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Abstract. Iterative arrays (IAs) are a parallel computational model with a se-
quential processing of the input. They are one-dimensional arrays of interacting
identical deterministic finite automata. In this note, realtime-IAs with sublinear
space bounds are used to accept formal languages. The existence of a proper hi-
erarchy of space complexity classes between logarithmic and linear space bounds
is proved. Furthermore, an optimal space lower bound for non-regular language
recognition is shown.
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1 Introduction

Iterative arrays (IAs, for short) are computational devices consisting of an
array of identical deterministic finite automata — called cells — which them-
selves are homogeneously interconnected with their both neighbors. An IA
reads the input sequentially via a distinguished communication cell. The
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state of each cell is changed at discrete time steps by applying its transition
function synchronously. Cole (2] was the first who studied formal language
aspects of IAs. A survey on such aspects may be found in [4]. Some very
recent results concern communication-restricted IAs [5, 12] and reversible
1As [6).

The space used by IAs considers, as a function of the input length, the
number of cells activated along computations. In the general model, as many
cells as the input is long may be used. Here, we consider realtime-IAs which
are allowed to use only a sublinear amount of space.

As a main result, we exhibit an infinite proper hierarchy of classes of lan-
guages accepted between logarithmic and linear space bounds. For subloga-
rithmic space hounds, we prove that only regular languages can be accepted.
Finally, some decidability questions on space bounded realtime-IAs are stud-
ied.

2 Definitions

We assume that the reader is familiar with the common notions of formal
language and recursion theory (see, e.g., [3]).

Let * denote the set of all words over a finite alphabet ¥ and % =
Y*\ {e}, with £ the empty word. The reversal of a word w is denoted
by w!. For the length of w, we write |w]. Set inclusion and strict set
inclusion is denoted by € and C, respectively. Let REG denote the family
of regular languages. In this paper we do not distinguish whether a language
L contains the empty string £ or not, i.e., we identify L with L\ {e}. With
log we denote the logarithm to the base 2.

Let S be a class of recursively enumerable langnages. With a slight abuse
of terminology, we say that a language L has the property S if L belongs to
S. Given a Turing machine M, we denote by T(M) the language accepted by
M, and by (M) a suitable encoding of M. We set Lg = {(M) | T(M) € S}.
If Lg is recursive (resp. recursively enumerable) we say the property S is
decidable (resp. semidecidable).

Details and results on iterative arrays may be found, e.g., in [4]. An IA
is depicted in the following figure.

Figure 11 An iterative array.



It consists of a linear array of identical deterministic finite state automata
called cells. At the beginning, all cells are in a designated quiescent state
qo- Each cell is connected with its left and right neighbor, except clearly
the leftmost cell having only a right connection. The leftmost cell is the
commaunication cell, which processes one input symbol at each time step.
The local transition function is applied to each cell at the same time step.
When the whole input is read, the end-of-input symbol # is processed.

In this paper, we are interested in realtime-IAs. Formally, a (determin-
istic) realtime-IA A is defined as

A= (Q: qo, #,Z, 67 60: F);

where @ # { is the finite set of cell states, gp € @ is the quiescent (initial)
state, # € ¥ is the end-of-input symbol, ¥ is the input alphabet, and F C Q
is the set of accepting cell states. A computational step is locally defined
by the transition function § : Q® — @ for non-communication cells and
8o @*x (SU{#}) — Q for the communication cell. The function 8 satisfies:
(1) 6(q0,90,90) = qo, and (i) 5(a,b,¢) = go = b = go. Roughly speaking,
condition (%) means that a cell may become active (i.e., assume a state in
@\ {qo}) only if its left neighbor is already active, while condition (ii) states
that, once active, a cell cannot enter gy any more. The function §y satisfies
condition (i), mutatis mutandis.

Let ai---an# be the input word for A. A configuration of A at some
time ¢ > 0 is a pair (wy, ), where w; € T*# U {e} is the non-read input
sequence and ¢; : N — @ maps the single cells to their current states. For
instance, ¢;(0) is the state of the communication cell at time ¢. The initial
configuration (wy, cg) is defined by wo = ay -+ a,# and co(i) = qo, for i € N.
For 0 < t < n+1, the global transition function A of A is induced by é and
6o as (we,cr) = A(wg—1,ct-1), where:

ct(0) = do(ct-1(0), ct-1(1), 0),
with

_foap ift<gn
TTY ¢ ift=n+1,

while, for 7 > 1
(i) =0(ci-1(é = 1), -1(8), -1 (i + 1)),

and oWt = Wi—1-



The computation of A on input a; ---an# is the sequence (wp, cp), ...,
(Wn41,Cnt1) where for any 0 < ¢t < n+ 1, (w, ) = Alwg-y,¢¢-1). The
word a; -+ -a, € &* is accepted by A if and only if ¢,41(0) € F.

It should be noted that the acceptance of a word is sometimes defined
slightly different, i.e., a word is accepted if and only if there is a time step
0 <t <n-+1 at which the communication cell enters an accepting state. It
is easy to see that for realtime-IAs both acceptance modes are equivalent.

The language accepted by A is the set T(A) C ¥* of all words accepted
by A.

We denote by L£,:(IA) the class of languages accepted by realtime-IAs.
It holds that REG C £,;(IA). Inclusion is trivial, yet it is well known that
some (but not all) context-free and context-sensitive languages are accepted
by realtime-IAs (see, e.g., [4] and the next section).

3 Space Bounded Iterative Arrays

In the general model, along their computations, IAs may use as many cells as
the input length. It is natural to investigate a sublinear cells usage. In anal-
ogy with the Turing machine model, we call space the amount of cells used
by an IA. Formally, the space used in the computation (z#, co), . . -, (€, ¢jz|+1)
of a realtime-IA A on the word x € * is defined as

S(z) = max {i € N | esa (i) # o).
The strong space complexity of A is the function S : N — N defined as
S(n) = max {S(z) | = € &% |z| = n}.

Hence, S(n) counts the maximum number of cells activated during the com-
putations on words of length n. It is easy to see that, for any realtime-IA,
S(n) < n+1. In this paper, we focus on sublinearly strongly space bounded
realtime-IAs, i.e., with S(n) = o(n). We denote by L£,4(S(n)-IA) the class
of languages accepted by §{(n) strongly space bounded realtime-IAs.

Let us start by investigating space requirements for recognizing certain
languages. To simplify our constructions, we use a typical programming
tool for TAs called tracks. Informally, each cell ¢(i) of an IA A is divided
into subeells ¢(i,1),...,¢(i, k), for a constant k. The jth track of A is the
sequence ¢(0,4),¢(1,5),. ... Different tasks can be simultaneously carried on
in the tracks. One may easily notice that the use of this trick does not affect
our considerations on space.
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Lemma 1 The language {a™b™c™ | m > 1} can be accepted by a realtime-
IA inlog(n) strong space.

Proof: Realtime-IAs can implement binary counters by storing values in
their cells. The information to be communicated among cells are carry-
overs and the position of the most significant bit of the counter. In [5],
a detailed construction for communication restricted! realtime-IAs is given
which works also for general realtime-IAs. It may also be observed that the
number of cells needed to count the natural number n is |log(n) + 1]. By
grouping the first two cells into the communication cell, we obtain log(n) as
space upper bound.

Now, consider an IA which has three tracks. In the first two tracks,
binary counters are implemented according to the above construction. While
reading a’s, both counters are incremented by one for each a. When reading
b’s, the counter in the first track is decremented by one for each b. Finally,
when reading c's, the counter in the second track is decremented by one
for each ¢. The correct format of the input, i.e., a*b*ct, can be checked
in the last track by the communication cell. If both counters have been
decremented to zero at that moment when the end-of-input symbol is read,
then the input is accepted, otherwise it is rejected. This realtime-IA is easily
seen to be log(n) strongly space bounded. [

Lemma 2 The language {(Lmk | m > 1}, for fized k > 2, can be accepted by
a realtime-IA in ¥Yn strong space.

Proof: We consider the construction of signals of ratio m* presented in
[8]. This construction works in real time and needs a cellular device with
two-way comrnunication. Therefore, it can be implemented by a realtime-TA
A. On the word a™, the communication cell of A enters an accepting state
whenever a designated state is obtained which identifies time steps of the
form p*, for 1 < p < |¥n]. Moreover, it can be observed that at most
L&n + 1] cells are used. Again, by grouping the first two cells into the
communication cell, we obtain a realtime-IA in ¥n strong space accepting
{a™* | > 1) 0

Lemma 3 The language P = {wew® | w € {a,b}*} can be accepted by a
realtime-IA in linear strong space.

'Roughly speaking, in the communication restricted model [5, 12], cells can exchange
only “one bit of information.”



Proof: In (1], a construction is presented which shows how realtime-IAs
can simulate a stack. The correct format of the input, i.e., {a,b}*c{a, b}* can
be checked in the communication cell via an additional track. Thus, we may
assume that the input has the form wez with w,2 € {a,b}*. Now, w is read
and each symbol is pushed into the cells in a stack-like manner. Having
read the separating symbol ¢, in every subsequent time step one symbol
is popped from the cells and matched against the input z. Finally, when
the input is read and all symbols have been matched correctly, the word is
accepted, otherwise it is rejected. It can be observed from the construction
in [1] that at most |w]| cells are used for an input wez, with w,z € {a, b}*.
Hence, a linear amount of space is sufficient. O

We will see in Lemma 6, that a linear amount of space is also necessary
for recognizing the language P.

4 Proper Space Hierarchy

Let us now start to build a proper hierarchy for sublogarithmically space
bounded realtime-IAs. The first level is stated in the following

Lemma 4 REG C L (log(n)-1A).

Proof: Lemma 1 gives an example of a non-regular language accepted by
a realtime-TA in log(n) strong space. 0O

To investigate higher levels of the hierarchy, we introduce some termi-
nology. Given a configuration (w,ct) of a realtime-IA, we call array state
either the sequence ¢;(0),¢(1),..., (k) of the states of all active cells at
time ¢ (i.e., with k € N satisfying ¢,(k) # go and e(k + 1) = qg), or the
empty sequence representing ¢;(2) = qq, for i € N.

Lemma 5 For k > 2, Ly(¥n-1A) C L,(IA).

Proof: By Lemma 3, the language P = {wcew® | w € {a,b}*} can be
accepted by a realtime-IA. Now, assume by contradiction that P is accepted
by a realtime-IA A with state set @ in ¢/n strong space. Consider A having
the word wer, with |w] = |z], as input. It is clear that, upon reading the
symbol ¢, A must have at least 21! different array states. Otherwise, A
would wrongly accept a word wer such that  # w®. On the other hand,
the maximum number of different array states which can be obtained on an
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input of length 2jw| + 1 is bounded by |Q| Y2+l Then, we obtain the

inequality
|Q! kw41 > 2|w|,

which is equivalent to

(2lw] +1)(log(1Q1)* = Jwl®.
This is a contradiction for |w| being sufficiently large. 0

More generally, one may show
Lemma 6 For any S(n) = o(n), L+(S(n)-IA) C L4(IA).

Proof: By the same technique used to prove Lemma 5, we get P &
Lr(S(n)-1A), for S(n) = o(n). a

Lemma 7 Fork > 2, Ly ( *W/n-IA) C Lp(&n-TA).
Proof: We consider the language
P = {e+DF=2wl-1y, )R | 4y € {a,b}*},

and first show that P’ can be accepted by a realtime-IA A in ¥n strong
space. A has four tracks. In the first track, the communication cell checks
whether the input has the correct format, i.e., ¢*{a,b}*c{a,b}". In the
second track, we implement the recognition of the language {¢™ | m > 1}
according to the construction of Lemma 2. Notice that words in P’ have
length (|w|+1)*. Any time a number of initial ¢’s in the form p*, for p > 1,
is counted, the comrnunication cell of the second track enters an accepting
state and a special symbol is pushed into the third track which is organized
as a stack. We notice that, for words in P/, the stack height is jw| at the end
of initial ¢’s processing (we will show this fact later). Then, when the first
symbol from {a,b} is read: in the fourth track, we start the recognition of
the language P = {wew® | w € {a,b}*} as in Lemma 3; additionally, in the
third track, one symbol per each a or b read is popped from the stack up to
the next ¢. At the end of the parsing of a word in P’: we enter a certain state
in the first track; an accepting state is entered both in the second and fourth
track, and the stack in the third track is empty up to that symbol which has
just arisen from the second track. Thus, we can accept upon reading the
end-of-input symbol. In all other cases, one or more tracks reveal a failure
and the word is rejected.
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It remains to be shown that, having processed the initial ¢’s of words in
P!, the height of the stack implemented in the third track is |w|. It’s enough
to see that (Jw] + 1)* — 2w| — 1 > |w|*. In fact, for k > 2:

(o] + 1) = 2| ~ 1 =

k-2
> (’“) e + (k= Dl > ol

1=0

Since A must accept in a strong acceptance mode, we have to make
sure that A uses at most {‘/l?l cells on input 2, disregarding acceptance
or rejection. To this aim, we modify A such that the input is rejected
whenever the third or fourth track wants to use a cell which has not been
already active in the second track. Let us show that this new algorithm
is correct and takes place in {/|z| strong space. To this aim, it is enough
to show that: (i) the second track never uses more than {‘/m cells, and
that (ii) = € P’ implies that, along the computation on z, the third and
fourth track never exceed second track’s space usage. The first property is
ensured by Lemma 2. Concerning the second property, we notice that the
third and fourth tracks essentially contain stacks of height |w|. Yet, we can
concentrate only on the third track, since the fourth track grows only after
the initial ¢’s have been read. Let ¢t be a time step during the processing
of the initial ¢'s, i.e., 1 <t < (Jw} +1)* — 2Jw| — 1. At this time, at least
L ¥/t] cells are active in the second track, while p cells are active in the third
track, with p satisfying p* < ¢ < (p+1)*. Clearly, we get | /%] > p. Hence,
we conclude that P’ can be accepted by a realtime-TIA in ¢/n strong space.

Next, we show that P’ cannot be accepted by a realtime-IA in *+Y/n
strong space. By contradiction, assume that P’ is accepted by such an
IA A’ with state set (). As in the proof of Lemma 5, on input a word
W+ ~2Rel=Tyep with |w| = ||, A’ must be able to represent at least
2l different array states upon reading the symbol ¢ between w and z. The
maximum number of different array states of A’ on an input of length (jw|+
1)* is bounded by |Q| FY 1)k Then, we must require |Q)| Yl )F >
olw| or, equivalently,

(lw] + 1)*(log(JQN))F*! > jwl*+1,

which can also be written as

k

> (! ol-omtiany+ 2 o+

i=0



Dividing by |w|**! > 0, we get

k

> (5 el togti@hy =1

i=0

This is clearly a contradiction since, for any 0 < i < k, we have that lw| 1
converges to 0 as |w| grows. |

With similar considerations we obtain
Corollary: For k > 2, Lri(log(n)-1A) C L,4(¥/n-IA).

In conclusion, we are able to exhibit the claimed infinite space hierarchy:

Theorem 1 For k > 2,
o REG C Lri(log(n)-IA),
o Ly (log(n)-IA) C Ly ( ¥Yn-14),
o Log( *RY/n-IA) C Ly(Yn-1A),
o L4(¥n-1A) C L4(TA).

5 Some Decidability Questions

Some constructions used in the previous section are useful to tackle decid-
ability questions on space bounded realtime-IAs. Let us begin with the
following

Lemma 8 Let A be a realtime-IA. A realtime-IA A’ working in log(n)
strong space can be effectively constructed such that T(A") = {chwl“I'ch' |

w € T(A)}, with ¢ being a new alphabet symbol.

Proof: We construct an IA A’ with two tracks. The first track implements
a binary counter which is increased while reading the initial ¢’s. After read-
ing 2lwl 1 ¢’s, lw| cells are activated to store the binary number 11wl When
reading the first non-c: (i) in the second track, the computation of A on
word w is simulated; (7i) in the first track, a signal from left to right is sent
checking whether all cells contain a 1. If this signal reaches the cell which
contains the most significant bit, another signal from right to left is started.
If this new signal has arrived at the communication cell upon reading the
end-of-input symbol, and w has been accepted on the second track, then .4’



accepts the input. Otherwise, the input is rejected. It can be observed that
on any accepting or non-accepting computation, at most as many cells as
the length of the binary counter are used. Thus, A’ is a realtime-IA working
in log(n) strong space. O

It is shown in {7] that almost all decidability questions for realtime-IAs
are undecidable and not semidecidable. The same results can be extended
to the restricted model of realtime-IAs working in log(n) strong space.

Theorem 2 Emptiness, finiteness, infiniteness, universality, equivalence,
inclusion, reqularity, and context-freedom are not semidecidable for realtime-
IAs working in log(n) strong space.

Proof:  Assume, by contradiction, that emptiness is semidecidable for
realtime-IAs log(n) strongly space bounded. Let A be a realtime-IA and
construct a realtime-IA A’ log(n) strongly space bounded as in Lemma 8.
Clearly, T(A) is empty if and only if T'(4’) is empty. This would show that
emptiness is semidecidable for realtime-IAs, which contradicts [7]. With
the same argument, we can show the non-semidecidability of finiteness and
infiniteness. By using the track programming tool, it is not hard to prove
that realtime-IAs working in log(n) strong space are closed under intersec-
tion, union and complementation. So, universality is also not semidecidable.
Now, consider two realtime-IAs A and B working in log(n) strong space.
Since T'(A) € T(B) if and only if T(A) NT(B)¢ = @, we obtain the non-
semidecidability of inclusion and, hence, equivalence. Finally, consider the
language T(A') - {a™b™c™ | m > 1}, with T'(A’) defined as in Lemma 8 and
some new alphabet symbols a,b, ¢. According to Lemma 1 and Lemma 8,
such a language is casily seen to be accepted by a realtime-IA A” in log(n)
strong space. Since T(A”) is regular (context-free) if and ounly if T(A') is
empty, we obtain the non-semidecidability of regularity (context-freedom)
for log(n) strongly space bounded realtime-IAs. Cl

6 Lower Bounds for Recognizing Non-Regular
Languages

According to Theorem 2, restricting to a logarithmic cell usage still leads to
non-semidecidable questions. So, as a further restriction, we could consider
realtiine-IAs which are allowed to use only a sublogarithmic number of cells.
Notice that an analogous investigation has been carried on even for space
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bounded Turing machines (see, e.g., [9, 10] for a survey on the sublogarithmic
space world).

The next theorem shows that sublogarithmic space bounds reduce the
computational capacity of realtime-IAs to the regular languages.

Theorem 3 Let A be a realtime-IA S(n) strongly space bounded. Then,
either S(n) > c-log(n), for some constant ¢ > 0 and infinitely many n,
or A accepts a regular language and the space used by A is bounded by a
constant.

Proof: We adapt the “cut-and-glue” technique in [11] to space bounded
realtime-IAs. Let L = T(A) and let L[k] be the set of words in L requiring
exactly k cells. We notice that L[k] # @ for infinitely many k. Other-
wise, the space used by A would be bounded by a constant and L would
be regular, as one may easily verify. Fix a k such that L{k] # 0, and let
w = ajag---ap be one of the shortest words in L{k]. Consider now the
computation (wp,cp),-.., (Wny1,Cns1) of A on the input word w#. Since
w € L[k], the array state c,yq consists of exactly k cells. Now, suppose
there exist 0 < 7 < j < n + 1 satisfying ¢; = ¢;. Then, the sequence
(wo, €0)ys -+ - » (Wi €)y (Wj41,€¢j41)s--+y (Wns1,Cnp1) would be an accepting
computation for the input word ai - --a;aj41 - - an#, or for ay - - a;# when-
ever § = n. Moreover, we observe that such a computation uses exactly &
cells, witnessing membership of a1 -+ a;@j41---an (or ay- -+ ¢;) in L{k]. This
clearly contradicts the fact that n is the length of the shortest words in L{k].
Thus, there must exist at least n+2 pairwise different array states consisting
of k cells, and this for infinitely many k. Hence, we get n 42 < IQI“', where
@ is the state set of A. Taking logarithms, we obtain k > ¢-log(n), for some
positive constant ¢. This shows the claim. 0

We conclude by observing that the logarithmic space lower bound for
non-regular language acceptance in Theorem 3 is optimal. It is enough, in
fact, to consider Lemma 1 where a non-regular language is shown to he
accepted by a realtime-IA in log(n) strong space.
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