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Abstract 

It is known that deterministic finite automata (DFAs) can be algorithmically 
minimized, i.e., a DFA M can be converted to an equivalent DFA M' which has 
a minimal number of states. The minimization can be done efficiently [6]. On the 
other hand, it is known that unambiguous finite automata (UFAs) and nondeter­
ministic finite automata (NFAs) can be algorithmically minimized too, but their 
minimization problems turn out to be NP-complete and PSPACE-complete [8]. In 
this paper, the time complexity of the minimization problem for two restricted 
types of finite automata is investigated. These automata are nearly determin­
istic, since they only allow a small amount of non determinism to be used. On 
the one hp,nd, NFAs with a fixed finite branching are studied, i.e., the number 
of nondeterministic moves within every accepting computation is bounded by a 
fixed finite number. On the other hand, finite automata are investigated which 
are essentially deterministic except that there is a fixed number of different ini­
tial states which can be chosen nondeterministically. The main result is that the 
minimization problems for these models are computationally hard, namely NP­
complete. Hence, even the slightest extension of the deterministic model towards 
a nondeterministic one, e.g., allowing at most one nondeterministic move in ev-

. ery accepting computation or allowing two initial states instead of one, results in 
computationally intractable minimization problems. 

1 Introduction 

Finite automata are a well-investigated concept in theoretical computer science with 
a wide range of applications such as lexical analysis, pattern matching, or protocol 
specification in distributed systems. Due to time and space constraints it is often very 
useful to provide minimal or at least succinct descriptions of such automata. Deter­
ministic finite automata (DFAs) and their corresponding language class, the set of 
regular languages, possess many nice properties such as, for example, closure under 
many language operations and many decidable questions. In addition, most of the 
decidability questions for DFAs, such as membership, emptiness, or equivalence, are 
efficiently solvable (cf. Section 5.2 in [15]). Furthermore, in [6] a minimization algo­
rithm for DFAs is provided working in time O(nlogn), where n denotes the number 
of states of the given DFA. 
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It is known that both nondeterministic finite automata (NFAs) and DFAs accept the 
set of regular languages, but NFAs can achieve exponentially savings in size when com­
pared to DFAs [13J. Unfortunately, certain decidability questions, which are solvable 
in polynomial time for DFAs, are computationally hard for NFAs such as equivalence, 
inclusion, or universality [14, 15]. Furthermore, minimization of NFAs is proven to be 
PSPACE-complete in [8]. In the latter paper, it is additionally shown that unambiguous 
finite automata (UFAs) have an NP-complete minimization problem. 

Therefore, we can summarize that determinism permits efficient solutions whereas the 
use of nondeterminism often makes solutions computationally intractable. Thus, one 
might ask what amount of nondeterminism is necessary to make things computationally 
hard, or, in other words, what amount of nondeterminism may be allowed so that 
efficiency is preserved. 

Measures of nondeterminism in finite automata were first considered in [12] and [2] 
where the relation between the amount of nondeterminism of an NFA and the suc­
cinctness of its description is studied. Here, we look at comput~tional complexity 
aspects of NFAs with a fixed' finite amount of nondeterminism. In particular, these 
NFAs are restricted such that within every accepting computation at most a fixed 
number of nondeterministic moves is allowed to be chosen. It is easily observed that 
certain decidability questions then become solvable in polynomial time in contrast to 
arbitrary NFAs. However, the minimization problem for such NFAs is proven to be 
NP-complete. 

We further investigate a model where the nondeterminism used is not only restricted 
to a fixed finite number of nondeterministic moves, but additionally is cut down such 
that only the first move is allowed to be a nondeterministic one. Hence we come to 
DFAs with multiple initial states (MDFAs) which were introduced in [5] and recently 
studied in [11] and [3]. The authors of the latter paper examine the minimization 
problem for MDFAs and pr~ve its PSPACE-completeness. Their proof is a reduction 
from Finite State Automata Intersection [4] which states that it is PSPACE-complete 
to answer the question whether there is a string x E I:* accepted by each Ai, where 
DFAs AI, A21 ... ,An are given. As is remarked in [4], the problem becomes solvable in 
polynomial time when the number of DFAs is fixed. We would like to point out that 
the number of initial states is not part of the instance of the minimization problem for 
MDFAs discussed in [3]. Thus, one might ask whether minimization of MDFAs with a 
fixed number of initial states is possible in polynomial time. We will show in Section 3 
that the rhinimization problem of such MDFAs is NP-complete even if only two initial 
states are given. In analogy to NFAs with fixed finite branching, certain decidability 
questions can be shown to be efficiently solvable. 

The paper is organized as follows. In the next section we will provide and introduce 
the necessary definitions and notations. Section 3 contains the proof that it is NP­
complete to minimize MDFAs with a fixed number of initial states. Some details of 
this proof will be helpful to prove the NP-completeness of the minimization problem 
for NFAs with fixed finite nondeterminism. A summary and short discussion of open 
problems conclude the paper. 
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2 Preliminaries and Definitions 

Let 2;* denote the set of all strings over the finite alphabet 1:, € the empty string, and 
1:+ = 1:* \ {€}. By Iwl we denote the length of a string wand by lSI the cardinality 
of a set S. We assume that the reader is familiar with the common notions of formal 
language theory as presented in [7] as well as with the common notions of computa­
tional complexity theory that can be found in [4J. Let L be a regular set; then size(L) 
denotes th~ number of states of the minimal DFA accepting L. We say that two finite 
automata are equivalent if both accept the same language. The size of an automaton 
M, denoted by IMI, is defined to be the number of states. A state of a finite automaton 
will be called trap state when no accepting state can be obtained on every input. 

Concerning the definitions of NFAs with finite branching and MDFAs we follow the 
notations introduced in [2] and [11]. 

A nondeterministic finite automaton over 1: is a tuple M = (Q, 1:, 6, qo, F), with Q a 
finite set of states, qo E Q the initial state, F ~ Q the set of accepting states, and 6 a 
function from Q x 2; to 2Q. A move of M is a triple J-L = (p, a, q) E Q x 1: x Q with 
q E c5 (p, a). A computation for w = WI W2 ... Wn E 1:* is a sequence of moves J-LIJ-L2 ... J-Ln 
where /-Li = (qi-l,Wi, qi) with 1 ~ i ::; n. It is an accepting computation if qn E F. The 
language accepted by Mis T(M) = {w E 1:* 15(qo,w)nF =1= 0}. M is an (incomplete) 
deterministic finite automaton if 15(q, a) I ::; 1 for all pairs (q, a). The branching f3M(f.L) 
of a move /-L = (q,a,p) is defined to be f3M(/-L) = lo(q,a)l. The branching is extended 
to computations J-LIJ-LZ ..• J-Ln, n :;::: 0, by setting f3M(/-Ll/-L2'" /-Ln) = f3M(J-Ld . f3M(/-L2) . 
'" . fJM(/-Ln)·For each word W E T(M), let f3M(W) = min 13M (/-Ll/-L2 ••• J-Ln) where 
J-Ll/-L2 ... /-Ln ranges over all accepting computations of M with input w. The branching 
13M of the automaton M is 13M = SUp{f3M(W) I wE T(M)}. 

A DFA with multiple initial states (MDFA) is a tuple M = (Q, 1:, 5, Qo, F) and M is 
identical to a DFA except that there is a set of initial states Qo. The language accepted 
by an MDFA M is T(M) = {w E 1:* 15(Qo,w) n F =1= 0}. An MDFA with k = IQol 
initial states is denoted by k-MDFA. 

3 Minimizing MDFAs is computationally hard 

In this section we are going to show that the minimization problem for k-MDFAs is 
NP-complete. Throughout this section, k ~ 2 denotes a constant integer. 

PROBLEM k-MDFA -+ k-MDFA 
INSTANCE. A k-MDFA M and an integer 1. 
QUESTION Is there an l-state k-MDFA M' such that T(M') = T(M)? 

Theorem 1 k-MDFA -+ k-MDFA is NP-complete. 

Proof! The problem is in NP, since a k-MDFA M' with IM'I < 1 can be deter­
mined nondeterministically and the equality T(M) = T(M') can be tested in poly­
nomial time as is shown below. At first M and M' are converted to DFAs in the 
following manner. Let M = (Q,1:,5,{q6,qfi, ... ,q8},F), Ml = (Q,1:,5,q6,F),M2 = 
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(Q,E, 8,Q5,F), ... ,Mk = (Q, E,8,q~,F). Then T(Ml) UT(M2) u ... UT(Mk) = T(M) 
and we construct a DFA M as the Cartesian product of MI, M2, ... , Mk accepting 
T(MI) U ... U T(Mk) in the usual way. A DFA MI can be constructed from M' 
analogously. The time complexity of the inequivalence problem of two DFAs is in 
NLOGSPACE ~ P [9]. Hence T(1VJ) == T(,M') can be tested in polynomial time. 

The N P-hardness ofthe problem will be shown by reduction from the Minimum Inferred 
DFA problem. In [8J the NP-hardness of the Minimum Inferred DFA problem is used 
to prove that the Minimum Union Generation problem is NP-complete. To obtain our 
result, we adapt the proof in [8] to our needs. 

PROBLEM Minimum inferred DFA [1] 
INSTANCE Finite alphabet E, two finite subsets S, T C E*, integer l. 
QUESTION Is there an l-state DFA that accepts a language L such that 

S ~ L and T ~ E* \ L? 
Such an l-state DFA will be called consistent with Sand T. 

We follow the notations given in [8]. W.l.o.g. we may assume that S n T = 0. Let 
#, $ and £ be symbols not in E. Let E' = E U {I, $, £}, m == l + size(T n S), and 
t = max(k, m). 

L1 == T, 
L2 == TnS, 
L3 = {$, £}#t L2#m(£#t L2#m)*, 

L4 == $#tT#m, 

L5 == La UL4' 

Following [8], it is easy to show the following lemma: 

Lemma 1 Let L be regular and MI a DFA consistent with Sand T. 

(a) size($#t L#m) == size(($#t L#m)+) = t + m + 1 + size{L) 

(b) size(Ls) = t + m + 1 + size{L2) 

(c) $#tLl#m == $#t(L2 UT(MI))#m 

Proof: The claims (a) and (c) can be shown similarly to the Claims 4.1. and 4.2. in 
[8]. Claim (b) can be shown similarly to (a). 0 

We now present the reduction. Let.{lft = (Ql,E',oI,q6,F1), M2 = (Q2,E',52,q5,F2) 
be two minimal DFAs such that T(M1) == L3 and T{M2) == L4. W.l.o.g. we may 
assume that Q1 nQ2 = 0. We choose k-2 additional states {qg, ... , qg} not in Q1 UQ2. 
Then we can construct a k-MDFA M = (Q1 U Q2 U {qg, " . , qn, 1::', 5, {qJ, q3, ... ,q~}, 
FI U F2~. For a E P' we define o(q, a) = Ol(q, a) if q E Ql, o(q,a) = o2(q,a) if q E Q2, 
and o(q~, a) = 8(qo, a) for i E {3, ... , k}. Then T{M) = L5. The instance S, T, I has 
been transformed to M, 3m + 2t + k. Let m' = lSI + ITI + 1 be the size of the instance of 
the Minimum Inferred DFA problem, then it is easily seen that M can be constructed 
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from S, T, I in time bounded by a polynomial in m'.We next show the correctness of 
the reduction. 

Claim: There is an l-state DFA consistent with Sand T if and only if T(M) = L5 is 
accepted by a k-MDFA M' having at most 3m + 2t + k states. 

"=}": 
Let Mil be a DFA consistent with Sand T and IM"I :::; l. Let Ml and M2 be the 
minimal DFAs with T(Ml) = L3 and T(M2) = $#tT(MIf)#m. Then we have IMII = 
t+m+I+size(L2) = t+2m+I-I, IM21 $ t+m+l+I and therefore IMll+IM21 $ 3m+ 
2t + 2. Considering the two symbols $, i we can show analogously to [8] that T(Mr) U 
T(M2) = L5. Now we choose k - 2 additional initial states {qg, ... , qn ~ QI U Q2 and 
construct a k-MDFA M' = (Ql U Q2 U {qg, ... ,qn, ~',o, {qa,qa, .. · ,qn,F1 U F2) in 
the above-mentioned manner. We thus obtain a k-MDFA such that IM'I $ 3m+2t+k 
and T(M') = L5. 

"-¢::" : 
Let M = (Q, ~', 0, {qa, q6,.··, q~},F) be a k-MDFA such that T(M) = L5 and IMI $ 
3m + 2t + k. We may assume that M is minimal. We have to construct an I-state DFA 
M' consistent with Sand T. To attain this goal we show that M can be decomposed 
into two sub-DFA Ml and M2 such that IMII + IM21 $ 3m and T(MI) U T(M2) = 
T#m U (T n s#m)+. But this situation is exactly the situation of the "ii"-part in 
Claim 4.3 of [8]. Hence we can conclude that an l-state DFA M' consistent with Sand 
T can be constructed. 

(a) W.l.o.g. S =1= 0. If S = 0, then any DFA accepting the empty set is a DFA 
consistent with Sand T. Hence there is a one-state DFA accepting the empty 
set, and there is in particular an l-state DFA M' consistent with S and T. 

(b) Let w = $Wl with WI E #ts#m and w' = w~w~ witl?- wLw~ E i#tL2#ffl be two 
words in L5. Then there are initial states q~ and % such that o(q~, w) E F and 
o(qg, Wi) E F. We remark that qb and qg may be identical. 

(c) M contains exactly one.waist, one tail and two distinct cores. 
I 

According to [8] a waist is defined as a sequence of states q}, q2, ... , qm such that 
O(qi' #) = qi+1 for all i E {I, 2, ... , m -I} and qffl is an accepting state and has 
an outgoing i-edge. A tail is defined as a sequence of states ql, q2, ... , qm such 
that 0(% #) = qi+1 for all i E {I, 2, ... ,m - I} and qm is an accepting state and 
has no outgoing edges. A core is defined as a sequence of states ql, q2, ... , qt such 
that 0(% #) = qi+l for all i E {I, 2, ... , t - I} and qt is non-accepting and has 
outgoing edges, but no outgoing i-edge. 

Obviously, M contains at least one waist, one tail, and one core. We observe that 
all initial states from which a word in L5 can be accepted have a $-edge or i-edge 
or both to the first state of a core. Consider the above word w = $Wl. If we have 
exactly one core, then o(q~, $) = o(qg, i) and hence o(qg, iWl) = o(o(q~, $), wd = 
o(q~, w) E F which is a contradiction. If M contains two cores which are not 
distinct, then there are initial states q~, qg, a state q E Q, and xES such that 
o(q~, $#i') = q = o(qg, £#j') with 1 $ i',j' $ t and c5(q, #t-i' x#m) E F. Then 
o(qg, i#l #t-i' X#ffl) E F - contradiction. 
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If M contains more than two cores, more than one waist, or more than one tail, 
then IMI exceeds 3m + 2t + k, since M requires at least 2m states for waist and 
tail, 2t states for two cores, k initial states, and at least m :::; t states for an 
additional waist, tail, or core. Hence at least one additional state· is needed to 

realize L3 and L4' 
W.l.o.g. we may assume that w will be ac~epted from q~ passing through corel 
and the tail and Wi will be accepted from rio passing through core2 and the waist. 

Let qt = 8 (q~, w) and qw = 15 (c/o, wI) denote the last states i? the tail a,nd the 
waist. Let ql = o(qb, $), q2 = 6(r/o,£). By q~ = 6(qb, $#t) and q; = 0(%, £#t) 
we denote the last states of corel and core2. Since w is accepted passing through 
corel, we can conclude that q2 = 6(qWl £) is the starting state of the loop. 

(d) All initial states have no incoming edges. 

Let to with P E {l, 2, ... , k} be an initial state. We may assume that from <to 
at least one word in L5 can be accepted, otherwise all incoming edges can be 
removed without affecting the accepted language. Now, assume that qg has an 
incoming edge. Then this must be a #-edge. We have to show that <to =1= qt 
and to =1= qw· If t/o = qt or qg = qWl then % E F by definition of qt and qw and 
therefore € E L5 - contradiction. . 

(e) We claim that c5(q1, #ts#m) ~ F and c5(q2, #ts#m) n F = 0. 
By way of contradiction we assume that there is a string x E #t s#m such that 
6(q:,x) f/; F. Since $x E L5, we then know that c5(q2,x) E F and therefore 
6(%, £x) = c5(r,x) E F which is a contradiction. To show the second claim 
we ,assume that there is ~ string x E #t s#m such that 0 (q2 , x) E F. Since 
6(%, £) = q2, we have 6(%, £x) E F - contradiction. 

(f) We claim that c5(q2, #tL2#m(£#t L2#m)*) ~ F. 

For cont
2
radiction we assume that there is a word x E #t L2#m(£#tL2.#m)* such. 

that o(q ,x) f/; F. Since £x E L5, we then know that c5(q1, x) E F. c5(%,.wi £x) = 
6(q2, x) rt F: then there must be an initial state qh with 6(%, w~ £x) = 0(q1, x) E 
F, in particular o(qb,wl£) = q1. Then we have c5(qb,w~£wd = 6(ql,Wl) E F 
which is a contradiction. . 

(g) M can ~e modified to the form depicted in Figure 1. (The initial states q3, ... , q3 
are not Included.) 

I tail I - ® 

Figure 1: The modified k-MDFA M 

At first we remove all edges from initial states to any other states. We choose two 

different initial states q6 and q6 and then insert the following edges: q6 -.!,. q1, 
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q5 $,£) q2, and qb $,~ q2 for i E {3, ... , k}. We observe that due to (d), (e), 
and (f) the modified automaton still recognizes Ls. In particular, L3 is accepted 
from q5 and all words in $#t s#m are accepted only from qa. 

(h) We now look at the two DFAs obtained when considering only one initial state 
in M. We define the set of reachable states as follows: £ (qa) = {q E Q 13x, x' E 
(E')* : O(q6, x) = q 1\ o(q, x') E F}. E(q~) is defined analogously. 

We first claim that there is no edge from p E E(q5) to a state q from which qt can 
be obtained. Assume by way of contradiction that there are p E £(q5), q E Q, 
SEE', and U E (E')* such that o(P, s) = q and o(q, u) = qt E F. Since p E E(q5L 
there are strings x, x' E (E')* such that o(q5, x) = p and o(P, x') E F. Due 
to (g), we may assume that x starts with i. We then know that o(q5,xsu) = 
Wt E F, but 0'( qa, xsuxsu) . ¢ F, because qt has no outgoing edges. Moreover, 
J(q6, xsuxsu) ¢ F, since qa has no outgoing i-edge. Hence xsuxsu rt Ls which 
is a contradiction, because xsu E L3 and therefore xsuxsu E L3 C Ls. 

Furthermore, we obser've that all edges from states in E(q6) to states in £(qa) 
can be removed. If we have such an edge, all words passing this edge will be 
accepted in the waist and therefore are in L3. Hence these words can already be 
accepted from q5 due to (f) and (g). So, removing such edges does not affect the 
accepted language. We observe that this modification yields E(q6) n E(qa) = 0. 

(i) Since the sets of reachable states are distinct, we obtain two DFAs M{ = (Qi, E', 
Ji,q6,FD and M~ = (Q2,E"0'2,q5,F~) after having minimized the two DFAs 
(£(qa),E',o,q6,F) and (E(q5),E',o,q5,F). Due to (e) and (g), we know that 
L4 ;2 T(M{) ;2 $#ts#m and T(M2) = L3. Furthermore, IMii + IM21 :5 3m + 
2t + 2, since Q~ n Q2 = 0. 

m Starting from M{ we define another DFA Ml by removing qa, ql and the first 
t - 1 states of corel. We define q~ as new initial state and observe that T#m ;2 
T(MI) ;2 s#m. Starting from M~ we define another DFA M2 by removing qa, q2 
and the first t -1 states of core2. We define q~ as new initial state. The i-edge 
from qw to q2 is replaced by the following edges: if o2( q;, (7) = q for C7 E E, we 
add a C7-edge from qw to q. It is easy to see that T(M2) = (T n s#m)+. Hence 
we have T(M1 ) U T(M2) = T#m U (T n s#m)+. Moreover, IMll + IM21 :5 3m. 

(k) We have IM21 = size«T n s#m)+) = 2m -1 and therefore IMII :5 3m -IM21 = 
3m-2m+l = m+l. Removing the tail in Ml yields an I-state DFA M' co·nsistent 
with Sand T. 

o 

Corollary 1 Let k, k' ;::: 2 be two constant numbers. Then DFA --+ k-MDFA and 
k-MDFA --+ k' -MDFA are NP-complete. 

The following theorem is a simple observation of the fact that k-MDFAs can be effi­
ciently converted to DFAs whose size is bounded by a polynomial in k, and that the 
below-mentioned decidability questions are efficiently solvable for DFAs. 
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Theorem 2 Let M be a k-MDFA and M' be a k'-MDFA. Then the following problems 
are solvable in polynomial time. Is T(M) = T(M')? Is T(M) ~ T(M')? Is T(M) c 
T(M')? Is T(M) = t:* ? 

4 Minimizing NFAs with fixed finite branching is compu­
tationally hard 

In this section we are going to show that the minimization problem for NFAs with 
branching {3 = k (NFA(.B = k») is NP-complete for k ~ 3. 

PROBLEM NFA(.B = k) --t NFA(.B = k) 
INSTANCE An NFA M with branching.B = k and an integer 1. 
QUESTION Is there an I-state NFA M' with branching .B = k such that 

T(M') = T(M)? 

Lemma 2 Let M be an NFA and k ;:::: 2 be a constant integer. Then the problem 
whether M has branching k can be solved in polynomial time. 

Proof: We consider the language 

Ti(M) = {w E I:* I there is an accepting computation 11" of M of w with (3(11") ~ i}. 

In (2) it is shown that a DFA Mi accepting Ti(M) can be effectively constructed. We 
observe that the construction can be done in time polynomially bounded in IMI and the 
resulting DFA has size O(IMlk). A detailed discussion may be found in the appendix. 

Since Tk(M) ~ T(M), we have: T(M) \ Tk(M) = 0 ¢:> .BM ~ k. Since Mk is a DFA, 
we can simply construct a DFA Mk accepting the complement I:* \ Tk(M). 

13M ~ k ¢:> T(M) \ Tk(M) = 0 ¢:> T(M) n Tk(M) = 0 ¢:> T(M) 'n T(Mk) = 0 

Since M is an NFA and Mk is a DFA, we can construct, in polynomial time, an NFA M 
of size O(IMI'IMlk

) as the Cartesian product of M and Mk accepting T(M) nT(MJJ. 
The non-emptiness of T(M) can be tested in NLOGSPACE ~ P [10]. If T(M) =1= 0, 
then (3M > k. IfT(M) = 0, then we know that (3M ~ k. To find out whether .BM = k, 
we construct Tk-l (M) if k - 1 ;:::: 1. This can be done in polynomial time as well as 
the test for inequivalence of Tk-l (M) and Tk(M). If both sets are inequivalent, then 
.BM = ki otherwise (3M < k. 0 

Theorem 3 NFA(.B = k) --t NFA(.B = k) is NP-complete for k ~ 3. 

Proof: We first show that the problem is in NP. To this end we determine nondeter­
ministicallyan NFA M' with IM'I ~ 1. Due to Lemma 2, we can test whether M' has 
branching k in polynomial time. We next convert M and M' to k-MDFAs M and M' 
with at most klMI-t:,l and kiM:! + 1 states applying the construction presented in [11]. 
The equality of T(M) and T(M') can then be tested in polynomial time analogous to 
the considerations of Theorem 1. Hence the above problem is in N P . 
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The NP-hardness of the problem will be shown by reduction from the Minimum Inferred 
DFA problem similar to the proof for MDFAs. 

Let m = l + .size(T n S) and n = 5m + 1. In addition to the previous definitions we 
define: 

L' 3 {$, i}#m(#m+1)* L2#m(i#m(#m+1)* L2#m)*, 

L~ _ $#m(#m+l)*T#m, 

Li _ {($#ink-l)+} (1::; i ::; k - 2), 

L~ - Ll U L2 U ... U Lk-2, 

L~ -

Lemma 3 Let L be regular and M' a DFA consistent with Sand T. 

(a) size($#m(#m+I)* L#m) = size(($#m(#m+I)* L#m)+) = 2m + 1 + size(L) 

(b) size(L~) = 2m + 1 + size(L2) 

(c) $#m(#m+1)* L1#m = $#m(#m+1)*(L2 U T(M,))#m 

(d) size(Li) = ink + 1 

(e) size( {$#m(#m+l )*} U L~) ~ n k + 2nk + ... + (k - 2)nk + (k - 2)nk + 1 + (m + 1) 

Proof: The claims (a), (b), and (c) can be shown analogously to those of Lemma 1. 
Claim (d) is obvious. The proof of (e) is not difficult, but lengthy and will be shown 
in the appendix. 0 

We now present the reduction. Let Ml = (Ql,E',81,q6,F1), M2 = (Q2,E',o2,q~,P2) 
be two minimal DFAs such that T(M1) = L~ and T(M2) = L4. Furthermore, let 
Mi = (Qi, E', Oi, qb, Fi), 3 s i ::; k be k - 2 minimal DFAs accepting L1 ,L2, ... ,Lk-2. 
W.l.o.g. we may assume that Ql, Q2, ... , and Qk are pairwise distinct. We observe 
that for 3 S i ::; k the states qb have no incoming edges and only one outgoing edge to 
a non-trap state, namely a $-edge. Moreover, q6 has no incoming edges and only two 
outgoing edges to non-trap states, namely a $-edge and a i-edge. We remove q6 from 
M1 and qb from Mi for 3 ::; i ::; k and construct an NFA M = ((Q1 \ {qJ}) U Q2 U (Q3 \ { qn ) U ... U ( Q k \{ q~} ), }J' , 0, q5, PI U F2 U ... U Fk)' For 0' E E' and 1 S i ::; k we define 
c5(q,O') = c5i(q, 0') if q E Qi' Furthermore, c5(q~, $) = c51(Q6, $), c5(Q~, i) == c51(Q6, i), and 
c5(QS, $) = 8i (Qb, $) for 3 ::; i s k. Then T(M) = L~ and M is an NFA with branching 
k. 

The instance S, T, l has been transformed to M, 5m+l+ l:;';{ ink. Let m' = ISI+ITI+l 
be the size of the instance of the Minimum Inferred DFA problem, then it is easily 
seen that M can be constructed from S, T, l in time bounded by a polynomial in m'. 
We next show the correc.tness of the reduction. 

Claim: There is an i-state DFA consistent with Sand T if and only if T(M) = L~ is 
accepted by an NFA M' with branching f3M = k that has at most 5m + 1 + I:;';{ ink 
states. 
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"=>": 
Let Mil be a DFA consistent with S and T and IM"I ::; l. Let Ml and M2 be the 
minimal DFAs with T(M1) = L~, T(M2) = $#m(#m+1)*T(MIf)#m. Furthermore, 
M3,." ,Mk are minimal DFAs accepting L1,,,. ,Lk-2. Analogous to the proof of 
Theorem 1 and the above considerations we can construct an NFA M' with branching 
f3M' = k such that T(M') = L~ and IM'I ::; 5m + 1 + r:;':link. 

"{:=": 
Let M = (Q, E', 8, qo, F) be an NFA with branching f3 M = k such that T( M) = L~ and 
IMI ::; 5m + 1 + r:t; ink. We may assume that M is minimal. We have to construct 
an l-state DFA M' consistent with S and T. Due to the definition of L~, we can show 
that the nondeterministic moves of M have to start in qo. Then, M can be converted 
to a 2-MDFA Mil such that IM"I ::; 3m+2t+2, setting t = m, and T(M") = L5. Due 
to the proof of Theorem 1, we then can conclude that an 1-state DFA M' consistent 
with S and T can be constructed. 

(a) W.l.o.g. S i= 0. Let W = $#mWl#m with WI E Sand w' = w~w~ with wLw2 E 
t#m L2#m be two words in L~. 

(b) M contains exactly one waist, one tail, two distinct loop-cores, and k - 2 $-#­
loops of length nk, 2nk, ... , (k - 2)nk. 

A loop-core is defined as a sequence of states ql, Q2, . .. ,qm, qm+l such that 
c5(Qi, #) = qi+l for all i E {I, 2, ... , m} and qm+1 is non-accepting, has outgoing 
edges, in particular a #-edge to qi, but no outgoing t-edge. 

A $-#-loop of length jnk with 1 ::; j ::; k - 2 is defined as a sequence of states 
qI, Q2, .. ·, qjnk such that 0(% #) = qi+l for all i E {I, 2,,,. ,jnk -I} and qjnk is 
accepting and has an outgoing $-edge to ql. 

Obviously, M contains at least one waist, one tail, and one loop-core. Consider 
the above word W E L5' If we have exactly one loop-core, then there is a 
state q E o(qO, $) n o(qO, t) and o(q, #mWl#m) n F i= 0. Hence we have that 
c5(qo, t#mwl #m) n F i= 0 which is a contradiction. If M contains two loop-eores 
which are not distinct, then there is a state q E o(qO, $#i) n o(qO, t#j) with 
1::; i,j::; m and 0(q,#m-iW1#m) nF i= 0. Then c5(qO,t#j#m-iwl#m) 
n F i= 0 - contradiction. 

It is easy to see that the states of the tail and the waist are distinct from those of 
a $-#-loop. Furthermore, the states of a loop-core and a $-#-loop are distinct. 
By way of contradiction we assume that there exist 1 ::; j ::; k - 2 and a state q E 
c5(qo, $#i) n c5(qo, $#ink-l$#l) and o(q, #i' WI #m) n F i= 0 with 1 ::; i ::; m, 1 ::; 
j' ::; jnk -l. Then c5(qo, $#ink-:1$#i#i'Wl#m)nF i= 0 which is a contradiction. 
We now show that $-#-loops of different length have distinct states; hence M 
contains k - 2 $-#-loops of length nk, 2nk, .. . , (k - 2)nk. Assume by way of 
contradiction that there is a state q E o(qO, $#ink -l$#i')nc5(qo, $#jnk-l$#i') i= 0 
with i i= j, i' ::; ink -1, j' ::; jnk -1, and c5(q, #ink-l-l$#inlc-l) nF i= 0. Then 
it follows that $#ink-l$#i'+ink-1-j' $#ink- 1 E L~ which is a contradiction. 

If M contains more than two loop-cores, more than one waist, more than one 
tail, or more than one $-#-loop of the same length, then IMI exceeds 5m + 1 + 
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I::;f ink, since M requires at least 2m states for waist and tail, 2m states for 
two loop-cores, I:f;12 ink states for the $-#-loops, one initial state, and at least 
m states for an additional waist, tail, loop-core, or $-#-loop. Hence at least one 
additional state is needed to realize L~ and L4' 

W.l.o.g. we may assume that w will be accepted passing through loop-corel and 
the tail and w' will be accepted passing through loop-core2 and the waist. 

Let qt E 0 (qO, w) and qw E 6'( qo, wl.) denote the las9. t states in the tail and the 
waist. By ql and q2 we denote the states obtained after having read $ and £ 
when M passes through the. accepting computations of w and w~. Since w is 
accepted passing through loop-corel, we can conclude that {q2} = O(qWl £) is 
the starting state of the loop in L~. 

(c) All computations starting in q2 E o(qO, £) and leading to an accepting state, 
thus computations of words in £#m(#m+l)* L2#m(£#m(#m+l)* L2#m)*, have 
branching 1. This is obvious, since even one move with a branching greater than 
one would imply that M contains accepting computations with infinite branching 
due to the i-edge from qw to q2. 

(d) The loop-cores and the $-#-loops contain no moves with branching greater than 
one, since due to their loops there would be computations with infinite branching. 

(e) All computations starting in §(qOl $) and leading to an accepting state, thus com- . 
putations of words in $#m(#mH)*8'#m with 8 ~ 8' ~ if, L~, and $#rri(#mH)* 
L2#m(£#m(#mH)*L2#m)*, have branching 1. 

Due to (c) and (d) the moves with branching greater than one have to be located 
either in the states before entering the loop-core and the $-#-loops, or in the 
states recognizing 8' #m . 

First of all, we assume that all moves with branching.greater than one start before 
entering the loop-core and the $-#-loops. Then we can shift the branching to qo: 
we remove any outgoing $-edges from qo and insert k - 2 $-edges to the first states 
of the $-#-loops and two $-edges to loop-corel and loop-core2' It follows that 
the modified automaton still recognizes L~, but there is at least one unnecessary 
state q E o(qo, $). Hence M was not minimal which is a contradiction. 

We now assume that there is at least one move with branching 2 within the states 
recognizing 8'#m. Then L = $#m(#mH)*UL~ must be recognized by an NFA 
with a branching of at most l ~J. Due to Lemma 3 we know that a DFA for L 
needs at least nk+2nk+ ... +(k-2)nk+ (k-2)nk+l+ (m+l) states. Analogous 
to the considerations in (b) one can see that every NFA accepting L with finite 
branching containsk - 2 differ.ent $-#-loops of length nk, 2nk, . .. , (k - 2)nk, a 
loop-core of length m + 1 and an initial state. In comparison with the minimal 
DFA, an NFA with finite branching can therefore achieve savings in size only 
through nondeterministic moves that start in states which are not part of a loop. 
Subtracting the loop-states fromnk+2nk+ ... +(k-2)nk+(k-2)nk+l+ (m+l), 
there remain (k-2)nk+l states. In [2] it is shown that the b~st pos~iblereduction 
of states that an NFA with branching i can achieve in comparison with the 
corresponding minimal DFA is at most the i-th root of the size of the DFA. 
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Hence an NFA accepting L with branching l~J has at least nk + 2nk + ... + (k-
k l/lh!.J 2 2)nk +(m+1)+((k-2)nk+1)1/L2J states. Since ((k-2)nk+1) 2 2: n , we have 

/c I 1 "k-2. k that IMI 2: I:i;i ink +n2 which is a contradiction to 1M ~ 5m+ + L.Ji=l m = 
"k-2. k n+ L.Ji=l m . 

It follows that 18(qo, $)1 > 1. From qO we then have a $-edge to ql and the first states 
of the k - 2 $-#-loops. Furthermore, we can assume to have a $-edge to q2. If there 
is no such edge, we can insert one without affecting the accepted language. We next 
remove the k - 2 $-#-loops and reduce the two loop-cores to cores by removing their 
#-loops. We then have an NFA with branching 2 with 3m + 2t + 1 states (t = m) 
accepting L5. Now, we remove the $-edge from qo to ql and we insert an additional 
state q& which has an outgoing $-edge to ql. Thus, we have a 2-MDFA with 3m+2t+2 
states accepting L5. Due to Theorem 1 we can construct an l-state DFA M' consistent 
with Sand T. 0 

$-#-loop 
$ 

loop-corel ®/ 
loop-core2 

£ 

Figure 2: The NFA(,B = 3) M accepting L~. 

Corollary 2 Let k 2: 2 and k' 2: 3 be constant integers. Then DFA --7 NFA(,B = k') 
and NFA(,B = k) --7 NFA(,B = k') a'Jl'e NP-complete. 

Theorem 4 The following problems, which are PSPACE-complete when arbitrary NFAs 
are considered, are solvable in polynomial time. 

(a) Given two NFAs M,M' with ,BM = k and ,BMI = k'. Is T{M) =T(M')? Is . 
T(M) ~ T(M')? Is T(M) C T(M')? Is T{M) = E*? 

(b) Given an arbitrary NFA M and an NFA M' with ,BMI = k. Is T{M} ~ T{M') ? 

Proof: Claim (a) results from the fact that NFAs with branching k can be ef­
ficiently converted to DFAs whose size is bounded by a polynomial in k, and that 
the decidability qu~stions are efficiently solvable for DFAs. To prove (b) we observe 
that T(M) ~ T(M ) {:} T(M) n T(M') = 0.M' can be converted to a DFA of size 
O(IM'lk

) and a .DFA accepting T{M') has then O{I¥'lk) states as well. Analogous 
to t~e constr.uctlOn of Lemma 2, we obtain an NFA M accepting T(M) n T{M') and 
test Its emptmess. We observe that the construction and the test can be performed in 
polynomial time. . 0 
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5 Conclusions 

In this paper, we have shown that the minimization of finite automata equipped with a 
very small and fixed amount of nondeterminism is computationally hard. In particular, 
the minimization problems for DFAs with a fixed number of initial states as well as 
for NFAs with fixed finite branching have been proven NP-complete. Hence, even the 
slightest amount of nondeterminism makes minimization computationally intractable 
whereas equivalence, inclusion, or universality questions preserve their efficient solu­
tions. Hence the question arises whether there are extensions of the deterministic 
model at all that preserve polynomial time minimization algorithms. Two candidates 
result from our considerations. At first, the computational complexity of the problem 
NFA(,B =k) --+ NFA(,B = 2) remains open. Obviously, the problem is in NP, but NP­
hardness cannot be shown using the approach of Theorem 3. The two constructions 
in Theorem 1 and Theorem 3 present finite automata which are not unambiguous. 
It is currently unknown whether unambiguous k-MDFAs or unambiguous NFAs with 
branching k provide efficient minimization algorithms. 
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Appendix 

Claim: Let M = (Q, L;, 0, qQ, F) be an NFA. A DFA accepting T/c(M) can be con­
structed in time polynomially bounded in IMI. 

Proof: We reproduce the construction from [2J and observe that it can be performed 
in polynomial time. 

Let L;T = {[P, a, q] E Q X L; X Q I q E o(p, an be the alphabet of triples corresponding 
to moves of M. 

R = {[qQ, aI, ql][ql, a2, q2] ... [qn-l, an, qn] E L;T I n ~ 1, qn E F} U {€ I qo E F} 

is then the regular set of all accepting computations of M. Obviously, a DFA accepting 
R is the "deterministic version" of M with size(R) = O(lMJ) that can be constructed 
in time O(IMI . I~TD = 0(IMI3). Let f : ET ---* E* and 9 : L;T ---* {c,d}* be 
homomorphisms such that f([p,a,q]) = a and g([p,a,q]) = c if 10(p,a)1 = 1 and 
g([P, a, q]) = c1o(p,a)ld otherwise. Furthermore, . 

Sk = {cild ... dtd I t ~ 1, each ji ~ 2,j1' h· ... . jt $; k} U {e}. 

Since k is a constant number, it follows that size(Sk) and size(g-l(Sk)) are in 0(1) and 
the corresponding DFAs can be constructed in constant time and O(IL;TJ) = 0(JMI2), 
respectively. Constructing the Cartesian product of Rand g-l (Sk), we obtain a DFA 
accepting R n g-l(Sk) of size O(IMI) in time 0(JMI3). The construction of an NFA 
M' accepting feR n g-l(Sk)) can be done by relabeling of the edges of the DFA for 
Rng-I(Sk), and can be performed in time O(IMI3 ). We observe that M' has branching 
k, IM'I = O(IMD, and T(M') = feR n g-I(Sk)) = J({1l' E R I ,8(1l') $;k}) = T/c(M). 
Applying the construction presented in [11], we can convert M' to a k-MDFA with at 
most klM'1 + 1 = O(IMJ) states in time O(IMI). Then, this k-MDFA can be converted 
to a DFA with at most O(JMlk) states in time O(IMlk) analogous to the construction 
of Theorem 1. 0 

Claim: Let L = {$#m(#m+I)*} u L~. 
Then size(L) ~ nk + 2nk + ... + (k - 2)nk + (k - 2)nk + 1 + (m + 1). 

Proof: We use the Nerode equivalence relation =L on L and show that the index 
index(=L) ;::: nk + 2nk + ... + (k - 2)nk + (k - 2)nk + 1 + (m + 1). For x,y E E*, =L 

is defined as: 
X =L y:-¢=:?- xz E L {:} yz E L for all z E E*. 

Let 1 $; i $; k - 2; we define the following sets of strings: 

Ai = 

B = 
0 = 
D = 

{ } .'. $#ink-I$#i d 0 < . < . Ie 1 ai,Q, ai,l,"" ai,ink-l wlth ai,j = an _ J _ zn - , 

{bl' b2,. " ,bm+1} with bj = $#(1e-2)n"-I#j and 1 $; j ::; m + 1, 

{co, Cl, ... , C(Ie-2)nLl} with Cj = $#j and 0 $; j $; (k -'- 2)nk - 1, 

{c}. 

Obviously, IAil = ink, IBI = m + 1; 101 = (k - 2)nk, and IDI = 1. We have to show 
that each two words from Al U A2 U ... U Ak-2 U B U CUD are not =L-equivalent. 
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(a) Claim: Let x, y E Ai such that x -:f y. Then x ¥=L y. 
Let x = $#in"-l$#il and y = $#ink-l$#jl with 0 ~ i' < j' ~ ink -1. We define 

• k 1" . k 1 L z = =#In - -) $#tTI - and obtain that xz rt Land yz E . 

(b) Claim: Let x, y E B such that x -:f y. Then x ¥=L y. 
Let x = $#(k-2)nk -1=#il and y = $#(k-2)n"-1#jl with 1 ~ i' < j' ::; m + 1. 
Then j' = i' + r with 1 ~ r ::; m. Let i" 2': 0 be the minimal integer such 
that (k - 2)nk - 1 + i' + i" - m is a multiple of m + 1. Then (k - 2)nk - 1 + 
i' + i" = m + t(m + 1) with t 2': 1. We now set z = #i" and observe that 
xz = $#(k-2)nk -l#il #i" = $#m+t(m+1) E L, but yz = $#(k-2)n

k
-l#l #ill Fj L, 

since m + t(m + 1) = (k - 2)nk - 1 + i' + i" < (k - 2)nk - 1 + j' + i" = 
(k - 2)nk - 1 + i' + r + i" = m + t(m + 1) + r < m + (t + l)(m + 1). 

(c) Claim: Let x, y E C such that x -:f y. Then x ¥=L y. 
Let x = $#il and y = $#jl with 0 ~ i' < j' ~ (k - 2)nk - 1. We set z = 
#(k-2)n"-1-l $ #(k-2)n"-1 and obtain that xz Fj Land yz E L. 

(d) Claim: Let x E Ai and y E Aj with 1 ::; j ~ k - 2 and i -:f j. Then x ¥=L y. 
Let x = $#ink-l$#il and y = $#jn"-I$#jl with 0 ~ i' ::; ink - 1 and 0 ::; j' ::; 
jnk - 1. W.l.o.g. we may assume that i < j. We define z = #jn"-1-jl $#jn"'-1 
and obtain that xz Fj L and yz E L. 

(e) Claim: Let x E Ai and y E B. Then x ¢.L y. 
Let x = $#in lo -1$#i' and y = $#(k-2)nk

- 1ttl with 0 ~ it ~ ink - 1 and 
1 =::; j' ~ m + 1. We set z = #in"-1-i

l
$#in -1 and obtain that xz ELand 

yz Fj L. 

(f) Claim: Let x E Ai and y E C. Then x ¢.L y. 
Let x = $#ink-1$#il and y = $#jl with 0 ~ i' ~ ink - 1 and 0 ~ j' ::; 
(k-2}nk -1. Let jll 2': 0 be the mir;timal integer such that j' +j"-m is a multiple of 
m+ 1. Then j' + j" = m+t(m+ 1) with t 2': O. We now set z = #j"+(m+1)(in"-l) 

and observe that yz = $#l+j"+(m+1)(ink-1) = $#m+(m+l)(t+ink -l) E L, but 
xz = $#ink-l$#f #j"+(m+1)(ink-1) ~ L, since i' + jll + (m+ l)(ink -1) > ink-1. 

(g) Claim: Let x E Band y E C. Then x ¢.L y. 
Let x = $#(k-2)n

k
-l#i

l 
and y = $ij1' with 1 ~ i' ::; m + 1 and 0 ~ j',::; 

(k - 2)nk -1. We define z = #(k-2)n -1-jl $#(k-2)nk-1 and obtain that xz Fj L 
andyz E L. 

(h) Claim: Let x E Al U '" U Ak-2 U B U C and y ED. Then x ¥=L y. . 
Let x E Al U ... U Ak-2 U B U C, y = €, and z = $#m+(m+l)«k-2)n"-1). Then 
xz ~ L, since m+ (m+ l)«k- 2)nk -1) > (k- 2)nk -1, and yz = z E L. Hence, 
x ¢.L y. 

Thus, index(=L) 2': IAII + ... + IAk- 'l1 + IBI+ICI + IDI = nk + 2nk + ... + (k -2)nk + 
(k - 2)nk + (m + 1) + 1 and the claim is proven. 0 
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