Johann Wolfgang Goethe-Universitét
Frankfurt am Main

Institut fur Informatik
Fachbereich Informatik und Mathematik

Sublinearly Space Bounded Iterative Arrays

Andreas Malcher; Carlo Mereghetti; Beatrice Palano

Nr. 1/07

Frankfurter Informatik-Berichte

Institut fiir Informatik ® Robert-Mayer-Strafie 11-15 o 60054 Frankfurt am Main

ISSN 1616-9107

Sublinearly Space Bounded
Iterative Arrays

Andreas Malcher*
Institut fiir Informatik, Johann Wolfgang Goethe-Universitiit
60054 Frankfurt am Main, Germany
E-Mail: a.malcher@em.uni-frankfurt.de

Carlo Mereghetti
Dipartimento di Scienze dell'Informazione, Universita degli Studi di Milano
via Comelico 39/41, 20135 Milano, Italy
E-Mail: mereghetti@dsi.unimi.it

Beatrice Palano
Dipartimento di Scienze dell'Informazione, Universita degli Studi di Milano
via Comelico 39/41, 20135 Milano, Italy
E-Mail: palano@dsi.unimi.it

Abstract. Iterative arrays (IAs) are a parallel computational model with a se-
quential processing of the input. They are one-dimensional arrays of interacting
identical deterministic finite automata. In this note, realtime-IAs with sublinear
space bounds are used to accept formal languages. The existence of a proper hi-
erarchy of space complexity classes between logarithmic and linear space bounds
is proved. Furthermore, an optimal space lower bound for non-regular language
recognition is shown.

Key words: Iterative arrays, cellular automata, space bounded computations,
decidability questions, formal languages, theory of computation

1 Introduction

Iterative arrays (IAs, for short) are computational devices consisting of an
array of identical deterministic finite automata — called cells — which them-
selves are homogeneously interconnected with their both neighbors. An IA
reads the input sequentially via a distinguished communication cell. The

*Corresponding author.

state of each cell is changed at discrete time steps by applying its transition
function synchronously. Cole (2] was the first who studied formal language
aspects of IAs. A survey on such aspects may be found in [4]. Some very
recent results concern communication-restricted IAs [5, 12] and reversible
1As [6).

The space used by IAs considers, as a function of the input length, the
number of cells activated along computations. In the general model, as many
cells as the input is long may be used. Here, we consider realtime-IAs which
are allowed to use only a sublinear amount of space.

As a main result, we exhibit an infinite proper hierarchy of classes of lan-
guages accepted between logarithmic and linear space bounds. For subloga-
rithmic space hounds, we prove that only regular languages can be accepted.
Finally, some decidability questions on space bounded realtime-IAs are stud-
ied.

2 Definitions

We assume that the reader is familiar with the common notions of formal
language and recursion theory (see, e.g., [3]).

Let * denote the set of all words over a finite alphabet ¥ and % =
Y*\ {e}, with £ the empty word. The reversal of a word w is denoted
by w!. For the length of w, we write |w]. Set inclusion and strict set
inclusion is denoted by € and C, respectively. Let REG denote the family
of regular languages. In this paper we do not distinguish whether a language
L contains the empty string £ or not, i.e., we identify L with L\ {e}. With
log we denote the logarithm to the base 2.

Let S be a class of recursively enumerable langnages. With a slight abuse
of terminology, we say that a language L has the property S if L belongs to
S. Given a Turing machine M, we denote by T(M) the language accepted by
M, and by (M) a suitable encoding of M. We set Lg = {(M) | T(M) € S}.
If Lg is recursive (resp. recursively enumerable) we say the property S is
decidable (resp. semidecidable).

Details and results on iterative arrays may be found, e.g., in [4]. An IA
is depicted in the following figure.

Figure 11 An iterative array.

It consists of a linear array of identical deterministic finite state automata
called cells. At the beginning, all cells are in a designated quiescent state
qo- Each cell is connected with its left and right neighbor, except clearly
the leftmost cell having only a right connection. The leftmost cell is the
commaunication cell, which processes one input symbol at each time step.
The local transition function is applied to each cell at the same time step.
When the whole input is read, the end-of-input symbol # is processed.

In this paper, we are interested in realtime-IAs. Formally, a (determin-
istic) realtime-IA A is defined as

A= (Q: qo, #,Z, 67 60: F);

where @ # { is the finite set of cell states, gp € @ is the quiescent (initial)
state, # € ¥ is the end-of-input symbol, ¥ is the input alphabet, and F C Q
is the set of accepting cell states. A computational step is locally defined
by the transition function § : Q® — @ for non-communication cells and
8o @*x (SU{#}) — Q for the communication cell. The function 8 satisfies:
(1) 6(q0,90,90) = qo, and (i) 5(a,b,¢) = go = b = go. Roughly speaking,
condition (%) means that a cell may become active (i.e., assume a state in
@\ {qo}) only if its left neighbor is already active, while condition (ii) states
that, once active, a cell cannot enter gy any more. The function §y satisfies
condition (i), mutatis mutandis.

Let ai---an# be the input word for A. A configuration of A at some
time ¢ > 0 is a pair (wy,), where w; € T*# U {e} is the non-read input
sequence and ¢; : N — @ maps the single cells to their current states. For
instance, ¢;(0) is the state of the communication cell at time ¢. The initial
configuration (wy, cg) is defined by wo = ay -+ a,# and co(i) = qo, for i € N.
For 0 < t < n+1, the global transition function A of A is induced by é and
6o as (we,cr) = A(wg—1,ct-1), where:

ct(0) = do(ct-1(0), ct-1(1), 0),
with

_foap ift<gn
TTY ¢ ift=n+1,

while, for 7 > 1
(i) =0(ci-1(é = 1), -1(8), -1 (i + 1)),

and oWt = Wi—1-

The computation of A on input a; ---an# is the sequence (wp, cp), ...,
(Wn41,Cnt1) where for any 0 < ¢t < n+ 1, (w,) = Alwg-y,¢¢-1). The
word a; -+ -a, € &* is accepted by A if and only if ¢,41(0) € F.

It should be noted that the acceptance of a word is sometimes defined
slightly different, i.e., a word is accepted if and only if there is a time step
0 <t <n-+1 at which the communication cell enters an accepting state. It
is easy to see that for realtime-IAs both acceptance modes are equivalent.

The language accepted by A is the set T(A) C ¥* of all words accepted
by A.

We denote by L£,:(IA) the class of languages accepted by realtime-IAs.
It holds that REG C £,;(IA). Inclusion is trivial, yet it is well known that
some (but not all) context-free and context-sensitive languages are accepted
by realtime-IAs (see, e.g., [4] and the next section).

3 Space Bounded Iterative Arrays

In the general model, along their computations, IAs may use as many cells as
the input length. It is natural to investigate a sublinear cells usage. In anal-
ogy with the Turing machine model, we call space the amount of cells used
by an IA. Formally, the space used in the computation (z#, co), . . -, (€, ¢jz|+1)
of a realtime-IA A on the word x € * is defined as

S(z) = max {i € N | esa (i) # o).
The strong space complexity of A is the function S : N — N defined as
S(n) = max {S(z) | = € &% |z| = n}.

Hence, S(n) counts the maximum number of cells activated during the com-
putations on words of length n. It is easy to see that, for any realtime-IA,
S(n) < n+1. In this paper, we focus on sublinearly strongly space bounded
realtime-IAs, i.e., with S(n) = o(n). We denote by L£,4(S(n)-IA) the class
of languages accepted by §{(n) strongly space bounded realtime-IAs.

Let us start by investigating space requirements for recognizing certain
languages. To simplify our constructions, we use a typical programming
tool for TAs called tracks. Informally, each cell ¢(i) of an IA A is divided
into subeells ¢(i,1),...,¢(i, k), for a constant k. The jth track of A is the
sequence ¢(0,4),¢(1,5),. ... Different tasks can be simultaneously carried on
in the tracks. One may easily notice that the use of this trick does not affect
our considerations on space.

4

Lemma 1 The language {a™b™c™ | m > 1} can be accepted by a realtime-
IA inlog(n) strong space.

Proof: Realtime-IAs can implement binary counters by storing values in
their cells. The information to be communicated among cells are carry-
overs and the position of the most significant bit of the counter. In [5],
a detailed construction for communication restricted! realtime-IAs is given
which works also for general realtime-IAs. It may also be observed that the
number of cells needed to count the natural number n is |log(n) + 1]. By
grouping the first two cells into the communication cell, we obtain log(n) as
space upper bound.

Now, consider an IA which has three tracks. In the first two tracks,
binary counters are implemented according to the above construction. While
reading a’s, both counters are incremented by one for each a. When reading
b’s, the counter in the first track is decremented by one for each b. Finally,
when reading c's, the counter in the second track is decremented by one
for each ¢. The correct format of the input, i.e., a*b*ct, can be checked
in the last track by the communication cell. If both counters have been
decremented to zero at that moment when the end-of-input symbol is read,
then the input is accepted, otherwise it is rejected. This realtime-IA is easily
seen to be log(n) strongly space bounded. [

Lemma 2 The language {(Lmk | m > 1}, for fized k > 2, can be accepted by
a realtime-IA in ¥Yn strong space.

Proof: We consider the construction of signals of ratio m* presented in
[8]. This construction works in real time and needs a cellular device with
two-way comrnunication. Therefore, it can be implemented by a realtime-TA
A. On the word a™, the communication cell of A enters an accepting state
whenever a designated state is obtained which identifies time steps of the
form p*, for 1 < p < |¥n]. Moreover, it can be observed that at most
L&n + 1] cells are used. Again, by grouping the first two cells into the
communication cell, we obtain a realtime-IA in ¥n strong space accepting
{a™* | > 1) 0

Lemma 3 The language P = {wew® | w € {a,b}*} can be accepted by a
realtime-IA in linear strong space.

'Roughly speaking, in the communication restricted model [5, 12], cells can exchange
only “one bit of information.”

Proof: In (1], a construction is presented which shows how realtime-IAs
can simulate a stack. The correct format of the input, i.e., {a,b}*c{a, b}* can
be checked in the communication cell via an additional track. Thus, we may
assume that the input has the form wez with w,2 € {a,b}*. Now, w is read
and each symbol is pushed into the cells in a stack-like manner. Having
read the separating symbol ¢, in every subsequent time step one symbol
is popped from the cells and matched against the input z. Finally, when
the input is read and all symbols have been matched correctly, the word is
accepted, otherwise it is rejected. It can be observed from the construction
in [1] that at most |w]| cells are used for an input wez, with w,z € {a, b}*.
Hence, a linear amount of space is sufficient. O

We will see in Lemma 6, that a linear amount of space is also necessary
for recognizing the language P.

4 Proper Space Hierarchy

Let us now start to build a proper hierarchy for sublogarithmically space
bounded realtime-IAs. The first level is stated in the following

Lemma 4 REG C L (log(n)-1A).

Proof: Lemma 1 gives an example of a non-regular language accepted by
a realtime-TA in log(n) strong space. 0O

To investigate higher levels of the hierarchy, we introduce some termi-
nology. Given a configuration (w,ct) of a realtime-IA, we call array state
either the sequence ¢;(0),¢(1),..., (k) of the states of all active cells at
time ¢ (i.e., with k € N satisfying ¢,(k) # go and e(k + 1) = qg), or the
empty sequence representing ¢;(2) = qq, for i € N.

Lemma 5 For k > 2, Ly(¥n-1A) C L,(IA).

Proof: By Lemma 3, the language P = {wcew® | w € {a,b}*} can be
accepted by a realtime-IA. Now, assume by contradiction that P is accepted
by a realtime-IA A with state set @ in ¢/n strong space. Consider A having
the word wer, with |w] = |z], as input. It is clear that, upon reading the
symbol ¢, A must have at least 21! different array states. Otherwise, A
would wrongly accept a word wer such that # w®. On the other hand,
the maximum number of different array states which can be obtained on an

6

input of length 2jw| + 1 is bounded by |Q| Y2+l Then, we obtain the

inequality
|Q! kw41 > 2|w|,

which is equivalent to

(2lw] +1)(log(1Q1)* = Jwl®.
This is a contradiction for |w| being sufficiently large. 0

More generally, one may show
Lemma 6 For any S(n) = o(n), L+(S(n)-IA) C L4(IA).

Proof: By the same technique used to prove Lemma 5, we get P &
Lr(S(n)-1A), for S(n) = o(n). a

Lemma 7 Fork > 2, Ly (*W/n-IA) C Lp(&n-TA).
Proof: We consider the language
P = {e+DF=2wl-1y,)R | 4y € {a,b}*},

and first show that P’ can be accepted by a realtime-IA A in ¥n strong
space. A has four tracks. In the first track, the communication cell checks
whether the input has the correct format, i.e., ¢*{a,b}*c{a,b}". In the
second track, we implement the recognition of the language {¢™ | m > 1}
according to the construction of Lemma 2. Notice that words in P’ have
length (|w|+1)*. Any time a number of initial ¢’s in the form p*, for p > 1,
is counted, the comrnunication cell of the second track enters an accepting
state and a special symbol is pushed into the third track which is organized
as a stack. We notice that, for words in P/, the stack height is jw| at the end
of initial ¢’s processing (we will show this fact later). Then, when the first
symbol from {a,b} is read: in the fourth track, we start the recognition of
the language P = {wew® | w € {a,b}*} as in Lemma 3; additionally, in the
third track, one symbol per each a or b read is popped from the stack up to
the next ¢. At the end of the parsing of a word in P’: we enter a certain state
in the first track; an accepting state is entered both in the second and fourth
track, and the stack in the third track is empty up to that symbol which has
just arisen from the second track. Thus, we can accept upon reading the
end-of-input symbol. In all other cases, one or more tracks reveal a failure
and the word is rejected.

-1

It remains to be shown that, having processed the initial ¢’s of words in
P!, the height of the stack implemented in the third track is |w|. It’s enough
to see that (Jw] + 1)* — 2w| — 1 > |w|*. In fact, for k > 2:

(o] + 1) = 2| ~ 1 =

k-2
> (’“) e + (k= Dl > ol

1=0

Since A must accept in a strong acceptance mode, we have to make
sure that A uses at most {‘/l?l cells on input 2, disregarding acceptance
or rejection. To this aim, we modify A such that the input is rejected
whenever the third or fourth track wants to use a cell which has not been
already active in the second track. Let us show that this new algorithm
is correct and takes place in {/|z| strong space. To this aim, it is enough
to show that: (i) the second track never uses more than {‘/m cells, and
that (ii) = € P’ implies that, along the computation on z, the third and
fourth track never exceed second track’s space usage. The first property is
ensured by Lemma 2. Concerning the second property, we notice that the
third and fourth tracks essentially contain stacks of height |w|. Yet, we can
concentrate only on the third track, since the fourth track grows only after
the initial ¢’s have been read. Let ¢t be a time step during the processing
of the initial ¢'s, i.e., 1 <t < (Jw} +1)* — 2Jw| — 1. At this time, at least
L ¥/t] cells are active in the second track, while p cells are active in the third
track, with p satisfying p* < ¢ < (p+1)*. Clearly, we get | /%] > p. Hence,
we conclude that P’ can be accepted by a realtime-TIA in ¢/n strong space.

Next, we show that P’ cannot be accepted by a realtime-IA in *+Y/n
strong space. By contradiction, assume that P’ is accepted by such an
IA A’ with state set (). As in the proof of Lemma 5, on input a word
W+ ~2Rel=Tyep with |w| = ||, A’ must be able to represent at least
2l different array states upon reading the symbol ¢ between w and z. The
maximum number of different array states of A’ on an input of length (jw|+
1)* is bounded by |Q| FY 1)k Then, we must require |Q)| Yl)F >
olw| or, equivalently,

(lw] + 1)*(log(JQN))F*! > jwl*+1,

which can also be written as

k

> (! ol-omtiany+ 2 o+

i=0

Dividing by |w|**! > 0, we get

k

> (5 el togti@hy =1

i=0

This is clearly a contradiction since, for any 0 < i < k, we have that lw| 1
converges to 0 as |w| grows. |

With similar considerations we obtain
Corollary: For k > 2, Lri(log(n)-1A) C L,4(¥/n-IA).

In conclusion, we are able to exhibit the claimed infinite space hierarchy:

Theorem 1 For k > 2,
o REG C Lri(log(n)-IA),
o Ly (log(n)-IA) C Ly (¥Yn-14),
o Log(*RY/n-IA) C Ly(Yn-1A),
o L4(¥n-1A) C L4(TA).

5 Some Decidability Questions

Some constructions used in the previous section are useful to tackle decid-
ability questions on space bounded realtime-IAs. Let us begin with the
following

Lemma 8 Let A be a realtime-IA. A realtime-IA A’ working in log(n)
strong space can be effectively constructed such that T(A") = {chwl“I'ch' |

w € T(A)}, with ¢ being a new alphabet symbol.

Proof: We construct an IA A’ with two tracks. The first track implements
a binary counter which is increased while reading the initial ¢’s. After read-
ing 2lwl 1 ¢’s, lw| cells are activated to store the binary number 11wl When
reading the first non-c: (i) in the second track, the computation of A on
word w is simulated; (7i) in the first track, a signal from left to right is sent
checking whether all cells contain a 1. If this signal reaches the cell which
contains the most significant bit, another signal from right to left is started.
If this new signal has arrived at the communication cell upon reading the
end-of-input symbol, and w has been accepted on the second track, then .4’

accepts the input. Otherwise, the input is rejected. It can be observed that
on any accepting or non-accepting computation, at most as many cells as
the length of the binary counter are used. Thus, A’ is a realtime-IA working
in log(n) strong space. O

It is shown in {7] that almost all decidability questions for realtime-IAs
are undecidable and not semidecidable. The same results can be extended
to the restricted model of realtime-IAs working in log(n) strong space.

Theorem 2 Emptiness, finiteness, infiniteness, universality, equivalence,
inclusion, reqularity, and context-freedom are not semidecidable for realtime-
IAs working in log(n) strong space.

Proof: Assume, by contradiction, that emptiness is semidecidable for
realtime-IAs log(n) strongly space bounded. Let A be a realtime-IA and
construct a realtime-IA A’ log(n) strongly space bounded as in Lemma 8.
Clearly, T(A) is empty if and only if T'(4’) is empty. This would show that
emptiness is semidecidable for realtime-IAs, which contradicts [7]. With
the same argument, we can show the non-semidecidability of finiteness and
infiniteness. By using the track programming tool, it is not hard to prove
that realtime-IAs working in log(n) strong space are closed under intersec-
tion, union and complementation. So, universality is also not semidecidable.
Now, consider two realtime-IAs A and B working in log(n) strong space.
Since T'(A) € T(B) if and only if T(A) NT(B)¢ = @, we obtain the non-
semidecidability of inclusion and, hence, equivalence. Finally, consider the
language T(A') - {a™b™c™ | m > 1}, with T'(A’) defined as in Lemma 8 and
some new alphabet symbols a,b, ¢. According to Lemma 1 and Lemma 8,
such a language is casily seen to be accepted by a realtime-IA A” in log(n)
strong space. Since T(A”) is regular (context-free) if and ounly if T(A') is
empty, we obtain the non-semidecidability of regularity (context-freedom)
for log(n) strongly space bounded realtime-IAs. Cl

6 Lower Bounds for Recognizing Non-Regular
Languages

According to Theorem 2, restricting to a logarithmic cell usage still leads to
non-semidecidable questions. So, as a further restriction, we could consider
realtiine-IAs which are allowed to use only a sublogarithmic number of cells.
Notice that an analogous investigation has been carried on even for space

10

bounded Turing machines (see, e.g., [9, 10] for a survey on the sublogarithmic
space world).

The next theorem shows that sublogarithmic space bounds reduce the
computational capacity of realtime-IAs to the regular languages.

Theorem 3 Let A be a realtime-IA S(n) strongly space bounded. Then,
either S(n) > c-log(n), for some constant ¢ > 0 and infinitely many n,
or A accepts a regular language and the space used by A is bounded by a
constant.

Proof: We adapt the “cut-and-glue” technique in [11] to space bounded
realtime-IAs. Let L = T(A) and let L[k] be the set of words in L requiring
exactly k cells. We notice that L[k] # @ for infinitely many k. Other-
wise, the space used by A would be bounded by a constant and L would
be regular, as one may easily verify. Fix a k such that L{k] # 0, and let
w = ajag---ap be one of the shortest words in L{k]. Consider now the
computation (wp,cp),-.., (Wny1,Cns1) of A on the input word w#. Since
w € L[k], the array state c,yq consists of exactly k cells. Now, suppose
there exist 0 < 7 < j < n + 1 satisfying ¢; = ¢;. Then, the sequence
(wo, €0)ys -+ - » (Wi €)y (Wj41,€¢j41)s--+y (Wns1,Cnp1) would be an accepting
computation for the input word ai - --a;aj41 - - an#, or for ay - - a;# when-
ever § = n. Moreover, we observe that such a computation uses exactly &
cells, witnessing membership of a1 -+ a;@j41---an (or ay- -+ ¢;) in L{k]. This
clearly contradicts the fact that n is the length of the shortest words in L{k].
Thus, there must exist at least n+2 pairwise different array states consisting
of k cells, and this for infinitely many k. Hence, we get n 42 < IQI“', where
@ is the state set of A. Taking logarithms, we obtain k > ¢-log(n), for some
positive constant ¢. This shows the claim. 0

We conclude by observing that the logarithmic space lower bound for
non-regular language acceptance in Theorem 3 is optimal. It is enough, in
fact, to consider Lemma 1 where a non-regular language is shown to he
accepted by a realtime-IA in log(n) strong space.

References

{1} Buchholz, T., Kutrib, M.: Some relations between massively parallel
arrays. Parallel Comput. 23 (1997) 1643-1662.

[2] Cole, S. N.: Real-time computation by n-dimensional iterative arrays
of finite-state machines. IEEE Transactions Computers C-18 (1969)
349-365.

11

[3] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[4] Kutrib, M.: Automata arrays and context-free languages. In: Where
Mathematics, Computer Science and Biology Meet, Kluwer Academic
Publishers (2001) 139-148.

[5] Kutrib, M., Malcher, A.: Fast iterative arrays with restricted inter-
cell communication: constructions and decidability. In: Krédlovié, R.,
Urzyczyn, P. (Eds.): Mathematical Foundations of Computer Science
(MFCS 2006), LNCS 4162, Springer-Verlag (2006) 634-645.

[6] Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. In:
Csuhaj-Varji, E., Esik, Z. (Eds.): Fundamentals of Computation The-
ory (FCT 2007), LNCS 4639, Springer-Verlag (2007) 376-387.

(7] Malcher, A.: On the descriptional complexity of iterative arrays. IEICE
Trans. Inf. Sci. E87-D (2004) 721-725.

[8] Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata.
Theoret. Comp. Sci. 217 (1999) 53-80.

[9] Mereghetti, C.: The descriptional power of sublogarithmic resource
bounded Turing machines. In: Geffert, V., Pighizzini, G. (Eds.): De-
scriptional Complexity of Formal Systems (DCFS 2007), Univerzity
P. J. Saférik, KoSice, Slovakia (2007) 12-26.

[10] Szepietowski, A.: Turing machines with sublogarithmic space. LNCS
843, Springer-Verlag, Berlin, 1994.

[11] Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory
limited computations. In: IEEE Conf. Record. on Switching Circuit
Theory and Logical Design (1965) 179-190.

[12] Umeo, H., Kamikawa, N.: Real-time generation of primes by a 1-bit

communication cellular automaton. Fundam. Inform. 58 (2003) 421-
435.

12

Interne Berichte am Institut fiir Informatik
Johann Wolfgang Goethe-Universitéit Frankfurt

1/1987 Risse, Thomas:
On the number of multiplications needed to evaluate the
reliability of k-out-of-n systems

2/1987 Roll, Georg [u.a:
Ein Assoziativprozessor auf der Basis eines modularen
vollparallelen Assoziativspeicherfeldes

3/1987 Waldschmidt, Klaus ; Roll, Georg:
Entwicklung von modularen Betriebssystemkernen fiir
das ASSKO-Multi-Mikroprozessorsystem

4/1987 Workshop iiber Komplexititstheorie, effiziente Algo-
rithmen und Datenstrukturen:
3.2.1987, Universitit Frankfurt/Main

5/1987 Seidl, Helmut:
Parameter-reduction of higher level grammars

6/1987 Kemp, Rainer:
On systems of additive weights of trees

7/1987 Kemp, Rainer:
Further results on leftist trees

8/1987 Seid], Helmut:
The construction of minimal models

9/1987 Weber, Andreas ; Seidl, Helmut.:
On finitely generated monoids of matrices with entries
in N

10/1987 Seidl, Helmut:
Ambiguity for finite tree automata

1/1988 Weber, Andreas:
A decomposition theorem for [inite-valued transducers
and an application to the equivalence problem

2/1988 Roth, Peter:
A note on word chains and regular languages
3/1988 Kemp, Rainer:

Binary search trees for d-dimensional keys

4/1988 Dal Cin, Mario:
On explicit fault-tolerant, parallel programming

5/1988 Mayr, Ernst W.:
Parallel approximation algorithms

6/1988 Mayr, Ernst W.:
Membership in palynomial ideals over Q) is expotential
space complete

1/1989 Lutz, Joachim {u.a.l:
Parallelisierungskonzepte fiir ATTEMPQO-2

2/1989 Lutz, Joachim [u.a.}:
Die Erweiterung der ATTEMPO-2 Laufzeithibliothek
3/1989 Kemp, Rainer:
A One-to-one Correspondence between Two Classes of
Ordered Trees
4/1989 Mayr, Ernst W. ; Plaxton, C. Greg:
Pipelined Parallel Prefix Computations, and Sorting on
a Pipelined Hypercube
5/1989 Brause, Riidiger:
Performance and Storage Requirements of Topology-
conserving Maps for Robot Manipulator Control
6/1989 Roth, Peter:
Every Binary Pattern of Length Six is Avoidable on the
Two-Letter Alphabet
7/1989 Mayr, Ernst W.:
Basic Parallel Algorithms in Graph Theory
8/1989 Brauer, Johannes:
A Memory Device for Sorting

1/1990 Volimer, Heribert:
Subpolynomial Degrees in P and Minimal Pairs for L
2/1990 Lenz, Katja:
The Complexity of Boolean Functions in Bound Depth
Circuits over Basis {A, &}
3/1990 Becker, Bernd ; Hahn R. ; Krieger, R. ; Sparmann,
U.:
Structure Based Methods for Parallel Pattern Fault Si-
mulation in Combinational Circuits
4/1990 Goldstine, J. ; Kintala, C.M.R. ; Wotschke D.:
On Measuring Nondeterminism in Regular Languages
5/1990 Goldstein, J. ; Leung, H. ; Wotschke, D.:
On the Relation between Ambiguity and Nondetermi-
nism in Finite Automata

1/1991 Brause, Riidiger:
Approximator Networks and the Principles of Optimal
Information Distribution

2/1991 Brauer, Johannes ; Stuchly, Jirgen:
HyperEDIF: Ein Hypertext-System fiir VLST Entwurfs-
daten

3/1991 Brauer, Johannes:
Reprisentation von Entwurfsdaten als symbolische Aus-
driicke

4/1991 Trier, Uwe:
Additive Weights of a Special Class of Nonuniformly Dis-
tributed Backtrack Trees

5/1991 Démel, P. jua.]:

Concepts for the Reuse of Communication Software
6/1991 Heistermann, Jochen:

Zur Theorie genetischer Algorithmen

7/1991 Wang, Alexander [u.a.):
Embedding complete binary trees in faulty hypercubes

1/1992 Brause, Riidiger:
The Minimum Entropy Network

2/1992 Trier, Uwe:
Additive Weights Under the Balanced Probability Model

3/1992 Trier, Uwe:
{Un)expected path lengths of asymetric binary search
trees

4/1992 Coen Alberto ; Lavazza, Luigi ; Zicari, Roberto:
Assuring type-safety of object oriented languages

5/1992 Coen, Alberto ; Lavazza, Luigi ; Zicari, Roberto:
Static type checking of an object-oriented database sche-
ma

6/1992 Coen, Alberto ; Lavazza, Luigi ; Zicari, Roberto:
Overview and progress report of the ESSE project : Sup-
porting object-oriented database schema analysis and
evolution

7/1992 Schmidt-Schaul, Manfred:
Some results for unification in distributive equational
theories

8/1992 Mayr, Ernst W. ; Werchner, Ralph:
Divide-and-conquer algorithms on the hypercube

1/1993 Becker, Bernd ; Drechsler, Rolf ; Hengster, Harry:
Local circuit transformations preserving robust path-
delay-fault testability

2/1993 Krieger, Rolf ; Becker, Bernd ; Sinkovié, Robert:

A BDD-based algorithmen for computation of exact fault
detection probabilities

3/1993 Mayr, Ernst W. ; Werchner, Ralph:

Optimal routing of parentheses on the hypercube

4/1993 Drechsler, Roll ; Becker, Bernd:
Rapid prototyping of fully
AND/EXOR networks

5/1993 Becker, Bernd ; Drechsler, Rolf:
On the computational power of functional decision dia-
grams

6/1993 Berghoff, P. ; Démel, P. ; Drobnik, O. [u.a.):
Development and management of communication soft-
ware systems

7/1993 Krieger, Rolf ; Hahn, Ralf ; Becker Bernd:
test_cire : Ein abstrakter Datentyp zur Repriisentation
von hierarchischen Schaltkreisen {Benutzerauleitung)

8/1993 Krieger, Rolf ; Becker, Bernd ; Hengster, Harry:
lge++ : Etn Werkzeug zur Implementierung von Logiken
aly abstrakte Datentypen in C++ (Benutzeranleitung)

9/1993 Becker, Bernd : Drechsler, Rolf ; Meinel, Christoph:
On the testability of circuits derived from binary decision
diagrams

testable multi-level

10/1993 Liu, Ling ; Zicari, Roberto ; Liebherr, Karl ; Hiirsch,
Walter:
Polymorphic reuse mechanism for object-oriented data-
base specifications

11/1993 Ferrandina, Fabrizio ; Zicari, Roberto:
Object-oriented database schema evolution: are lazy up-
dates always equivalent to immediate updates ?

12/1993 Becker, Bernd ; Drechsler, Rolf ; Werchner, Ralph:
On the Relation Between BDDs and FDDs

13/1993 Becker, Bernd ; Drechsler, Rolf:
Testability of circuits derived from functional decision
diagrams

14/1993 Drechsler, R. ; Sarabi, A. ; Theobald, M. ; Becker,
B. ; Perkowski, M.A.;
Efficient repersentation and manipulation of switching
functions based on ordered Kronecker functional decisi-
on diagrams

15/1993 Drechsler, Rolf ; Theobald, Michael ; Becker, Bernd:
Fast FDD based Minimization of Generalized Reed-
Muller Forms

1/1994 Ferrandina, Fabrizio ; Meyer, Thorsten ; Zicari, Ro-
berto:

Implementing lazy database updates for an object data-
base system

2/1994 Liu, Ling ; Zicari, Roberto ; Hiirsch, Walter ; Lieb-
herr, Karl:

The Role of Polymorhic Reuse mechanism in Schema
Evolution in an Object-oriented Database System
3/1994 Becker, Bernd ; Drechsler, Rolf ; Theobald, Michael:

Minimization of 2-level AND/XOR Expressions using
Ordered Kronecker Functional Decision Diagrams
4/1994 Drechsler, R. ; Becker, B. ; Theobald, M. ; Sarabi, A.

; Perkowski, M.A .
On the eomputational power of Ordered Kronecker Func-
tional Decision Diagrams
5/1994 Even, Susan ; Sakkinen, Marku:
The safe use of polymorphism in the O2C database lan-
guage
6/1994 GI/ITG-Workshop:
Anwendungen formaler Methoden im Systementwurf :
21. und 22. Mirz 1994
7/1994 Zimmermann, M. ; Ménch, Ch. [u.a.:
Die Telematik-Klassenbibliothek zur Programmierung
verteilter Anwendungen in C-++
8/1994 Zimmermann, M. ; Krause, G.:
Eine konstruktive Beschreibungsmethodik fiir verteilte
Anwendungen
9/1994 Becker, Bernd ; Drechsler, Rolf:
How many Decomposition Types do we need ?
10/1994 Becker, Bernd ; Drechsler, Rolf:
Sympathy: Fast Exact Minimization of Fixed Polarity
Reed-Muller Expression for Symmetric Functions
11/1994 Drechsler, Rolf ; Becker, Bernd ; Jahnke, Andrea:
Ou Variable Ordering and Decompostion Type Choice
in OKFDDs

12/1994 Schmidt-Schauf:
Unification of Stratified Second-Order Terms

13/1994 Schmidt-SchauB:
An Algorithmen for Distributive Unification

14/1994 Becker, Bernd ; Drechsler, Rolf:
Synthesis for Testability: Circuit Derived from ordered
Kronecker Functional Decision Diagrams

15/1994 Bir, Brigitte:
Konformitdt von Objekten in offenen verteilten Syste-
men

16/1994 Seidel, T. ; Puder, A. ; Geihs, K. ; Griinder, H.:
Global object space: Modell and Implementation

17/1994 Drechsler, Rolf ; Esbensen, Henrik ; Becker, Bernd:

Genetic algorithms in computer aided design of integra-
ted circuits

1/1995 Schiitz, Marko:
The G#-Machine: efficient strictness analysis in Haskell
2/1995 Henning, Susanne ; Becker, Bernd:
GAFAP: A Linear Time Scheduling Approach for High-
Level-Synthesis

3/1995 Drechsler, Rolf ; Becker, Bernd ; Gickel, Nicole:
A Genetic Algorithm for variable Ordering of OBDDs
4/1995 Nebel, Markus E.:
Exchange Trees, cine Klasse Bindrer Suchbdume mit
Worst Case Héshe von log(n)
5/1995 Drechsler, Rolf ; Becker, Bernd:
Dynamic Minimization of OKFDDs
6/1995 Breché, Philippe ; Ferrandina, Fabrizio ; Kuklok, Mar-
tin:
Simulation of Schema and Database Modification using
Views
7/1995 Breché, Philippe ; Worner, Martin:
Schema Update Primitives for ODB Design
8/1995 Schmidt-Schaufl, Manfred:
On the Sematics and Interpretation of Rule Based Pro-
grams with Static Global Variables
9/1995 RuBmann, Arnd:
Adding Dynamic Actions to LL(k) Parsers
10/1995 RuBmann, Arnd:
Dynamic LL(k) Parsing
11/1995 Leyendecker, Thomas ; Oehler, Peter ; Waldschmidt,
Klaus:
Spezifikation hybrider Systeme
12/1995 Cerone, Antonio ; Maggiolo-Schettini, Andrea:
Time-based Expressivity of Times Petri Nets

1/1996 Schiitz, Marko ; Schmidt-Schau$, Manfred:
A Constructive Caleulus Using Abstract Reduction for
Context Analysis (nicht erschienen)

2/1996 Schmidt-Schaul, Manfred:
CPE: A Calculus for Proving Equivalence of Expressions
in a Nonstrict Functional Language

iii

1/1997 Kemp, Rainer:
On the Expected Number of Nodes at Level &k in O-
balanced Trees
2/1997 Nebel, Markus:
New Results on the Stack Ramification of Binary Trees
3/1997 Nebel, Markus:
On the Average Complexity of the Membership Problem
for a Generalized Dyck Language
4/1997 Liebehenschel, Jens:
Ranking and Unranking of Lexicographically Ordered
Words: An Average-Case Analysis
5/1997 Kappes, Martin:

On the Generative Capacity of Bracketed Contextual
Grammars

1/1998 Arlt, B. ; Brause, R.:
The Principal Independent Components
Images. Elektronisch ~ publiziert unter
hitp:/ /www.informatik.uni-frankfurt.de/foreports/
Sbreporti-98.ps.gz

2/1998 Miltrup, Matthias ; Schnitger, Georg:
Large Deviation Results for Quadratic Forms

3/1998 Miltrup, Matthias ; Schnitger, Georg:
Neural Networks and Efficient Associative Memory
4/1998 Kappes, Martin:
Multi-Bracketed Contextual Grammars
5/1998 Liebehenschel, Jens:
Lexicographical Generation of a Generalized Dyck Lan-
guage
6/1998 Kemp, Rainer:
On the Joint Distribution of the Nodes in Uniform Mul-
tidimensional Binary Trees

7/1998 Liebehenschel, Jens:
Ranking and Unranking of a Generalized Dyck Language

8/1998 Grimm, Christoph ; Waldschmidt, Klaus:
Hybride Datenflufigraphen

9/1998 Kappes, Martin:
Multi-Bracketed Contextual Rewriting Grammars

of
URL

1/1999 Kemp, Rainer:
On Leftist Simply Generated Trees

2/1999 Kemp, Rainer:
A One-to-one Correspondence Between a Class of Leftist
Trees and Binary Trees

3/1999 Kappes, Martin:
Combining Contextual Grammars and Tree Adjoining
Grammars

4/1999 Kappes, Martin:
Descriptional Complexity of Deterministic Finite Auto-
mata with Multiple Initial States

5/1999 Nebel, Markns E.:
New Knowledge on AVL-Trees

6/1999 Manflred Schmidt-Schaull, Marko Schiitz (editors):

1310 International Workshop on Unification

7/1999 Brause, R.; Langsdorf, T.; Hepp, M.:
Credit Card Fraud Detection by Adaptive Neural
Data Mining. Elektronisch publiziert unter URL
http:/ fuww. informatik.uni-frankfurt. de/fbreports/
fbreport7-99.ps.gz

8/1999 Kappes, Martin:
External Multi-Bracketed Contextual Grammars

9/1999 Priese, Claus P.:
A Flexible Type-Extensible Object-Relational DataBase
Wrapper-Architecture

10/1999 Liebehenschel, Jens:
The Connection between Lexicographical Generation
and Ranking

11/1999 Brause, R.; Arlt, B.; Tratar, E.:
A Scale-Invariant Object Recognition System for
Content-based Queries in Image Databases. Elekiro-
nisch publiziert unter URL hitp://www.informatik.uni-
frankfurt.de/foreports /foreportl1-99.ps.gz

12/1999 Kappes, M.; Klemm, R.P,; Kintala, C.M.R.:
Determining Component-based Software System Relia-
bility is Inherently Impossible

13/1999 Kappes, Martin:
Multi-Bracketed Contextual Rewriting Grammars With
Obligatory Rewriting

14/1999 Kemp, Rainer:
On the Expected Number of Leftist Nodes in Simply Ge-
nerated Trees

1/2000 Kemp, Rainer:
On the Average Shape of Dynamically Growing Trees

2/2000 Arlt, B.; Brause, R.; Tratar, E.:
MASCOT: A Mechanism for Attention-based Scale-
invariant Object Recognition in Images. Elektronisch
publiziert unter URL hitp://www.cs.uni-frankfurt.de/
[treports /flreport2-00.pdf

3/2000 Heuschen, Frank; Waldschmidt, Klaus:
Bewertung analoger und digitaler Schaltungen der Si-
gnalverarbeitung

4/2000 Hamker, Fred H.; Paetz, Jirgen; Thine, Sven; Brau-
se, Ridiger; Hanisch, Ernst:
Erkennung kritischer Zustinde von Patienten mit der
Diagnose ,Septischer Schock® mit einem RBF-Netz.
Elektronisch publiziert unter URL http://www. cs.uni-
frankfurt.de/foreports/foreport04-00. pdf

1/2001 Nebel, Markus &
A Unified Approach to the Analysis of Horton-Strahler
Parameters of Binary Tree Structures
2/2001 Nebel, Markus E.:
Combinatorial Properties of RNA Secondary Structures
3/2001 Nebel, Markus E.:
Tnvestigation of the Bernoulli-Model for RNA Secondary
Structures
4/2001 Malcher, Andreas:
Descriptional Complexity of Cellular Automata and De-
cidability Questions

1/2002 Paetz, Jirgen:
Durehschuittshasierte - Generalisierungsregeln;
Grundlagen

Teil L

UB Frankfurt

IR

3372

2/2002 Paetz, Jiirgen; Brause, Riidiger:
Durchschnittsbasierte Generalisierungsregeln Teil II:
Analyse von Daten septischer Schock-Patienten

3/2002 NieBner, Frank:

Decomposition of Deterministic w- regular Liveness Pro-
perties and Reduction of Corresponding Automata

4/2002 Kim, Pok-Son:

Das RSV-Problem ist N'P-vollstindig

5/2002 Nebel, Markus E.:

On a Statistical Filter for RNA Secondary Structures

6/2002 Malcher, Andreas:

Minimizing Finite Automata is Computationally Hard

1/2003 Malcher, Andreas:
On One-Way Cellular Automata with a Fixed Number
of Cells
2/2003 Malcher, Andreas:
On Two-Way Communication in Cellular Automata with
a Fixed Number of Cells
3/2003 Malcher, Andreas:
On the Descriptional Complexity of Iterative Arrays
4/2003 Kemp, Rainer:
On the Expected Number of Leftist Nodes in Dynami-
cally Growing Trees
5/2003 Nebel, Markus E.:
Identifying Good Predictions of RNA Secondary Struc-
ture

1/2004 Meise, Christian:
Zwischenbericht zum Projekt BeCom

2/2004 Malcher, Andreas:
On Non-Recursive Trade-Offs Between Finite-Turn
Pushdown Automata

3/2004 Kappes, Martin; NieBner, Frank:
Reliability and Conciseness of w-Language Representa-
tions by Finite w-Automata

1/2005 Paetz, Jiirgen:
Anwendungs- und Optimierungspotenzial eines Neuro-
Fuzzy-Systems im Wirkstoffdesign

2/2005 Metzler, Dirk:
Robust E-Values for Gapped Local Alignments

3/2005 Weinard, Maik:
Deciding the FIFO Stability of Networks in Polynomial
Time

4/2005 Abawi, Daniel F.:
Analyse und Bewertung von Erstellungssystemen [iir
Augmented Reality-Anwendungen

5/2005 Abawi, Daniel F.:
Die Verdeckungsdarstellungsproblematik bei Augmented
Reality-Anwendungen

1/2006 Metzler, Dirk; Nebel, Markus E.:
Predicting RNA Secondary Structures with Pseudoknots
by MCMC Sampling

1/2007 Malcher, Andreas; Mereghetti, Carlo; Palano, Beatri-
ce:
Sublinearly Space Bounded Iterative Arrays

