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Abstract 

We investigate a restricted one-way cellular automaton (OCA) model where 
the number of cells is bounded by a constant number k, so-called kC-OCAs. In 
contrast to the general model, the generative capacity of the restricted model 
is reduced to the set of regular languages. A kC-OCA can be algorithmically 
converted to a deterministic finite automaton (DFA). The blow-up in the number 
of states is bounded by a polynomial of degree k. We can exhibit a family of unary 
languages which shows that this upper bound is tight in order of magnitude. We 
then study upper and lower bounds for the trade-off when converting DFAs to 
kC-OCAs. We show that there are regular languages where the use of kC-OCAs 
cannot reduce the number ~f states when compared to DFAs. We then investigate 
trade-offs between kC-OCAs with different numbers of cells and finally treat the 
problem of minimizing a given kC-OCA. 

1 Introduction 

The descriptional complexity of abstract machines is a field of theoretical computer 
science which has attracted the attention of many researchers in the last thirty years. 
The. central question is: How succinctly can a model represent a formal language in 
comparison with other models? Regarding regular languages, it is known that each 
nondeterministic finite automaton (NFA) having n states can be converted by the 
subset construction to an equivalent deterministic finite automaton (DFA) with at 
most 2n states. In [7] is shown that this upper bound is tight, since there exists an 
infinite sequence of regular languages (Ln)n>l such that each Ln is recognized by an 
n-state NFA and each equivalent DFA needs at least 2n states. In [1] a survey of 
results on the descriptional complexity of machines from the vantage point of limited 
resources is given. 

In a preceding paper [5] some research was started on the descriptional complexity of 
cellular automata which are a parallel model of computation. A cellular automaton 
can be described as a set of many identical DFAs, called cells, which are arranged in a 
line. The next state of each cell depends on the current state of the cell itself and the 
current states of a bounded number of neighboring cells. The transition rule is applied 
synchronously to each cell at the same time. One simple model is the realtime one-way 
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cellular automaton (realtime-OCA). Here the local transition rule depends only on the 
state of the cell itself and the neighboring cell to the right. Furthermore, the available 
time to process the input is bounded by the length of the input. If the available time 
is a constant multiple of the length of the input, we say that the automaton works in 
linear time. 

Apart from exponential trade-offs between descriptional systems, e.g., the above­
mentioned exponential blow-up between NFAs and DFAs, or, more generally, trade-offs 
which are bounded by a recursive function, it is known that there are trade-oft's be­
tween descriptional systems that are not bounded by any recursive function, so-called 
non-recursive trade-offs. They were first studied in [7] on the basis of the trade-off 
between context-free grammars and DFAs. In [5] it was possible to prove such non­
recursive trade-offs between realtime-OOAs and sequential models like DFAs or PDAs. 
Furthermore, non-recursive trade-offs are shown to exist between realtime-~As and 
realtime-OCAs as well as between lineartime-OOAs and realtime-OCAs. The proofs 
benefit from the fact that the set of valid computations of a Turing machine can be rec­
ognized by a realtime-OOA. In addition, this fact has some interesting consequences. 
For cellular language classes almost all decidability questions as, for example, empti­
ness, finiteness, inclusion, equivalence, and regularity are undecidable and not even 
semidecidable. Moreover, it can be shown that for cellular language classes neither 
exist pumping lemmas nor minimization algorithms. 

Thus, the general model turns out to be rather unwieldy and hence we are motivated 
to look for appropriate restrictions. To accept a formal language by cellular automata, 
it is required to provide as many cells as the input is long. This is not very realistic 
from a practical perspective. It is therefore an obvious restriction to limit the number 
of cells. In this paper, we are going to investigate cellular automata with only a fixed 
number k ~ 2 of cells, so-called kC-OOAs. This limitation has grave consequences 
on the generative capacity of the restricted model which is reduced to the regular 
languages (REG). So, kC-OOAs are a parallel model for REG and we investigate the 
ramifications to their descriptional complexity. We can show that the blow-up in the 
number of states, when converting a kO-OOA to a DFA, is bounded by a polynomial of 
degree k. By exhibiting an infinite sequence of unary languages we can show that this 
upper bound is tight in order of magnitude and we obtain a tight hierarchy concerning 
the number of states. We then investigate upper and lower bounds when converting 
DFAs to kO-OOAs and trade-offs between kC-OCAs with different numbers of cells. 
Finally, we want to address the problem of minimizing a given kO-OCA. 

2 Preliminaries and Definitions 

Let E* denote the set of all strings over the finite alphabet E, f the empty string, and 
E+ = E* \ if}. By Iwl we denote the length of a string wand by IMI the number of 
states of a DFA M. Let REG denote the family of regular languages. In this paper we 
do not distinguish whether a language L contains the empty string f or. not. I.e.: We 
identify L with L \ {f}. We assume that the reader is familiar with the common notions 
offormallanguage theory as presented in [3]. We say that two DFAs or kC-OOAs are 
equivalent if both accept the same language. Concerning the notations and definitions 
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for kC-OCAs we adapt the notations of the unrestricted model as introduced in [4] 
to our needs. More detailed information about unrestricted cellular automata may be 
found in [4]. 

Definition: A k cells one-way cellular automaton (kC-OCA) is defined as a tuple 
A = (Q,:E, U, \7, k, 8r , 8, F) where 

1. Q =1= 0 is the finite set of cell states, 

2. :E is the input alphabet, 

3. U rt Q U :E is the quiescent state, 

4. 'V ¢ Q U :E is the end-of-input symbol, 

5. k is the number of cells, 

6. F ~ Q is the set of accepting cell states and 

7. 8r : (Q U {U}) x (:E U {\7}) -+ Q U {U} is the local transition function for the 
rightmost cell. We require that only the pair (U, 'V) is mapped to U. 

8. 8: (Q U {U}) x (Q U {U}) -+ Q U {U} is the local transition function for the other 
cells. We require that only the pair (U, U) is mapped to U. 

A kC-OCA works similar to the unrestricted model. The next state of each cell depends 
on the current state of the cell itself and its right neighbor. The transition rule is 
applied synchronously to each cell at the same time. In contrast to unrestricted cellular 
automata the input is processed as follows. In the beginning all cells are in the quiescent 
state. The rightmost cell is the communicating cell to the input. At every time step 
one input symbol is processed by the rightmost cell. All other cells behave as described. 
The input is accepted, if the leftmost cell enters an accepting state. Since the minimal 
time to read the input and to send all information from the rightmost cell to the 
leftmost cell is the length of the input plus k, we input a special end-of-input symbol 
'V to the rightmost cell after reading the input. To avoid an implicit use of the quiescent 
state as additional state, it is required that only the pairs (U, U) and (U, 'V) are mapped 
to U by 8r and 8. Hence the quiescent state can be the state of a cell only within the 
first k time steps. The size of a kC-OCA A = (Q,:E,U, 'V,k,8r ,o,F) is defined as the 
number of states in Q, Le. IAI = IQI. To simplify matters we identify the cells by 
positive integers. 

Figure 1: A 5 cells one-way cellular automaton (5C-OCA) 
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A configuration of a kC-OCA at some time step t ~ 0 is a pair (Ct, Wt) where Wt E .E* 
denotes the remaining input and Gt is a description of the k cell states, formally a 
mapping Ct : {I, ... ,k} -+ Q U {U}. We consider the input string u = Ul ... Un: The 
initial configuration at time 0 is defined by co(i) = u, 1 SiS k and Wo = u. 

During a computation the kG-OCA steps through a sequence of configurations whereby 
successor configurations are computed according to the global transition function A: 
Let (ct, Wt), t ~ 0, be a configuration, then its successor configuration is defined as 
follows: 

(CHl,WHI) = A(ct,wt) ¢::::} ct+1(i) = 6(ct(i),ct(i + 1)),i E {I, ... ,k -I} 
CHI(k) = c5r (ct(k), x) 

where x = 'il and Wt+l = f, if Wt = f, and x = Xl and Wt+l = X2··· xn, if Wt = 
XIX2 ••• X n . Thus, A is induced by c5r and c5. 

An input string U is accepted by a kC-OCA if at some time step during its computation 
the leftmost cell enters an accepting state from the set of accepting states F ~ Q. 

Definition: . Let A = (Q,.E, u, 'il, k, 6r, c5, F) be a kC-OCA. 

1. A string U E .E+ is accepted by A if there exists a time step i E N such that 
ci(I) E F holds for the configuration (Ci' Wi) = ili((cO, u)). 

2. T(A) = {u E.E+ lu is accepted by A} is the language accepted by A. 

3. If all u E T(A) are accepted within lui + k time steps, we say that A is a realtime­
kC-OCA. 'crt(kC-OCA) = {L I L is accepted by a realtime-kC-OCA}. 
'crt(kC-OCAn) is the set of all languages accepted by realtime-kC-OCAs which 
have at most n states. 

In this paper, we consider solely kC-OCAs operating in realtime; thus the terms 
"realtime-kC-OCA" and "kC-OCA" are used as synonyms. 

Example 1: As an example we consider the language 

and present the construction for n = 2 and k = 4. The idea is to construct an n-ary 
counter on k cells where the state + represents a carry-over. If the leftmost cells enters 
the accepting state +, at least nk input symbols are read and the input is accepted. 
Let A = ({O, 1, +}, {a}, U, 'il, 4,or, 6, {+}) where 

I 0 II U I 0 I 1 I + I \c5r l\al'ill 
U U 0 0 U 1 U 
0 0 0 1 and 0 
1 I I + 1 + 1 
+ 0 0 + I 1 
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A . indicates that the transition needs not to be defined, since such a situation can 
never occur on every input. The functionality of the automaton is illustrated with two 
examples. 

1. Input u = a20 : 

u u u U a:lU 0 1 1 1 a1<l 1 1 0 + ati 

U U U 1 aU! 0 1 1 + a1:l 1 1 1 1 a 5 

U U 0 + ail:! 0 1 + 1 all 1 1 1 + a 4 

U 0 1 1 ail 0 + 0 + a lU 1 1 + 1 ail 

0 0 1 + a1t) 1 0 1 1 a'J 1 + 0 + a"l. 

0 0 + 1 a
15 1 0 1 + a'd + 0 1 1 a 

0 1 0 + a 14 1 0 + 1 at 

After 19 :s; lui + k = 24 time steps the first cell enters the accepting state + and 
the input is accepted. 

2. Input u = as: 

u u u U a'6 0 1 1 1 a 

U U U 1 a'f 0 1 1 + € 

U U 0 + at) 0 1 + 1 € 

U 0 1 1 at) 0 + 0 1 € 

0 0 1 + a 4 1 0 0 1 € 

0 0 + 1 a<l 1 0 0 1 € 

0 1 0 + a:l 

Here the first cell can never enter the accepting state +j we say that the compu­
tation is blocked. 

We investigate in this paper the descriptional systems DFA and kC-OOA. As descrip­
tional complexity measure for DFAs and kC-OOAs we count the number of states. 
Since a kO-OOA is composed of k identical cells, this measure is reasonable. The 
definitions of upper and lower bounds follow the presentation in [1]. 
We say that a function f : W -7 W, f(n) ~ n is an upper bound for the blow-up in 
complexity when changing from one descriptional system Dl to another system D 2 , if 
every description M E Dl of size n has an equivalent description M' E D2 of size at 
most f(n). 
We say that a function g: N -7 W, g(n) ~ n is a lower bound for the trade-off between 
two descriptional systems Dl and D2, if there is an infinite sequence (Li)iEN of pairwise 
distinct languages Li such that for all i E N there is a description M E Dl for Li of 
size n and every description M' E D2 for Li is at least of size g(n). We write: 

Dl --t D2 
n :s; f(n) 
n 2: g(n) 
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3 Generative Capacity of kC-OCAs 

Limiting the number of cells to some constant number reduces the generative capacity 
of kO-OCAs to REG. 

Lemma 1 Every n-state DFA M can be converted to a kC-GCA A such that T(A) = 
T(M) and IAI = n + 1. . 

Proof: Let M be an n-state DFA accepting a language oyer the alphabet L:. Let 
Q denote the set of states, F ~ Q the set of accepting states, qo the initial state, 
and 0 the transition function. We now construct a kO-OCA by simulating M in the 
rightmost cell. After reading the input u, an accepting state is sent with maximum 
speed to the left if u E T(M), otherwise the computation is blocked. 
Formally, let 9 ¢ Q and Q' = Q U {g}. We define A = (Q', L:, u, \7, k, o~, 0', {g}) such 
that o~(U,a) = o(qO, a), 8~(q,a) = o(q, a), 8~(J, \7) = 9 and o~(p, \7) = P for a E L:, 
q E Q, f E F and p E Q \ F, and 0' (p, q) = q for p E Q' U {U} and q E Q'. 
An induction on i shows: 8(qo, UIU2 ... Ui) = q {:} c;(k) = q and Wi = e. 
Hence we can conclude: U E T(M) {:} o(qO, u) E F {:} cIILI(k) E F and wlul = e {:} 
clul+l(k) = 9 {:} clul+k(l) = 9 {:} U E T(A). 0 

Lemma 2 Every n-state kC-GCA A can be converted to a DFA M such that T(M) = 

T(A) and, if IL:l > 1, IMI ~ nk + I~i-=-Il, otherwise IMI ~ nk + k. 

Proof: A DFA accepts an input W if an accepting state is entered after exactly Iwi 
time steps. By definition, an input w is accepted by a kO-GOA if the first cell enters an 
accepting state. This may happen at some time t < Iwl or Iwl ~ t ~ Iwl + k. Hence we 
have to cope with these two cases when constructing a DFA from a given kC-GOA. The 
construction can be outlined as follows. At first we construct the Cartesian product 
of the k cells and we obtain a DFA which accepts a prefix of w\7k if w. is accepted 
by the kC-GCA. Next we modify this DFA so that, if t < Iwl, the input ends up in 
an accepting loop. And, if Iwl < t ~ Iwl + k, the set of accepting states is suitably 
enlarged to accept w. 

Let A = (Q, L:, u, \7, k, or, o,F) be a kC-GOA. We define a DFA M' = (Q', ~', 0', qb, F') 
as follows: Q' = (Q U {U} )k, I;' = E U {\7}, qb = (U, U, ... , U) and F' = F X Qk-I. 
Let %q~ E QU{U} (1 ~ i ~ k) and a E ~': 0'((ql,q2,· .. ,qk),a) = (ql,q2, ... ,q~) 
such that q~ = 0(ql,q2),q2 = 0(q2,q3), ... ,qk-l = O(qk-l,qk) and q~ = 8r (qk,a). 
Let w = WIW2··· Wn and w\7k = WIW2 ... wnwn+1'" wn+k with wn+l = \7 (1 ~ 1 ~ k). 
We claim that for 1 ~ i ~ n + k and 1 ~ j ~ k the following holds: 

Ci(j) = q {:} 8' (qb, WIW2 ... Wi) = (ql, q2, ... ,qk) such that qj = q. 

This claim can be shown by an induction on i differentiating the two cases j < k and 
j =k. 

w E T(A) {:} 3i ~ Iwl + k such that C;(l) E F 

{:} 0' (qb, w) = (ql, q2,··., qk) such that ql E F and w is a prefix of w\7k 
{:} W E T(M') and w is a prefix of w\7k 
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We now define another DFA M" = (Q', E, 8", qo, F") having the following properties: 

(i) 8"(q, a) = 8'(q, 0-) for q E Q' \ F' and a E E 

(ii) 811 (q, a) = q for q E F' and 0- E E 

(iii) FII = F' U F' with F' = {q E (Q \ F) x Qk-I I:31 ~ l ~ k : 8' (q, Vi) E F'} 

We need the following claim which can be shown by an induction on Iwl. 

Claim: Let q E Q' and w E E*. If 8'(q,w')¢ pi for all proper prefixes w' of 
w, then 8"(q,w) = 8'(q,w). If 811 (q,w') ¢ F' for all proper prefixes Wi of w, then 
8' (q, w) = 8// (q, w). 

We now want to show that w E T(M') and w is a prefix of wvk -¢:} w E T(M//). 
",*": We know that w E T(M') and w is a prefix of wV k • W.l.o.g. we may assume 
that w is the shortest prefix of wV k such that w E T{M' ). We have to consider two 
cases: 

1. w = WI" .Wi with i ~ n '* 8' (qo,w) E F' 
'* 8"(qb,w) E pi (due to Claim 3) 
'* 8"(qo,w) E F' (due to property (ii)) 
'* wE T(M") 

2. w = wv l with 1 ~ l ~ k '* 8' (qo,w) = q ¢ pi and 8'(q, Vi) E p' 
'* 8"(qb,w) = q E p' (due to Claim 3 and (iii)) 
'* wE T(M") 

"~": wE T(M//) ==> 8//(qb,w) E pi or 8"(qb,w) E P'. 

1. 811 (qo, w) E F' '* there is a shortest prefix w of w such that 0" (qo, w) = q E F' 
'* o'(qb,w} E F' (due to Claim 3) 
'* w E T{M') and w is a prefix of wand therefore of wVk 

2. o"(qb,w) E F' '* 3q ¢ F',l ~ k: oll(qb,w) = q and 8"(q, Vi) E pi (l is minimal) 
'* o'(qo,w) = q and 8'(q, VI) E F' (due to Claim 3) 
'* o'(qb,wv l ) = o'(qb,w) E pi (w = WV I ) 

'* w E T(M') and w is a prefix of wvk 

This shows that T(M") = T(A). We now want to compute the number m of reachable 
states of Mil. Due to our definition only the pairs (U, U) and (U, V) are mapped to 
the quiescent state U by 8 and or, respectively. Therefore, if a cell has entered a state 
q =1= U, then it will never enter U again. This fact enables us to count the number of 
reachable states of Q' where the first l (1 ~ l ~ k) components are U. Since there are 
IEl k - 1 different inputs of length k - l, there are at most IEl k- 1 different states in Q' 
where it is required that the first l components are U. Let n = IQI. To compute m 
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we have to sum up all possible states where the first l cells (1 S; l S; k) are U and all 
possible states where each cell is in Q. Hence we have: 

We observe that in case of unary alphabets the upper bound is nk + k, since there are 
only k different inputs of size k - l with 1 S; l ::; k. This completes the proof. 0 

Remark: To obtain an upper bound which does not depend on the size of E, we can 
argue as follows. Since only (U, U) and (U, V) are mapped to U and since a cell can 
never reenter U, for every reachable state (ql, Q2, .. ·, qk) E Q' and 1 S; i S; k holds: 
qi t= U :::::} qj t= U for all j > i. So we can identify the set {U}l X Qm, where l + m = k, 
with the set Qm and have a decomposition of Q' into Q' = {qo} U Q U Q2 u ... U Qk. 

Let IQI = n, so we have IQ'I = 1 + IQI + IQI2 + ... + IQlk = 1 + n + n 2 + ... + nk= 
n"+1-1 < n k n::r- - n-1 n . 

The next theorem summarizes the above two lemmas. 

Theorem 1 Crt(kG-OGA) = REG 

4 A Lower Bound for the Trade-Off 

In this section we are going to investigate the family Ln,k of unary languages which 
enables us to show that the upper bound proven in Lemma 2 is tight in order of 
magnitude. For n ~ 2 and k ~ 2 let 

Lemma 3 Each DFA recognizing Ln,k needs at least n k + n k - 1 + 1 states. 

Proof: We use the Nerode equivalence relation =L on Ln k and show that the n,/c , 

index of =Ln.k exceeds nk + nk
-

1 + 1. For x, y E E*, =Ln,k is defined as: 

X =Ln.k y:{:::::} xz E Ln,k {:} yz E Ln,k for all Z E r;* 

Let i,j be two integers such that 0 S; i <1 S; n k + nk-l. aiank+nk-l-i-l = 
ank+nk-l-l d L k and a j a71k +n"-l_i-l - ank+nk-l+j-i-l E L . . . 1 > 0 

. l" n,. . - n,k, Slnce J - ~ - _ . 
Hence It follows that al ~Ln,k aJ and so we have at least nk +nk - 1 + 1 pairwise distinct 
equivalence classes and therefore index(=L

n
,,,) ~ nk + nk - 1 + 1. 0 
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Lemma 4 Each kG-GCA recognizing Ln,k needs at least n + 1 states. 

Proof: First of all, we show that there exists a kC-OCA accepting Ln,k which has n+ 1 
states. Taking a look at the construction of the binary counter in Example 1, which 
can be generalized to an n-ary counter, we can see that in the rightmost cell a period of 
length n is counted and that the state 0 is never entered. We modify the construction 
such that in the rightmost cell a period of length n + 1 is counted by using the state 
O. The transition function D of Example 1 remains the'same and Dr is modified such 
that Dr(O, a) = + and Dr(l, a) = O. It is easy to verify that the modified automaton 
accepts Ln,k and has n+ 1 states. We now want to show that every kC-OCA accepting 
Ln k needs at least n + 1 states. Each automaton A must enter n k + nk - 1 + 1 distinct 
co~figurations (including the start configuration (U; ... , U)) within the firstnk + n k- 1 

time steps. Since A has k cells, the assumption that every cell has n states implies 
that A can enter only nk + k different configurations according to the considerations 
in the proof of Lemma 2. This is a contradiction, since nk + k ;:::: nk + nk - 1 + 1 
implies n = 1. Hence each cell has to be equipped with n + 1 states, so that at least 
nk + nk - 1 + 1 :s; (n + l)k distinct configurations can be entered. Therefore we have: 
IAI;:::: n+l. 0 

We summarize our results: 

kC-OCA 

n 

n ::; n":..l n k ::; 2nk = O(nk) 
n ;:::: (n- l)k + (n _l)k-l + 1 = O(nk) 

I~I > 1 
I~I = 1 

Although the upper bound is tight only in order of magnitude, we can show the follow­
ing hierarchy concerning the number of states. Each language recognized by an n-state 
kC-OCA is trivially recognized by an (n + I)-state kC-OCA. But there is a sequence 
of languages Ln being recogniz,ed by an n-state kC-OCA such that no kC-OCA having 
less than n states can recognize Ln. ~ 

Theorem 2 

(i) For k 2: 2: 'crt(kC-OCAl) = {~*, 0} 

(ii) For n ;:::: 1 and k ;:::: 2: 'crt(kC-GCAn), C 'crt(kC-OCAn+1) 

Proof: Let A be a kC-OCA which has only one state q. If q tf. F then T(A) = 0, 
since the leftmost cell never enters an accepting state. If q E F then T(A) = ~*, 

since q is an accepting state and the first cell enters this state after k time steps. 
This implies (i). For n ;:::: 2 we can conclude from Lemma 4: Ln,k E 'crt(kC-OCAn+1) 
and Ln,k tJ. 'crt(kC-09An). For the remaining case n = 1 we show that there is a 
language which is accepted by a two state kC-OCA, but not by anyone state kC­
OCA. Hence 'crt(kC-OCA1) C 'crt(kC~OCA2)' Let A = ({p,q},{a},U, 'V,k,or,o,{q}) 
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such that bAu, a) = p, 0r(P, a) = q, or(P, \7) = p, 8r(q, a) = q, 8r(q, \7) = q, o(U,p) = P, 
6(P,p) = P, 8(p, q) = q and o(q, q) = q. The remaining transitions are undefined. It is 
easy to see that T(A) = {am I m ~ 2}. Since T(A) =f 0 and T(A) =f {a} *, T(A) is not 

accepted by anyone state kO-OOA due to (i). 0 

5 Bounds when Converting DFAs to kC-OCAs 

It has been shown in Lemma 1 that every n-state DFA can be converted to an (n + 1)­
state kO-OOA. In this section we shall investigate the tightness of this upper bound. 
Let P ~ 2 be a fixed prime number and Lp = {an In = m· P + I,m ~ o}. 

Lemma 5 Every kG-DCA accepting Lp needs at least p + 1 states. 

Proof: Let A = (Q,1:,U, \7,k,on8,F) be a kO-OOA such that T(A) = Lp and 
IAI = n. For 1 ::; i ::; k, let 7ri : (Q U {U})k X 1:* -t (Q U {U} )k-i+1 define projections 
as 7ri ((qi , q2, ... ,qk), w) = (qi, qi+l,' .. ,qk)' Since the input is unary and A is one-way, 
it is easy to see that the sequences Si = (7ri(Llt(co, at)))t>o will become periodical. In 
detail, Si will have two identical elements within the fi;st nk-i+1 + k + 1 elements, . 
because IAI = n. Let h denote the length of the period between the first occurrence 
of two identical elements in Si. We set Pk = lk. Obviously, lk = Pk ~ n. Since IAI = n, 
it follows that lk-l = Pk-lPk with 1 ~ Pk-l ~ n. By the same argument, we have that 
lk-2 = Pk-2Pk-lPk with 1 ~ Pk-2 ~ n and, generally, Ii = PiPi+1 ... Pk with 1 ~ pj ::; n 
for 1 ~ i ::; k and i ~ j ~ k. Then, h = PIP2 ... Pk-lPk is the length of the "period 
of A", because Llll (c, am) = (c,am- h ) for any configuration (c,am) such that m ~ lr 
and c(i) =f U for 1 ~ i ::; k. 

We now assume that n < p. It follows that P does not divide h = PIP2·· ,Pk, since 
Pi ~ n < P for 1 ::; i ::; k and P is prime. We next choose an integer t' such that t'p+ 1 > 
nk+k+1. Because at'p+l E Lp, Llf p+l(cO, at'p+1\7k) = (c', \7k) and Llk' (c', \7k') = (c", 10) 
with c"(1) E F and 1::; k' ~ k. Let w = at'p+1+h. Then, Llt'P+l(cO,w\7k) = (c', all \7k), 
Llll~c/,ah\7k) = (c/, \7k ), and Llk'(d, \7k') = (e", e). Hence we know that w E Lp and 
therefore is t'p + 1 + II = t"p + 1 with £I' ~ 1. Thus, t'p + lr is a mUltiple of p. This 
implies that p divides lr = PIP2 ... Pk which is a contradiction. 

We now assume that n = p. We observe that there is at least one c~ll j which enters all 
P states given am (m ~ nk + k + 1) as input. Otherwise, Pi < n = P for 1 ::; i ::; k and 
it follows that P does not divide II = PIP2 ... Pk. As above we can conclude that P then 
divides II = PIP2 ... Pk and get a contradiction. It is easy to see that the first cell can 
enter an accepting state, given am \7 k (m ~ 1) as input, not before time step m+ k. Let 
am E Lp (m ~ n k + k + 1). After reading \l for the first time, the information that the 
whole input is read must be sent to the leftmost cell and passes cellj at time m+k-j+1. 
Since the information is propagated in terms of a state, let q E Q denote that state 
which j enters ~t time .m + k - j + 1. Hence, .6..mH-j+l(co, am \7 k ) = (c, Vj - 1) with 
c(j) = q and Ll.1-1(c, \7.1-1) = (d,€) with c'(1) E F. Let 7r : (Q U {U})k -+ (Q U {U})j 
be the projection defined by 7r(ql, Q2, ... , qk) = (Ql, q2, ... , Qj-l, qj). We observe that 
the state Q in the cell j leads to an accepting state in the first cell after j -1 time steps 
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regardless of the rest of the remaining input. It follows that every d E (Q U {U})k with 
1l"(d) = 1l"(c) leads to an accepting state in the first cell after j -1 time steps regardless 
of the states of the cells j + 1, ... ,k and the remaining input. Since 81 is periodical, 
A is one-way, and the cell j assumes all states in Q, it follows that there is an integer 
m' ::; nk + k such that b..m' (co, ami) = (d, €) with 1l"(d) = 1l"(c). Now, let mil 2: j be an 
integer such that m' + mil -1 is not a multiple of p. Then, /:::..ml (co, am'+m") = (d, amll ) 
and t:,.j-l(d, aml/) = (d', aml/-j+!) with d'(l) E F. Hence, am'+ml/ E Lp. This implies 
that m' + mil - 1 is a multiple of p which is a co:q.tradiction. 0 

Lemma 6 Every DFA accepting Lp needs at least p states, 

Proof: As in Lemma 3 we will use the Nerode equivalence relation =Lp on Lp. 
Let i, j be two integers such that 0 ::; i < j ::; p - 1. aiaP- HI = aP+1 E Lp and 
aj aP- HI = aP+Hj- i ~ Lp , since 0 < j - i < p. Hence ai ¢.Lp aj and we have 
index(=Lp ) 2: p. 0 

Since there are infinitely many prime numbers, we obtain that g(n) = n is a lower I 

bound for the trade-off between DFAs and kC-OCAs. Hence we have: 

DFA -T kC-OCA 
n ::;n+l 
n 2:n+l 

This demonstrates that there are languages where the use of a parallel computational 
model does not help to reduce the size of description in comparison with a sequential 
model. It should be mentioned that this result does not depend on the particular 
number of cens k of the kC-OCA. Therefore, these languages are hard to parallelize in 
the kC-OCA sense, since any "amount of parallelism" employed in terms of additional 
cells cannot reduce the number of states. The construction in Lemma 1 introduced an 
additional state 9 which manages whether the whole input is read or not. The lower 
bound shows that there are cases in which this additional state is necessary. Thus, 
some effort in terms of additional states is needed in order to administrate the array 
of DFAs in contrast to a single DFA. 

6 Investigating the Number of Cells 

It is very natural to investigate a possible trade-off between kC-OCAs and k'C-OCAs 
where k' > k. How much succinctness can we gain, if the automaton is equipped with 
more cells? If we enlarge our cOIr~putational resources, here the number of cells, will 
there be savings concerning the number of states? And, if so, can these savings be 
quantified in terms of upper and lower bounds. Comparing kC-OCAs, which only can 
accept regular languages, with unrestricted OCAs, it is known [5] that in this case the 
trade-off is not recursively bounded. Unfortunately, we do currently not know whether 
an n-state kC-OCA can be embedded into an n-state (k + l)C-OCA or not. Hence we 
can give only a partial answer to the above questions. 
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An obvious try to embed kC-OCAs into (k + l)C-DCAs and to preserve the number 
of states would be to take the old transition function and then to propagate accepting 
states to the first cell. Unfortunately, this try fails. We take a look at the construction 
of L(n, k) in Example 1. We observe that a kC-DCA A accepting L(n, k) and a 
(k + l)C-DCA accepting L(n, k + 1) have the same transition functions Or and O. Now 
we want to accept L(n,k) by an n-state (k+ l)C-DCA A'. If we define A"S transition 
functions to be those of A, T(A') i= Ln,k' 

Nevertheless, although we are not able to show whether or not£rt«k-1)C-OCAn ) is a 
proper subset of £rt(kC-DCAn), we can prove £rt(kC-OCAn)\£rt«k-1)C-OCAn ) i= 0 
provided that n ~ 4 and k ~ n. In other words, there are some languages such that k 
is the minimal number of cells which enables an n-state kC-OCA to accept them. 

Lemma 7 For n ~ 3 and 2 ~ k :::; n holds: (n + l)k :::; nk+1 and (n + l)k-i :::; nk+l-i 
for 0 ~ i:::; k. 

Proof: The first claim is proven by induction on n: . 
Basis: n = 3, then, k = 2: (3+1)2 = 16 :::; 32+1 = 27, k = 3: (3+1)3 = 64 ~ 33+1 = 81. 
Induction step: We have to show (n + 2)k :::; en + l)k+l. Due to the binomial formula 
(x +y)k = 2:7=0 (~)xk-iyi we write (n+ 2)k = (n + 1) + l)k and (n+ l)k+l as follows: 

(n + 2)k = (n + 1/ + ken + l)k-l + G) (n + 1)k-2 + ... + (k: 1) (n + 1) + 1 + 0 

(n + 1)k+~ = nk+1 + (k + l)nk + e; 1) nk
-

1 + '" + (~~ ~) n2 + (k + l)n + 1 

Since (~) :::; (ktl) for 0 :::; i ~ k and by the induction hypothesis, every addend of the 
upper equation is lower or equal to the equivalent addend of the lower equation. Hence 
we conclude that (n + 2/ ~ (n + I)k+l and the first inequality is proven. To show 
the second one we ?bserve that (n + I)k :::; nk+l {:} (n + I)k-i(n + l)i ~ nink+1- i {:} 
(n + I)k-i < (-1.L)~nk+l-i < nk+l-i since -1.L < 1 implies (-1.L)i < '1 0 - n+l - , n+l - n+l - . 

Theorem 3 For n ~ 4 and k ~ n there is a language L(n, k) E £rt(kC-OCAn ), but 
L(n, k) fj. £rt(l C-OCAn) for l < k. 

Proof: Let m = n - 1 and L(n, k) = Ln- 1,k = Lm,k' Due to Lemma 4 we know 
that L(n, k) E £rt(kC-DCAn) = £rt(kC-OCAm+1). Since l < k, we have l + 1 + i = 
k {:} l = k - i -1 with 0 :::; i :::; k - 2. We next assume that L(n, k) is accepted by an 
(m + I)-state lC-DCA A. Due to Lemma 2, A can be converted to a DFA M having 
p cells and p can be estimated as follows. 

p :::; (m + 1)' + l = (m + l)k-i-l + k - i-I < (m + l)k-i-l + k - i 
:::; mk+l-i - 1 + k - i = m k- i + k - i ~ m k + k 

Since k ~ mk
-

1 for k ~ 2 and m ~ 2, we have a contradiction to Lemma 3 which 
states that p ~ mk + mk- 1 + 1. 0 
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7 Minimizing kC-OCAs 

In this section we treat the problem of converting an arbitrary kC-OCA to an equiv­
alent kC-OCA which has a minimal number of states. Seidel [8] proves that many 
decidability questions are undecidable for unrestricted OCAs. The undecidability of 
the minimization problem for unrestricted OCAs then results from the undecidability 
of emptiness as is shown in [5]. On the other hand, the minimization problem is solv­
able in time O(nlogn) for DFAs [2]. Finding a minimization algorithm for kC-OCAs 
and, if possible, an efficient one, is of particular interest, since this would provide an 
algorithmic tool to parallelize a given regular language in an optimal way. We refer 
to the discussion of Open Problem 61 in [6]. We obtain here an intermediate result: 
kC-OCAs can be algorithmically minimized, but up to now we do not know whether 
there exists an efficient, Le. polynomial time minimization algorithm. At first we show 
that a minimal kC-OCA is, in contrast to DFAs, not necessarily unique. 

Theorem 4 A minimal kG-OCA is not necessarily un~que. 

Proof: In Lemma 5 is shown that every kC-OCA accepting Lp needs at least p + 1 
states. We exhibit now two 3-state kC-OCAs with non-isomorphic transition functions 
both accepting L2. The generalization to primes p ;::: 3 is straightforward. 

1. We are counting modulo 2 in the rightmost cell. If the input is read and the 
actual modulus is 1, an accepting state 9 is sent with maximum speed to the left, 
otherwise the computation is blocked. 
Al = ({O,1,g},{a},U,V',k,or,0,{g}) where 

I 0 II u I 0 I 1 I 9 I Ir--::or--r "'--11 a--'I"'-V'--' 
u u 0 1 9 U 1 u 
0 0 1 9 and 0 1 0 
1 0 1 9 1 0 9 

9 9 9 9 

2. The input is shifted into the rightmost cell where a corresponds to 0 and V' 
corresponds to 1. The last but one cell is now counting modulo 2 and acts as the 
rightmost cell in AI. 
A2 = ({O, 1, g}, {a}, U, V', k, or, 0, {g}) where 

I 0 II u I 0 I 1 I 9 1 Ir--::or--r "'--11 a--'I"'-V'--' 
u u 1 u 0 u 
0 1 0 9 and 0 0 1 
1 0 9 9 1 1 

9 9 9 

o 
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Theorem 5 There exists an algorithm which converts a given kC-OCA A to an equiv­
alent kC-OCA A' such that A' has a minimal number of states. 

Proof: We describe a brute force algorithm. First of all, A is converted to a DFA 
M according to Lemma 2. Then we list all kC-OCAs AI, .. ·, Am such tha~JAiJ < JAJ. 
Now, for each i E {1, ... ,m}, Ai is converted to a DFA Mi and the equalIty ofT(M) 
and T(Md is tested. If there exists no i E {1, ... ,m} such that T(A!i) = T(M), then 
A must have been of minimal size already and we return A. OtherWIse we have found 
a finite set M of equivalent kC-OCAs Ai of smaller size than A. We then choose an 
automaton A' E M of minimal size and return A'. 0 

8 Conclusion 

In this paper, we have put a natural restriction on realtime-OCAs. The generative 
capacity of the restricted model is reduced to the set of regular languages. We have 
investigated upper and lower bounds when converting kC-OCAs to DFAs and vice 
versa. It has been shown that the use of kC-OCAs can lead to polynomial savings 
of degree k in comparison with DFAs. On the other hand, there are languages which 
are "inherently sequential" in the kC-OCA sense, since any number of cells employed 
cannot help to reduce the number of states in comparison with DFAs. We then have 
studied trade-offs between kC-OCAs with different numbers of cells and finally could 
state a minimization algorithm for kC-OCAs. The time complexity. of the minimiza­
tion problem is currently unknown. Since a minimal kC-OCA does not have to be 
necessarily unique, minimization is likely to be a hard computational problem. 

One topic of further research could be a more thorough examination of the time com­
plexity of the minimization problem, since an efficient algorithm would be of great 
practical relevance. Otherwise, if minimization turns out to be computationally hard, 
suitable restrictions should be studied permitting the design of efficient minimization 
algorithms. Furthermore, since we have studied here only restrictions on realtime one­
way cellular automata, it could be interesting to investigate descriptional complexity 
aspects of similar restrictions on two-way cellular automata as well as on cellular au­
tomata working in linear time. 
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