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Abstract: 
We model the dynamics of ask and bid curves in a limit order book market using a dynamic 
semiparametric factor model. The shape of the curves is captured by a factor structure which 
is estimated nonparametrically. Corresponding factor loadings are assumed to follow 
multivariate dynamics and are modelled using a vector autoregressive model. Applying the 
framework to four stocks traded at the Australian Stock Exchange (ASX) in 2002, we show 
that the suggested model captures the spatial and temporal dependencies of the limit order 
book. Relating the shape of the curves to variables reflecting the current state of the market, 
we show that the recent liquidity demand has the strongest impact. In an extensive 
forecasting analysis we show that the model is successful in forecasting the liquidity supply 
over various time horizons during a trading day. Moreover, it is shown that the model’s 
forecasting power can be used to improve optimal order execution strategies. 
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1 Introduction

1 Introduction

Due to technological progress in the organization of trading systems and exchanges,
electronic limit order book trading has become the dominant trading form for equities.
Open limit order books provide important information on the current liquidity supply
in the market as reflected by the offered price-quantity relationships on both sides of the
market. Whereas in traditional market maker markets or over-the-counter markets only
the corresponding best ask and bid prices are observable, the limit order book displays
also limit prices and volumes behind the market. Demand and supply schedules provide
valuable information on traders’ price expectations in the spirit of the seminal paper by
Glosten (1994), reflect the current implied costs of trading as well as demand and supply
elasticities. Such information is useful for investors to optimally design order execution
strategies.

In this paper, we propose a dynamic semiparametric factor approach to model and to
forecast the dynamics of liquidity supply in a limit order book. The liquidity supply
is captured by the demand schedule on both sides of the market as represented by the
posted order volumes on a price grid around the prevailing best ask and bid quotes. The
paper’s major idea is to capture the shape of the high-dimensional ask and bid curves
by a lower-dimensional factor structure which is estimated non-parametrically. The
curves’ dynamic behavior is driven by time-varying factor loadings which are modelled
parametrically employing a vector autoregressive (VAR) approach.

Due to the availability of data on limit order book markets, the empirical analysis thereof
has become an important field in empirical finance and high-frequency econometrics.
A dominant part of empirical research on limit order book markets is devoted to the
analysis of traders’ order submission strategies and implications thereof for liquidity
and volatility dynamics, such as, e.g., Biais et al. (1995), Griffiths et al. (2000), Ahn
et al. (2001), Ranaldo (2004), Hollifield et al. (2004), Bloomfield et al. (2005), Hall
and Hautsch (2006, 2007) or Hasbrouck and Saar (2009). A further major issue is the
analysis of market transparency and its impact on liquidity, see, e.g., Baruch (2005),
Boehmer et al. (2005), Comerton-Forde and Tang (2009) and Eom et al. (2007). A
central aspect in this literature is to analyze the question of how to optimally balance
risks and gains of a trader’s decision whether to post a market order or a limit order.
As recently illustrated by Chacko et al. (2008), a limit order can be ultimately seen as
an American option and transaction costs are rents that a monopolistic market maker
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Figure 1: Limit order book for selected stocks traded at the ASX on July 8, 2002 at
10:15. Red: bid curve, blue: ask curve.

extracts from impatient investors who trade via aggressive limit orders or market orders.
Consequently, the analysis of liquidity risks (see, e.g., Johnson (2008), Liu (2009), Garvey
and Wu (2009) or Goyenko et al. (2009)) and transaction costs (see, e.g. Chacko et al.
(2008) and Hasbrouck (2009)) are in the central focus of recent literature.

In financial practice, the question of how to reduce the costs of trading by optimally
splitting a large order over time (e.g., the course of a trading day) is of high relevance, see,
e.g. Engle and Ferstenberg (2007). Optimal splitting naturally requires to predict future
liquidity demand and supply. While there is some (though little) empirical evidence on
the predictability of intraday volume (see, e.g., Hautsch (2008) and Brownlees et al.
(2009)), the dynamic behavior of liquidity supply is widely unknown.

This paper aims to address this question and to gain deeper insights into the question
to which extent the offered ask and bid volume can be modelled and predicted. The
ultimate objective of interest is the number of shares pending on a relative price grid
around the best ask and bid curves. Given the objective to capture not only the volume
around the best quotes but also pending quantities ’behind’ the market, the underlying
problem becomes inherently high-dimensional. A typical graphical snapshot of ask and
bid curves for four stocks traded at the Australian Securities Exchange (ASX) in 2002,
is given by Figure 1. The curse of dimensionality applies immediately as soon as time
variations of the order curve shapes have to be taken into account. As shown by Figure 1
and as illustrated in more detail in the sequel of the paper, order volume is not necessarily
only concentrated around the best quotes but can be substantially dispersed over a wider
range of price levels. This is a typical scenario for moderately liquid markets as that
of the ASX. In such a context, the dynamic modelling of all volume levels individually
becomes complicate and intractable.

Consequently, we suggest reducing the high dimensionality of the order book by means
of a factor decomposition using the so-called Dynamic Semiparametric Factor Model
(DSFM) proposed by Fengler et al. (2007), Brüggemann et al. (2008), Park et al. (2009)
and Cao et al. (2009). Accordingly, we model the shape of the book in terms of underlying
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1 Introduction

latent factors which are defined on the price grid space around the best ask or bid quote
and can depend on additional explanatory variables capturing, e.g., the state of the
market. In order to avoid specific functional forms for the shape of the curves, the factors
as well as the corresponding loadings are estimated nonparametrically using B-splines.
Then, in a second step, we model the multivariate dynamics of the factor loadings using
a VAR model.

Using this framework we aim answering the following research questions: (i) How many
factors are required to model order book curves reasonably well? (ii) How does the shape
of the factors look like? (iii) How do the dynamics of the estimated factor loadings look
like? (iv) Does the shape of the order book curves depend on past price movements,
past trading volume as well past volatility? (v) How successful is the model in predicting
future liquidity supply and can it be used to improve order execution strategies?

Using limit order book data from four stocks traded at the ASX covering two months in
2002, we show that approximately 95% of the order book variations observed on 5-min
intervals can be explained by two underlying time-varying factors. While the first factor
captures the overall slope of the curves, the second one is associated with its curvature.
It turns out that recent liquidity demand represented by the cumulative buy/sell trading
observed over the past 5 minutes has an effect of the shape of the curve but does not
induce a higher explanatory power. Similar evidence is shown for the impact of past
returns and corresponding (realized) volatility. Furthermore, it is shown that the factor
loadings follow highly persistent though stationary dynamics suggesting an underlying
vector autoregressive structure.

To evaluate the model’s forecasting power, we perform an extensive out-of-sample fore-
casting analysis which is in line with a typical scenario in financial practice. In particular,
at every 5-min interval during a trading day, the model is re-estimated and used to pro-
duce forecasts for the pending volume on each price level for all future 5-min intervals
during the remainder of the trading day. We show that our approach is able to out-
perform a naive prediction, where the current order book is used as a predictor for the
remaining day. Moreover, it is illustrated that these results can be used to improve order
execution strategies by reducing implied transaction costs.

The remainder of the paper is structured as as follows: After the data description in
Section 2, the Dynamic Semiparametric Factor Model (DSFM) is introduced in Section 3.
Empirical results regarding the modelling and forecasting of liqudity supply are provided
in Sections 4 and 5, respectively. Section 6 concludes.
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2 Data

2 Data

2.1 Trading at the ASX and Descriptive Statistics

The Australian Stock Exchange (ASX) is a continuous double auction electronic market,
where the continuous auction trading period is preceded and followed by a call auction.
Normal trading takes place continuously on all stocks between 10:09 a.m. and 4:00 p.m.
from Monday to Friday. During continuous trading, any buy (sell) order entered that
has a price that is greater than (less than) or equal to existing queued buy (sell) orders,
will be executed immediately. If an order cannot be executed completely, the remaining
volume enters the queues as a limit order. Limit orders are queued in the buy and sell
queues according to a strict price-time priority order. Orders can be entered, deleted
and modified without restriction.

For order prices below 10 cents, the minimum tick size is 0.1 cents, for order prices
above 10 cents and below 50 cents it is 0.5 cents, whereas for orders priced 50 cents
and above it is 1 cent. Note that there might be orders which are entered with an
undisclosed or hidden volume if the total value of the order exceeds AUD 200,000. Since
this applies only to a small fraction of the posted volumes, we can safely neglect the
occurrence of hidden volume in our empirical study. For more details on the data, see
Hall and Hautsch (2007) using the same data base as well as the official description of
the trading rules of the Stock Exchange Automated Trading System (SEATS) on the
ASX on www.asxonline.com.

Orders BHP NAB MIM WOW
Market orders
(i) buy 28,030 16,304 4,115 7,260
(ii) sell 16,755 15,142 2,789 6,464
Limit orders
(i) buy (bid side) 50,012 28,850 9,551 13,234

- changed 8,009 7,561 1,637 3,203
- cancelled 5,202 4,725 2,044 1,951

(ii) sell (ask side) 32,053 25,953 6,474 11,318
- changed 6,891 6,261 1,862 3,164
- cancelled 4,692 3,863 1,178 1,554

Table 1: Number of market and limit orders for selected stocks at the ASX from July 8
to August 16, 2002

We select four companies traded at the ASX covering the period from July 8 to August
16, 2002 (30 trading days), namely Broken Hill Proprietary Limited (BHP), National
Australia Bank Limited (NAB), MIM and Woolworths (WOW). The number of market
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and limit orders for the selected stocks is given in Table 1.

We observe more buy orders than sell orders implying that the bid side of the limit order
book was changing more frequently than the ask side. BHP and NAB are significantly
more actively traded than MIM and WOW shares. Aggregated over all stocks, 20.08%
(23.98%) of all bid (ask) limit orders have been changed (after posting), whereas 13.70%
(14.89%) have been cancelled. Furthermore, according to Table 2, for both traded as
well as posted quantities it is shown that on average sell volumes are higher than buy
volumes. Hence, confirming the result above, liquidity variations on the bid side are
higher than that of the ask side. This finding might be explained by the fact that during
the analyzed period the market generally went down creating more sell activities than
buy activities.

Quantity BHP NAB MIM WOW
Quoted quantity
(i) buy 7,359 4,292 40,559 4,686
(ii) sell 12,247 4,593 54,162 5,579
Traded quantity
(i) buy 5,456 2,761 36,033 3,232
(ii) sell 8,340 2,918 44,872 3,709

Table 2: Average quoted and traded quantities for selected stocks at the ASX from July
8 to August 16, 2002

The original dataset contains all limit order book records as well as the corresponding
order curves represented by the underlying price-volume combinations. The latter is the
particular object of interest for the remainder of the analysis.

2.2 Notation and Data Preprocessing

The underlying limit order book data contains identification attributes regarding r =
1, . . . , R different orders as well as quantities demanded and offered for different price
levels j = 1, . . . , J , at any time point t = 1, . . . , T . Particularly, at any t, we observe
J = 101 price levels on a fixed minimum tick size grid originating from the best bid and
ask quote.

Since the order book dynamics are found to be very persistent, we choose a sampling
frequency of five minutes without losing too much information on the liquidity supply.
To remove effects due to market opening and closure, the first 15 minutes and last 5
minutes are discarded. Hence, at each trading day, starting at 10:15 and ending at 15:55,
we select per stock 69 price-quantity vectors, in total T = 2070 vectors over the whole
sample period. Denote Ỹ bt,j and Ỹ at,j as the pending bid and ask volumes at bid and ask
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2 Data

limit prices S̃bt,j and S̃at,j , respectively at time point t.

We define the best bid price at time t as the highest buy price S̃bt,101, and similarly, the
best ask price at t as the lowest sell price S̃at,1. The corresponding quantities at best
bid and ask prices are then Ỹ bt,101 and Ỹ at,1, respectively, yielding the mid-quote price
to be defined as S̃∗t =

(
S̃bt,101 + S̃at,1

)
/2. The absolute price deviations from the best

bid and ask price at level j and time t are given by S̆bt,j = S̃bt,j − S̃bt,101 and S̆at,j =
S̃at,j − S̃at,1, respectively and constitute a fixed price grid. To measure spreads between
individual price levels in relative terms, i.e., in relation to the prevailing best bid and ask
price, we define so-called ’relative price levels’ as Sbt,j = S̆bt,j/S̃

b
t,101 and Sat,j = S̆at,j/S̃

a
t,1,

respectively.

Note that modelling order book curves in terms of a grid of (relative or absolute) price
deviations from the prevailing best ask and bid quotes implies that we do not model price
levels and thus, also take out the bid-ask spread. Capturing not only dynamics of order
book curves but also of corresponding price levels would make the analysis significantly
more complicate since (common) stochastic trends in price levels would have to be taken
into account. See Hautsch and Huang (2009) for a corresponding model for quotes and
depth. However, since the focus of the present paper is to capture dynamics in order
book curves and to produce forecasts for pending volumes rather than predicting quotes
themselves, it is sensible to refrain from price dynamics. Nevertheless, in situations
where spread forecasts are required, the proposed model might be easily augmented by
a corresponding (time series) model for spreads.

In order to account for intraday seasonality effects, we adjust the order volumes cor-
respondingly. To avoid to seasonally adjust all individual volume series separately, we
assume that the seasonality impact on quoted volumes at all levels is identical and is
well captured by the seasonalities in market depth on the best bid and ask levels Ỹ bt,101
and Ỹ at,1, respectively. Assuming a multiplicative impact of the seasonlity factor, the
seasonally adjusted quantities are computed for both sides of the market at price level
j, and time t as

Y bt,j =
Ỹ bt,j
sbt

(1)

Y at,j =
Ỹ at,j
sat

, (2)

with sbt and sat representing the seasonality components at time t for the bid and the ask
side, respectively.

The non-stochastic seasonal trend factors sbt and sat are specified parametrically using a

7



2 Data

flexible Fourier series approximation as proposed by Gallant (1981) and are given by

sbt = δb · t̄+
Mb∑
m=1
{δbc,m cos

(
t̄ · 2πm

)
+ δbs,m sin

(
t̄ · 2πm

)
} (3)

sat = δb · t̄+
Ma∑
m=1
{δac,m cos

(
t̄ · 2πm

)
+ δas,m sin

(
t̄ · 2πm

)
}. (4)

Here δb, δa, δbc,m, δac,m and δbs,m and δas,m are coefficients to be estimated, and t̄ denotes a
normalized time trend mapping the time of the day on a [0, 1] intervals. The polynomial
orders M b and Ma are selected according to the Bayes information criterion (BIC). For
all stocks we select M b = Ma = 1, except for the bid side for BHP (M b = 2). The
resulting intraday seasonal patterns for both sides of all limit order book markets are
plotted in Figure 2.
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Figure 2: Intraday seasonality factors for quantities offered at best bid prices (red) and
for quantities supplied at best ask prices (blue).

For all stocks, we observe that the liquidity supply is increasing before closure. We
attribute this finding to traders’ pressure and willingness to close positions overnight.
Posting aggressive limit orders on the best levels (or even within the spread) maximizes
the execution probability and avoids crossing the spread. Moreover, weak evidence for a
’lunch time dip’ is presented which, however, is only observed for the more liquid stocks
(NAB and BHP). In contrast, for the less liquid stocks, the amount of posted volume is
nearly monotonically increasing over the day.
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3 The Dynamic Semiparametric Factor Model

3 The Dynamic Semiparametric Factor Model

Recall that the object of interest is the high-dimensional object of seasonally adjusted
level-dependent order volume inventories

(
Y bt,j , Y at,j

)
∈ R202, observed on a 5-min fre-

quency. Proposing a suitable statistical model results in the problem of finding an
appropriate way of reducing the high dimension without losing too much information on
the spatial and dynamic structure of the process. Moreover, applicability of the model
requires computational tractability as well as numerical stability.

A common way to reduce the dimensionality of multivariate processes is to apply a
factor decomposition. The underlying idea is that the high-dimensional process is ideally
driven by only a few common factors which contain most underlying information. Factor
models are often applied in the asset pricing literature to extract underlying common
risk factors. In this spirit, a successful parametric factor model has been proposed, for
instance, by Nelson and Siegel (1987) to model yield curves. In this framework, the
shape of the curve is parametrically captured by Laguerre polynomials.

Since limit order book curves inherently reflect traders’ price expectations and the sup-
ply and demand in the market (see, e.g. Glosten (1994) for a theoretical framework), the
assumption of an underlying factor structure is economically very reasonable. However,
as there is no obvious parametric form for ask and bid curves and we want to avoid
imposing assumptions on functional form, we prefer to capture the curve’s spatial struc-
ture in a nonparametric way. A natural and powerful class of models for these kind of
problems is the class of Dynamic Semiparametric Factor Models (DSFMs) proposed by
Fengler et al. (2007), Brüggemann et al. (2008), Park et al. (2009) and Cao et al. (2009).
The DSFM model successfully combines the advantages of a nonparametric approach for
cross-sectionally (spatially) fitting a curve and that of a parametric time series model
for modelling persistent multivariate dynamics. In the following section we will discuss
the DSFM model and its implementation for limit order book dynamics.

Assume that that the observable J-dimensional random vector, Yt,j , can be modelled
based on the following orthogonal L-factor model,

Yt,j = m0,j + Zt,1m1,j + · · ·Zt,LmL,j + εt,j , (5)

where m (·) = (m0,m1, . . . ,mL)> denotes the time-invariant factors, a tuple of functions
with the property ml : Rd → R, l = 0, . . . , L, Zt = (1T , Zt,1, . . . , Zt,L)> denotes the time
series of factor loadings, and εt,j represents a white noise error term. The time index
is denoted by t = 1, . . . , T , whereas the cross-sectional index is j = 1, . . . , J . Note that
this factor model is rather restrictive, because it does not take explanatory variable into
account.

The DSFM is a generalization of the factor model given in (5) and allows the factors ml
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3 The Dynamic Semiparametric Factor Model

to depend upon explanatory variables, Xt,j . Its analytical form is given by

Yt,j =
L∑
l=0

Zt,lml (Xt,j) + εt,j = Z>t m (Xt,j) + εt,j , (6)

where the processes Xt,j , εt,j and Zt are assumed to be independent. Moreover, the
number of underlying factors L should not exceed the dimension of the object, J . The
main idea of the DSFM is that L is significantly smaller than J resulting in a severe
dimension reduction of the process.

As suggested by Park et al. (2009), the estimation of the factors ml is performed using
a series estimator. For K ≥ 1, appropriate functions ψk : [0, 1]d → R, k = 1, . . . ,K,
which are normalized such that

∫
ψ2
k (x) dx = 1 holds, are selected. Park et al. (2009)

select tensor B-spline basis functions for ψk, whereas Fengler et al. (2007) use a kernel
smoothing approach. In the present study, we follow the former strategy and employ
tensor B-spline basis functions.

After selecting the functions ψk, the factorsm (·) = (m0,m1, . . . ,mL)> are approximated
by Aψ, where A = (al,k) ∈ R(L+1)K is a coefficient matrix, and ψ (·) = (ψ1, . . . , ψK)>
denotes a vector of selected functions. Here, K denotes the number of knots used for the
tensor B-spline functions and is interpretable as a bandwidth parameter. Thus, the first
part in the right-hand side of (6), which incorporates all factors and factor loadings, can
be rewritten as

Z>t m (Xt,j) =
L∑
l=0

Zt,lml (Xt,j) =
L∑
l=0

Zt,l

K∑
k=1

al,kψk (Xt,j) = Z>t Aψ (Xt,j). (7)

The coefficient matrix A and time series of factor loadings Zt can be estimated using least
squares. Hence, the estimated matrix Â and factor loadings Ẑt =

(
1T , Ẑt,1, . . . , Ẑt,L

)>
are defined as minimizers of the sum of squared residuals, S (A,Zt)(

Ẑt, Â
)

= arg min
Zt,A

S (A,Zt) (8)

= arg min
Zt,A

T∑
t=1

J∑
j=1

{
Yt,j − Z>t Aψ (Xt,j)

}2
. (9)

To find a solution of the minimization problem stated in (9), a Newton-Raphson algo-
rithm is used. As shown by Park et al. (2009) this algorithm is shown to converge
to a solution at a geometric rate under some weak conditions on the initial choice{
vec (A)(0) , Z

(0)
t

}
. Moreover, Park et al. (2009) prove that the difference between the

estimated loadings Ẑt and the true loadings Zt are asymptotically negligible. Conse-
quently, it is justified to use in a second step multivariate time series specifications
in order to model the dynamics of the factor loadings and thus that of the analyzed
high-dimensional object.

10



4 Modelling Limit Order Book Dynamics

The selection of the number of time-invariant factors (L) and the number of knots K is
performed by evaluating the proportion of explained variance (EV ):

EV (L) = 1−RV (L) = 1−

T∑
t=1

J∑
j=1
{Yt,j −

L∑
l=0

Ẑt,lm̂l (Xt,j)}2

T∑
t=1

J∑
j=1
{Yt,j − Ȳ }2

. (10)

Moreover, the knots used in the tensor B-spline functions should be specified in advance.
We choose linearly spaced knots, with a starting point determined by the minimal value
of the explanatory variable (corrected by -5%), and the end point corresponding to the
maximal value (corrected by 5%). Sensitivity analysis shows that the results are quite
stable regarding the choice of grid points.

Because of the use of tensor B-spline functions for the demand and supply curves, which
are monotonous in the price levels, our estimated first factor m̂1 and the estimated
quantities Ŷt,j are adjusted for extreme price levels. Correspondingly, for the bid side
we keep constant the first (lowest) ten level values, and analogously, for the ask side we
fix the last (highest) ten level values.

The model’s goodness-of-fit is evaluated using the root mean squared error (RMSE)
criterion,

RMSE =

√√√√ 1
TJ

T∑
t=1

J∑
j=1
{Yt,j −

L∑
l=0

Ẑt,lm̂l (Xt,j)}2. (11)

4 Modelling Limit Order Book Dynamics

We consider two possibilities to implement the DSFM approach:

(i) Separated approach: Separate analysis of both sides of the limit order book, i.e.,
the bid side Y bt,j ∈ R101, and the ask side, Y at,j ∈ R101.

(ii) Combined approach: Simultaneous modelling of both sides of the limit order book
with the bid side reversed, i.e.

(
−Y bt,j , Y at,j

)
∈ R202.

First, we model the order book curves in dependence of the relative price levels solely.
In the following step, we include additional explanatory variables, particularly, the past
trading volume, past (realized) volatility as well as past log returns.
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4 Modelling Limit Order Book Dynamics

4.1 Modelling Order Book Curves in Dependence of Relative Price Levels

To model the curve dynamics in dependence of the relative price levels, i.e., the relative
price deviations from the best bid price and best ask price, Sbt,j and Sat,j , respectively,
we impose K = 20 knots for the B-spline functions in case of the separated approach
and K = 40 knots in case of the combined approach. Using more knots does not result
in significant improvements of the explained variance or in the corresponding RMSE, as
defined in 10 and 11.

As shown in Tables 3 and 4, up to approximately 95% of the explained variation in order
curves can be explained using L = 2 factors, whereas the marginal contribution of a po-
tentially third factor is only very small. Consequently, a two-factor DSFM specification
is sufficient to capture the curve dynamics and is used in the sequel of the analysis.

L
BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
Separated

1 0.925 0.934 0.990 0.916 0.916 0.909 0.946 0.938
2 0.964 0.965 0.996 0.975 0.941 0.948 0.953 0.959
3 0.971 0.976 0.996 0.981 0.941 0.961 0.949 0.964

Combined
1 0.922 0.522 0.762 0.558 0.546 0.806 0.696 0.944
2 0.921 0.936 0.975 0.914 0.930 0.912 0.951 0.948
3 0.961 0.938 0.977 0.972 0.932 0.950 0.973 0.949

Table 3: Explained variance (EV) of estimated order book variations depending on rela-
tive prices based on different number of factors L using both DSFM approaches.

Comparing the performance of the two alternative DSFM specifications, it turns out that
in almost all cases the DSFM-Separated approach outperforms the DSFM-Combined
approach in terms of a higher proportion of explained variance and lower values of the
root mean squared error. Figure 3 compares root mean squared errors for different
absolute price levels j, S̆bt,j and S̆at,j , respectively. We observe that at almost every
price level the DSFM-Separated approach outperforms the DSFM-Combined approach.
Therefore, the remainder of the analysis will rely on the DSFM-Separated approach with
two factors.

Figure 4 depicts the nonparametrically estimates of the first and second factor m̂1 and m̂2
in dependence of the relative price grids. The first factor obviously captures the overall
slope of the curve which is associated with the average trading costs for all volume
levels on the corresponding sides of the market. In contrast, the second factor seems to
capture order curve fluctuations around the overall slope and thus can be interpreted as
a ’curvature’ factor in the spirit of Nelson and Siegel (1987). The shape of this factor

12



4 Modelling Limit Order Book Dynamics

L
BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW
Separated

1 3.49 2.51 0.29 2.10 2.60 3.09 0.81 2.73
2 2.40 1.82 0.19 1.16 2.18 2.32 0.76 2.22
3 2.17 1.52 0.18 0.10 2.18 2.02 0.79 2.07

Combined
1 3.55 6.75 1.41 4.81 6.03 4.50 1.93 2.59
2 3.57 2.47 0.46 2.13 2.37 3.03 0.78 2.50
3 2.50 2.44 0.44 1.21 2.33 2.29 0.57 2.49

Table 4: Root mean squared errors (RMSEs) implied by estimated order book variations
depending on relative prices based on different number of factors L using both
DSFM approaches.
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Figure 3: Root mean squared errors (RMSEs) for different absolute price levels, S̆bt,j (red)
and S̆at,j (blue), using the DSFM-Separated (solid) and the DSFM-Combined
approach (dashed).
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4 Modelling Limit Order Book Dynamics

reveals that the curve’s curvature is particularly distinct for levels close to the best
quotes and for levels very deep in the book where the curve seems to spread out. The
shapes of the estimated factors are remarkably similar for all stocks except for MIM.
For the latter stock, the shapes of both factors are quite similar and significantly deviate
from those reported for the other stocks. This finding is explained by the peculiarities
of MIM for which the relative tick size is larger than for the other stocks. This implies
that liquidity is concentrated on relatively few price levels around the best ask and bid
quotes whereas the book flattens out for higher levels. This pattern is clearly revealed
by the corresponding factors shown in Figure 4.
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Figure 4: Estimated first and second factor of the limit order book depending on relative
price levels using the DSFM-Separated approach with two factors.

Time series plots of the corresponding factor loadings Ẑbt and Ẑat are shown in Figure
5. We observe that the loadings strongly vary over time reflecting time variations in the
shape of the book. The series reveal clustering structures indicating a relatively high
persistence in the processes. This result is not very surprising given the fact that order
book inventories do not change too severely during short time horizons. Observing
order book volumes on even higher frequencies than 5 minutes further increases this
persistence, ultimately driving the processes toward unit root processes. Naturally, this
behavior is particularly distinct for less frequently traded stocks and less severe for highly
active stocks (cf. Hautsch and Huang (2009) for corresponding results for more liquid
assets).

The high persistence is confirmed by autocorrelation functions of Ẑbt and Ẑat (not shown
in the paper) and corresponding unit root and stationarity tests. According to the
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4 Modelling Limit Order Book Dynamics

Factor BID ASK
Loadings BHP NAB MIM WOW BHP NAB MIM WOW
Ẑ1,t -74.95 -164.33 -67.16 -158.90 -69.89 -145.47 -111.34 -102.56
Ẑ2,t -71.21 -201.53 -53.88 -186.95 -143.59 -159.49 -182.96 -141.29

Table 5: Schmidt-Phillips test statistics for estimated factor loadings (H0: unit root,
critical values are -15.0, -18.10 and -25.20 for significance levels 10%, 5% and
1%, respectively.)

Factor BID ASK
Loadings BHP NAB MIM WOW BHP NAB MIM WOW
Ẑ1,t 0.10 0.06 0.26 0.06 0.16 0.11 0.17 0.09
Ẑ2,t 0.12 0.05 0.33 0.18 0.17 0.15 0.12 0.12

Table 6: KPSS test statistics for estimated factor loadings (H0: weak stationarity, crit-
ical values are 0.12, 0.15 and 0.22 for significance levels 10%, 5% and 1%,
respectively.)

Schmidt-Phillips test (see Schmidt and Phillips (1992)) shown in Table 5, for all processes
the null hypothesis of a unit root can be rejected at the 5% significance level. Conversely,
testing the null hypothesis of stationarity using the KPSS test (see Kwiatkowski et al.
(1992)) implies no rejections for the majority of the processes. Nevertheless, as shown
in Table 6, in five cases we have to reject stationarity. Finally, to test for possible
cointegration between the factor loadings, we perform Johansen’s (1991) trace test (not
shown in the paper) but do not find significant evidence for common stochastic trends
underlying the order book.

As a graphical illustration for the goodness-of-fit of the model, Figure 6 depicts the
estimated vs. the actually observed limit order book curves for all stocks on an arbitrarily
selected day, namely July 8, 2002, at 11:00 and 13:00. The figure is quite representative
for the fit over the whole sample and shows that the model fits the observed curves very
well. This is particularly true for price levels close to the best ask and bid quotes. Slight
deviations are observed for price levels deeply in the book. However, the latter case is
less relevant for most applications in practice.

Given the diagnostics above, we conclude that it is sensible to treat the factor loadings
as non-cointegrated, stationary processes suggesting a VAR specification as a natural
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Figure 5: Estimated first and second factor loadings of the limit order book depending
on relative price levels using the DSFM-Separated approach with two factors.
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4 Modelling Limit Order Book Dynamics

choice of model to capture order book dynamics. Hence, we specify a VAR(p) model as
Ẑb1,t
Ẑb2,t
Ẑa1,t
Ẑa2,t

 = c+B1


Ẑb1,t−1
Ẑb2,t−1
Ẑa1,t−1
Ẑa2,t−1

+B2


Ẑb1,t−2
Ẑb2,t−2
Ẑa1,t−2
Ẑa2,t−2

+ . . .+Bp


Ẑb1,t−p
Ẑb2,t−p
Ẑa1,t−p
Ẑa2,t−p

+


εb1,t
εb2,t
εa1,t
εa2,t

 . (12)

Here b and a denote the bid and ask side, respectively, c denotes a vector with constants,
and εt represents white noise error terms. The matrices B1, B2, . . . , Bp denote the cor-
responding parameter matrices. We determine the order p according to the BIC. In all
cases, a maximum lag order of p = 4 is sufficient. In particular, the following VAR(p)
models are selected: BHP and MIM - VAR(4), NAB - VAR(2), WOW - VAR(3).

For sake of brevity we refrain from showing all parameter estimates here, but just report
the estimates of matrix B1 for BHP, NAB, MIM and WOW which contains most relevant
information (5% significance is denoted by an asterix (∗)):


0.91∗ 0.37∗ −0.04 −0.27∗
0.01 0.72∗ 0.00 0.02
0.06∗ 0.11 0.75∗ 0.02
0.00 0.03 0.02∗ 0.77∗

,


0.71∗ 0.17 −0.03 −0.19
0.04∗ 0.77∗ 0.00 0.07∗
0.03 0.10 0.73∗ 0.18
−0.02∗ −0.02 0.03∗ 0.71∗

,


0.88∗ 0.76∗ 0.01 0.26∗
0.00 0.87∗ −0.01 0.01
−0.04 0.89∗ −0.98∗ 0.16∗

0.00 −0.01 0.03∗ 0.83∗

 and


0.74∗ 0.03 0.08∗ 0.32∗
0.04∗ 0.81∗ −0.03∗ −0.04
0.06 0.07 0.88∗ 0.16
−0.03∗ 0.01 0.02∗ 0.82∗

.

As indicated by the diagonal elements, all processes reveal relatively strong own-process
dynamics. Interestingly, most off-diagonal elements are comparably close to zero. This
is particularly true for the more liquid assets (NAB and BHP), where spill-over effects
are virtually zero. Hence, for these stocks, the dynamics associated with the slope and
the curvature is widely unrelated. We also observe that there are no inter-dependencies
between processes on the ask and bid side of the market indicating that time variations
in the liquidity schedule on the buy side is not affected by those on the sell side and vice
versa. However, in case of the less frequently traded stocks (MIM and WOW), these
results are less distinct and we find stronger evidence for cross-dependencies between the
factors and both sides of the market. These results provide some hints for the fact that for
less liquid stocks interactions between the buy and sell side seem to be more pronounced.
This might be due to the overall lower level of liquidity supply making strategic behavior
regarding market imbalances more effective than in the case of comparably deep books
of more liquid equities.

Having selected the VAR models using information criteria we will keep these specifica-
tions for the remainder of the analysis.
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4 Modelling Limit Order Book Dynamics

4.2 Including Further Explanatory Variables

In the previous analysis, order book curves depending on relative price levels have been
modelled solely based on their own process history. In this section, we aim analyzing
whether the model’s fit can be further improved by the inclusion of additional regressors.
As explanatory variables we select three variables for which we expect to observe the
strongest impact on liquidity supply, namely the past 5-min aggregated trading volume
on both sides of the market representing the recent liquidity demand, the past 5-min log
mid-quote return as well as the past 5-min volatility.

The buy and sell trading volumes at time t are given by the sum of traded quantities
from all market orders r, Q̃br and Q̃sr, over five minutes interval, namely, Q̃bt =

∑Rbt
r=1 Q̃

b
r

and Q̃st =
∑Rst
r=1 Q̃

s
r, where Rbt and Rst denote the number of buy and sell orders over

the interval (t− 1, t], respectively. Correspondingly, log returns rt and volatility Vt are
computed as

rt = log S̃∗t

S̃∗t−1
(13)

Vt = r2
t , (14)

where S̃∗t and S̃∗t−1 denote the mid-quotes observed at t and t − 1, respectively. Note
that the trading volumes as well as the volatility are seasonally adjusted following the
procedure explained above. Moreover, the used nonparametric procedure requires the
variables to be standardized between −1 and 1. This standardization is performed based
on the minimum and maximum observations of the corresponding variables. Finally, as
commonly known, nonparametric regression becomes computationally cumbersome for a
high number of regressors. To keep our approach computationally tractable and to avoid
problems due to the curse of dimensionality, we include the regressors only individually
(together with the relative price distances). This ultimately yields a three-dimensional
problem.

Figures 7 and 8 show the estimated first factors for the bid and the ask side in dependence
of the past 5-min sell and buy trading volumes, respectively. As expected, we observe
that that the past liquidity demand influences the order book curve. A high trading
volume implies that a non-trivial part of the pending volume in the book is removed. In
this context, recall that we do not model the spread but capture the curves on a grid
of relative prices in relation to the current best quote. These relative price distances
themselves do not strongly vary through 5-min intervals. Thus, most of the observed
variation of the factor’s shape is induced by the fact that either quoted price levels
close to the best quotes have been completely absorbed and the remaining volume is
correspondingly ’shifted down’ in relation to the new best quote or, alternatively, only
a part of the pending volume on the best quotes is removed changing the distribution of
the pending volumes across the (relative) price levels.
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4 Modelling Limit Order Book Dynamics

As expected, the curve flattens in the area of high volumes. Strikingly, we also observe
a decaying pattern if the volume sizes decline. Actually, in all pictures, the maximum
slope (and thus the highest level of liquidity supply) is observed for magnitudes of the
standardized volume between −1 and 0, i.e., comparably small (though not zero) trading
volumes. This pattern might be technically explained by the standardization procedure
based on extreme values or by the usual boundary problems of non-parametric regres-
sion. On the other hand, note that due the curse-of-dimensionality problem we cannot
simultaneously control for other variables. For instance, very small market-side-specific
trading volumes can indicate the occurrence of market imbalances or, alternatively, might
be associated with wide spreads. Both scenarios could force investors to post rather limit
orders than market orders which might explain the decaying shape of the figures after
having observed small trading volumes.
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Figure 7: Estimated first factors of the bid side with respect to relative price levels and
the past log traded sell volume using the DSFM-Separated approach with two
factors.

To evaluate whether the inclusion of past trading volume further increases the model’s
goodness-of-fit, Table 7 displays the corresponding RMSEs. Comparing these results
with that reported above for the basis model shows that the included regressors yield
higher estimation errors. Hence, obviously the inclusion of additional regressors ulti-
mately generates more noise overcompensating a possibly higher explanatory power.
Similar results are also found for the past log returns and past volatility serving as re-
gressors. As shown by Tables 8, the inclusion of log returns yields smaller estimation
errors than the inclusion of volatility. However, the overall performance is lower than in
the cases above. Because of this reason, we refrain from showing corresponding graphs
of the estimated factors.
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Figure 8: Estimated first factors of the ask side with respect to relative price levels and
the past log traded buy volume using the DSFM-Separated approach with two
factors.

A possible reason for the declining model performance in case of included regressors
might be the lower dimensionality of the regressors in comparison with that of the limit
order book. Note that the included regressors do not reveal any variation across the
levels of the book. Consequently, the explanatory variables cannot improve the model’s
spatial fit but just its dynamic fit. Obviously, the latter is not sufficient to obtain an
overall reduction of estimation errors.

Variable BID ASK
BHP NAB MIM WOW BHP NAB MIM WOW

Qst 10.37 8.17 5.41 6.31 7.38 8.30 5.72 9.18
Qbt 10.42 8.41 4.37 6.29 7.30 8.42 7.22 8.88

Table 7: Root mean squared errors (RMSEs) implied by estimated order book varia-
tions depending on relative prices and log de-seasonalized buy and sell trading
quantities, Qst and Qbt .
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Variable BID ASK
BHP NAB MIM WOW BHP NAB MIM WOW

rt 21.93 23.09 39.47 175.40 18.00 22.13 45.54 236.08
RVt 95.74 87.12 258.37 - 78.62 63.63 192.87 -

Table 8: Root mean squared errors (RMSEs) implied by estimated order book variations
depending on relative prices and log returns, rt, as well as the volatility RVt.
We denote cases with numerical instability by (-).

5 Forecasting Liquidity Supply

5.1 Setup

The aim of this section is analyze the model’s forecasting performance in a realistic set-
ting mimicking the situation in financial applications. We consider an investor observing
the limit order book at 5-minute snapshots together with the history over the past 10
trading days. It is assumed that during a trading day an investor updates limit order
book every 5 minutes and requires producing forecasts for all (5 minutes) intervals of the
remainder of the day. Such information might be useful in order to optimally balance
order execution during the course of a day. Since we do not exceed beyond the end of the
trading day (in order to avoid overnight effects), the forecasting horizon h subsequently
declines if we approach market closure. Hence, starting at 10:30, we produce multi-step
forecasts for all remaining h = 66 intervals during the day. Correspondingly, at 15:50,
we are left with a horizon of h = 1.

Consequently, the model is re-estimated every five minutes exploiting past information
over a fixed window of 10 trading days (including the recent observation). Due to the
length of the estimation period, we do not produce forecasts for the first two weeks of our
sample but focus on the period between July 22 and August 16, 2002, thereby covering
the period of 20 trading days. In accordance with our in-sample results reported in the
previous section, we choose the DSFM-Separated approach based on two factors without
additional regressors as underlying specification.

A natural benchmark to evaluate our model is the naive forecast. In this context, we
assume that the investor has no appropriate prediction model but just uses the current
liquidity supply as a forecast for the remainder of the day. More formally, we suppose
that our investor can use the following two approaches in order to forecast liquidity
supply Ŷt′+h,j at a given time point t′ from July 22 at 10:25 until August 16, 2002, at
15:50, t′ = 693, . . . , 2069 = T − 1, over a forecasting horizon 1 ≤ h ≤ 66, and over the
absolute price level j:

(i) DSFM approach: Firstly, the factors and factor loadings are estimated using
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5 Forecasting Liquidity Supply

the DSFM-Separated approach with two factors, K = 20 knots used for the B-
spline basis functions, and with past 690 observed (de-seasonalized) limit order
book curves. More precisely, at time point t′, relative price levels Sbt′−691:t′,j and
Sat′−691:t′,j and de-seasonalized observed bid and ask sides Y bt′−691:t′,j and Y at′−691:t′,j
enter the estimation procedures. This yields estimates for the bid (ask) side, 66
times per day for each stock, in total 1320 times over 20 days.

Secondly, the specified VAR(p) models for the individual stocks according to Chap-
ter 4, are used to forecast the factor loadings over the forecasting period Ẑt′+h.
Then, the forecasted factor loadings together with the estimated time-invariant
factors m̂l are used to predict the liquidity supply.

(ii) Naive approach: Among all historical 690 limit order book curves, only the last
one at time t′,

(
Y bt′,j , Y at′,j

)
, is selected as the h-step ahead forecast.

The predictions are evaluated using the root mean squared prediction error (RMSPE),
given by

RMSPE =

√√√√√ 1
hJ

∑
h≥1

J∑
j=1
{Yh,j −

L∑
l=0

Ẑh,lm̂l (Xt,j)}2, (15)

where h denotes the forecasting horizon. Note that we do not predict future quotes
and thus do not forecast future relative price grids. Under the assumption that quotes
themselves follow random walk processes and the spread remains constant, future quotes
are predicted using the current one. Consequently, the predicted future relative price
grid remains constant.

A graphical illustration of the forecasted limit order book curves and the actually ob-
served ones for each stock on July 22, 2002, at 11:00 and 15:00 is shown in Figure
9.

5.2 Forecasting Results

Figure 10 shows the RMSPEs for each required forecasting horizon h during a trading
day implied by the DSFM as well as the naive model. The following results can be
summarized: First, overall the DSFM forecasts outperform the naive ones. Nevertheless,
the naive forecast is a serious competitor which is hard to beat. This result is not
surprising given the high persistence in liquidity supply. Second, the model’s forecasting
performance is obviously higher on the bid side than on the ask side. This result might
be explained by the fact that during the sample period we observe a downward market
inducing higher activities on the bid side than on the ask side. This is confirmed by
the descriptive statistics shown above. Third, the DSFM outperforms the naive model
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Figure 9: Forecasted (dashed) and realized (solid) limit order book curves on July 22,
2002, at 11:00 (upper panel) and 15:00 (lower panel). The naive forecast is
depicted by the black solid line.

particularly over horizons up to 1 to 2 hours. For longer horizons, the picture is less
clear.

Analyzing average RMSPEs (averaged over all forecasting horizons and both sides of the
market) as reported by Table 9 indicate that the overall prediction performance of the
DSFM approach is significantly higher than that of the benchmark.

Approach BID ASK
BHP NAB MIM WOW BHP NAB MIM WOW

Naive 7.11 7.59 6.03 6.08 6.50 5.96 5.83 6.19
DSFM 7.18 5.10 4.84 5.33 5.56 5.46 5.63 5.45

Table 9: Average root mean squared prediction errors (RMPSEs) implied by the DSFM
approach and the naive model.

5.3 Financial and Economic Applications

The results in the previous section show that the DSFM approach successfully predicts
the liquidity supply over various forecasting horizons during a day. In this subsection,
we apply these results in two practical examples. The first one is devoted to an order
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Figure 10: Root mean squared prediction errors (RMSPEs) implied by the DSFM-
Separated approach for the bid side (red) as well as the ask side (blue) and
by the naive approach (black) for all intraday forecasting horizons (in hours).

execution strategy, whereas the second one deals with forecasts of demand and supply
elasticities.

EXAMPLE 1. (Trading Strategy)

Suppose an institutional investor decides to buy (sell) a certain number of shares over
the course of a trading day, starting from 10:30 until 15:55. In order to have comparable
results for the individual stocks we choose stock-specific volume sizes and distinguish
between three different cases:

(a) BHP - 100,000 shares; NAB and WOW - 10,000 shares; MIM - 500,000 shares

(b) BHP - 200,000 shares; NAB and WOW - 20,000 shares; MIM - 1,000,000 shares

(c) BHP - 300,000 shares; NAB and WOW - 30,000 shares; MIM - 1,500,000 shares.

We assume that after market opening (10:30), the investor has to decide between two
execution strategies:

(i) Splitting the buy (sell) order proportionally over the trading day (i.e., every 5
minutes).

(ii) Placing one buy (sell) order at a time where the predicted transaction costs are
minimal.
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To implement these strategies, we consider 20 forecasting days covering the period from
July 22 to August 16, 2002. In contrast to the forecasting exercise documented above,
we assume that the investor makes his trading decision at 10:30 but does not monitor the
market anymore during the day. Consequently, her forecasting horizon covers h = 66
periods at each trading day. Using (and keeping constant) the ask and bid quotes
prevailing at 10:25, we predict the transaction costs (i.e., the effective costs to buy or
to sell the order) using the DSFM for all 5min periods during the day. Then, the order
is placed at the period, where expected transaction costs are smallest. Alternatively,
according to the proportional trading strategy, the quantities are split in 66 equal market
buy (sell) orders per day traded every 5 minutes.

Table 10 gives the stock-specific order sizes expressed as percentages of the average
depth prevailing at the best bid and ask quotes. In almost all cases, the order size
significantly exceeds the average posted first level depth. Hence, on average, complete
all-in-one execution of a buy (sell) order implies that the order has to ’walk up (down)’
the book. This increases transaction costs compared to a splitting strategy where the
split orders are ideally executed against the first level depth. The following analysis will
show whether the suggested model is successful in predicting optimal execution times
where the book is sufficiently deep in order to make an all-in-one execution profitable.

Case Sell Buy
BHP NAB MIM WOW BHP NAB MIM WOW

(a) 338.34 204.42 47.20 100.99 311.19 179.08 44.95 99.80
(b) 676.69 408.85 94.40 201.99 622.39 358.17 89.90 199.60
(c) 1015.03 613.27 141.60 302.98 933.58 537.25 134.85 299.39

Table 10: Order sizes expressed as percentages of the average depth posted at the best
bid and ask quotes over the period from July 22 to August 16, 2002.

Tables 11 and 12 summarize the average daily transaction costs, expressed in AUD, for
selling and buying different number of shares using both strategies. Note that the realized
transaction costs are naturally driven by the actual depth as well as the underlying
prevailing quotes. While the first component is predicted by our model, the latter is
unpredictable. Since these unpredictable quote movements affect both trading strategies
and we can expect that over the analyzed period positive and negative movements will
cancel out, our findings should not be systematically affected by this component which
is not controlled by our model.

The realized transaction costs implied by both execution strategies show that the DSFM-
drive strategy performs equally well and in several cases even outperforms the splitting
strategy. This is remarkable given the fact that the DSFM strategy represents the
extreme case where an investor completely executes the volume using just one market
order. Typically, such a strategy is quite expensive and is avoided by traders. Hence, in
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Strategy BHP NAB MIM WOW
Proportional

(a) 916,247 334,711 576,123 121,288
(b) 1,832,438 669,402 1,152,243 242,567
(c) 2,748,587 1,004,100 1,728,364 363,846

DSFM approach
(a) 914,864 338,573 589,500 121,885
(b) 1,827,103 677,107 1,157,000 244,020
(c) 2,736,822 1,015,343 1,718,012 365,921

Table 11: Average daily transaction costs in AUD for selling shares according to different
cases, using the proportional splitting strategy and the DSFM approach from
July 22 to August 16, 2002.

Strategy BHP NAB MIM WOW
Proportional

(a) 922,907 335,115 591,138 121,646
(b) 1,845,952 670,215 1,182,274 243,292
(c) 2,769,216 1,005,345 1,773,410 364,943

DSFM approach
(a) 913,852 333,925 593,000 121,390
(b) 1,828,862 677,352 1,191,188 243,160
(c) 2,747,783 1,014,982 1,785,581 367,138

Table 12: Average daily transaction costs in AUD for buying shares according to different
cases, using the proportional splitting strategy and the DSFM approach from
July 22 to August 16, 2002.
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5 Forecasting Liquidity Supply

practice, one would try to further reduce transaction costs by executing the order not at
one but at several optimally chosen (prediction based) time points. In this respect, the
all-in-one strategy can be seen as a rather conservative ”practitioners’ test” of the model.
However, our findings indicate that the model is successful in predicting times where the
market is sufficiently deep in order to execute a big order. The fact that the model
performs reasonably well is promising for more elaborate practical applications of the
DSFM. Moreover, note that the reported results are valid under the assumption that
there are no transaction fees. Actually, in practice, a proportional splitting strategy
induces higher transaction costs as a complete execution via a market order. This
component is not taken into account here and would even increase the performance of
the DSFM-based execution strategy.

EXAMPLE 2. (Demand and Supply Elasticity)

A straightforward dimension-less measure for the order book slope is the curve’s elasticity
which we compute at best bid (S̃bt′,101) and best ask prices (S̃at′,1) as

Êdt′+h =
Ŷ bt′+h,1 − Ŷ bt′+h,101

Ŷ bt′+h,101
/
S̃bt′,1 − S̃bt′,101

S̃bt′,101
, (16)

Êst′+h =
Ŷ at′+h,101 − Ŷ at′+h,1

Ŷ at′+h,1
/
S̃at′,101 − S̃at′,1

S̃at′,1
, (17)

for the demand (bid) and supply (ask) side, respectively. The elasticity is a measure for
the marginal trading costs reflecting the curve’s curvature.

Suppose at 10:30 an investor aims predicting the demand and supply elasticity at best
bid and best ask prices for all 5-min intervals during the trading day covering the forecast
horizons h = 1, . . . , 66. As above, the forecasts are computed using the last 10 trading
days. Since we are not forecasting the price process, the last observed ask and bid quotes
are used for prediction. Figure 11 shows the 10:30 predictions of demand and supply
elasticities at best bid and best ask prices during all trading days. We observe that
marginal trading costs exhibit significant variations over time. The fact that predicted
elasticities reveal temporarily trending patterns might be used for improving trading
strategies.

Consider the case of NAB on July 24 and July 30, 2002. We observe that the demand
elasticities (in absolute terms) are increasing on the first day, and decreasing on the
second day. Practically, it would be better to sell shares late on July 24, and early on July
30, under the assumption that the price does not change significantly over both trading
days. The supply elasticities show converse patterns across the days. Consequently, it
would be advisable to buy shares early on July 24, and late on July 30, provided that
the prices remain unchanged. While this section aims to illustrate possible applications
of the DSFM approach, more detailed elaborations of dynamic strategies are beyond the
scope of the paper.
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Figure 11: Predicted demand and supply elasticities at best bid (red) and best ask prices
(blue) from July 22 to August 2, 2002 (upper panels) and from August 5 to
August 16, 2002 (lower panels)

6 Conclusions

In this paper, we propose a dynamic semiparametric factor model (DSFM) for limit
order book curves. The main idea of the DSFM as proposed by Fengler et al. (2007),
Brüggemann et al. (2008), Park et al. (2009) and Cao et al. (2009) is to capture the
order curve’s spatial structure across various price levels using a factor decomposition
which is estimated nonparametrically. To capture the order book’s time variations the
corresponding factor loadings are modelled using a vector autoregressive (VAR) model.
The framework is flexible though parsimonious and turns out to provide a powerful
way to reduce the high dimension of the book and to extract the relevant underlying
information.

The model is applied to four stocks traded at the Australian Stock Exchange (ASX).
It is shown that two underlying factors can explain up to 95% of in-sample variations
of ask and bid liquidity supply. While the first factor captures the overall order curve’s
slope, the second factor is associated with the curve’s curvature. The extracted factor
loadings reveal highly persistent though weakly stationary dynamics which are success-
fully captured by VAR specifications. Though it is shown that the order curves’ shapes
are driven by explanatory variables reflecting the recent liquidity demand, volatility as
well as mid-quote returns, these variables do not improve the model’s goodness-of-fit.
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Employing the DSFM approach in an extensive and realistic out-of-sample forecasting
exercise we show that the model successfully predicts the liquidity supply over various
forecasting horizons during a trading day and outperforms a naive approach. Using the
forecasting results in a trading strategy it is shown that order execution costs can be
reduced if orders are optimally placed according to predictions of liquidity supply. In
particular, it turns out that optimal order placement in periods of high liquidity results
in smaller transaction costs than in the case of a proportional splitting over time.

In summary, the DSFM approach is suitable for modelling and forecasting the limit order
book. Since it is computationally tractable it can serve as a valuable building block for
automated trading models.
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