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Abstract. Iterative arntys (lAs) are a, parallel computational model with a, se­
quential processing of the input. They are one-dimensional arrays of interacting 
identical deterministic finite automata. In this note, realtime-lAs with sublinear 
space bounds are used to accept formal languages. The existence of a proper hi­
erarchy of space complexity classes between logarithmic anel linear space bounds 
is proved. Furthermore, an optimal spacc lower bound for non-regular language 
recognition is shown. 

Key words: Iterative arrays, cellular automata, space bounded computations, 
decidability questions, formal languages, theory of computation 

1 Introduction 

Iterative arrays (lAs, for short) are computational devices consisting of an 
array of identical deterministic: finite automata - called cells - which them­
selves are homogeneously interconnected with their both neighbors. An IA 
reads the input sequentially via a distinguished communication cell. The 

• Corrcoponding author. 
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state of each cell is changed at discrete time steps by applying its transition 
function synchronously. Cole [2] was the first who studied formal language 
aspects of lAs. A survey on such aspects m~w be found in [4]. Some very 
recent results concern communication-restricted lAs [5, 12] and reversible 
lAs [6). 

The space used by lAs considers, as a function of the input length, the 
number of cells activated along computations. In the general model, as many 
cells a'S the input is long may be used. Here, we consider realtime-lAs which 
are allowed to use only a s1Lbl-inear amount of space. 

As a main result, we exhibit an infinite proper hierarchy of classes of lan­
guages accepted between logarithmic and linear space bounds. For subloga­
rithmic space bounds, we prove that only regular languages can be accepted. 
Finally, some decidability questions on space bounded realtime-lAs are stud­
ied. 

2 Definitions 

We assume that the reader is familiar with the common notions of formal 
language and recursion theory (see, e.g., [3]). 

Let E* denote the set of all words over a finite alphabet E and r;+ = 
E* \ {e}, with e the empty word. The reversal of a word 10 is denoted 
by (Ull. For the length of w, we write \wl. Set inclusion and strict set 
iuelllsion is denoted hy ~ and C, respectively. Let REG denote the family 
of regular languages. In this paper we do not distinguish whether a language 
L contains the empty string e or not, i.e., we identify L with L \ {e}. With 
log we denote the logarithm to the base 2. 

Let 5 be a class of recursively enumerable languages. \Vith a slight abuse 
of terminology, we say that a language L has the property 5 if L belongs to 
S. Given a Turing machine AI, we denote by T(M) the language accepted by 
M, and by (111) a suitable encoding of 111. We set Ls = {(M) I T(M) E 5}. 
If L8 is recursive (resp. recursively enumerable) we say the property 5 is 
decidable (resp. semidecidable). 

Details and results on iterative arrays may be found, e.g., in [4]. An IA 
is d(~pieted in the following figure. 

Figure 1: An iterative arrny. 
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It consists of a linear array of identical deterministic finite state automata 
called cells. At the beginning, all cells are in a designated quiescent state 
qo· Each cell is connected with its left and right neighbor, except clearly 
the leftmost cell having only a right connection. The leftmost cell is the 
communication cell, which processes one input symbol at each time step. 
The local transition function is applied to each cell at the same time step. 
When the whole input is read, the end-of-input symbol # is processed. 

In this paper, we are interested in realtime-lAs. Formally, a (determin­
istic) realtime-IA A is defined as 

A= (Q,qo,#,E,5,50 ,F), 

where Q -=I 0 is the finite set of cell states, qo E Q is the quiescent (initial) 
state, # ~ E is the end-of-input symbol, ~ is the input alphabet, and F ~ Q 
is the set of accepting cell states. A computational step is locally defined 
by the transition function 6 : Q3 --t Q for non-communication cells and 
80 : Q2 X (~U { #}) --t Q for the communication cell. The function b satisfies: 
(i) 6(qo, go, qo) = qo, and (ii) 5(a, b, c) = go =? b = qo. Roughly speaking, 
condition (i) means that a cell may become active (I.e., assume a state in 
Q \ {qo}) only if its left neighbor is already active, while condition (ii) states 
that, once active, a cell cannot enter go any more. The function 50 satisfies 
condition (ii), mutatis mutandis. 

Let al ... an # be the input word for A. A configuration of A at some 
time t 2 0 is a pair (Wt, Ct), where Wt E E*# U {c} is the non-read input 
sequence and Ct : .N --t Q maps the single cells to their current states. For 
instance, Ct(O) is the state of the communication cell at time t. The initial 
configuration (wo, co) is defined by Wo = al ... an # and eo(i) = qo, for i E N. 
For 0 < t :S n + 1, the global transition function !:l of A is induced by band 
50 as (Wt, Ct) = !:l(Wt-b Ct-l), where: 

with 
if t :S n 
if t = n + 1, 

while, for i 2: 1 

and ()Wt = Wt-I· 
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The computation of A on input al ... an # is the sequence (wo, co), ... , 
(Wn+ll Cn+d where for any 0 < t $ n + 1, (Wt, Ct) = .6. (Wt-b Ct-l). The 
word at·· ·an E E* is accepted by A if and only if Cn+l(O) E F. 

It should be noted that the acceptance of a word is sometimes defined 
slightly different, i.e., a word is accepted if and only if there is a time step 
o ::; t ::; n + 1 at which the communication cell enters an accepting state. It 
is easy to see that for realtime-lAs both acceptance modes are equivalent. 

The language accepted by A is the set T(A) ~ E* of all words accepted 
byA. 

We denote by Crt (IA) the class of languages accepted by realtime-lAs. 
It holds that REG C Crt(IA). Inclusion is trivial, yet it is well known that 
some (but not all) context-free and context-sensitive languages are accepted 
by realtime-lAs (see, e.g., [4J and the next section). 

3 Space Bounded Iterative Arrays 

In the general model, along their computations, lAs may use as many cells a..<; 

the input length. It is natural to investigate a sublinear cells usage. In anal­
ogy with the Turing machine model, we call space the amount of cells used 
by an IA. Formally, the space used in the computation (x#, co), ... , (c, clxl+l) 
of a realtime-IA A on the word x E E* is defined as 

Sex) = max{i E N I Clxl+l(i):f: qo}. 

The strong spaCt~ complexity of A is the function S : N -. N defined as 

S(n) = max {S(:r) I :z: E E*, Ixl = n}. 

Hence, S(n) counts the maximum number of cells activated during the com­
putations on words of length n. It is easy to see that, for any realtime-lA, 
Sen) ::; n + 1. In this paper, we focus on sublinearly strongly space bounded 
realtime-lAs, i.e., with S(n) = o(n). We denote by Crt(S(n)-IA) the class 
of languagl's accepted by 8(n) strongly space bounded realtime-lAs. 

Let us start by investigating space requirements for recognizing certain 
languages. To simplify our constructions, W(' use a typical programming 
tool for lAs called t1'llcks. Informally, each cell c(i) of an IA A is divided 
iuto subcells c(i, 1), ... , cU, k), for it com;tant k. The jth track of A is the 
sequence c(O, j), c( 1, j), . '" Differput tasks can bp simultaneously carried Oil 

ill the tracks. OIl(' limy easily notice that the liSP of this trick does Hot affect 
our considerations 011 space. 



Lemma 1 The language {ambmcffi I m 2: I} can be accepted by a realtime­
IA in log(n) strong space. 

Proof: Realtime-lAs can implement binary counters by storing values in 
their cells. The information to be communicated among cells are carry­
overs and the position of the most significant bit of the counter. In [5L 
a detailed construction for communication restricted1 realtime-lAs is given 
which works also for general realtime-lAs. It may also be observed that the 
number of cells needed to count the natural number n is llog(n) + IJ. By 
grouping the first two cells into the communication cell, we obtain log(n) as 
space upper bound. 

Now, consider an IA which has three tracks. In the first two tracks, 
binary counters are implemented according to the above construction. While 
reading a's, both counters are incremented by one for each a. When reading 
b's, the counter in the first track is decremented by one for each b. Finally, 
when reading c's, the counter in the second track is decremented by one 
for each c. The correct format of the input, i.e., a + b+ c+, can be checked 
in the last track by the communication cell. If both counters have been 
decremented to zero at that moment when the end-of-input symbol is read, 
then the input is accepted, otherwise it is rejected. This realtime-IA is easily 
seen to be log(n) strongly space bounded. 0 

k 
Lemma 2 The language {am I rn 2: I}, f01' fixed k 2: 2, can be accepted by 
a realtime-IA in ijii strong space. 

Proof: We consider the construction of signals of ratio m h presented in 
[8]. This construction works in real time and needs a cellular device with 
two-way communication. Therefore, it can be implemented by a realtime-IA 
A. On the word an, the communication cell of A enters an accepting state 
whenever a designated state is obtained which identifies time steps of the 
form ph, for I ~ p ~ l.ynJ. Moreover, it can be observed that at most 
l Vii + 1 J c:dls arc used. Again, by grouping the first two cPlls iIlto the 
communication cell, we obtain a realtime-IA in 0i strong space accepting 
{amk\rn2::1}. 0 

Lemma 3 The language P = {wcwR \ W E {a, b} *} can be accepted by a 
realtime-fA in linear strong space. 

1 Roughly Hpeaking, in the communication restricted model [5, 12J, cells can exchange 
only "one bit of information." 
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Proof: In [IJ, a construction is presented which shows how realtime-lAs 
can simulate a stack. The correct format of the input, i.e., {a, b} * c{ a, b } * can 
be checked in the communication cell via an additional track. Thus, we may 
i1 .. <;sume that the input h&<; the form wcx with W,X E {a,b}*. Now, w is read 
and each symbol is pushed into the cells in a stack-like manner. Having 
read the separating symbol c, in every subsequent time step one symbol 
is popped from the cells and matched against the input x. Finally, when 
the input is read and all symbols have been matched correctly, the word is 
accepted, otherwise it is rejected. It can be observed from the construction 
in [1] that at most Iwl cells are used for an input wcx, with W,X E {a,b}*. 
Hence, a linear amount of space is sufficient. D 

We will see in Lemma 6, that a linear amount of space is also necessary 
for recognizing the language P. 

4 Proper Space Hierarchy 

Let us now start to build a proper hierarchy for sublogarithmically space 
bounded realtime-lAs. The first level is stated in the following 

Lemma 4 REG C Lrt(log(n)-lA). 

Proof: Lemma 1 gives an example of a non-regular language accepted by 
a realtime-lA in log( n) strong space. D 

To investigate higher levels of the hierarchy, we introduce some termi­
nology. Given a configuration (Wt, cd of a realtime-lA, we call army state 

either the sequence Ct(O),ct(I), ... ,ct(k) of the states of all active cells at 
tiIlle t (Le., with kEN satisfying Ct(k) i- qo and Ct{k + 1) = qo), or the 
empty sequence representing Ct(i) = qo, for i E N. 

Lemma 5 Fol' k ~ 2, LrtC lfri-lA) C Lrt{lA). 

Proof: By Lemma 3, the language P = {wcwR I W E {a, b} *} can be 
accepted by a realtime-lAo Now, assume by contradiction that P is accepted 
by a realtime-IA A with state set q in lfii strong space. Consider A having 
the word Wc:I:, with 1'101 = I:rl, as input. It is clear that, IlpOIl reading the 
symbol c, A must have at lCH!,t, 21wl different array states. Otherwise, A 
would wrongly accept it \vonl lJIc:r slleh that :r i- wR . OIl the other hand, 
the maximuIll uumber of different array states which call he obtained OIl all 
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input of length 21wl + 1 is bounded by IQI V2Iwl+l. Then, we obtain the 
inequality 

which is equivalent to 

This is a contradiction for Iwl being sufficiently large. o 
More generally, one may show 

Lemma 6 For any S(n) = o(n), ..crt(S(n)-IA) c ..crt(IA). 

Proof: By the same technique used to prove Lemma 5, we get P (j. 
Lrt(S(n) -IA), for S(n) = o(n). 0 

Lemma 7 For k:2: 2, L7•t ( k+ifri-IA) C Lrt ( {1ii-IA). 

Proof: We consider the language 

pI = {cOwl+l)k-2Iwl-lwcwR 1 w E {a,b}*}, 

and first show that pI can be accepted by a realtirm.'-IA it in !fii strong 
space. A has four tracks. In the first track, the communication cell checks 
whether the input has the correct format, i.e., c* {a, b} * c{ a, b} *. In the 
second track, we implement the recognition of the language {cmk I Tn :2: I} 
according to the construction of Lemma 2. Notice that words in pI have 
length (Iwl + l)k. Any time a number of initial c's in the form pk, for p :2: 1, 
is counted, the communication cell of the second track enters an accepting 
state and a special symbol is pushed into the third track which is organized 
as a stack. We notice that, for words in pI, the stack height is Iwl at the end 
of initial c's procpssing (we will show thiR fact later). Them, when tIm first 
symbol from {a, b} is read: in the fourth track, we start the recognition of 
the language P = {wcw R I w E {a, b } *} as in Lemma 3; additionally, in the 
third track, one syrnbol per each a or b read is popped from the stack up to 
the next c. At the end of the parsing of a word in pI: we enter a certain state 
in the tirst track; an accepting state is entered both in the second and fourth 
track, and the stack in thE~ third track is empty up to that symbol which has 
just arisen from the second track. Thus, we can accept upon reading the 
end-of-input symbol. In all other cases, one or more tracks reveal a failun1 
and the word is rejected. 
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It remains to be shown that, having processed the initial c's of words in 
pi, the height of the stack implemented in the third track is Iwl. It's enough 
to see that (1101 + l)k - 21wl- 1 2: Iwlk. In fact, for k ~ 2: 

(iwl + l)k - 21wl - 1 = 

% m Iwl''''; + (k - 2)lwl": Iwl', 

Since A must accept in a strong acceptance mode, we have to make 
sure that A uses at most ViZi cells on input z, disregarding acceptance 
or rejection. To this aim, we modify A such that the input is rejected 
whenever the third or fourth track wants to use a cell which has not been 
already active in the second track. Let us show that this new algorithm 
is conect and takes place in \IiZT strong space. To this aim, it is enough 
to show that: (i) the second track never uses more than VIZT cells, and 
that (ii) z E pI implies that, along the computation on z, the third and 
fourth track never exceed second track's space usage. The first property is 
eIlsured by Lemma 2. Concerning the second property, we notice that the 
third and fourth tracks essentially contain stacks of height Iwl. Yet, we can 
concentrate only on the third track, since the fourth track grows only after 
the initial c's have been read. Let t be a time step during the processing 
of the initial c's, i.e., 1 :::; t :::; (110\ + l)k - 21wl - 1. At this time, at least 
L Vi1 cells are activo in the second track, while p cells are active in the third 
track, with p satisfying pk :s; t < (p + l)k. Clearly, we get l0J 2: p. Hence, 
we conclude that pI can be accepted by a realtime-IA in !;fii strong space. 

Next, WEl show that pI cannot be accepted by a realtime-IA in k+.yri 
strong space. By contradictioIl, assume that pI is accepted by such an 
IA A' with state set Q. As in the proof of Lemma 5, on input a word 
c(lwl+ljk-21wl-lwex, with 1101 = lxi, A' must be able to represent at least 
2lwl difl'erellt array states upon reading the symbol c between 'Wand x. The 
maximum number of diffeu~nt array states of A' on an input of length (I'WI + 
It is bounded by IQI k+V(lwl+l}k. TheIl, we must require IQI k+V(lwl+l)k 2: 
211111 or, equivalently, 

which can also be written as 
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Dividing by Iwl k+1 > 0, we get 

This is clearly a contradiction since, for any 0:::; i :::; k, we have that Iwl-i - 1 

converges to 0 as Iwl grows. 0 

With similar considerations we obtain 

Corollary: For k;:::: 2, £rt(1og(n) -IA) C £rt( {In-IA). 

In conclusion, we are able to exhibit the claimed infinite space hierarchy: 

Theorem 1 For k ;:::: 2, 

• REG c £rt(1og(n)-IA), 

• .Lrt(log(n)-IA) C £rt( k+ijn-IA), 

• .Lrt ( k+ijn_ IA) C Crt ( {In-IA), 

• .Lrt( {t'riAA) C .Lrt(IA). 

5 Some Decidability Questions 

Some constructions used in the previous section are useful to tackle decid­
ability questions on space bounded realtime-lAs. Let us begin with the 
following 

Lemma 8 Let A be a realtime-fA. A realtime-fA A' working in log(n) 
strong space can be efJectively constructed such that T( A') = {c

2IUL 
lwc1wl I 

WE T(A)}, with c being a new alphabet symbol. 

Proof: We construct an IA A' with two tracks. The first track implements 
a binary counter which is increased while reading the initial e's. After read­
ing 2lwl_l e's, Iwl cells are activated to store the binary number 1111)1. "Vhen 
reading the first non-c: (i) in the second track, the computation of A on 
word w is simulated; (ii) in the first track, a signal from left to right is sent 
checking whether all cells contain a 1. If this signal reaches the cell which 
contains the most significant bit, another signal from right to left is started. 
If this new signal has arrived at the communication cell upon reading the 
end-of-input symbol, and w has been accepted on the second track, then A' 
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accepts the input. Otherwise, the input is rejected. It can be observed that 
on any accepting or non-accepting computation, at most as many cells as 
the length of the binary counter are used. Thus, A' is a realtime-IA working 
in log(n) strong space. 0 

It is shown in [71 that almost all decidabHity questions for realtime-lAs 
are undecidable and not semidecidable. The same results can be extended 
to the restricted model of realtime-lAs working in log(n) strong space. 

Theorem 2 Emptiness, finiteness, infiniteness, universality, equivalence, 
inclusion, regularity, and context-freedom are not semidecidable for realtime­
lAs working in log(n) strong space. 

Proof: Assume, by contradiction, that emptiness is semi decidable for 
realtime-lAs log(n) strongly space bounded. Let A be a realtime-IA and 
construct a realtime-IA A' log(n) strongly space bounded as in Lemma 8. 
Clearly, T(A) is empty if and only if T(A') is empty. This would show that 
emptiness is semi decidable for realtime-lAs, which contradicts [7J. With 
the samc argument, we can show the nOll-semidecidability of finiteness and 
infiniteness. By using the track programming tool, it is not hard to prove 
that realtime-lAs working in log(n) strong space are closed under intersec­
tion, union and complementation. So, universality is also not semidecidable. 
Now, consider two realtime-lAs A and B working in log(n) strong space. 
Since T(A) ~ T(B) if and only if T(A) n T(B)C = 0, we obtain the non­
sernidecidability of inclusion and, hence, equivalence. Finally, consider the 
language T(A') . {(L7n bTn cTn 1m 2: I}, with T(A') defined as in Lemma 8 and 
some new alphabet symbols (1, b, c. According to Lemma 1 and Lemma 8, 
such a language is ea,<;ily seen to be accepted by a realtime-IA A" in log(n) 
strong space. Sinen T(A") is regular (context-fren) if and only if T(A') is 
empty, we obtain the non-semidecidability of l'ngularity (context-freedom) 
for log(n) strongly spacn bounded realtime-lAs. 0 

6 Lower Bounds for Recognizing Non-Regular 
Languages 

According to Theorem 2, restricting to a logarit.hmic cell usage still leads to 
Iloll-semidecidable questions. So, as a further restrictioll, we could consider 
realtime-lAs which are allowed to lise only a sublogarithmic number of cells. 
Notice that an analogous investigatioll has been carried on evell for space 
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bounded Turing machines (see, e.g., [9, 10J for a survey on the sublogarithmic 
space world). 

The next theorem shows that sublogarithmic space bounds reduce the 
computational capacity of realtime-lAs to the regular languages. 

Theorem 3 Let A be a realtime-fA S(n) strongly space bounded. Then, 
either S(n) ~ c· log(n), for some constant c > 0 and infinitely many n, 
or A accepts a regular language and the space used by A is bonnded by a 
constant. 

Proof: We adapt the "cut-and-glue" technique in [l1J to space bounded 
realtime-lAs. Let L = T(A) and let L[kJ be the set of words in L requiring 
exactly k cells. We notice that L[kJ f. 0 for infinitely many k. Other­
wise, the space used by A would be bounded by a constant and L would 
be regular, as one may easily verify. Fix a k such that L[kJ f. 0, and let 
w = ala2'" an be one of the shortest words in L[k]. Consider now the 
computation (wo, co), ... , (Wn+l' Cn+l) of A on the input word w#. Since 
W E L[k], the array state Cn+l consists of exactly k cells. Now, suppose 
there exist 0 :::; i < j ::; n + 1 satisfying Ci = Cj. Then, the sequence 
(wo,co), ... ,(Wi,Ci), (Wj+llCj+I), ... , (Wn+bcn+d would be an accepting 
computation for the input word al ... aiaj+1 ... an#, or for al ... ai# when-
ever j = n. Moreover, we observe that such a computation uses exactly k 
cells, witnessing membership of al ... ai(lj+l ... an (or al ... ad in L[kJ. This 
clearly contradicts the fact that n is the length of the shortest words in L[kJ. 
Thus, there must exist at least n+2 pairwise different array states consisting 
of k cells, and this for infinitely many k. Hence, we get n + 2 ::; JQJk, where 
Q is the state set of A. Taking logarithms, we obtain k?: c·log(n), for some 
positive constant c. This shows the claim. 0 

We conclude by observing that the logarithmic space lower bound for 
non-regular language acceptance in Theorem 3 is optimal. It is enough, in 
fact, to consider Lemma 1 where a non-regular language is shown to be 
accepted by a realtirne-IA in log(n) strong space. 
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