M. H. Brown and M. A. Najork. Algorithm Animation Using 3D Interactive
Graphics. ACM Symposium on User Interface Software and Technology, pages
93-100, Nov 1993.

Marc Brown. Algorithm Animation. Ph.D. thesis, Computer Science Depart-

ment, Brown University, 1986.

M.H. Brown and R. Sedgewick. A System for Algorithm Animation. ACM
SIGCSE, pages 177-186, July 1984.

Erick Clayberg and Dan Rubel. Eclipse —Building Commercial-Quality Plug-
ins. Addison Wesley, second edition edition, 2002.

Java comments.

http://java.sun.com/docs/codeconv /html/CodeConventions.doc4.html.

128 BIBLIOGRAPHY

[29]

[30]

[36]

[37]

Java3D Community. http://www.j3d.org/.

Arturo I. Concepcion, Nathan Leach and Allan Knight. Algorithma 99: an
experiment in reusability & component based software engineering. SIGCSE

Bull., Volume 32, Number 1, pages 162—-166, 2000.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms. pages 258-259, Cambridge, 2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ Convex Hull. pages 947-957, Cambridge, 2002.
The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms/ DFS. pages 540-549, Cambridge, 2002.
The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ Dijkstra. pages 595-599, Cambridge, 2002. The
MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms/ Floyd-Warshall algorithm. pages 629—
632, Cambridge, 2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ Huffman Code. pages 385-391, Cambridge, 2002.
The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ Insertion Sort. pages 15-19, Cambridge, 2002.
The MIT press.

BIBLIOGRAPHY 129

[38]

[39]

[41]

[44]

[45]

[46]

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ Interval Scheduling. pages 399-402, Cambridge,
2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ Left-Rotate. pages 277-278, Cambridge, 2002.
The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms/ Longest Common Sequence. pages 629

632, Cambridge, 2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms/ Matrix-Multiplication. pages 756758,
Cambridge, 2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ Red-Black Trees. pages 273-301, Cambridge,
2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ String Matching. pages 906-922, Cambridge,
2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms/ The algorithms of Kruskal and Prim.
pages 567-573, Cambridge, 2002. The MIT press.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein.
Introduction to Algorithms/ TSP. pages 1027-1032, Cambridge, 2002. The
MIT press.

Martha E. Crosby and Jan Stelovsky. From multimedia instruction to multi-
media evaluation. J. Educ. Multimedia Hypermedia, Volume 4, Number 2-3,

pages 147-162, 1995.

130 BIBLIOGRAPHY

[47]

[50]

[51]

[52]

[57]

[58]

Sandjo Wacka Orphee Cyrille. Conception and Implemention of an
Undo/Redo-Manager for Algorithm Simulations (Master’s thesis in Ger-
man). Department of Computer Science and Mathematics, Goethe Universitdt

Frankfurt/Main, March 2008.
Voronoi Diagram. http://en.wikipedia.org/wiki/Voronoi_diagram.

Stefan Diehl. Software Visualization. Springer Verlag, Berlin Heidelberg,
1997.

Eclipse. http://www.eclipse.org/.

J. Foley, A. van Dam, S. Feiner and J. Hughes. Computer Graphics: Principles
and Practice in C. Addison Wesley.

J. Foley, A. van Dam, S. Feiner and J. Hughes. Computer Graphics: Principles
and Practice in C/ Ray Tracing. Addison Wesley.

E. Freeman, K. Sierra and B. Bates. Head First Design Patterns. O’Reilly,
2004.

Professur fiir Graphische Datenverarbeitung.

http://www.gdv.informatik.uni-frankfurt.de/.

E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

P. Gloor. Animated algorithms. In Software visualisation: Programming as

a multimedia experience, pages 409-416, MA, 1998. MIT Press.

Herman H. Goldstein and John von Neumann. Planning and coding of prob-

lems for an electronic computing instrument. In DAC °01: Proceedings of

BIBLIOGRAPHY 131

[59]

[61]

[62]

[64]

[65]

[66]

[67]

the 38th conference on Design automation, pages 80-151, Taub, 1947. von

Neumann’s Collected Works.

Mordecai Golin, Rajeev Raman, Christian Schwarz and Michiel Smid. Simple
randomized algorithms for closest pair problems. Nordic J. of Computing,

Volume 2, Number 1, pages 3-27, 1995.

Dirk Grunwald. 3D Animation und Visualisierung von Algorithmen (Mas-
ter’s thesis in German). Department of Computer Science and Mathematics,

Goethe Universitat Frankfurt/Main, Dec. 2007.

Judith Susan Gurka. Pedagogic aspects of algorithm animation. Ph.D. thesis,
Boulder, CO, USA, 1996. Director-Citrin, Wayne.

S. Hansen, N. Narayanan and D. Schrimpsher. Helping learners visualize and
comprehend algorithms., 2000. Interactive Multimedia Electronic Journal of

Computer-Enhanced Learning.

Imad Hassani. Semi-automatische Generierung von didaktischen
Hilfsmittel in einem generischen Algorithmenvisualisierungssystem (Master’s
thesis in German). Department of Computer Science and Mathematics,

Goethe Universitit Frankfurt/Main, May 2008.

Vlastimil Havran, Jimi Bittner and Jimi Sara. Ray Tracing with Rope
Trees. In Lészlé Szirmay Kalos (editor), 14th Spring Conference on Com-
puter Graphics, pages 130-140, 1998.

C. Hundhausen, S. Douglasw and A. Staskoz. A Meta-Study of Algorithm

Visualization Effectiveness, Journal of Visual Languages and Computing.

Janet M. Incerpi. A Study of the Worst-Case Behavior of Shell-Sort. Ph.D.

thesis, Computer Science Department, Brown University, 1986.

Joseph Jaja. An Introduction to Parallel Algorithms. Addison-Wesley Profes-
sional, March 1992.

132 BIBLIOGRAPHY

[68] JavaSoft. The Java 3D API Specification. Sun Microsystems,
http://dlc.sun.com/pdf/806-5414-10,/806-5414-10.pdf, 2000.

[69] Jeliot. http://cs.joensuu.fi/jeliot/.

[70] Yongmei Ji, Xing Xu and Gary D. Stormo. A graph theoretical approach for
predicting common RNA secondary structure motifs including pseudoknots
in unaligned sequences. Bioinformatics, Volume 20, Number 10, pages 1591—

1602, 2004.
[71] JSAMBA. http://gvu.cc.gatech.edu/softviz/algoanim/jsamba.

[72] LEE C. K. Automatic metric 3D surface mesh generation using subdivision
surface geometrical model. International journal for numerical methods in

engineering, Volume 56, Number 11, pages 1593-1614, 2003.

[73] Ville Karavirta, Ari Korhonen, Lauri Malmi and Kimmo Stalnacke. Matrix-
Pro - A Tool for Demonstrating Data Structures and Algorithms Ex Tempore.
In ICALT °04: Proceedings of the IEEE International Conference on Ad-
vanced Learning Technologies, pages 892-893, Washington, DC, USA, 2004.
IEEE Computer Society.

[74] Al Khwarizmi. http://de.wikipedia.org/wiki/Al-Chwarizmi.
[75] Al Khwarizmi. http://www.biographybase.com/biography/Al_Khwarizmi.html.
[76] Kenneth Knowlton. http://www.knowltonmosaics.com/.

[77] Kenneth Knowlton. The Beflix Movie Language. Technical report, Proceed-
ings of the Spring Joint Computer Conference, 1964.

[78] Donald E. Knuth. Dynamic Huffman Coding. Journal of Algorithms, Vol-
ume 6, Number 2, pages 163-180, June 1985.

BIBLIOGRAPHY 133

[79]

[80]

[83]

[84]

[36]

A. Lawrence. Empirical studies of the value of algorithm animation in algo-
rithm understanding. Ph.D. thesis, Department of Computer Science, Georgia

Institute of Technology, 1993.

Maksim Mosgowoi. Visuelle Simulation paralleler Algorithmen (Master’s the-
sis in German). Department of Computer Science and Mathematics, Goethe

Universitat Frankfurt/Main, August 2008.

S. Naher. The Travelling-salesman problem (In German).

http://www-il.informatik.rwth-aachen.de/, 2006.

M. A. Najork and M. H. Brown. Web-based algorithm animation. In DAC
‘01: Proceedings of the 38th conference on Design automation, pages 506511,
New York, NY, USA, 2001. ACM.

Thomas L. Naps, James R. Eagan and Laura L. Norton. JHAVE—an envi-
ronment to actively engage students in Web-based algorithm visualizations.

SIGCSE Bull., Volume 32, Number 1, pages 109-113, 2000.

Thomas L. Naps, Guido Ro8ling, Vicki Almstrum, Wanda Dann, Rudolf

Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally,
Susan Rodger and J. Angel Velazquez-Iturbide. Exploring the role of visual-
ization and engagement in computer science education. In ITiCSE-WGR "02:

Working group reports from ITiCSE on Innovation and technology in com-

puter science education, pages 131-152, New York, NY, USA, 2002. ACM.

Isaac Nassi and Ben Shneiderman. Flowchart techniques for structured pro-
gramming. SIGPLAN Notices, Volume 8, Number 8, pages 12-26, August
1973.

R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary
structure of single-stranded RNA. Proceedings of the National Academy of
Science of the USA, Volume 77, Number 11, pages 1591-1602, 1980.

134 BIBLIOGRAPHY

[87]
[33]
[89]
[90]

[91]

[96]

[97]

Ogre. http://www.ogre3d.org.

OpenSceneGraph. http://www.openscenegraph.org/projects/osg.

Peter S. Pacheco. Parallel programming with MPI. Morgan Kaufmann, 1997.
POLKA. http://www.cc.gatech.edu/gvu/softviz/parviz/polka.html.

Blaine A. Price, Ronald M. Baecker and Tan S. Small. A Principled Taxon-
omy of Software Visualization. Journal of Visual Languages €& Computing,

Volume 4, Number 3, pages 211-266, September 1993.

Blaine A. Price, Ronald M. Baecker and Ian S. Small. An Introduction to

software visualization, 1998. MIT Press.

M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw
Hill, pages 150-154, 2004.

J. Ren, B. Rastegari, A. Condon and H. H. Hoos. HotKnots: heuristic predic-
tion of RNA secondary structures including pseudoknots. RNA, Volume 11,
Number 10, pages 1494-1504, October 2005.

Guido Rolling. ANIMAL-FARM: An Extensible Framework for Algorithm
Visualization. Ph.D. thesis, Department of Computer Science and Electronic

Engineering, University of Siegen, 2002.

Guido Rolling and B. Freisleben. ANIMAL: A system for supporting multiple
roles in algorithm animation. Journal of Visual Languages and Computing,

Volume 13, Number 3, pages 341-354, 2002.

Guido RoBling and Thomas L. Naps. A testbed for pedagogical requirements
in algorithm visualizations. In ITiCSE ’02: Proceedings of the 7th annual
conference on Innovation and technology in computer science education, pages

96-100, New York, NY, USA, 2002. ACM.

BIBLIOGRAPHY 135

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Purvi Saraiya, Clifford Shaffer, Scott Mc.Crickard and Chris North. Effective
Features of Algorithm Visualizations. SIGCSE Technical A Symposium on
Computer Science Education, pages 382—-386, 2004.

Ghizlane Sbai. Effectiveness and didactical aspects of AV in education (Mas-
ter’s thesis in German). Department of Computer Science and Mathematics,

Goethe Universitit Frankfurt/Main, August 2008.

Georg Schnitger. Algorithmentheorie (In German).

http:/ /www.thi.cs.uni-frankfurt.de /Algorithmen Theorie WS0809/skript. pdf,
pages 32-34.

Georg Schnitger. Parallel Algorithms.
http://www.thi.informatik.uni-frankfurt.de/Parallele /index.html.

Georg Schnitger. Parallel Algorithms.
http://www.thi.informatik.uni-frankfurt.de /Parallele/Parallel05.pdf, 2006.
Georg Schnitger. Data structures (In German). http://www.thi.cs. uni-

frankfurt.de/Datenstrukturen07/skript. pdf, pages 77-80, 2007.

Georg Schnitger. Data structures (In German). http://www.thi.cs. uni-
frankfurt.de/Datenstrukturen07/skript. pdf, pages 92-95, 2007.

Georg Schnitger. Algorithmentheorie (In German).
hitp:/ /www.thi.cs.uni-frankfurt.de/Algorithmen Theorie WS0809/skript. pdf,
pages 50-51, 2009.

Georg Schnitger. Algorithmentheorie (In German).
hitp:/ /www.thi.cs.uni-frankfurt.de/Algorithmen Theorie WS0809 /skript. pdf,
pages 11-11, 2009.

Heidrun Schumann and Wolfgang Miller. Visualisierung, Grundlagen und

allgemeine Methoden (In German). Springer, 1999.

136 BIBLIOGRAPHY

[108]

[109]

[110]

111]
[112]

[113]

114]

[115]

[116]

[117)
[118]

[119]

Daniel Selman. Java 3D Programming. Manning Publications, first edition,

2002.

Clifford A. Shaffer, Matthew Cooper and Stephen H. Edwards. Algorithm
visualization: a report on the state of the field. SIGCSE Bull., Volume 39,
Number 1, pages 150-154, 2007.

Maria Shneerson and Ayellet Tal. GASP-II: a Geometric Algorithm Anima-
tion System for an Electronic Classroom. In WISDOM Technical Report in
Computer Science, pages 405-406, 1996.

Steven Skiena. The Algorithm Design Manual. page 736. Springer, 2008.
John Stasko. http://gvu.cc.gatech.edu/softviz/algoanim/samba.html.

John Stasko. Tango: A Framework and System for Algorithm Animation.
IEEE Computer, Volume 23, Number 9, pages 27-39, September 1990.

John Stasko. Animating algorithms with XTANGO. SIGACT News 23, pages
7-71, 1992.

John Stasko. Three-Dimensional computation visualization. IEEE Computer

Society Press on Visual Languages, pages 100-107, 1993.

John Stasko, Albert Badre and Clayton Lewis. Do algorithm animations
assist learning?: an empirical study and analysis. In CHI ’93: Proceedings of
the INTERACT °93 and CHI "93 conference on Human factors in computing
systems, pages 61-66, New York, NY, USA, 1993. ACM.

SVG. http://svg.org/.
Swing. http://java.sun.com/docs/books/tutorial /uiswing/.

Java 3D Engineering Team. Java 3D API Tutorial. Sun Microsystems,
http://java.sun.com/developer/onlineTraining/java3d/, 2000.

BIBLIOGRAPHY 137

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]
[130]

[131]

Java Technology. http://www.sun.com/java/.

Alexander Tillmann, Ashraf Abu Baker and Detlef Kromker.

Studienwahl mit Verstand — Mit Self-Assessment Online die Eignung
testen (In German). In Forschung Frankfurt, http://www.forschung-
frankfurt.uni-frankfurt.de/2007/Forschung_Frankfurt_2007/3-
07/Studienwahl_mit_Verstand__1/_.pdf, pages 70-72, 2007.

Ron Unger and John Moult. Genetic Algorithm for 3D Proteine Folding
Simulations. In Proceedings of the 5th International Conference on Genetic
Algorithms, pages 581-588, San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

Algorithm visualisation with Excel.

http://www.cs.helsinki.fi /research /aaps/excel /.

Jeffrey Scott Vitter. Design and analysis of dynamic Huffman coding. Sym-
posium on Foundations of Computer Science, Volume 0, pages 293-302, 1985.

Overmars von Berg, van Kreveld and Schwarzkopf. Computational Geometry,

Algorithms and Applications. Springer Verlag, Berlin Heidelberg, 1997.
VPL. http://msdn.microsoft.com/en-us/library /bb483088.aspx.

D. Waston. Keyframe Animation,

http://www.cadtutor.net/dd/bryce/anim/anim.html, 1996-2006.

[. Wegener. Theoretische Informatik. FEine algorithmische Einfihrung (In
German). Heidelberg, 2003.

Wikipedia. http://en.wikipedia.org/wiki/Context_menu.
X3D. http://www.web3d.org/x3d/specifications/.

Encodings X3D Specifications and Language Bindings. Internetressource,

Nov. 2005.

138 BIBLIOGRAPHY

[132] XML. http://www.w3.org/XML, W3C.

[133] Extensible Markup Language (XML). http://www.w3.org/TR/2006/REC-
xml-20060816/, Fourth Edition. Internetressource, Aug. 2006.

Appendix A

Sample Algorithms

A.1 Dijkstra’s Algorithm for the SSSP-Problem

Dijkstra is an algorithm that solves the single-source shortest path problem (SSSP-
problem) [100, 34] which is defined as follows:

Given a weighted directed Graph G=(V,E) and a weight function w : E
R* U {0} which assigns each edge a positive weight > 0. We are looking for the
shortest path from a designated source node s to all other nodes of the graph.
The weight of a path p = (vg, vy, ..., vg) is defined as the sum of the weights of its

constituent edges:

w(p) = Ly w(vio, i)

The shortest-path weight from u to v is defined by:

min{w(p) : u~P v} if there is a path from u to v.
delta(u,v) =
00 otherwise.

Thus, the shortest path from vertex u to vertex v is defined as any path p with

a minimal weight.

To solve the SSSP-problem, Dijkstra maintains an initially empty set .S of vertices

139

140 APPENDIX A. SAMPLE ALGORITHMS

which is gradually filled by vertices whose final shortest-path weights from s have
already been computed. Further, the algorithm uses a distance array d of length
| V| to save the estimated distances from s to each other node. The algorithm

initialises d using the following procedure:

INITIALIZE-SINGLE-SOURCE(G, 5)
1 foreach vertexv € V[G]

2 dodv]+— =

3 n[v] < NIL

4 d[s]«0

Listing A.1: Init procedure

As can be seen in the listing, the initially estimated distance from s to itself is
zero, and infinite to all other nodes. II is a predecessor array. For a shortest path
p, a node u is a predecessor of v, if(u,v) € E and (u,v) is an edge in p. Thus, II
includes the subgraph G’ which constitutes the shortest path from s to each other

node. The algorithm works as follows:

After the initialisation, it repeatedly fetches the node with the minimal estimated
distance and moves it from V into S. Whenever a node v is added to S, the
algorithm updates the estimated distances to all its adjacent nodes using a technique
called relaxation. The following procedure show the implementation of the relax

procedure:

For each adjacent node v of u
RELAX((u,v,w)

1 if d[v] > d[u] + w(u.v)

2 thend[v] < d[u] +w(u,v)
3 m[v] < u

Listing A.2: Relax procedure

The algorithm then repeatedly selects the vertex u € V' \ S with the minimum

shortest-path estimate (d[u]), adds u to S, and relaxes all edges leaving u. In the

A.2. MERGE SORT 141

implementation presented by Cormen et al. [34], the algorithm utilises a min-priority

queue @ of vertices, keyed by their d values.

DIJKSTRA(G, W, 5)
1 INITIALIZE-SINGLE-SOURCE(G, 5)
250
3 0 VGl
4 whileQ# 0
do u < EXTRACT-MIN(Q)

5 —Sufu}

for each vertex v € Adj[u]

do RELAX(u. v, w)

Ga -1 Oy Lha

Listing A.3: Dijkstra’s algorithm

As can be seen, S is initially empty, and) includes all vertices keyed by their
d-values. In the first iteration of the while-loop, ExtractMin returns the start node
s. After a node has been added to S, the algorithm fetches all of its adjacent nodes

and relaxes them.

Figure [10| shows a screenshot of a simulation of the algorithm. The simulation

can also be launched from the following location [2].

A.2 Merge sort

Merge sort is a recursive sorting algorithm that sorts an array A[0..n] as follows:

At the very beginning of the execution, the algorithm computes an index ¢ that
partitions A into two subarrays: A[0..q] and A[g + 1..n] which contain [n/2] and
|n/2]| elements, respectively. The partitioning step is simply repeated until each
subarray contains exactly one element. A subarray which contains only one element
is already sorted. The algorithm then recursively merges each two sorted subarrays
into a new sorted one. To do so, the algorithm copies the elements of the subarrays
into two piles (auxiliary arrays) each of which corresponds to one of the subarrays.

It then compares the two top elements of the piles, removes the smallest of them

142 APPENDIX A. SAMPLE ALGORITHMS

and adds it to the output subarray. This merge step is repeated until one of the
piles is empty, at which time the remaining input pile is taken and added to the

output subarray. The code of merge sort is given as follows:

MERGE-SORT(A,p,1)
lifp<r

2 theng «— |(p+1)/2]

3 MERGE-SORT(4,p.q)

4 MERGE-SORT(4.q+1.7)
5 MERGE(A.p.q.r1)

Listing A.4: Merge sort

MERGE(A,p.q.1)

1 megq-p+l1

2 Me—r-g

3 createarraysZ[l -- m+1]andR[1 - np + 1]/left and right pile
4 fori+<1tom

5 doL[i]«< A[p+i-1]
6 forj <« 1tomn;

7 doR[j]«4d[g+]]

8 L[F’I1+ 1](—30

9 R[H:+ 1]<—m

10 i1

11 j«1

12 fork<—ptor

13 doif L[i]=R[j]

14 then A[k] « L[i]
15 i—it+l1
16 else A[k] + R[j]
17 J—Jjt1

Listing A.5: Merge procedure

Figure [11| shows a screenshot of a simulation of the algorithm. The simulation

can be launched from our server at [2].

A.3. RED-BLACK TREES 143

A.3 Red-Black Trees

A red-black tree [42] is a balanced binary search tree that satisfies the following
red-black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are black.

5. For each node, all paths from the node to its descendant leaves contain the

same number of black nodes.

We have restricted our introduction of red-black trees to the delete operation.
Listing is a simplified pseudo code of this delete operation. A more compact

version of the code, yet more difficult to understand, can be found in [42].
When a node z is to be deleted, a red-black tree distinguishes between two cases:

Case 1: Both children of z are not nil:

left|z] # nil|T| AND right[z] # nil[T

In this case the algorithm searches for the successor of z and assigns it to a new

variable called y:

y — TREE — SUCCESSOR(z)

144 APPENDIX A. SAMPLE ALGORITHMS

Red-Black-Tree-DELETE(T, z)

1 ifleft[z] #nil[T] ANDright[z] #nil[T]

2 theny « TREE-SUCCESSOR(z)
3 x « right[y]

4 plx] < ply]

5 ify=IlefilpD]]

6 then lefi[p[y]] «—x

7 else right[p[y]] < x

3

9 key[z] « key[y]

10 if color[y] =BLACK

11 then RB-DELETE-FIXUP(T, x)
12

13 else

14 if lefi[z] #nil[T]

15 then x «— lef[z]

16 else x « right[z]

17 pl] < plz]

18 if p[z] = nil[T]

19 then root[T] «—x

20 else if z = lefi[p[z]]

21 then /efi[p[z]] «—x

22 else right[plz]] «x

23 if color[z] =BLACK

24 then RB-DELETE-FIXUP(T, x)

Listing A.6: Delete operation of a red-black tree

The successor [31] of a node z in a binary search tree is the node with the
smallest key greater than key|z]. Let = be the right child of y (z < rightly]) and
p the parent of the successor (p = p[y]). If the successor of z is the left child of its
parent then x is attached to p as its left child, otherwise x is attached to p as its
right child. In both cases p becomes the parent of z: x «— right[y]
plz] — ply]
if y = left[ply]]

then left[p[y]

else right|ply

| —a
] =
Next, the algorithm overwrites the key of z by the key of the successor. Finally,

if the successor is a black node, the algorithm performs a delete — fixup operation

(see below) starting at node x:

A.3. RED-BLACK TREES 145

keylz] — key[y]
if colorly] = BLACK
then RB— DELETE — FIXUP(T,x)

Case 2: At least one of the children of z is nil:

left[z] = nil[T] OR rightz] = nil[T]

In this case, if the left child of z (left[z]) is not nil, z is assigned le ft[z] otherwise
x is assigned right|z]:
if leftlz] # nil[T)]
then x « left[z]
else x « right|z])
Note that = will point to nil if both children of z are nil. If z is the root of the
tree, then it is replaced by z, otherwise x is attached to the parent of z either as
its left or its right child. This depends on whether z is the left or the right child of

its parent:

plz] — plz]
if plz] = nillT]
then root[T] « x
else if z = left[p|z]]
then left[p[z]] < =

else rightlp|z]] < x
Finally, if 2z is a black node, the algorithm will launch a delete-fixup procedure:

if color|z]| = BLACK
then RB— DELETE — FIXUP(T,x)
As the delete operation is likely to transform the tree into a tree that does not

satisfy all red-black priorities above, the red-black tree invokes the RB-DELETE-
FIXUP(T, x) routine to restore any violated properties. Listing[A.7]shows the code

146 APPENDIX A. SAMPLE ALGORITHMS

of the operation.

Red-Black-Tree-DELETE-FIXUP(T,x)

1 while x # root[T] and color{x] = BLACK

2 doifx= lefi[p[x]]

3 then w « righi[p[x]]

4 if color{w]=RED

5 then color{w] +— BLACK

6 color[p[x]] <— RED

7 LEFT-ROTATE(T, p[x])

8 w «— right|p[x]]

9 if color{lefijw]] = BLACK and color{rightjw]]=BLACK
10 then color[w] < RED

11 x «— p[x]

12 else if color[rightf{w]]=BLACK

13 then color{lefijw]] +— BLACK
14 color[w]<«— RED

15 RIGHT-ROTATE(T, w)

16 w « righi[p[x]]

17 color{w] « color[p[x]]

18 color|p[x]] <— BLACK

19 color[right{w]] +— BLACK

20 LEFT-ROTATE(T.p[x])

21 x — rool[T]

22 else (same as then clause with "right" and "left" exchanged
23 color[x] «— BLACK

Listing A.7: Delete-Fixup operation of a red-black tree

The routine restores any violated properties by recolouring some nodes and per-

forming two rotation operations: left-rotate and right-rotate. The details of
both operations are given in [42].
Figure |8 shows a simulation of a red-black tree. The simulation can also be

launched from our server located at [2].

Appendix B

Source Code Listings

B.1 Augmented Code Example

Augmented Code Example

.

&)

& start
(@highlight
public BinaryNode delete(Integer key) {

o deleting Skey ...

< delay
BinaryNode z= lookupRec(key);
if (z '=null) {

$key deleted!
stop

e E E

return delete(z);

147

148 APPENDIX B. SOURCE CODE LISTINGS

else
."'I*'“"’
e
*e
e
#
return null;
."I.*"""
@ end
*
[
*@ start
*
(@highlight

$key does not exist!
stop

private BinaryNode delete(BinarvNode z) {

BinaryNodey=null;
BinaryNodex=null;

if (z.leftChild == null|| z.rightChild == null)

Y=z
else

Vv = successor(z);

if (v.leftChild '=null)

x=y.leftChild;

delay

else

X = v.rightChild;
if (x = null)

¥

oy

* f

x.setParent(y.getParent());

if (v.getParent()==null)

e
*
%/

-

delay

B.1. AUGMENTED CODE EXAMPLE

149

s
* !

=

setRoof(x);
else if (v ==y.getParent().lefiChild)

< delay

y.getParent().setLeftChild(x);

else
v delay
y.getParent().sefRightChild(x);
if(v!=z2)
z.setKey(y.key);
Y stop
returny;
end

Listing B.1: An augmented code of the delete operation of a binary search tree

150 APPENDIX B. SOURCE CODE LISTINGS

B.2 Python Scanner

Python Scanner

||' ik

* 3D-VISIAN-Project hitp/fwww _3dvisian.de

* @3DVISIAN (#) visian3d.api.utilities. PythonScanner java

* Created on 02.02.2008

* Copyright (c) 2007-2009, Inc. All Rights Reserved.

* Goethe-Universitat Frankfurt/Main, Department of Computer Science and Mathematics,
* Institute of Computer Graphics (Prof. Dr. Detlef Krimker)

* hitp/f'www gdv.informatik uni-frankfurt de

* @author Ashraf Abu Baker
* @version 1.0

*f

p-ackage visian3d.api scanner;

import java.io I0Exception;
import java.io InputStream;
import java.net URL;
import java util HashMap;
import java util Map;

public class PythonScannerextends Scanner{
public static final int FUNCTION = 11;
public static final int SELF=12;
public static final int NONE_TRUE _FALSE=13;
public static final String languageVersionSupported = "Python 2 6";

B.2.

PYTHON SCANNER 151

private static final String[] keywords = { "and", "as", "assernt", "break”,
"class”, "continue”, "def", "del", "elif", "else", "except”,"False",
“e_}(e[:“) ”finally”, “f[:]r”, “fr[:lm“, ”global”, “if”, Ilimport“, Ilil_.ll:I
IIiSIIJ ”Iambda“, III_.[JtIIJ II[]rIIJ “paSS“J “print“, Ilraisell:I “[etu[n”:l

"True" "try", "while", "with", "yield", "None"},
static final Map<5tring, Integer= keywordindex;

private StringBuilder buffer = new StringBuilder();
private boolean functionMode=false;

static {
keywordindex = new HashMap<5tring, Integer=();
for (inti=0; i < keywords length; i++) {
keywordindex put(keywords[i], i);
}

public PythonScanner{fURL url) throws IOException {
super(url);

}
public PythonScanner(inputStreamis) throws I0Exception {
super(is);

}

public PythonScanner(5tring doc) {
super(doc);

}

@Override

o Returns the next lexical token in the document.

*

public int nextToken() {
intc;
this currentTockenStartindex = this currentCharlndex;
while (true) {

switch (c = read()) {
case END OF FILE:

return END OF FILE;
case '# // line comment

unread(c);
while (true) {
c = read();
if ((c == END OF FILE)||(c == END _OF LINE)){
{ unread(c);
return LINE_COMMENT,
}
}
case "' // comment or string
c=read();
if (c =="") {// either comment or empty siring
c=read();

if (c I="")/ empty comment
return STRING;
for (;;) {// three " ("""} has been read

152 APPENDIX B.

SOURCE CODE LISTINGS

c = read();
switch (c) {
case ""J//first " in end of empty comment found
c=read(),
if (c ="") {{/ probably empty comment
c=read(),
if(c=="")
return MULTILINE_COMMENT,
h

return UNSUFPPORTED_TOKEN,
case END_OF FILE:

return UNSUPPORTED TOKEN:
case "\
c = read();
if(c==END_OF FILE)
return UNSUPPORTED TOKEN;
break;

h

}
else if(c==END_OF_FILF)
return UNSUPPORTED_TOKEN,
Miits a string
for () {
c=read(),
switch (c) {
case™"
return STRING;/! string
case END _OF FILE:
/f unread(c);
return UNSUPFPORTED_TOKEN,
case "\"
c = read();
iflc==END_OF_FILFE)
return UNSUPPORTED_TOKEN,

c = read();
break;
}
H
case'0" case'1" case'2"
case '3" case'4" case's"
case'G" case'/" case'd"
case'9"
do/{
c=read(),

Y while (Character.isDigifi(char)c) || c == "¥'|| c = 'X);

// Hexdecimal decimal and octal numbers
unread(c);

return NUMBER:

default:

if (Character.isWhitespace((char) c)) {
do{ c = read();
1t while (Character.isWhitespace((char) c));
unread(c);
/ retum WHITESPACE;
return UNSUPPORTED TOKEN,

B.2. PYTHON SCANNER

153

h

}

h

%f (isPythonldentifierStart((char) c)) {

buffer setLength(0);
do{

buffer.append((char)c);

c = read();
1 while (isPythonldetifierPart({char) c));
unread(c);
Integeri = keywordindex get(buffer toString());
if (i I= null) {

String keyword=buffer toString();

if(keyword equals("None")||keyword.equals('False")||keyword equals('False"))

return NONE_TRUE FALSE;
else

if(keyword equals('class")||keyword equals{"def"))

this_functionMode=true;
return KEYWORLD:;

%f(buffer.toString(}.equals{"self'})
return SELF,

{ return WORD;

if(functionMode){
functionMode=false;
return FUNCTION,

H

return UNSUPPORTED TOKEN;
h
M return OTHER;
return UNSUPPORTED TOKEN;

}

}

private boolean isPythonldentifierStart{char c){
switch(cH
case' " case'a” case'b" case'c” case'd"
case'e" case 'f" case'q" case'h” case i
case'|. case 'k’ case'l" case'm" case'n”
case'n” case'p"” case'q" case'T. case's"”
case i case 'u” case'v' case 'w" case 'x"
case'y" case'z" case'A” case'B" case 'C"
case'D" case'E" case'F" case'G" case 'H"
case 'l case'J" case 'K" case'L" case 'M"
case 'N" case'0" case 'P" case'Q" case 'R"
case'S" case 'T" case 'U" case V" case "W"
case 'X" case " case 'Z'return true;
defaultreturn false;
}

private boolean isPythonldetifierPart(char c){

return (isPythonldentifierStari(c)||Character.isDigit{c));

154 APPENDIX B. SOURCE CODE LISTINGS

while (children. hasMoreElements()) {
Node childNode= children.nextElement();
if (childNode instanceof IUndoableNode)

if (childNode instanceof IUndoableGroup)

reconstructUGroup((IUndoableGroup) childNode);
else

reconstructUNode((IUndoableNode) childNode);
else if (childNode instanceof Group)
reconstructGroup((Group) childNode);
else
reconstructNode(childNode);

}

private void reconstructfUNode(IUndoableNode node) {
node.restoreSnapshot(snapshotID);
}

private void reconstructNode(Node node) {
if (node instanceof Shape3D) {
Shape3D shape=(Shape3D)node;
Appearance app = shape.getAppearance();
if (app instanceofTUndoableObject)
((TUndoableObject) app).restoreSnapshot(snapshotID);
Geometry geom = shape.getGeometrv();
Shape3D shape=(Shape3D)node;
Appearance app = shape.getAppearance();
if (app instanceofTUndoableObject)
((IUndoableObject) app).restoreSnapshot(snapshotID);
Geometry geom = shape.getGeometrv();
if (gzeom instanceof ITUndoableObject)
((TUndoableObject) geom).restoreSnapshot(snapshotID);

}

private void reconstructUGroup(IUndoableGroupuGroup) {
uGroup.restoreSnapshot(snapshotlD);
uGroup.removeAllChildren();
intuGroupKey=uGroup.getHashKev();
LinkedHashMap<Integer, Integer=> children= keys.get(uGroupKey);
if (children == null) {

return;

}

for (Integer child : children keySet()) {
Integer childType= children.get(child);

switch (childType) {

B.3. VISUAL MERGE SORT 155

B.3 Visual Merge sort

Visual Mergesort Simulation

ek

* 3D-VISIAN-Project http://’www.3dvisian.de

* @3DVISIAN (#)visian3d.visualsimulation. sortingalgorithms. VisualMergeSort java
* Created on 05.10.2008

* Copyright(c) 2007-2009, Inc. All Rights Reserved.

* Goethe-Universitdt Frankfurt/Main, Department of Computer Science and Mathematics,
* Institute of Computer Graphics (Prof. Dr. Detlef Krdmker)

* http:/iwww.gdv.informatik uni-frankfurt.de

oy

* @author Ashraf Abu Baker

* @version 1.0

%

package visian3d.visualsimulation sortingalgorithms;

importjavax.vecmath. Vector3d;

import javax.vecmath. Vector3f;

import visian3d.api.ui. SimulationContext;
importvisian3d.visualsimulation.datastructures.arrays. Visual Array;

import visian3d.visualsimulation datastructures. arrays. Visual ArraySimulation;

156 APPENDIX B. SOURCE CODE LISTINGS

public class VisualMergeSort extends Visual ArraySimulation {

private HashMap<Integer, String=mapping = new HashMap<Integer, String=();
privateint callNumber=0;

@Override
public void start() {

super.start();

settingPanel.setinput Array(Array Gen.createRandomArray(8, 8));
if ('readInput(}))

return;
callNumber=0;
VisualArmray A =new VisualArray(as.inputArray, as, as.translation);
A.addNumber(callNumber++);
this.showArray(A, 0, A.length - 1);
as.translation.y = as.translation.y-as.y_translation;
Vector3fposition= A .getAbsolutePosition();
position.v=position.y - as.v_translation;
mergeSort(A.getSubArmray(0, A.length- 1, position), 0, A.length-1);

this.finished();
}
public void mergeSort(VisualArray A, int left, int right)
{
A.addNumber(callNumber++);
this.showArrav(A, left, right);
if (left < right) {

int middle = (right + left) / 2;

Vector3ftranslationl = getStartPosition(left, middle, right. A
.getAbsolutePosition());
VisualAmay B = A.getSubArray(left, middle, translationl);

mergeSort(B, 0, B.length - 1);
inti, j:

for(i=0;1 <B.length;i++)
A _.assign(i, B.getFieldSR(i));

B.3. VISUAL MERGE SORT 157

}

}

}

Vector3ftranslation? = getStartPosition2(left, middle, right,
translationl.x, A.getAbsolutePosition());

VisualArray C = A.getSubArray(middle + 1. right, translation2);

mergeSort(C, 0, C.length - 1);
J=1

for(i= 0;1 < C.length;i++)
A _.assign(j++, C.getFieldSR(i)):

setBreakpoint();

B.addLeft Arrow();
C.addRightArrow();

merge(A, left, middle, right, B, C);

B.unhighlightArrows();
C.unhighlightArrows();

private Vector3fgetStartPosition2(int p, intq. int r,

float starPoistion1X, Vector3fposition) {
intLl1=q-p+1;
intL2 =r-q;

floatinnerGab=L1 * as.fieldWidth + Math.min(L1,L2) * as.fieldWidth

/2;
return new Vector3f(position.x +innerGab, position.y
- as.y_translation, position.z);

private Vector3fgetStartPosition(int p. int g, int r, Vector3fposition) {

intLl =q-p+1;

intlL.2=r-q;

floatlefiTranslation=Math.min(L1,L2)* as.fieldWidth /2;

Vector3ftranslationl =new Vector3f{position.x - lefiTranslation,
position.y-as.y_translation, position.z);

return translationl;

private void showArmay(VisualArray A, intp, intr) {

if ({(r==p))

return;
this.visManager.addChild(A);
this.setBreakpointAndTakeSnapshot();

158 APPENDIX B. SOURCE CODE LISTINGS

}

public void merge(VisualArray A, intleft, int middle, int right,
VisualArmayB, VisualArray C) {

intnl = middle - left + 1;

intn2 = right - middle;

VisualAmray L= new VisualArray(nl + 1, as, mapping, new Vector3f{
as.translation x - as.fieldWidth * (middle- left + 1 + 1),
as.translation.y +2 * as.y_translation, 0));

VisualArray R = new VisualArray(n2+ 1, as, mapping, new Vector3f{
as.translation x + as.fieldWidth * (right - middle+ 1),
as.translation.y+ 2 * as.y_translation, 0));

A markSubArray(0, A.length-1);

L.setValue(L.length- 1, Integer. MAX VALUE);
R.setValue(R.length- 1, Integer. MAX VALUE);
this.showArray(L, 0. L.length- 1);
this.showArray(R, 0, R.length-1);

inti=0;

for(i=0;i<L.length- 1;i++) {

L.assignAn(i, B.getField(i));
this.setBreakpoint();

}

intj =0;

for(j= 0;) <R.length-1;j++) {
R.assignAn(], C.getField()));
this.setBreakpoint();

}

i=0;

j=0;

this.takeSnapshot();

for (int k = left; k <=right; k++) {
if (L.getFieldS(i).compareTo(R.getFieldS(j))<=0) {
A assignAn(A.getFieldSR(k), L.getField(i));

it++;
setBreakpoint();

B.3.

VISUAL MERGE SORT 159

} else {

A_.assignAn(A.getFieldSR(k), R.getField(j));
it

}
this.setBreakpointAndTakeSnapshot();

}

L.detach();
R.detach();
A removeMarker();

}

@Override
public void init(SimulationContextsc) {

super.init(sc);
try {

setSourceCodes(this.getClass(). new VisualMergeSort Mapping());

narrativeSettingDocInfTabbedPane.addTab("Quiz", new Imagelcon(
ResourceGetter.getResource(this.getClass(),
"images/quiz3.png™)), new ScrollableTextPane(),

"Quiz");

} cateh (Exceptione) {
e.printStackTrace();

}

sc.setTitle("MergeSort");
this.setDefaultCameraPosition(new Vector3d(0,0.1, 5));
this.resetCamera();

mapping.put(Integer. MAX VALUE,"x");

try {

setSourceCodes(this.getClass(). new VisualMergeSort Mapping());

} catch (Exceptione) {
e.printStackTrace();
}

sc.setCodeTabbedPane(codeManager);

Listing B.3: Visual merge sort

160 APPENDIX B. SOURCE CODE LISTINGS

B.4 Visian Comment Parser

Visian Comment Parser
JIH;*
* 3D-VISIAN-Project http://lwww.3dvisian.de
* @3DVISIAN visian3d.codegenerator.VisianCommentParser.java
* Createdon 17.11.2007
* Copyright(c)2007-2009, Inc. All Rights Reserved.
* Goethe-Universitat Frankfurt/Main, Department of Computer Science and Mathematics,
* Institute of Computer Graphics (Prof. Dr. Detlef Krémker)
* hitp:/iwww.gdv.informatik.uni-frankfurt.de

* @authorAshraf Abu Baker

* @version 1.0

*

package visian3d.codegenerator;

importstatic visian3d.codegenerator.utilities. Utilities.™;
importjava.util.*;

importorg.eclipse.jdt.core.dom.”;
importvisian3d.api.code.CodePointLabel;
importvisian3d.codegenerator.utilities. Utilities:;

public class VisianCommentParser {

public static String INTERNAL_METHOD_INVOCATION =
"INTERNAL_METHOD_INVOCATION"|

private OwnerSetteros;

private CompilationUnit unit;

public SortedMap<Integer, CodePointLabel.Point> [Points;
public ArrayList<VisianComment> visianComments;

public VisianCommentParser(CompilationUnit unit) {
this.unit= unit;

parseVisianCommentList();

B.4. VISIAN COMMENT PARSER 161

public HashMap<Integer, Integer> getStartAndEndLineNrOfMethods() {
return os.getStartAndEndLineNrOfMethods();
}

public void parseVisianCommentT ist() {
visianComments=new ArrayList<VisianComment=();
List<Comment=comments = unit.getCommentList();
inti=0;
Javadocjavadoc = null;

for (Comment comment : comments) {

if (!comment.isDocComment())
continue;

javadoc=(Javadoc) comment;

if (lisVisianDocComment(javadoc, unit))
continue;

visianComments.add(new VisianComment(javadoc, unit, i++,
getLineNumberAtEnd(unit, javadoc))):

}

computeControllPoints();

setOwners();

}

public void computeControlPoints() {
controllPoints=new TreeMap<Integer, CodePointl.abel. Point>();
for (VisianComment visianComment : visianComments) {
if (visianComment.containsTag(VisianComment. DELAY TAG)) {
controllPoints.put(visianComment.endLineNumber,
CodePointLabel.Point. DELAY POINT);
visianComment.javadocComment setProperty(VisianComment.BD,
VisianComment. DELAY TAG);
} else if (visianComment.containsTag(VisianComment. BREAK TAG)){
controllPoints.put(visianComment.endLineNumber,
CodePointLabel.Point. BREAK POINT);
visianComment.javadocComment.setProperty(VisianComment.BD,
VisianComment.BREAK TAG);

}

private void setOwners() {
os=new OwnerSetter(visianComments);
unit.accept(os);

}
public ArrayList<VisianComment= getVisianCommenfList() {

return visianComments;

162 APPENDIX B. SOURCE CODE LISTINGS

public SortedMap<Integer. CodePoinfLabel . Point> getlPoints() {
return [Points;
}

public static boolean isVisianDocComment(Javadoc comment,
CompilationUnitunit) {
return (comment.isDocComment()
& & comment.tags().size() > 0
& & (((TagElement) comment.tags().get(0))).fragments().get(0)
toString().startsWith("~") & & unit
.getLineNumber(comment.getStartPosition()) == unit
.getLineNumber(((ASTNode) (((TagElement) comment.tags().get(0)))
fragments().get(0)).getStartPosition()));

}
public static boolean isStartLineOfVisianMultilineComment(String line) {
return (line

startsWith(CommentRecognizer. VISIAN MULTILINE COMMENT START));

}

public static boolean isStartLineOfTavaMultilineComment(String line) {
return
(line.startsWith{CommentRecognizer.J4 ¥4 MULTILINE COMMENT START));

}

public static boolean containsEndOfVisianMultilineComment(String line) {

return line.indexOf{CommentRecognizer. VISIAN MULTILINE COMMENT END)
I=-1;

class OwnerSetter extends ASTVisitor {

ArrayList<VisianComment> comments;

CompilationUnit unit;

List<String>internalMethods=new ArrayList<String=>();

List<String> classNames = new ArrayList<String=();

private HashMap<Integer, Integer> startAndEndLineNrOflvlethods = new
HashMap<Integer, Integer=();

public OwnerSetter{ArmrayList<VisianComment> comments) {
this.comments = comments;
}

public HashMap<Integer, Integer= getStartAndEndLineNrOfMethods() {
return this.start AndEndLineNrOfMethods;
}

B.4. VISIAN COMMENT PARSER 163

@Override

public boolean visit(CompilationUnit unit) {
List list=unit.types();
this.unit =unit;
this.findInternalMethods();

return true;

}

private void findInternalMethods() {
List<"BodyDeclaration>types=unit.tvpes();

boolean found=false;
for (BodyDeclaration type : types) {

if (type instanceof TypeDeclaration) {
TypeDeclaration td = (TypeDeclaration) type;

if ('td.isInterface()) {
List<IExtendedModifier> modifiers = td.modifiers();
for (IExtendedModifier modAnn : modifiers) {
if (modAnn.isAnnotation()) {
Annotation ann= (Annotation) modAnn;

if (ann.getTypeName().toString().equals(
Annotations. Highlight Methods)) {
this.setInternalMethods(td);
found = true;

}

} else {
Modifier mod = (Modifier) modAnn;
if (mod.isPublic()) {
this.setInternalMethods(td);
found = true;

}
if ({found & & types.size()=0) {
BodyDeclaration type = types.get(0):
if (type '=null) {
if (type instanceof TypeDeclaration) {
TypeDeclaration td = (TypeDeclaration) type;
if ('td.isInterface()) {
this.setInternalMethods(td);
return;

164 APPENDIX B. SOURCE CODE LISTINGS

}

private void setInternalMethods(TypeDeclaration td) {
MethodDeclaration[] methods =td.getMethods();

for (MethodDeclaration method : methods) {
List paramters = method.parameters();
internalMethods.add(method.parameters().size() + "#"
+method.getName().toString());

}

(@Override
public void endVisit(CompilationUnit unit) {

assignCommentsToOwner AndMarkPauseTagStatments();

}

private void assignCommentsToOwner AndMarkPauseTagStatments() {
for (VisianComment comment : comments) {

Object commentList= comment.owner
.getProperty(VisianComment. FISLAN COMMENT);

if (commentList==mnull) {
ArrayList<VisianComment>newCommentlist= new
ArrayList<VisianComment=();
newCommentList.add(comment);

comment.owner.setProperty(VisianComment. FISIAN COMMENT,
newCommentList);
} else {

((ArrayList<VisianComment>) commentList).add(comment);

}

if ((comment.containsTag(VisianComment DELAY TAG) | comment
.containsTag(VisianComment.BREAK TAG))
& & comment.owner.gefNodeType()==
ASTNode BLOCK) {

Block block = (Block) comment.owner;

intendLineOfComment= getLineNumberAtEnd(unit,
comment.javadocComment);

List<Statement>statements = block.statements();

B.4. VISIAN COMMENT PARSER 165

boolean found=false;
for (Statementst : statements) {

if (Utilities.getLineNumberAfStarf(unit, st) =
endLineOfComment) {
st.setProperty(VisianComment.BD, comment);
found = true;
break;

}

if (!found) {
block.setProperty(VisianComment.BD, comment);
}

}

(@Override
public boolean visit(Block block) {

updateOvwner(block);
return true;

private boolean isInternalMethod(MethodInvocation method) {

if (internalMethods
.contains(((method.arguments()).size() + "#" + method.getName()

toString())))
return true;

return false;

}

(@Override
public boolean visit(ClassInstanceCreation cic) {
Typetype=cic.getType();
String name="";
while (!(typeinstanceof SimpleType))
type=((Parameterized Type) type).getTvpe():
name= ((SimpleType) type).getName().toString();
if (!this.internalMethods.contains(cic.typeArguments().size() + "#"
+name))
return true;
ASTNode parent = cic.getParent();
while (parent '=null) {
if (parent instanceof Statement) {

166 APPENDIX B. SOURCE CODE LISTINGS

if (Utilities.ignorMetodInvocation((Statement) parent)) {
return true;

}
parent.setProperty(

VisianCommentParser INTERNAL METHOD INVOCATION,
Utilities. getl ineNumberAfStartf(unit, parent));

return true;

}

parent = parent.getParent();
}
System.out.println();
return true;

}

@Override
public boolean visit(MethodDeclaration method) {

if (internalMethods
.contains(((method.modifiers()).size() + "#" + method.getName()

toString()))) {

this.start AndEndLineNrOfMethods.put(unit.getLineNumber(method
.getStartPosition()), unit.getLineNumber(method
.getStartPosition()
+method.getLength() - 1));

}

return true;
}
@Override

public boolean visit(MethodInvocation method) {

if (!isInternalMethod(method))
return true;

ASTNode parent = method.getParent();
while (parent '=null) {

if (parent instanceof Statement) {

if (Utilities.ignorMetodInvocation((Statement) parent)) {

return true;

}

parent.setProperty(

VisianCommentParser. INTERNAL METHOD INVOCATION,
Utilities.getL ineNumberAtStart(unit, parent));

B.A4.

VISIAN COMMENT PARSER

167

return true;

}

parent = parent.getParent();
}
System.out.println();

return true;

}

@Override
public boolean visit(ForStatement for) {

if (isSingleStatementFor(_for)) {
System.out.println("foor");
updateOvwner2(_ for);

}

return true;

}

@Override
public boolean visit(EnhancedForStatement for) {

if (isSingleStatementEnhancedFor(_for)) {
System.out.println(" foor");
updateOvwner2(_ for);

}

return true;

}

(@Override
publicboolean visit(WhileStatement while) {

if (isSingleStatementWhile(_while))
updateOwner2(_ while);
return true;

}

@Override
public boolean visit(DoStatement do) {

if (isSingleStatementDo(_do)) {
System.out.println("do™);
updateOvwner2(_do);

}

return true;

168 APPENDIX B. SOURCE CODE LISTINGS

@Override
public boolean visit(IfStatement if) {

if (isSingleStatementThen(_if))
updateOwner2(_if);

if (isSingleStatementElse(_if))
updateOwner2(_if);
return true;

}

(@Override
public boolean visit(TypeDeclaration td) {

updateOvwner(td);
return true;

}

private void updateOwner(AS TNode owner) {

int start=owner.getStartPosition();
intend = start + owner.getLength() - 1;
int commentStart;

int commentEnd;

int ownerStart;

int ownerEnd;

for (VisianComment comment : comments) {

commentStart=comment.javadocComment. getStartPosition();
commentEnd = commentStart+ comment.javadocComment.getLength() - 1;
if (commentStart = start & & commentEnd < end) {

ownerStart = comment.owner.getStartPosition();

ownerEnd=ownerStart+ comment.owner.getLength() - 1;

if (start = ownerStart & & end < ownerEnd)

comment.owner = owner;

}

private void updateOwner2(ASTNode potential Owner) {

int potetnialOwnerStart= potentialOwner.getStartPosition();
int commentStart;
int commentEnd;
for (VisianComment comment : comments) {
if (!comment.containsTag(VisianComment DELAY TAG)
& &
lcomment.containsTag(VisianComment. BREAK TAG))
continue;

commentStart=comment.javadocComment.getStartPosition();
commentEnd=commentStart + comment.javadocComment.getLength() - 1;

B.A4.

VISIAN COMMENT PARSER 169

if (potentialOwnerinstanceof ForStatement) {
ForStatement_for=(ForStatement) potentialOwner;
if (isSingle StatementFor(_for)){
int singelStatmentStart = _for.getBody().getStartPosition();
if (commentStart > potetnialOwnerStart
&& commentEnd < singelStatmentStart) {

_for.getBody().setProperty(VisianComment.BD,
comment);

comment.owner=_for;
continue;

}

if (potentialOwnerinstanceof EnhancedForStatement){
EnhancedForStatement _for= (EnhancedForStatement)
potentialOwner;
if (isSingle StatementEnhancedFor(_for)){
int singelStatmentStart = _for.getBody().getStartPosition();
if (commentStart > potetnialOwnerStart
&& commentEnd < singelStatmentStart) {

_for.getBody().setProperty(VisianComment.BD,
comment);

comment.owner=for:
continue;

}

if (potentialOwnerinstanceof DoStatement){
DoStatement _do = (DoStatement) potentialOwner;
if (isSingle StatementDo(_do)){
intsingelStatmentStart=
_do.getBody().getStartPosition();
if (commentStart > potetnialOwnerStart
&& commentEnd <

singelStatmentStart) {
_do.getBody().setProperty(VisianComment.BD,
comment);
comment.owner=_do;

continue;

}

if (potentialOwnerinstanceof WhileStatement) {
WhileStatement _while = (WhileStatement) potentialOwner;
if (isSingle StatementWhile(_while)){
intsingelStatmentStart=_while.getBody()
.getStartPosition();

170 APPENDIX B. SOURCE CODE LISTINGS

if (commentStart > potetnial OwnerStart
& & commentEnd < singelStatmentStart) {

_while.getBody().setProperty(VisianComment. B, comment);

comment.owner=_while;
continue;

}
}
if (potentialOwner instanceofIfStatement) {
IfStatement if=(IfStatement) potentialOwner;
if (isSingleStatementThen(_if)) {
intsingelStatmentStart=_if.getThenStatement()
.getStartPosition();
if (commentStart > potetnialOwnerStart

& & commentEnd <
singelStatmentStart) {

_if.getThenStatement().setProperty(VisianComment.BD,
comment);
comment.owner=_if;

}
}
if (isSingleStatementElse(_if)) {
intsingelStatmentStart= if.getElseStatement()
.getStartPosition();
if (commentStart > potetnial OwnerStart
& & commentEnd <
singelStatmentStart) {

_if. getElseStatement().setProperty(VisianComment . BD,

comment);
comment.owner=_if;

Listing B.4: Visian comment parser

B.5. VISUAL ARRAY

B.5 Visual Array

171

Visual Array

importjava.util.*;

importjavax.vecmath.”;
importjavax.media.j3d.Alpha;
importjavax.media.j3d.BoundingSphere;
importjavax.media.j3d.BranchGroup;
importjavax.media.j3d.Group;
importjavax.media.j3d.Node;
importjavax.media.j3d.PositionPathinterpolator;
importjavax.media.j3d.Text3D;
importjavax.media.j3d. Transform3D;
importjavax.media.j3d.TransformGroup;
importvisian3d.api.utilities.Navigator;
importvisian3d.api.utilities.UndoableObjectsFactory;
importvisian3d.undo.j3d.ComparableColor3f;
importvisian3d.undo.j3d.Comparable Transform3D;
importvisian3d.undo.j3d.UndoableBranchGroup;
importvisian3d.undo.j3d.Undoable TransformGroup;
importvisian3d.visualsimulation.utilities. Arrow;

package visian3d.visualsimulation.datastructures.arrays;

importvisian3d.visualsimulation.utilities. SharedNode Components;

172 APPENDIX B. SOURCE CODE LISTINGS

public class VisualArray extends UndoableBranchGroup {

public ArrayField<Integer=>[] fields;

public ArraySimulationSetting as;

public UndoableTransformGroup rootTG;
PPl ppi;

public intlength;

private UndoableBranchGroup markerTG;
public HashMap<Integer, String>mapping;

public VisualArray(intsize, ArraySimulationSetting as) {
this(size, as, Text3D.ALIGN_CENTER, null);
}

public VisualArray(intsize, ArraySimulationSetting as,
HashMap<Integer, String>mapping){
this(size, as, Text3D.ALIGN_CENTER, mapping);

}

public VisualArray(intsize, ArraySimulationSetting as,
HashMap<Integer, String>mapping, Vector3f translation){
this(size, as, Text3D.AL/IGN_CENTER, mapping, translation);

}

public VisualArray(intsize, Vector3f absolutePosition,
ArraySimulationSettingas) {
Integer[]input= new Integer(size];
for(inti=0;i < size; i++)
input[i]= 0;
init(input, absolutePosition, as, Text3D.ALIGN_CENTER, null, null);
}

public VisualArray(intsize, ArraySimulationSetting as, Vector3f translation) {
this(size,as, Text3D.AL/IGN_CENTER, null, translation);
}

public VisualArray(intsize, ArraySimulationSetting as, int textAlignment,
HashMap<Integer, String>mapping){

this(size, as, Text3D.AL/IGN_CENTER, mapping, new Vector3f(0, 0, 0));

B.5. VISUAL ARRAY 173

public VisualArray(Integer{] input, ArraySimulationSetting as,
HashMap<Integer, String> mapping){
this(input, as, Text3D.ALIGN_CENTER, mapping, new Vector3f());

}

public VisualArray(Integer[] input, ArraySimulationSetting as){
this(input, as, Text3D.ALIGN_CENTER, null, new Vector3f());

}
public VisualArray(Integer]] input, ArraySimulationSetting as,
Vector3ftranslation){
this(input, as, Text3D.AL/IGN_CENTER, null, translation);
}

public VisualArray(Integer[] input, Vector3f absolutePosition,
ArraySimulationSetting as) {
this(input, absolutePosition, as, Text3D.ALIGN_CENTER, null, null);

}

public VisualArray(intsize, ArraySimulationSetting as, int textAlignment,
HashMap<Integer, String> mapping, Vector3f translation){
this(size, new Vector3f(), as, textAlignment, mapping, translation);

}

private void init(Integer[] input, Vector3f absolute Position,
ArraySimulationSetting as, int textAlignment,
HashMap<Integer, String> mapping, Vector3f translation) {

length = input.length:;
this.as=as;
this.mapping = mapping;
rootT G = UndoableObjectsFactory
.create ReadWtite ExtendUndoable TransformGroup();
if (translation I= null) {

absolutePosition.add(translation);
absolutePosition.x-= (as.fieldWidth * length)/ 2f;

}

ComparableTransform3D transform = new Comparable Transform3D();
transform.set(absolutePosition);

rootT G.setTransform(transform);
ComparableTransform3D scale = new Comparable Transform3D();
scale.setScale(new Vector3d(1,1, 1));

SphereArrayField<Integer> field;

174 APPENDIX B. SOURCE CODE LISTINGS

floatstartPos = 0:
fields = new SphereArrayField[length];

for(inti=0;i < length; i++) {

field = new SphereArrayField<Integer=>(this, input[i],
as.fieldWidth /2, new Vector3f(startPos +i
* as.fieldWidth + as fieldWidth /2, 0, 0), as,
Text3D.ALIGN_CENTER, mapping);
rootT G.addChild(field);
fields[i] = field;

}

this.setCapabilities();
this.addChild(rootTG);
ppi= nhew PPI(this, as);

}

private VisualArray(intsize, Vector3f absolute Position,
ArraySimulationSetting as, int textAlignment,
HashMap<Integer, String>mapping, Vector3f translation){
Integer[]input= new Integer(size];
for(inti=0;i < size; i++)

}

public void assign(intindex, ArrayField<Integer= field){
this.assign(index, field.getValue());
}

public void assignAn(intindex, ArrayField<Integer= field) {
this.assignAn(this.getField(index), field);
}

public void assignAn(intfield1, intfield2){
this.assignAn(this.getField(field1), this.getField(field2));

}

public void assignAn(ArrayField<Integer= field1, ArrayField<Integer= field2) {
BranchGroup helpBG = new BranchGroup();
helpBG.setCapability(BranchGroup ALLOW_DETACH);
TransformGroup textGroup = field2.clone Text();

TransformGroup transformGroup = new TransformGroup();

transformGroup.setCapability(TransformGroup. ALLOW_TRANSFORM_READ);

B.5. VISUAL ARRAY 175

}

}

}

}

transformGroup.setCapability(TransformGroup ALLOW_TRANSFORM_WRITE);

Transform3D t= new Transform3D();
t.setTranslation(field2.getTextAbsolute Position());
transformGroup.setTransform(t);

transformGroup.addChild(textGroup);
helpBG.addChild(transformGroup);

Point3f p1 = new Point3f(field 1.getAbsolute Position());
Point3f p2 = new Point3f(field2.getAbsolute Position());

Point3f[] positions = new Point3f[]{ p2, p1 };
float[] knots = newfloat[] { 0.0f, 1.0f };

PositionPathInterpolator ppi = new PositionPathInterpolator(null,
transformGroup, new Transform3D(), knots, positions);
ppi.setSchedulingBounds(new BoundingSphere());

transformGroup.addChild(ppi);

AlphatransAlpha=new Alpha(1, Math.max(100,
as.assign_value_increasing_alpha));

ppi.setAlpha(transAlpha);
this.addChild(helpBG);
transAlpha.setStartTime(newDate().getTime());

Navigator.start/interpolator(ppi);
helpBG.detach();

field1.setValue(field2.getValue());

public void assign(intindex, Integervalue){

this fields[index].setValue(value);

public void assign(ArrayFieldfield, Integervalue){

fields[(Integer)field.getValue()].setValue(value);

public void increment(inti) {

fields[i].setValue(fields[i].getValue()+ 1);

public void decrement(inti) {

fields[i].setValue(fields[i].getValue()- 1);

176 APPENDIX B. SOURCE CODE LISTINGS

public VisualArray(Integer]] input, ArraySimulationSetting as,
int textAlignment, HashMap<Integer, String> mapping,
Vector3ftranslation){

this(input, new Vector3f(), as, textAlignment, mapping, translation);

}

private VisualArray(Integer[] input, Vector3f absolute Position,
ArraySimulationSetting as, int textAlignment,
HashMap<Integer, String>mapping, Vector3f translation){

init(input, absolutePosition, as, textAlignment, mapping, translation);

private void setCapabilities() {

this.setCapability(BranchGroup ALLOW_DETACH):;
this.setCapability(Group ALLOW_CHILDREN_EXTEND);

}

public ArrayField<Integer> getField(inti){
return fieldslil:
}

public Integeradd(inti, int) {
return fields[i].getValue() + fields[j].getValue();
}

public Integeradd(inti, Integervalue){
return fields[i].getValue() + value;
}

public static Integeradd(ArrayField<Integer>f1, Integervalue){
return f1.getValue() + value;
}

public static Integeradd(ArrayField<Integer=>f1, ArrayField<Integer=f2){
return f1.getValue() + f2.getValue();
}

public ArrayField<Integer> getField(ArrayField<Integer= field) {
return fields[field.getValue()];
}

public IntegergetValue(inti) {
return fields[i].getValue();
}

B.5. VISUAL ARRAY 177

public void setValue(inti, Integer value){
fields[i].setValue(value);

}

public ArrayField<Integer> getFieldS(inti) {
highlightF (i);
return fieldsi;

}

public ArrayField<Integer> getFieldV(inti) {
highlightS(i);
return fieldsi;

}

public ArrayField<Integer> getFieldSR(inti) {
highlightP(i);
return fieldsi;

}

public void selectText(inti) {
fields[i].highlightText(as.selected_text_color);

public void highlightF(inti) {
fields[i].highlight(as.selected_field_color);

}

public void highlightF (ArrayField field) {
fields[(Integer)field.getValue()].highlight(as.selected_field_color);

}

public void highlightP(inti) {
fields[i].highlight(as.sorted_field_color);

}
public void highlightP(ArrayField field){

field.highlight(as.sorted_field_color);

}

public void highlightS(inti) {
fields[i].highlight(as.visited_field_color);

public void highlightS(ArrayField field){
field.highlight(as.visited_field_color);
}

178 APPENDIX B. SOURCE CODE LISTINGS

public void swap(inti, intj) {
if (i==])
return;
if (i <))
ppi.visualiseSwap(i, j);
else
ppi.visualiseSwap(j, i);

}

public intcompare(ArrayFieldfield1, ArrayFieldfield2){
return field1.compareTo(field2);
}

public void highlightField(inti, ComparableColor3fcolor){
this fields[i].highlight(color);
}

public void highlightSelectedField(inti) {
this fields[i].highlight(as.selected_field_color);
}

public void highlightSelectedFields(int... fileds_){
for(inti=0;i < fileds_.length; i++)
this.fields[fileds_][i]].highlight(as.selected_field_color);
}

public void unhighlightField(inti){
this fields[i].highlight(as.default_field_color);

}

public void unhighlightField(ArrayField i) {
this fields[(Integer)i.getValue()].highlight(as.default_field_color);
}

public void unhighlightFields(int... fields_){
for(inti=0;i < fields_.length; i++){
this.fields[fields_[i]].highlight(as.default_field_color);

}
public void markSubArray(inti, int) {

if (markerTG == null){
this.markerTG = new UndoableBranchGroup();
markerT G.setCapability(BranchGroup. ALLOW _DETACH),
markerT G.setCapability(Group. ALLOW_CHILDREN_WRITE);
markerT G.setCapability(Group. ALLOW_CHILDREN_READ);

this.markerT G.setCapability(Group ALLOW_CHILDREN_EXTEND);
this.rootTG.addChild(markerTG);

B.5.

VISUAL ARRAY 179

}else

markerTG.removeAllChildren();
ArrayMarker marker= new ArrayMarker(i,], length, as);
this.markerT G.addChild(marker);

}

public void markField(inti) {
this.getField(i).mark();

}

public void addNumber(inthumber){

SphereArrayField<Integer=> field = new SphereArrayField<Integer>(this,

number, as.fieldWidth / 2, new Vector3f(

this.length * as.fieldWidth + as. fieldWidth /2
- as.fieldWidth /4, as fieldWidth /4, 0), as,
Text3D.ALIGN_LAST, mapping, false);

field. setTextAppearance(SharedNodeComponents

.createUndoable TextApperance(as.pivot_element_color));
field. setScaleFactor(as.fieldWidth * 0.3f);
rootTG.addChild(field);

public void removeMarker(inti) {
this.getField(i).removeMarker();
}

public void removeMarker(){
if (markerTG I= null)
markerTG.removeAllChildren();

}

public VisualArray getSubArray(int from, intto) {
Integer]input= new Integer{to - from + 1];
for (inti=from;i<=to; i++)
input[i]= this.getValue(i);
return new VisualArray(input, as);

}
public VisualArray getSubArray(intfrom, intto, Vector3f absolutPoistion){

Integer]input= new Integerfto - from + 1];
for(inti=from,j=0;i<=to; i++)

inputfj++] = this.getValue(i);
return new VisualArray(input, absolutPoistion, as);

}

public int findMin(inti) {
intmin=1i;
this.markSubArray(i, length - 1);
this.highlightField(min, as.found_field_color);

180 APPENDIX B. SOURCE CODE LISTINGS

for(intj=i+1;j <length;j++) {
this.highlightField(j, as.selected_field_color);
Navigator.sleep(as.highlight_delay);
if (fields[min].compareTo(this.getField(j)) > 0) {

this.unhighlightField(min);
min = j;
this.highlightField(min, as.found_field_color);

Navigator.sleep(as.highlight_delay);

}

this.unhighlightField(j);
this.highlightField(min, as.found_field_color);

}

this.highlightField(min, as.found_field_color);
this.removeMarker();
return min;

}

public void split(int i) {
floatdx = as.fieldWidth /8;
for(intj=0;j<i j++){
Vector3d translation = this .fields[j].getTranslation();
translation.x =dx;
this fields[j].setTranslation(translation);

}

for(intj=1i; j < fields.length; j++){
Vector3d translation = this .fields[j].getTranslation();
translation.x +=dx;
this fields[j].setTranslation(translation);

}

@0Override
public void addChild(Node child){

super.addChild(child):
}

public void addRightArrow(){
Vector3ftranslation = new Vector3f();

translation.y +=3* 2 * as fieldWidth /10 + as.fieldHight/4;
if (length> 1)
translation.x +=((length)/ 2.f) * as.fieldWidth - as.fieldWidth / 2

B.5. VISUAL ARRAY 181

Arrow bg = new Arrow(as.fieldWidth /10, 2 * as.fieldWidth /10,
as.arrowColor, translation, Math.P// 4);
this.rootTG.addChild(bg);

}
public void addLeftArrow() {

Vector3ftranslation = new Vector3f();
translation.y +=3* 2 * as.fieldWidth /10 + as.fieldHight/4;
if (length> 1)

translation.x +=(length / 2.f) * as fieldWidth + as fieldWidth / 2
else

translation.x += as.fieldWidth;
this.rootTG.addChild(newArrow(as.fieldWidth /10,

2 ¥ as.fieldWidth /10, as.arrowColor, translation,
-Math.PI/ 4));

}

public void unhighlightArrows(){

Enumeration<Node=> en = this.rootT G.getAllChildren();
while (en.hasMoreElements()){

Node next=en.nextElement();

if (nextinstanceof Arrow){

Arrow arrow = (Arrow) next;
arrow.cone.getAppearance().getMaterial().setDiffuse Color(
as.unhighlitedArrowColor);

arrow.cone.getAppearance().getMaterial().setAmbientColor(
as.unhighlitedArrowColor);
}

}

}
public ArrayField cloneField(inti){
ArrayField field = this.getField(i);

ArrayField f = new SphereArrayField(null, field.getValue(), field
.getWidth()/ 2, field.getAbsolute Position(), as, field
.getTextAlignment(), field.getMapping(),
field.createSphere());
f.setAppearance(field.getApperance());
returnf;

}

public ArrayField cloneFieldAn(inti) {
ArrayField field = this.getField(i);

ArrayField f = new SphereArrayField(null, field.getValue(), field
.getWidth()/ 2, field.getAbsolutePosition(), as, field
.getTextAlignment(), field.getMapping(),

182 APPENDIX B. SOURCE CODE LISTINGS

}

}

}

}

}

field.createSphere());
f.setAppearance(field.getApperance());
Vector3fto = field.getAbsolute Position();
to.add(newVector3f(0, as.y_translation, 0));
this.addChild((Node)f);
ppi.moveAnimated(f, to);

returnf;

public void translate(Vector3ftranslation) {

ComparableTransform3DtTrans = new Comparable Transform3D();
rootT G.getTransform(tTrans);

Vector3fabsolutePosition = new Vector3f();
tTrans.get(absolutePosition);

translation.add(absolute Position);

tTrans.set(translation);

rootT G.setTransform(tTrans);

public Vector3fgetAbsolute Position(){

ComparableTransform3DtTrans = new Comparable Transform3D();
rootT G.getTransform(tTrans);

Vector3fabsolutePosition = new Vector3f();
tTrans.get(absolutePosition);

return absolutePosition;

public void addAdditionalText(inti, String text) {

this fields[i].addAdditional Text(text);

public void removeAdditionalText(inti) {

this.fields[i].removeAdditional Text();

Listing B.5: Implemenation of an array as a visual object

B.6. UNDO/REDO SNAPSHOT

B.6 Undo/Redo Snapshot

183

ek

* Created on 12.05.2008

*

* @author Ashraf Abu Baker
* @version 1.0

*f

package visian3d.undo;

import java.util. Enumeration;
importjava.util. HashMap;

import javax.media.j3d.Group;
import javax.media.j3d.Node;

Undo Redo Snapshot

* 3D-VISIAN-Project http://www.3dvisian.de
* @3DVISIAN (#) visian3d.undo.Snapshot java

* Copyright(c) 2007-2009, Inc. All Rights Reserved.
* Goethe-Universitit Frankfurt/Main, Department of Computer Science and Mathematics,

* Institute of Computer Graphics (Prof. Dr. Detlef Krémker)
* hitp//www.gdv.informatik uni-frankfurt.de

importjava.util. LinkedHashMap;

importjavax.media.j3d. Appearance;
importjavax.media.j3d.Geometry;

importjavax.media.j3d.Shape3D;

184 APPENDIX B. SOURCE CODE LISTINGS

public class Snapshot {

private finalint snapshotID;
public Integer sceneHashKey;
private IUndoableBranchGroupscene;
private HashMap<Integer, IUndoableBranchGroup> undoableBGs = new
HashMap<Integer,
TUndoableBranchGroup=();
private HashMap<Integer. IUndoableTransformGroup> undoableT Gs = new
HashMap<Integer,
TUndoableTransformGroup=();

private HashMap<Integer, IUndoableNode>undoableNodes= new HashMap<Infeger,
TUndoableNode=();
private HashMap<Integer, Node> nonUndoableNodes = new HashMap<Integer,
Node=();
public HashMap=Integer, LinkedHashMap<Integer, Integer>>keys = new
HashMap<Integer,
LinkedHashMap<Integer, Integer=>();

public Snapshot(ITUndoableBranchGroup group, int snapshotID) {
this.snapshotID = snapshotlD;
this.scene= group:
takeSnapshot();

}

private void takeSnapshot() {
sceneHashKey = scene.getHashKey():
takeSnapshotOfUGroup(scene, 0);

}

private void takeSnapshotOfUGroup(IUndoableGroup group, int depth) {

group.takeSnapshot(snapshotID);
int groupKey = group.getHashKey();

Enumeration=Node> children = group.get AllChildren();

LinkedHashMap<Infeger, Integer=>
keyOrHashKeyOfEachChild AndItsCorrespondingNodeT ype=
new LinkedHashMap<Integer, Integer=();

while (children. hasMoreElements()) {
Node childNode= children.nextElement();

if ((childNode instanceof IUndoableNode)) {

B.6. UNDO/REDO SNAPSHOT 185

TUndoableNode child = (TUndoableNode) childNode;

Integer key = child.getHashKev():
int type=child.getType();

keyOrHashKeyOfEachChild AndItsCorrespondingNodeType.put(key,

type);
switch (type) {

case IUndoableNode. BRANCH GROUP:

undoableBGs.put(kev, (IUndoableBranchGroup) child);
takeSnapshotOfUGroup((IUndoableBranchGroup) child,
depth+1);
break;

case [UndoableNode. TRANSFORM GROUP:
undoableT Gs.put(key,. (IUndoableT ransformGroup) child);

takeSnapshotOfUGroup((IUndoableTransformGroup) child,
depth+1);

break;

default:

undoableNodes.put(key, child);
takeSnapshotOfUNode(child, depth +1);

else {
Integer key = childNode.hashCode();

nonUndoableNodes put(key, childNode);

keyOrHashKeyOfEachChild AndItsCorrespondingNode Type. put(key,
IUndoableNode NON UNDOABLE),

if (childNode instanceof Group)
takeSnapshotOfGroup((Group) childNode, depth);

else
apshotOfNode(childNode, depth);

}

keys.put(groupKey,
keyOrHashKeyOfEachChild AndltsCorrespondingNodeType);

}

186 APPENDIX B. SOURCE CODE LISTINGS

}
private void takeSnapshotOfUNode(IUndoableNode node, int depth) {

node.takeSnapshot(snapshotID);

}

private void takeSnapshotOfNode(Nodenode, int depth) {

if (node instanceof Shape3D) {
Shape3D shape=(Shape3D)node;
Appearance app = shape.getAppearance();
if (app instanceofTUndoableObject)
((IUndoableObject) app).takeSnapshot(snapshotID);
Geometry geo = shape.getGeometry();
if (geo instanceof ITUndoableObject)
((TUndoableObject) geo).takeSnapshot(snapshotID);

}
private void takeSnapshotOfGroup(Group group, int depth) {

Enumeration<Node> children = group.getAllChildren();
while (children. hasMoreElements()) {
Node childNode= children.nextElement();
if (childNode instanceof IUndoableNode)
if (childNode instanceof IUndoableGroup)
takeSnapshotOfUGroup((TUndoableGroup) childNode, depth+ 1);
else
takeSnapshotOfUNode((IUndoableNode) childNode, depth+ 1);
else if (childNode instanceof Group)
takeSnapshotOfGroup((Group) childNode, depth+ 1);
else
takeSnapshotOfNode(childNode, depth +1);

}

public IUndoableBranchGroupreconstructScene() {
scene.detach();

reconstructUGroup(scene);
return scene;

}
private void reconstructGroup(Group group) {

Enumeration<Node> children = group.getAllChildren();

B.6. UNDO/REDO SNAPSHOT 187

case [UndoableNode. NON UNDOARBLE:
Node otherChild =nonUndoableNodes.get(child);
uGroup.addChild(otherChild);
if (otherChild instanceof Group)
reconstructGroup((Group) otherChild);
else
reconstructNode(otherChild);
break;
case IUndoableNode. BRANCH GROUP:
IUndoableBranchGroup bgChild =undoableB Gs.get(child);
bgChild.detach();
uGroup.addChild((UndoableBranchGroup) bgChild);
reconstructUGroup(bgChild);
break;
case IUndoableNode. TRANSFORM GROUP:
l’UndoableTransformGToup tgChild=undoableTGs.get(child);

uGroup.addChild((UndoableTransformGroup) tgChild);
reconstructUGroup(tgChild);

break;

default:
TUndoableNode hashChild =undoableNodes.get(child);
uGroup.addChild((Node) hashChild);

reconstructUNode(hashChild);
break;

Listing B.6: Undo/Redo snapshot

188 APPENDIX B. SOURCE CODE LISTINGS

Appendix C

Miscellaneous

C.1 Java 3D

The Java 3D API is a high-level, scene graph-based API consisting of a hierarchi-
cal collection of Java classes which serve as an interface for developing platform-
independent three-dimensional applications. A Java 3D programme is mainly as-
sembled from geometrical primitives, appearance and behaviour objects. A geo-
metrical object describes the structure of a visual object. An appearance object
describes what a visual object should look like when it is rendered. Behaviour
objects are used to add animation behaviour to virtual scenes. The objects of a
Java 3D programme are arranged in a so-called scene graph. A scene graph is a
tree structure that arranges the logical and often (but not necessarily) the spatial
depiction of a 3D scene. It completely specifies the content of a virtual scene, and

how it is to be rendered.

The nodes and arcs of the scene graph represent Java 3D objects and the rela-
tionships between these objects, respectively. There are two types of nodes: group
nodes and leaf nodes [119]. Leaf nodes are usually used to hold visual, behaviour, or
lighting objects. Group objects are used to arrange scene graph objects into groups.

There is also a third sort of Java 3D objects, called NodeComponent. According to

189

190 APPENDIX C. MISCELLANEOUS

the Java 3D specification [68], NodeComponents do not belong to the scene graph
tree and are not scene graph objects. They can, however, be referenced by the scene
graph and used, for example, to define the geometry and appearance attributes of
visual objects. It is at this point important to emphasise, that a scene graph is

actually a tree and not a graph.

The root of a scene graph is a Locale object which represents the coordinate
systems of the virtual scene. There are two relevant terms that are frequently used
in the Java 3D terminology: live and compiled. Adding a group object, particularly
a BranchGroup (see below), to a Locale makes the group and all of its ancestors live.
Live objects are subject to being rendered. The parameters of live objects cannot
be modified unless the corresponding flags (capabilities) have been explicitly set
before the object became live. The same applies to compiled objects. Compiling
a group object converts it and all of its ancestors into a more efficient internal
representation for rendering. Many Java 3D objects have 'capabilities’. A capability
is a flag that specifies whether or not the object can be accessed and, if so, in which
way. Capabilities are a powerful feature for increasing the performance of Java 3D
applications. The most important group classes of Java 3D are BranchGroup and
TransformGroup [119]. Instances of BranchGroups are used to define the structure
of the scene graph. They are the only objects allowed to be children of Locale objects
and can have multiple children. The children of a BranchGroup object can be other
groups or leaf objects, such as shape objects (which are intrinsically visual objects).
TransformGroup objects hold geometric transformations, such as translations and
rotations. A transformation is typically specified in a Transform3D object, which
is, like a NodeComponent, not a scene graph object. In a 3D scene, each 3D object
of an application either resides in the scene graph, in which case it is called a scene
graph object, or it is referenced by one or several scene graph objects, as is the case
with NodeComponents [68,[119]. In both cases each 3D object is reachable from the

root of the graph. To learn more about Java 3D refer to the following book [108].

	Dedication
	Acknowledgements
	Publications
	Abstract
	Zusammenfassung
	Introduction
	Terms and Definitions
	History of Algorithm Visualisation Systems
	Effectiveness of Algorithm Visualisations
	State of the Art
	Motivation and Objectives
	Thesis Outline
	Related Work

	Development and Design Aspects
	2D vs 3D Visualisation
	Features and Requirements
	3D implementation
	Code listing display
	Control points
	Collapsible blocks
	User interfaces for input and simulation parameter settings
	Direct manipulation
	Capturing and displaying of runtime information
	Undo/Redo facility
	Embedding explanatory text
	Documentation
	Capturing and export facility
	Simplicity and consistency

	Design Aspects of Visual Simulations
	Hybrid Simulations
	Participants (Involved Parties)
	Sample Algorithms
	A Workflow for Constructing Visual Simulations
	Steps carried out by the pedagogue
	Steps performed by the designer and programmer

	Algorithm Design Paradigms and Visualisation Complexity

	Towards Automatic Visual Simulations
	Programme Visualisation vs Algorithm Visualisation
	Levels of Abstraction
	Issues and Difficulties
	Conclusions

	Semi-Automatic Approach
	Problem Analysis
	Semi-Automated Approach
	Visual objects
	Code augmentation
	Reusable parameterised components

	Animation of Computation-Intensive Algorithms and Algorithms for N-P-Complete Problems
	An algorithm animation language for 3D algorithms
	Animating the TSP with xml3DVis

	Visual Simulation of Parallel Algorithms
	Parallel algorithms
	Visualisation aspects of parallel algorithms
	Clustering approach

	Simulation of Computer Graphics Algorithms

	Implementation
	Implementation Technologies
	Abstract Syntax Tree (AST)

	Code Augmentation Techniques
	Code Generator
	Automatic Code Highlighting
	Source code-based automatic highlighting
	Set-wise code line mapping
	Highlighting of pseudo and non-Java code

	Automatic Undo/Redo
	Undo design patterns
	Undo model
	Concept fundamentals
	Undo/Redo containers

	An Algorithm Visualisation Environment
	3D-Visian --- An Algorithm Visualisation Platform
	System Architecture

	Summary, Evaluation and Perspectives
	Summary
	Evaluation of the Approach
	Evaluation of the Approach for Animating Algorithms to N-P-Complete Problems
	Evaluation of the Undo/Redo Facility
	Evaluation of 3D-Visian
	Future Work

	Bibliography
	Appendices
	Sample Algorithms
	Dijkstra's Algorithm for the SSSP-Problem
	Merge sort
	Red-Black Trees

	Source Code Listings
	Augmented Code Example
	Python Scanner
	Visual Merge sort
	Visian Comment Parser
	Visual Array
	Undo/Redo Snapshot

	Miscellaneous
	Java 3D

