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Abstract

In this work, we extend the Hegselmann and Krause (HK) model, presented in [16]
to an arbitrary metric space. We also present some theoretical analysis and some
numerical results of the condensing of particles in finite and continuous metric
spaces. For simulations in a finite metric space, we introduce the notion "random
metric" using the split metrics studies by Dress and al. [2, 11, 12].

Keywords

Condensing, forming a group, multi-agents system, discrete dynamical system, col-
lective intelligence, manifold and geodesic, random metric, metric spaces.

1



Contents

ABSTRACT AND KEYWORDS 1

LIST OF FIGURES 2

INTRODUCTION 4

1 CONDENSING ON FINITE METRIC SPACE 7
1.1 Condensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Random metric on finite metric space . . . . . . . . . . . . . . . . 12

1.3.1 Extremal pseudometrics . . . . . . . . . . . . . . . . . . . 12
1.3.2 Algorithms for the construction of random metrics . . . . . 15
1.3.3 Numerical simulations of random metrics . . . . . . . . . . 20

1.4 Numerical simulations of condensing sequences . . . . . . . . . . 23
1.4.1 Simulations on an Euclidean finite metric space . . . . . . . 23
1.4.2 Simulations in a finite circular metric space . . . . . . . . . 28
1.4.3 Simulations with respect to a random metric . . . . . . . . . 33
1.4.4 simultaneously condensing with respect to a random metric 34

2 CONDENSING IN CONTINUOUS METRIC SPACE 41
2.1 Condensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Condensing on the real line . . . . . . . . . . . . . . . . . . 48
2.3.2 Condensing on the unit circle . . . . . . . . . . . . . . . . 51
2.3.3 Condensing on the real plane . . . . . . . . . . . . . . . . . 55
2.3.4 Segregation sequences . . . . . . . . . . . . . . . . . . . . 60
2.3.5 simultaneously condensing on the unit circle . . . . . . . . 63

CONCLUDING REMARKS 65

BIBLIOGRAPHY 66

2



List of Figures

1.1 Euclidean metric vector, NP=25, and 50. . . . . . . . . . . . . . . . 17
1.2 Random metric vector, NP=25, and 50. . . . . . . . . . . . . . . . . 19
1.3 Euclidean metric mesh, NP=25, and 50. . . . . . . . . . . . . . . . 20
1.4 Random metric mesh, NP=25, and NP=50. . . . . . . . . . . . . . . 21
1.5 (Uniform) Random metric contour, NP=50. . . . . . . . . . . . . . 22
1.6 (Normal) Random metric contour NP=50. . . . . . . . . . . . . . . 22
1.7 Condensing in an euclidian finite metric space (sim. (a)). . . . . . . 25
1.8 Condensing in an Euclidian finite metric space (sim. (b)) . . . . . . 26
1.9 Condensing in an euclidian finite metric space (sim. (c)). . . . . . . 27
1.10 Condensing in a geodesic finite metric space (sim. (a)) . . . . . . . 29
1.11 Condensing in a geodesic finite metric space (sim. (b)) . . . . . . . 30
1.12 Condensing in a geodesic finite metric space (sim. (c)) . . . . . . . 31
1.13 Condensing in a geodesic finite metric space (sim. (a,b, c)) . . . . . 32
1.14 Condensing in a (random) metric space, for ε = 0.182508 (sim. (a)) 35
1.15 Condensing in a (random) metric space, for ε = 0.200761 (sim. (b)) 36
1.16 Condensing in a (random) metric space, for ε = 0.254162 (sim. (c)) 37
1.17 Distances at limit for sim.(a) and (b) . . . . . . . . . . . . . . . . . 38
1.18 Cardinal of support mi at limit for sim.(a) and (b) . . . . . . . . . . 38
1.19 Energy of sim. (a), (b) and (c) in diff. (random) metric spaces. . . . 39
1.20 simultaneously condensing with respect to different random metrics 40
1.21 Mean energy of 1000 simultaneously sim. resp. to random metrics. . 40

2.1 Density of condensing measures on the real line (sim. (a)). . . . . . 49
2.2 Density of condensing measures on the real line (sim. (b)) . . . . . 50
2.3 Condensing of particles on a one dimensional manifold (sim. (a)). . 52
2.4 Condensing of particles on a one dimensional manifold (sim. (b)). . 53
2.5 Condensing of particles on a one dim. manifold (sim. (a) and (b)). . 54
2.6 Density of condensing of particles on real plane (sim. (a)) . . . . . 56
2.7 Contour of the density of the condensing on real plane (sim. (a)) . . 57
2.8 Density of condensing of particles on real plane (sim. (b)) . . . . . 58
2.9 Contour of the density of the condensing on real plane (sim. (b)) . . 59
2.10 Density (right) and spatial position (left) of segregation. (sim. (a)). . 61
2.11 Density (right) and spatial position (left) of segregation. (sim. (b)). . 62
2.12 simultaneously condensing on the unit circle for the average model (HK). 63
2.13 simultaneously condensing on the unit circle for the energy model. . 64

3



INTRODUCTION

The present study is motivated by work of Hegselmann and Krause (HK) on con-
sensus dynamics [15], where agents simultaneously move to the barycenter of all
agents in an epsilon neighborhood. The final state may be consensus, where all
agents meet at the same position or grouping several classes of agents such that all
agents in the same class maintain the same position and agents in different classes
are at a distance greater than or equal to epsilon. In this work, we are interested to

extend the HK model given as example by [16, 17] to a metric space. Observe that,
the barycenter of a measure m minimizes the epsilon-energy of a position:

eε(x,m) =

∫

d(x,y)≤ε

d2(x, y)m(dy),

where for the HK dynamics, d(·, ·) is an Euclidean distance. This observation is the
starting point for our present study to generalize the HK model. We

1. replace the Euclidean space by an arbitrary metric space, and

2. let the agents move to where the local energy is minimal within an epsilon
neighborhood.

Because of the second claim, this does not generalize HK dynamics, as it is already
demonstrated by two agents and Euclidean metric: Two agents may decrease the
energy to zero by jumping either to the same place, or to different places if the
distance exceeds epsilon. It is important to note that our dynamics, because of
claim 2, is not a deterministic one. Furthermore, the convergence of the process of
"condensing", as we call it, is not guaranteed. This fact can be seen in the case of
two agents, they may exchange there position for ever, with periodic local energy.
In order to be able to prove convergence, we deviate from HK in another way

3. Agents do not move simultaneously but one at a time in an arbitrary order.
By doing so, they decrease the total epsilon energy:

Eε(m) =

∫

X

eε(x,m)m(dx),

which guaranties the convergence and in fact zero energy after finitely many steps.
It is also important to note that the arbitrary order of action of different agents
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Introduction 5

introduces yet another source of indeterminacy. Such indeterminacy gives the op-
portunity for stochastic investigations, which however are not part of the present
study. Our concern in this thesis is the introduction of a new class of dynamical
systems-together with some elementary analysis and a number of numerical simu-
lations. Several authors explain consensus dynamics in the context of emergence,
see for example [9, 20]. We shall briefly discuss in how far our model responds to
the challenge of emergence.

Ants live in large populations. These population show a complicated and strict
division of labor for the individual ant, which on the one hand is not determined
by the genetic structure of the single ant, and on the other hand makes the whole
population react effectively to all kinds of events as if steered by some clever and
experienced brain, which however does not exist. The division of labor, which
makes an ant become a soldier, and another one a messenger is called emergent. It is
very strictly and very stable, but one does not detect it as a program in the individual.
Another example is demonstrated in the case of cells. Although all cells in the
human being have the same DNA they diversify into different functions to build
the human body. Therefore, the organization which results in this diversification is
called emergent. That one cell becomes a brain cell and another one a liver cell may
depend but on its ambient: for example the pressure from faster growing cells on top
of one cell may cause it to become a brain cell finally. Thus, the fate of a single cell
seems to be largely at random, whereas the the result: the human being is very well
defined stable and obviously fixed in advance. How is this to be understood? This is
the challenge of emergence - as I see it - and we will briefly discuss in how far our
model models emergence. There is an emergent pattern: segregation into positions
with two of them at distance grater than ε. However, the number of positions and
the distribution of individuals onto there positions seem to be random.

In this study, we are interested

1. To extend the HK model presented in [16] to an arbitrary metric space.

2. To perform theoretical analysis for this model such as convergence theorems.

3. To present numerical results in finite and continuous metric spaces, with a
special application in the condensing of particles. We also simulate the HK
model with respect to a large number of random metrics and on the unit circle
as a one dimensional manifold.

The simulation in a finite metric space or the so called n points metric space mo-
tivated us to introduce the notion of "random metrics". These are constructed as
a positive linear combination of extremal pseudometrics. The theoretical and nu-
merical constructions of class of such metric are obtained by using the results of
cut or split metrics. For more details about split metrics, we refer to the studies by
Dress and al. [2, 11, 12]. More generally, we propose an algorithm to construct any
random metric in a finite metric space as a solution of linearly independent of a sys-
tem of equations. This thesis is structured in two principal chapters. The first one
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presents the construction of condensing sequences in a finite metric space, where
we also introduce some methods to construct random metrics. The second chapter
extends the condensing model in a continuous metric space. The last section of this
thesis contains general concluding remarks, outlooks and some open problems.



Chapter 1

CONDENSING ON FINITE METRIC
SPACE

Abstract
Local interactions between particles of a collection causes all particles to reorga-
nize in new positions. The purpose of this chapter is to construct a model, which
describes such a phenomena in finite metric space (FMS). In order to simulate the
condensing sequences in FMS, we introduce the notion of random metric. Our
model is analyzed and simulated in many finite metric spaces and also simulated
with respect to a random metric.

1.1 Condensing
Let (X, d) be a finite metric space with metric d. A non negative measure m on X is
represented by a function m : X → [0,∞) in the obvious way. Denote by M+(X)
the set of all positive measures on X . A measure m ∈ M+(X) is given as

m =
∑
x∈X

m(x)δx =
∑

x∈S(m)

m(x)δx,

where δx denotes the Kronecker symbol and by S(m) we denote the support of m
given as

S(m) := {y ∈ X|m(y) > 0} . (1.1)

Definition 1.1.1. Fix a real number ε > 0. The ε-energy of m is

Eε(m) =
∑

d(x,y)≤ε

m(x)m(y)d2(x, y). (1.2)

The ε− energy of point a ∈ X with respect to m is

eε(a,m) =
∑

d(a,y)≤ε

m(y)d2(a, y). (1.3)

7



1.1. Condensing 8

Let a pair (a, a∗) ∈ X×X operates on the set M+(X) of nonnegative measures
as

m → (a, a∗,m), (1.4)

where

(a, a∗,m)(x) =





m(x); if x /∈ {a, a∗},
0; if x = a,
m(a) + m(a∗); if x = a∗.

Definition 1.1.2. A pair (m,m∗) is called an ε−move, if there is a pair (a, a∗) ∈
X ×X such that:

(i) m∗ = (a, a∗,m),

(ii) d(a, a∗) ≤ ε.

(iii) eε(a,m) + m(a)d2(a, a∗) > eε(a
∗,m).

We are interested in sequences of non negative measures m1,m2, . . . satisfying the
conditions above. Such a sequence m1,m2, . . . is called ε−condensing.

Remark 1.1.1. Clearly for every a, a∗ ∈ S(m) if d(a, a∗) ≤ ε, then either (a, a∗,m)
or (a∗, a, m) is an ε−move. Therefore, whenever Eε(m) > 0 there is an ε−move
(m,m∗). Thus, for every finite m with non vanishing energy, there is an ε−condensing
sequence m1,m2, . . .. Our theorem says that such a sequence is finite.

More generally is the following definition:

Remark 1.1.2. Let (X, d) be a finite metric space. A mapping f : S(m) → X is
said to be condensing if for every y ∈ X either f(y) = y or

∑

d(z,f(y))≤ε

m(z)d2(z, f(y)) < m(y)d2(y, f(y)) +
∑

d(z,y)≤ε

m(z)d2(y, z). (1.5)

m1,m2, . . . is said to be condensing if for every i there is a mapping fi which is
condensing and such that

mi+1 = fi(m
i). (1.6)

A condensing mapping f is said to be singularly condensing if f(y) 6= y for only
one y ∈ S(m). A condensing sequence is called singularly if every fi is singularly.
f is said to be simultaneously condensing, if the condition (1.5) is required for
more than one elements of S(m). Note that for the image measure of a singularly
condensing mapping as, we find

f : M+(X) −→ M+(X); (1.7)

f(m)(x) :=

{
m(x), if f(x) /∈ S(m),
m(x) + m(z), if f(x) = z ∈ S(m).
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Remark 1.1.3. The simultaneously displacement sequence are studied in another
context in the literature by synchronous communication, moves and reactions, for
example, we refer to the models studied in [17, 19, 21]. Therefore, the condensing
mapping given by (1.5) is a generalization of all types of reactions, namely singular
and simultaneous.

Remark 1.1.4. The resulting measure of a condensing sequence depends not only
on the initial measure, but also on the order of succession of the particles reactions.
Hence, we introduce a random range of the order of reaction of particles. The same
idea was proposed and developed by Sieveking [21] in the case of the real line.

1.2 Convergence
The purpose of this section is to prove the following theorem about convergence of
ε−condensing sequences:

Theorem 1.2.1. A singularly ε−condensing sequence is finite.

The proof will be a consequence of the following lemmas.

Lemma 1.2.1. Let m ∈ M+(X), a, a∗ ∈ X such that d(a, a∗) ≤ ε. Then

Eε(m)− Eε(m
∗) = 2m(a)

[
eε(a,m)− eε(a

∗,m) + m(a)d2(a, a∗)
]
, (1.8)

where m∗ = (a, a∗, m).

Proof. To simplify, we use the following notation

Im :=
∑

d(x,y)≤ε;{x,y}∩{a,a∗}=∅
m(x)m(y)d(x, y)2 (1.9)

Let us compute the energy of m:

Eε(m) =
∑

d(x,y)≤ε

m(x)m(y)d2(x, y)

= Im + 2m(a)
∑

d(a,x)≤ε

m(y)d2(x, y) + 2m(a∗)
∑

d(a∗,y)≤ε

m(y)d2(a∗, y)

−2m(a)m(a∗)d2(a, a∗)

then

Eε(m) = Im + 2m(a)eε(a,m) + 2m(a∗)eε(a
∗,m) (1.10)

−2m(a)m(a∗)d2(a, a∗).

Similarly for m∗ = (a, a∗,m) :

Eε(m
∗) = Im∗ + 2m∗(a)eε(a, m∗) + 2m∗(a∗)eε(a

∗, m∗)2m∗(a)m∗(a∗)d2(a, a∗)
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Note that
Im = Im∗ ; m(a) = 0; m∗(a∗) = m(a) + m(a∗).

and

e(a∗, m∗) = e(a∗,m)−m(a)d2(a∗, a). (1.11)

Therefore

Eε(m
∗) = Im + 2(m(a) + m(a∗))eε(a

∗,m∗) (1.12)
= Im + 2

(
m(a) + m(a∗)

)(
e(a∗,m)−m(a)d2(a∗, a)

)
.

and from (1.10) and (1.12) it follows:

Eε(m)− Eε(m
∗) = 2m(a)

[
eε(a,m)− eε(a

∗,m) + m(a)d2(a, a∗)
]
. (1.13)

¤
Lemma 1.2.2. For m ∈ M+(X) let n(m) be the number of elements a ∈ X such
that m(a) > 0. If m1,m2, . . . is a sequence of measures on X which is singularly
and ε−condensing, then

1. i → Eε(m
i) is strictly decreasing

2. i → n(mi) is decreasing

Proof. The first claim follows from lemma 1.2.1. To show the second let S(m) =
{x ∈ X|m(x) > 0} be the support of the measure m. Consider

m∗ = (a, a∗,m).

If a /∈ S(m) then S(m) = S(m∗) and n(m) = n(m∗). If a ∈ S(m) and a∗ ∈ S(m)
then S(m∗) = S(m) \ {a} and n(m∗) < n(m). If a ∈ S(m), a∗ /∈ S(m) then

S(m∗) = (S(m) \ {a}) ∪ {a∗},
and again n(m) = n(m∗).

¤

Proof. of theorem 1.2.1. Let m1,m2, . . . be an infinite sequence of measures, which
is ε−condensing. Because of the preceding lemma, we may assume that

i → n(mi)

is constant. Hence, for every i The measure mi+1 is a permutation of mi i.e.

mi+1 = mi ◦ πi, (1.14)

where πi : X → X is a permutation of X. Therefore,

mi = m1 ◦ π1 ◦ . . . πi−1. (1.15)
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As the group of permutations of X is finite, there exist a natural numbers i, k > 0
such that

π1 ◦ . . . πi = π1 ◦ . . . πi+k, (1.16)

and mi+1 = mi+k+1, which however is impossible in view of the second claim of
the previous lemma.

¤
Remark 1.2.1. There exist infinite non converging condensing sequences: Consider
a simultaneously condensing sequence with two mass points mn = ms, where mn

is the mass of a point in the north pole of unit circle and ms is a mass of a point in
the south pole. Note that, this metric space is not a finite metric space but to explain
this example in a finite metric space, one can use only four points metric spaces,
namely the north, the south pole and the midpopints of them on the unit circle. Here,
m is given as

m := msδ 3π
2

+ mnδπ
2
.

If we consider the rule of simultaneously moves (Hegselmann-Krause) studied by
[17]. An admissible moves scenario is

1. Step 1.mn moves to π and ms moves to 0. Hence,

f1(m)
(π

2

)
= f1(m)(

3π

2
) = 0 and f1(m)(0) = ms and f1(m)(π) = mn.

2. Step 2. mn moves to 3π
2

and ms moves to π
2
. Hence,

f2(f1(m))
(
0
)

= f2(f1(m))(π) = 0

and
f2(f1(m))(

π

2
) = ms and f2(f1(

3π

2
) = mn.

3. Step 3. The same as step 1.

4. Step 4. The same as step 2.

The condensing sequence constructed above m1,m2, . . . is simultaneously condens-
ing and does not converge. We can also construct another type of non converging
condensing sequences. We believe that, in this case, non converging sequences have
a periodic behavior.

Example 1.2.1. Let us consider a two points metric space {x1, x2} and two masses
m1 and m2 in x1 and x2 respectively. Assume that, the masses are not necessary
equal and they are not isolated. Let us suppose a simultaneously condensing of

m = m1δx1 + m2δx2 ,

Step 1. m1 moves to m2, while E((x1, x2, m)) = 0.
And m2 moves to m1, while E((x2, x1,m)) = 0. set

m2 = m2δx1 + m1δx2 .
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Step 2. m2 moves to m1, while E((x2, x1, m)) = 0.
And m1 moves to m2, while E((x1, x2,m)) = 0.
set

m3 = m1δx1 + m2δx2 .

Step 3. The same as step 1.
If m1,m2, . . . represents this condensing sequence, then it not converges . In this
case, the sequence is periodic.

1.3 Random metric on finite metric space
Our motivation for the construction of random metric is to try to simulate many nu-
merical problems on finite metric spaces with respect to an arbitrary metric. There-
fore, we present a method to construct random metrics in a finite metric space.
Metrics of n points metric space are characterized by specified axioms. The split-
metrics, used in [2, 11, 12] (also called cut metrics), are elements of the extremal
rays on the cone of pseudometrics, and note that there are 2n−1 split-metrics on a n
point set, for more detailed analysis, we refer to works of Dress and al. [12].

1.3.1 Extremal pseudometrics
Let us recall the definition of pseudometric. A map d : X × X → IR+ is called
pseudometric, if d satisfies the following conditions:

(i) d(x, y) = 0,

(ii) d(x, y) = d(y, x), ∀x, y ∈ X ,

(iii) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X .

Let us denote by M0 the set of all pseudometrics on X ( n points set). For a given
set X , a pseudometric d is called extremal if for all g, h ∈ M0 the following holds

g + h = d implies g = νd, h = µd with ν, µ ≥ 0.

a cut or split metric is a pseudometric given as:

d(x, y) :=

{
0, if (x, y) ∈ A× A or Ac × Ac

1, otherwise.
(1.17)

where A is a subset of X and Ac its complement in X . The cut metrics are extremal
in the cone of all pseudometrics on a finite metric space: The proof can be found in
the works of Dress and al. [12, 2, 11]. We denote by EXn (resp. EX) the set of all
cut metrics (resp. the set of all extremal metrics) in a n points metric space. These
are given as:

EXn := {ci
n|i = 1, . . . , 2n−1} ⊂ EX := {e|e extremal pseudometric},

(1.18)
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where ci
n is a cut metric and cn is an extremal pseudometric. The cardinal of EXn

is exactly 2n−1 but the cardinal of EX is until now unknown. In order to construct
a random metric, we use the following lemmas:

Lemma 1.3.1. Let X be a n points set. For λe ∈ IR+, for all e ∈ EX , α, β ∈ X ,
the map d is defined as:

d(α, β) :=
∑

e∈EX

λee(α, β), (1.19)

is a pseudometric and if λe > 0 for all e ∈ EX , then d is a metric.

Proof. Since the positive scalar multiplication with a pseudometric is a pseudomet-
ric and the sum of pseudometrics is a pseudometric, the sum (1.19) is a pseudomet-
ric. Also note that the set of split metrics is a subset of all extremal metrics. Now
denote and suppose that λi > 0 for i = 1 . . . , 2n−1, for all α, β ∈ X , the set {α} is
a subset of X and X \ {α} is the complement set of {α}. Since α 6= β, it follows
that β ∈ X \ {α}, define according to "theorem" (1.17) the following extremal
pseudometric

d(x, y) :=

{
0, if (x, y) ∈ {α} × {α} or X \ {α} ×X \ {α}
1, otherwise.

(1.20)

d is an element of EXn, so there exists i such that

ci
n(α, β) = 1.

Hence for all α, β ∈ X exists ci
n such that

ci
n(α, β) > 0,

and if λi > 0 then d(α, β) > 0, which means that d is metric.

¤
Definition 1.3.1. Under the notation of Lemma 1.3.1, d is called random metric, if
the choice of λe and/or the choice of e is random.

For our numerical simulation of random metrics, we use the following lemmas to
construct a class of random metrics from the class of cut metrics:

Lemma 1.3.2. Let (X, d) be a n points pseudometric space. If λi, for i = 1 . . . , 2n−1,
is a sequence of independent and identically distributed random variable on a prob-
ability space (Ω,F , P ) with realization in ]0,∞[, then the map d(·, ·)(ω) defined as

d(α, β)(ω) :=
2n−1∑
i=1

λi(ω)ci
n(α, β), ci

n ∈ EXn, (1.21)

is a class of random metrics extracted from the set of the cut metrics.
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Proof. Since each realization λi(ω) is strictly positive, the proof follows immedi-
ately from lemma 1.19.

¤
Lemma 1.3.3. Let (X, d) a n points pseudometric space. For I ⊂ {1 . . . , 2n−1},
λi ∈ IR+ for i ∈ I , and λ > 0, the map d defined as

d(α, β) := λδ(α, β) +
∑
i∈I

λic
i
n(α, β), ci

n ∈ EXn, (1.22)

is a pseudometric and if λ is strictly positive, d is a metric. Here, δ is the discrete
metric given as:

δ(x, y) :=

{
1, if x 6= y
0, otherwise.

(1.23)

Proof. Since the sum of pseudometrics is a pseudometric for all λi and for all λ the
sum (1.22) is a pseudometric. If λ > 0, then for all α, β ∈ X the distance d(α, β)
is strict positive since λ(α, β) is strictly positive.

¤
Lemma 1.3.4. Let (X, d) be a n points pseudometric space. For p ∈ X , the follow-
ing pseudometric is extremal

dp(x, y) :=

{
1, if (x = p and y 6= p) or (x 6= p and y = p)
0, otherwise.

(1.24)

Proof. Trivial.

Theorem 1.3.1. Let X := {a1, . . . , an} be a finite set of points. Any metric d
defined on X , solution of C2

n − 1 linearly independent equations of the form

d(ai, aj) = 0 and or d(at, ar) = d(at, as) + d(as, ar), (1.25)

for i, j, k, s, r ∈ {1, . . . , n}, is extremal.

Proof. See [12].

¤
Lemma 1.3.5. Any metric d can be written as a convex combination of an extremal
metric and a metric:

d = αde + (1− α)d′, (1.26)

where de is an extremal metric, d′ is a metric and α ∈ [0, 1].

Proof. Trivial.

Remark 1.3.1. The construction of a random metric is based on:

(i) random choice of the coefficients λe of lemma 1.3.1 or

(ii) random choice of the linearly independent hyperplane equations or
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(iii) all assumptions together.

For our numerical simulations of random numbers, we use two random variables,
the first one is uniformly distributed in any positive set of IR+, the second one is
normally distributed. The construction of the normal distribution is done by using
the well known Box-Muller method, for more details see [25]. The metric is then
constructed using one of the algorithms presented bellow.

1.3.2 Algorithms for the construction of random metrics
In this section we present some algorithms to construct metrics and random metrics.

Algorithm 1. From lemma 1.3.4 one can extract the following algorithm to con-
struct a class1 of random metrics

1. Set d = 0 zero-metric and p = 1.
2. Define dp as ,

dp(i, j) :=

{
1, if (i = p; j 6= p) or (i 6= p; j = p)
0, otherwise.

3. Chose randomly ap > 0;
Set d = d + apdp,

4. if p = n, return d; STOP:
else Set p = p + 1, go to 2.
End.

Algorithm 2. From lemma 1.3.3, it follows the following this algorithm for con-
struction only a class of random metrics extracted from split metrics:

1. Set d = 0 zero-metric, p = 1 and j = 1.
2. Define dp a cut metric of {1,...,n} as ,
3. For p = 1 to 2n−1

construct the cut metrics dp

4. For j = 1 to 2n−1 do
Chose randomly aj > 0;
Set d = d + ajdj,
return d, End.

Algorithm 3. Here is another algorithm to construct random metrics from the same
class of split metric as in the preceding algorithm:

1. Set d = 0 zero-metric, M large integer.
2. For j = 1 to M

Chose randomly a cut metric dj and aj > 0;
Set d = d + ajdj,

3. Chose randomly a > 0;
Set d = a + d,
return d, End.

1This class of random metrics is based on the split-metrics.
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Algorithm 4. More generally, using theorem 1.3.1 and lemma 1.26, the following
algorithm can be used to construct any random metric from a convex combination
of extremal pseudometrics:

1. Let s(d) = Sum d(x, y), Set d = 0 zero-metric and p=0.
2. Chose randomly C2

n − 1 equation of type:
d(x, y) = 0 and/or d(x, y) = d(x, z) + d(z, y),
solve for d′ with s(d′) = 1;

3. For a random number a ∈ (0, 1) Set d = ad + (1− a)d′;
and p=p+1.

4. if p = C2
n + 1 , return d; STOP:

else go to 2.
End.

Example 1.3.1. For numerical constructions of random metrics, we have used uni-
form and normal distributions of random numbers, see [25]. In order to compare a
random metric to an Euclidean metric, we also define in matrix form the Euclidean
and random metrics matrices. The matrix de, du and dn represent respectively met-
ric matrix of the Euclidean, the random metric with uniform distributed random
entries and the random metric with normal distributed random entries. In order to
compute the Euclidean metric of a finite set of points, let us define X as:

X := {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} ⊂ [0, 1].

The following matrix is the Euclidean metric of the set X:

de =




0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0




For an 8 points metric space and using a uniform distribution of positive random
numbers, we generate the matrix du, which is a metric:

du =




0 0.5062 0.4627 0.5693 0.2864 0.4828 0.3735 0.3238
0.5062 0 0.634 0.7406 0.4577 0.654 0.5447 0.4951
0.4627 0.634 0 0.6971 0.4142 0.6106 0.5013 0.4516
0.5693 0.7406 0.6971 0 0.5208 0.7172 0.6079 0.5582
0.2864 0.4577 0.4142 0.5208 0 0.4343 0.325 0.2753
0.4828 0.654 0.6106 0.7172 0.4343 0 0.5214 0.4717
0.3735 0.5447 0.5013 0.6079 0.325 0.5214 0 0.3624
0.3238 0.4951 0.4516 0.5582 0.2753 0.4717 0.3624 0
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For an 8 points metric space and using a normal distribution of positive random
numbers, we generate the matrix dn, which also is a metric:

dn =




0 0.4717 0.5044 0.4676 0.5394 0.5018 0.5124 0.5446
0.4717 0 0.4621 0.4253 0.4971 0.4595 0.4701 0.5023
0.5044 0.4621 0 0.458 0.5298 0.4923 0.5029 0.5351
0.4676 0.4253 0.458 0 0.493 0.4554 0.466 0.4982
0.5394 0.4971 0.5298 0.493 0 0.5272 0.5378 0.57
0.5018 0.4595 0.4923 0.4554 0.5272 0 0.5003 0.5325
0.5124 0.4701 0.5029 0.466 0.5378 0.5003 0 0.543
0.5446 0.5023 0.5351 0.4982 0.57 0.5325 0.543 0




In order to compare between the entries of metrics, we introduce the vector dv

given as:
dv = (d1,2, . . . , d1,n, d2,3, . . . , d2,n, . . . , dn−1,n) . (1.27)

dv is called metric vector. We denote dv in our simulation by

x =
(
x1, . . . , x

C2
n

)
. (1.28)

For NP=25 and NP=50, we plot respectively, the Euclidean metric vector of an
equidistance discretization of the unit interval. The figure 1.1 gives a graphical idea
of the Euclidean metric vector:
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Figure 1.1: Euclidean metric vector, NP=25, and 50.
In figure 1.1, we plot the metric vector of the Euclidean metric for NP=30 and
NP=50 points metric space.

In the following, we generate for each NP (NP=30 and NP=50: number of points),
two simulations of random metrics: figure 1.2 presents eight simulation of random
metric vectors, where for each NP, we run our code two times to get two simulations
of a random metric of NP=30 points metric space and two simulations for NP=50.
Let us denote by (Uniform) resp. (Normal) a random metric generated by using
a uniform resp. normal distributed variable. It is important to note that the two
dimensional plots of random metrics are only introduced to find a way to compare
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graphically random metrics with an Euclidean metric. Since the metric is only
defined on the finite metric space, we interpolate the graph to get a continuous two
dimensional surface. Also, it is important to note that using uniform or normal
random numbers does not imply that the distribution of the metrics, as a random
variable, is similar. This is not subject of our study.

Remark 1.3.2. Note that the Euclidean metric has the same behavior for NP=25
and NP=50, but the random metric vector has different behaviors, this is due to
the choice of the number of points (NP=25 and NP=50) or to the random effect of
the the random generator. We have also remarked that, the uniform random metric
vector has high noise compared to the normal one.
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Figure 1.2: Random metric vector, NP=25, and 50.
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1.3.3 Numerical simulations of random metrics
In this section, we present the two dimensional mesh of numerical simulation of
random metrics and the Euclidean on the unit interval. For NP=25, 50 grid points
and using the uniform and the normal distributed random numbers, we generate for
each NP two different simulations of random metrics. Therefore, we plot the two
dimensional function

(x, y) 7→ dk(x, y) with k = e, u, n,

where the abbreviation e, u, n represent respectively the Euclidean, uniform random
distribution and normal random distribution.
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Figure 1.3: Euclidean metric mesh, NP=25, and 50.
In figure 1.3, we plot the metric mesh of the unit interval for NP=25 and NP=50
grid points.

Remark 1.3.3. We remark that, the Euclidean metric is smooth and totaly different
from the other generated metrics. In order to show the symmetry of a random metric,
we have plotted the contours in figure 1.5 and figure 1.6 of four simulations. These
figures present respectively the symmetric behavior of random metrics.
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Figure 1.4: Random metric mesh, NP=25, and NP=50.
This figure present for each NP two simulation of random metrics using a uniform
and a normal distribution of random numbers.
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Figure 1.5: (Uniform) Random metric contour, NP=50.
This Figure show the contour of the plots in 1.4 for the (uniform) random metric
with NP=50. The symmetry of the metric is clearly shown. To be adapted to the
matrix form of the two dimensional of a matrix, we have turned the plot in this form.
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Figure 1.6: (Normal) Random metric contour NP=50.
This Figure show the contour of the plots in 1.4 for the (normal) random metric for
NP=50. The symmetry of the metric is clearly shown. To be adapted to the matrix
form of the two dimensional of a matrix, we have turned the plot in this form.
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1.4 Numerical simulations of condensing sequences
In our simulations, we do numerical experiments on three finite metric spaces. Each
finite space will be constructed as n points metric space and a subset of a continuous
metric space. The first one is a finite subset of the real plane, the second one is
a finite subset of a one dimensional manifold, to simplify we use in this case an
approximation of the unit circle. The numerical simulations are listed as follows:

1. Simulations on an Euclidean finite metric space:

(a) Uniform mass distribution on the FMS.

(b) Uniform mass distribution on the FMS.

(c) Uniform random mass distribution on the FMS.

2. Simulations on circular finite metric space:

(a) Uniform mass distribution.

(b) Uniform mass distribution.

(c) Uniform random mass distribution.

3. Simulations with respect to a random metric constructed from the class
of split metrics:

(a) Simulation respect to a random metric.

(b) Simulation respect to a random metric.

(c) Simulation respect to a random metric.

1.4.1 Simulations on an Euclidean finite metric space
This section propose simulations on a finite subset of an Euclidean finite metric
space. We define a finite metric space of 121 points (X, d) as:

X = {x1, . . . , x121} ⊂ IR2, (1.29)
d(xi, xj) = ‖xi − xj‖2,∀i, j = 1, . . . , 121,

where since X ⊂ IR2, the metric used here is the Euclidean one. The initial measure
will defined as a positive measure given as:

m :=
∑
x∈X

m(x)δx, (1.30)

where S(m) = X and m(x) > 0. We run our code after fixing a random order of
reactions (the array of 121 index will randomly permuted). It is important to note
that the positions, which minimize the energy are not unique, therefore we choose
randomly one of them. Note that the uniform random distribution generate real
random numbers between 0 and 4. The following table summarizes the results of
the simulations on the Euclidean finite metric space:
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Parameter/Sim. (a) (b) (c)
NP 121 121 121
ε 0.19 0.19 0.19

Initial state 121 masses (one) 121 masses (one) 121 masses (in U(0,4))
Final state 21 isolated masses 27 isolated masses 21 isolated masses

Time in Sec 190 168 262
Number of iterations 300 300 300

Table 1.1: Results of simulations in an (Euclidean) finite metric space.

Remark on the results 1. We have observed that the limit states (a), (b) and (c)
1. have different distribution of mass,
2. are ε isolated groups,
3. have a non uniform distribution of mass.

In matrix form, we give the distribution of masses for the limit measure of sim-
ulations (a). Note that, the entries of the matrix give the number of particles in each
point of the 121 points space: (similar for (b)).




0 3 0 1 0 0 0 3 0 0 0
0 0 0 0 0 5 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 7 0 0
4 0 0 0 8 0 2 0 0 0 0
0 0 4 0 0 0 0 0 6 0 0
0 0 0 0 9 0 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0
9 0 0 0 0 0 0 0 0 9 0
0 0 0 3 0 0 0 8 0 0 0
0 13 0 0 0 9 0 0 0 0 4




,

and also for simulation (c), the following matrix represent the distribution of mass
at the limit state. Note that, the entries of the matrix give the sum of the mass of the
particles in each point of the 121 points space:



0 0 0 0 0 0 0 0 5.24 0 0
0 0 13.59 0 0 0 13.52 0 0 0 0

14.91 0 0 0 0 0 0 0 0 9.12 0
0 0 0 0 13.36 0 0 19.49 0 0 0
0 0 7.66 0 0 0 0 0 0 0 8.41

9.52 0 0 0 7.62 0 0 0 0 0 0
0 0 0 0 0 0 0 18.93 0 0 9.00
0 22.06 0 0 0 10.58 0 0 0 0 0
0 0 0 15.03 0 0 0 0 13.73 0 0
0 0 0 0 0 0 0 0 0 0 0

29.62 0 0 0 24.56 0 17.59 0 0 16.61 0
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(a) Uniform and deterministic mass distribution on the FMS:
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Figure 1.7: Condensing in an euclidian finite metric space (sim. (a)).
This figure presents six condensing iterations in a finite metric space. We show
the initial state, the iterations 50, 100, 150 and 300. The small dark dots represent
the metric space and the large ones represent the particles. The initial measure is
a collection of point masses such that each point of the grid has a mass one. A
move is only admissible on the small points (FMS). In this case the limit measure
is a collection of ε isolated mass points. We have plotted only 50 steps. Therefore,
the limit state is not necessary the iteration 300. In this plot, we show the center of
mass of each point mass, the weight is given in matrix form above. The last figure
present the new repartition and the density of the particles at the limit state.
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(b) Uniform and deterministic mass distribution on the FMS:
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Figure 1.8: Condensing in an Euclidian finite metric space (sim. (b))
This figure presents five condensing iterations in a finite metric space the initial
state, the iterations 50, 100, 150, and 300. Using the same initial data of simulation
(a), the limit measure is a collection of ε isolated point masses. The last figure
present the new repartition and the density of the particles at the limit state, where
the used scale indicate the index of each nonnegative mass.
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(c) Uniform random mass distribution on the FMS:
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Figure 1.9: Condensing in an euclidian finite metric space (sim. (c)).
This figure presents three condensing iteration on a finite metric space. The initial
measure is a discrete mass, in each points of the metric space, we generate a uniform
random mass in U(0, 4). We show the initial measure and the iteration 100, 150 and
300. The limit measure (iter. 300) is constituted only of ε isolated point masses.
In this plot, we show the center of mass of each point mass, the weight is given
in matrix form above. The last figure present the new repartition and the density
of the particles at the limit state, where the used scale indicate the index of each
nonnegative mass.
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1.4.2 Simulations in a finite circular metric space
This section do simulations in a finite circular metric space. We use an equidistance
discritization of circular metric space. Let (X, g) be 100 points circular metric space
given such that

X = {x1, . . . , x100}, (1.31)
d(xi, xj) = g(xi, xj),∀i, j = 1, . . . , 100.

Where the circular is defined as:

g(xi, xi+1) = 1,

g(xi, xi+k) = min(k, 100− k), ∀k = 1, . . . , 100. (1.32)

where the distance (1.32) is not an approximation of an arc even if our plots are
done in a circle. We define the distance between two neighboring points points as
a constant one. This can be understood as an approximation of the perimeter of
a circle. The circle is used only to find a simple way to visualize our numerical
results in a not euclidian metric space. As in the previous simulations, the initial
measure will be defined as a positive measure, such as in each point of space, we
put a positive mass. m is given as m :=

∑
x∈X m(x)δx, where S(m) = X and

m(x) > 0. The exact choice of the masses is given in the table 1.4.2. After fixing a
random order of reactions (the array of 100 index will randomly permuted), we run
our code to simulate singular condensing of particles. We simulate the condensing
process in three different times, (a), (b) and (c). The following table summarizes
the results of the simulations:

Parameter/Sim. (a) (b) (c)
NP 100 100 100
ε 2 2 2

Initial state 100 masses (one) 100 masses (one) 100 masses (in U(0,4))
Final state 27 isolated masses 28 isolated masses 26 isolated masses

Time in Sec 62 72 68
Number of iterations 200 180 190

Table 1.2: Results of simulations in a finite metric space.

Remark on the results 2. The limit measures of condensing process in the geodesic
metric space shows the same behavior. They are ε isolated point masses. For the
simulation (a) and (b) and by using the same initial data the limit measures has
the same behavior, but different distribution of mass. These describe stochastic
condensing of particles. The output of simulation (c) has also the same character-
istics, even if the initial point masses points are randomly generated with a uniform
random distribution U(0, 4). These results are summarizes in figure 1.13. Note also
that, the order of actions and the position, which minimizes the energy are randomly
chosen.
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(a) Simulations on circular finite metric space:

Iteration :0 Iteration :10

Iteration :20 Iteration :50

Iteration :70 Iteration :200

Figure 1.10: Condensing in a geodesic finite metric space (sim. (a))
This figure presents six condensing iterations in a circular finite metric space. We
show the initial state, the iterations 10, 20, 50, 70 and 200. The small dark dots
represent the geodesic metric space and the large ones represent the particles. In
each point of the metric space, we put a mass one. A move is only admissible on
the small points (FMS). In this case the limit measure (iter. 200) is a collection of ε
isolated point masses.
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(b) Simulations on circular finite metric space:

Iteration :0 Iteration :10

Iteration :20 Iteration :30

Iteration :40 Iteration :180

Figure 1.11: Condensing in a geodesic finite metric space (sim. (b))
Using the same initial data of the preceding simulation, this figure presents six
condensing iterations in a circular finite metric space, the initial state, the iterations
10, 20, 30, 40 and 180. In this case the limit measure (iter. 180) is a collection of ε
isolated point masses. In this plot, we show the center of mass of each point mass.
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(c) Simulations on circular finite metric space:

Iteration :0 Iteration :10

Iteration :20 Iteration :50

Iteration :70 Iteration :240

Figure 1.12: Condensing in a geodesic finite metric space (sim. (c))
Using the uniform random distribution U(0, 1), we generate the initial masses in
each point of the FMS. We plot the initial state, the iterations 10, 20, 50, 70 and
240. In this case the limit measure (iter. 240) is a collection of ε isolated point
masses. In this plot, we show the center of mass of each point mass.
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Simulations on circular finite metric space (a), (b) and (c):

Figure 1.13: Condensing in a geodesic finite metric space (sim. (a,b, c))
This figure show respectively the condensing process of our simulations on the finite
circular metric space (sim. a, b and c), we also show the convergence behavior of
the particles. The limit measures are an ε isolated point masses. Note that, we have
plotted only the center of each point mass.
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1.4.3 Simulations with respect to a random metric
In this section, we apply random metrics. For such a construction of metric, we
use the algorithm 3. Let us denote by (X, dr) such as metric space, where dr is a
random metric:

define xi, xj for i, j = 1, . . . , 100 such that

distance(xi, xj) is dr(xi, xj),∀i 6= j = 1, . . . , 100,

dr(xi, xi) = 0,∀i = 1, . . . , 100,

X = {x1, . . . , x100}, (1.33)

where (X, dr) is a finite metric space. It is important to note that the visualization
of (X, dr) given by (1.33) is not trivial, since the space is characterized only by its
metric. In order to analyze condensing sequences with respect to a random metric,
we define the so called position of a particle. We assume that each particle maintains
a position at the start and in each one has a positive mass. We have also to note that
two neighboring positions are independent from the length of the distance between
them. This method is introduced only to find a way to visualize the condensing
process with respect to a random metric. In our simulations the bar plot of the
positions of particles, show in many time iteration, that the particles changes their
positions with respect to the local energy rule (1.1.2). The axis of the bar plot
presents the positions of the particles (x-axis) and the number of the particles in a
given position (y-axis). Since the metric is unknown, the code chose a random ε =
d(x1, x5). The code breaks down if the energy is zero. We observe the condensing
of a measure m given as

m :=
∑
x∈X

m(x)δx, (1.34)

where S(m) = X and m(x) > 0. The following table summarizes the results of
our simulation of condensing sequence with respect to a random metric:

Parameter/Sim. (a) (b) (c)
NP 100 100 100
ε 0.182508 0.200761 0.254162

Initial state 100 masses (one) 100 masses (one) 100 masses (one)
Final state 24 isolated masses 36 isolated masses 1 mass (consensus)
Run time 69 Sec 82 Sec 80 Sec

Number of iterations 102 180 136

Table 1.3: Results of simulations (random) finite metric space.

Remark on the results 3. The limit state even if there is only small difference
between the ε have’nt similar behavior. Since in the third simulation the finale state
is a consensus, the first and the second one are ε isolated masses. These results are
also given by figures 1.17, 1.18 and 1.19, which show (respectively) that at the limit
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state all points with strictly positive masses have a distanced grater than ε between
them, the decreasing number of the support and also the decreasing total energy.

1.4.4 simultaneously condensing with respect to a random met-
ric

Our goal here is to simulate a large number of simultaneously condensing1 with
respect to a random metric. Therefore, we run our code 1000 times for different
random metrics and for the same initial data of a positive measure. Figure 1.20
presents four simulations of them and figure 1.21 shows the mean energy of the
1000 simulations.

1Such as simulations are already presented from Lorenz [19], in euclidian metric space.
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(a) First simulations with respect to a random metric:
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Figure 1.14: Condensing in a (random) metric space, for ε = 0.182508 (sim. (a))
The figures present a condensing sequence of a positive measure with 100 point
masses and with respect to a random metric. In the 100 point masses, we deal with
a mass one in each point of the space and for ε = 0.182508, we plot six condensing
iterations: the initial mass, iteration 10, 20, 50, 70 and 102. The limit mass (iter.
102) is an ε-isolated positive measure.
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(b) Second simulations with respect to a random metric:
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Figure 1.15: Condensing in a (random) metric space, for ε = 0.200761 (sim. (b))
The figures present a condensing sequence of a positive measure with respect to
a random metric (different as the simulation above). In the 100 point masses, we
deal with a mass one in each point of the space and for ε = 0.200761 we plot six
condensing iterations: the initial mass, iteration 5, 15, 25, 80 and 180. The limit
mass (iter. 180) is an ε-isolated positive measure.
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(c) Third simulations with respect to a random metric:
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Figure 1.16: Condensing in a (random) metric space, for ε = 0.254162 (sim. (c))
The figures present a condensing sequence of a positive measure with respect to a
random metric. In the 100 point masses, we deal with a mass one in each point of
the space and for ε = 0.254162 we plot six condensing iterations: the initial mass,
iteration 20, 40, 60, 100 and 136. The limit mass (iter. 136) is a consensus.
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The following plot shows the distance between the particles at the limit state of
simulation (a) and (b):
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Figure 1.17: Distances at limit for sim.(a) and (b)
These plots show the distance check test: Each point is a distance between to parti-
cles at the limit (y-axis give it value), the red dot represent the used ε. At the limit
all distance are larger than ε.

The following plot shows the decreasing number of strictly positive point masses at
each condensing iteration for simulation (a) and (b):
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Figure 1.18: Cardinal of support mi at limit for sim.(a) and (b)
The left plot shows the decreasing cardinally of the measures mi in each condensing
iteration.
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The following plot shows the decreasing energy of the simulations (a), (b) and (c):
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Figure 1.19: Energy of sim. (a), (b) and (c) in diff. (random) metric spaces.
These figures present respectively the decreasing energy for the three simulations
with respect to different random metrics and different values of epsilon. The number
of iterations until the limit is differs.
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Figure 1.20: simultaneously condensing with respect to different random metrics
This figure shows four graphs of the energies of four simultaneously condensing
of the same measure with uniformly 100 point masses, uniformly distributed. Two
curves are decreasing and the others are periodic up to a determined iteration step.
Therefore, they are not convergent.
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Figure 1.21: Mean energy of 1000 simultaneously sim. resp. to random metrics.
For a measure m with 100 uniform randomly distributed positive discrete mea-
sure.The graph 1.21 presents the mean energy of 1000 simulation of simultaneously
condensing m with respect to 1000 different random metrics. It converges to a pos-
itive constant. We have remarked that by repeating the simultaneously condensing
with respect to random metrics that, the non converging sequence has a periodic
energy curve as in figure 1.20.



Chapter 2

CONDENSING IN CONTINUOUS
METRIC SPACE

In this chapter we extend the idea of condensing sequences proposed in the previous
chapter to a continuous metric space. In order to construct a continuous energy
function in m, we introduce the so called "intensity function". Some convergence
results for condensing are proved and simulated in many continuous metric spaces.

2.1 Condensing
Let (X, d) be a metric space with metric d. We shall assume that all bounded subsets
of X are compact. Hence, X is locally compact and we may use Radon measures.
Let M+(X) be the set of nonnegative Radon measures on X . We shall however for
simplicity deal with discrete measures only, given as

m :=
∑

x∈S(m)

m(x)δx, (2.1)

where S(m) denote the support of m and δx the Kronecker symbol. Note that S(m)
is discrete. For such a measure, we define the map E as

E : M+(X) −→ IR+ (2.2)

E(m) =
∑

d(x,y)≤ε

m(x)m(y)d2(x, y).

In general E is a not continuous function of m.

Example 2.1.1. For X = IR, S(m) = {1, 2}, ε = 1 and a given m with

m =
∑

x∈{1,2}
m(x)δx = δ1 + δ2, (2.3)

it follows that E(m) = 2. Now let mj be a sequence of positive measures defined
as

mj = δ1 + δ2+ 1
j
, (2.4)

41
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it follows
lim

j
mj = m and E(mj) = 0, (2.5)

and
E(lim

j
mj) = 2 6= lim

j
E(mj) = 0. (2.6)

Hence, from (2.6), it follows that the map E with the definition (2.2) is not continu-
ous in m.

In order to obtain an energy function which depends continuously on m, we
extend the definition (2.2) to the following:

E : M+(X) −→ IR+ (2.7)

E(m) =

∫

X

∫

X

ϕ(x, y)d2(x, y)m(dx)m(dy)

=
∑
x,y

m(x)m(y)ϕ(x, y)d2(x, y),

where ϕ is a continuous function, which satisfies:

ϕ : X ×X −→ [0, 1]; (2.8)

ϕ(x, y) :=

{
1, if d(x, y) ≤ ε,
0, if d(x, y) ≥ ε + θ.

For ε > 0 and θ > 0.

Remark 2.1.1. The parameters ε > 0 and θ > 0 will be fixed throughout this
chapter. The function ϕ will be called intensity function.

Example 2.1.2.

1. For ε, θ > 0, define the function ψ as

ψ : [0,∞) −→ [0, 1];

ψ(x) :=

{
1, if 0 ≤ x ≤ ε,

0, if x ≥ ε + θ.

Then ϕ : (x, y) 7→ ϕ(x, y) = ψ(d(x, y)) is an intensity function.

2. The following function is an intensity function for every ε > 0 and θ > 0:

ϕ : IR× IR −→ [0, 1];

ϕ(x, y) :=





1, if |x− y| ≤ ε,

0, if |x− y| ≥ ε + θ.(
ε+θ−|x−y|

θ

)
otherwise.
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Let ME(X) be the set of discrete and nonnegative measure with E(m) < ∞. As in
the previous chapter a pair (a, a∗) ∈ X ×X operates on ME(X) as

m∗(x) = (a, a∗,m)(x) =





m(x); if x /∈ {a, a∗},
0; if x = a,
m(a) + m(a∗); if x = a∗.

Note that if m ∈ ME(X) then m∗ ∈ ME(X).

Definition 2.1.1. The energy of a point a ∈ X with respect to m ∈ ME(X) is

e : X ×ME(X) −→ IR+ (2.9)

e(a,m) =
∑

y

m(y)ϕ(a, y)d2(a, y).

Lemma 2.1.1. For a, a∗ ∈ X , m ∈ ME(X) and m∗ := (a, a∗,m), we have

E(m)− E(m∗) = 2m(a)
[
e(a, m)− e(a∗, m∗)

]
. (2.10)

Proof. For simplicity, let us denote by Im the following term:

Im :=
∑

{x,y}∩{a,a∗}=∅
m(x)m(y)ϕ(x, y)d2(x, y),

and let us compute the energy of m:

E(m) =
∑
x,y

m(x)m(y)ϕ(x, y)d2(x, y) (2.11)

= Im + 2
∑
x,y

m(a)m(y)ϕ(a, y)d2(a, y)

+2
∑
x,y

m(a∗)m(y)ϕ(a∗, y)d2(a∗, y)− 2m(a∗)m(a)ϕ(a∗, a)d2(a∗, a)

= Im + 2m(a)e(a,m) + 2m(a∗)e(a∗,m)− 2m(a∗)m(a)ϕ(a∗, a)d2(a∗, a).

Similarly for m∗ (by replacing m by m∗), we get

E(m∗) = Im∗ + 2m∗(a)e(a,m∗) + 2m(a∗)e(a∗,m∗) (2.12)
−2m∗(a∗)m∗(a)ϕ(a∗, a)d2(a∗, a).

Note that

m∗(a) = 0 and Im = Im∗ , (2.13)

and in addition we have:

e(a∗,m∗) = e(a∗,m)−m(a)ϕ(a∗, a)d2(a∗, a). (2.14)

Therefore, from (2.12)–(2.14) it follows:

E(m∗) = Im∗ + 2m∗(a)e(a,m∗). (2.15)

From (2.11) and (2.15), it follows that

E(m)− E(m∗) = 2m(a)
[
e(a, m)− e(a∗, m∗)

]
, (2.16)

which prove the result of the lemma.
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¤
In order to extend the move notion already defined in the previous chapter to a
continuous metric space, we use the intensity function to introduce an additional
necessary condition. Recall that in the finite case for (m,m∗) to be condensing, we
required

(i) e(a,m)− e(a∗,m∗) > 0 and

(ii) d(a, a∗) ≤ ε.

Now we require a∗ minimizing y → e(y,m∗)ϕ(a, y).

Definition 2.1.2. A pair (m,m∗) is called condensing, if there is (a, a∗) ∈ X ×X
such that

(i) m∗ = (a, a∗,m) and

(ii) a∗ minimizing y → e(y,m∗)ϕ(a, y), with d(a, y) ≤ ε + θ.

A sequence of non negative measures m1,m2, . . . is called condensing, if for every
i the pair (mi,mi+1) is condensing. A mapping f such that m∗ = f(m) is called
condensing.

Remark 2.1.2. Let (X, d) be a metric space. m1,m2, . . . is said to be condensing,
if for every i there is a mapping fi, which is condensing and such that

mi+1 = fi(m
i). (2.17)

A condensing mapping f is said to be singularly condensing if f(y) 6= y for only
one y ∈ S(m). A condensing sequence is called singular if every fi is singular. f is
said simultaneously condensing, if the conditions of definition (2.1.2) are required
for all x ∈ S(m). Note that in each condensing step, we define the image measure
operated by a singularly condensing mapping as

f : M+(X) −→ M+(X); (2.18)

f(m)(x) :=

{
m(f(x)), if f(x) /∈ S(m),
m(f(x)) + m(z), if f(x) = z ∈ S(m).

The total energy is given by

Eε(f(m)) =
∑
x,y

m(f(x))m(f(y))ϕ(f(x), f(y))d2(f(x), f(y)). (2.19)

Remark 2.1.3. The energy (2.19) can be written in integral form as

E(f(m)) =

∫

X

∫

X

φ(f 2(x), f 2(y))m(dx)m(dy), (2.20)

where φ(x, y) := d2(x, y)ϕ(x, y) and f 2 = f ◦ f .
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Proof. By definition of the total energy, we have

E(f(m)) =

∫

X

∫

X

d2(f(x), f(y))ϕ(x, y)d2(f(x), f(y))f(m)(dx)f(m)(dy).

Then

E(f(m)) =

∫

X

∫

X

φ(f(x), f(y))f(m)(dx)f(m)(dy)

=

∫

X

( ∫

X

φ(f(x), f(y))f(m)(dy)
)
f(m)(dx)

=

∫

X

( ∫

X

φ(f(x), f 2(y))m(dy)
)
f(m)(dx)

=

∫

X

( ∫

X

φ(f(x), f 2(y))f(m)(dx)
)
m(dy)

=

∫

X

∫

X

φ(f 2(x), f 2(y))m(dx)m(dy).

¤

2.2 Convergence
In this section we prove some convergence results of condensing sequences on con-
tinuous metric space.

Definition 2.2.1. Let (mi)i≥1 be a condensing sequence. (mi) is called

(i) Consensus, if ]S(limi m
i) = 1.

(ii) Segregation, if ]S(mi) = ]S(m1), ∀i. Note that a condensing sequence
with a no collision condition leads to a segregation.

where limi m
i is the limit measure of the condensing sequence, since ]S(mi) is

bounded (discrete), ]S(limi m
i) is also bounded.

Corollary 2.2.1. If m1,m2, . . . is a singularly condensing sequence, then

lim
i

E(mi) = ` ≥ 0. (2.21)

Proof. The proof follows immediately from lemma 2.1.1.

¤
In order to prove the convergence of a singular condensing, we define the so called
effectively condensing sequences:

Definition 2.2.2. A singularly condensing sequence m1,m2, . . . is called effectively
condensing sequence if there exists c > 0 such that

(i) mi+1 = (a, a∗,mi),
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(ii) E(mi)− E(mi+1) ≥ cα(mi),

where

α(mi) = max
y

{
ϕ(y, a)d2(y, a)|y ∈ S(mi)

}
.

Remark 2.2.1. From (2.15) and (2.16) and

c = 2 min
a

{
m(a)|a ∈ S(mi)

}
,

follow the existence of the effectively condensing sequence.

Lemma 2.2.1. Suppose that m1,m2, . . . is an effectively condensing.

if lim
i→∞

E(mi) = E(m), then α(m) = 0. (2.22)

Proof. Consider η > 0, from

lim
i→∞

E(mi) = E(m),

exists i0 such that for all i > i0, it follows

2cα(mi) ≤ E(mi)− E(m) ≥ η, (2.23)

for large i, we get limi α(mi) = 0 and still α(m) = 0.

¤
Theorem 2.2.1. If (X, d) is a compact metric space, then every effectively condens-
ing sequence m1,m2, . . . is finite such that

{m1,m2, . . .} = {m1,m2, . . . , mk} and E(mk) = 0. (2.24)

Proof. Since X is compact, then

∪iS(mi)

is relative compact and there exists a subsequence mij of mi such that

lim
j

mij = m and lim
j

E(mij) = E(m).

From lemma 2.2.1 it follows that

lim
j

α(mij) = 0 and α(m) = 0.

Since the sequence m1,m2, . . . is effectively condensing, and from definition 2.2.2
there exists k such that α(mk) = 0. Therefore, for all x, y ∈ S(mk), it follows

d(x, y) = 0 or d(x, y) ≥ ε + θ. (2.25)

Hence, E(mk) = 0 and still mk is a collection of isolated masses with propriety
(2.25) or a point mass m = m(X)δa for a ∈ X.

¤
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2.3 Numerical Simulations
This section presents numerical simulations of condensing sequences on a contin-
uous metric space. To give sense to the condensing sequence (2.1.2) two steps are
required namely, the computation of local energy given in (2.9) of a particle x and
the comparison procedure with the local energy of a randomly chosen point mass y
such that d(x, y) ≤ ε + θ. It is important to note that the particle y minimizes the
energy on his neighborhood. The energy in the H.K. model given in [15] will be
minimized on the neighborhood of the particle x. For more details see the works
of [15, 16, 17, 19]. In our model, the energy is minimized in y, if x moves to
y, where the positions are randomly chosen, which satisfied the conditions of an
admissible move. In general we use the uniform and normal distributions on the
ε−neighborhood of the particle and for our random generator, we use the construc-
tion mentioned in my diploma thesis[25]. We simulate the condensing sequences
in three domains: In the real line, the unit circle considered as a one dimensional
manifold and in the real plane. In order to give an experimental sense for simul-
taneously condensing, we simulate the H.K. model in a one dimensional manifold.
The summary of the numerical simulations is listed as follow:

1. Simulations on the real line:

(a) Uniform mass distribution.

(b) Uniform random mass distribution.

2. Simulations on unit circle (one dimensional manifold):

(a) Uniform mass distribution with mass one.

(b) Uniform random mass distribution.

3. Simulations on the real plane:

(a) Uniform random mass distribution.

(b) Uniform random mass distribution.

4. Simulation of segregation sequences.

(a) Uniform random mass distribution.

(b) Uniform mass distribution.

5. simultaneously condensing on the unit circle.
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2.3.1 Condensing on the real line
This section presents simulations on the real line. In order to compute the density of
the points masses of a measure at each iteration, the space domain is the discretized
into Nx uniform gridpoints. We carry out two tests of condensing sequences of two
measures given as:

m :=
∑

x∈S(m)⊂[0,1]

m(x)δx, (2.26)

where the metric space (X, d) and m have the proprieties:

X = [0, 1], (2.27)
d(x, y) = |xi − xj|, ∀x, y ∈ IR.

S(m) = {x1, . . . , x50},
Nx = 50.

Since [0, 1] ⊂ IR, we use the absolute value as a metric in X . The emergence of
S(m) requires the extension of the computation domain, namely even if the initial
spatial positions are chosen in [0, 1], the final measure has not necessary positions
in [0, 1] only. We run our code after fixing the order of reactions (the array of 50
index will randomly permuted). The following table summarizes the results of the
simulations on the real line:

Parameter/Sim. (a) (b)
ε 0.02 0.02
θ 0.01 0.01

Initial state 50 masses (one) 50 masses (U(0, 4))
Final state 4 isolated masses 4 isolated masses

Time in Sec 1019 1158
Number of iterations 176 196

Table 2.1: Results of simulations in the real line.

Remark on the results 4. The figures 2.1 and 2.2 have different initial mass but
they have the same condensing behavior. The Final states are isolated point masses
with different supports and different masses.
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(a) Condensing of a measure with uniform initial distribution of masses:
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Figure 2.1: Density of condensing measures on the real line (sim. (a)).
The figures present the density of a measure with 50 point masses in twelve con-
densing iterations (iter. 0, 5, 10, 20, 25, 40, 30, 40, 50, 90, 100 and 175), for
ε = 0.02, θ = 0.01, the first and the last figures present resp. the initial and the limit
measure. The initial state is a deterministic distribution of masses and the limit
measure (inter. 175) is constituted only from ε + θ isolated masses.
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(b) Condensing of a measure with random initial distribution of masses:
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Figure 2.2: Density of condensing measures on the real line (sim. (b))
The figures present the density of measure with 50 point masses in twelve condens-
ing iterations (iter. 5, 20, 30, 40, 50, 70, 80, 90, 100, 150 and 195) in the real line,
for ε = 0.02, θ = 0.01. The first and the last figures present resp. the initial and
the limit measures. The initial state is generated with a uniform random distribution
(U(0, 4) (on the figures, the density is normalized) and the final state (iter. 195) is
constituted only from ε + θ isolated masses.
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2.3.2 Condensing on the unit circle
In this section, we run our code on the unit circle for a measure given by

m :=
∑

x∈S(m)⊂S1

m(x)δx, (2.28)

where the metric space (S1, d) is given such that:

X = S1, (2.29)
d(x, y) = g(x, y), ∀x, y ∈ S1,

S(m) = {x1, . . . , x100},
Nx = 50.

The metric used here is a geodesic1 metric, given by

g(x, y) = cos−1(< x, y >) ∈ [0, π],

where < ·, · > is the usual scalar product in IR2. For NP= 50, (ε, θ) = (π
4
, 0.001)

resp. (ε, θ) = (π
8
, 0.001), the figures 2.3 resp. 2.4 present simulations of condens-

ing of particles on the unit circle. The figures show six time iterations the spatial
positions of the particles. Our code stops if the total energy achieved some given
negligible tolerance. The following table summarizes the result of the results i S1:

Parameter/Sim. (a) (b)
ε π

16
π
8

θ 0.001 0.001
Initial state 50 masses (one) 50 masses (U(0, 4))
Final state 4 isolated masses 12 isolated masses

Time in Sec 910 851
Number of iterations 4900 3950

Table 2.2: Results of simulations in S1.

Remark on the results 5. Because of the construction of the unit circle (compact
and bounded metric space), and for a large number of particles, the Final state of
the condensing sequence of particles is at the limit an isolated mass points. These
are clearly shown by figures 2.3 and 2.4. We also observe that the the cardinal of
the support desponds on the choice of ε. In fact that ε1 = π

16
< ε2 = π

8
, the finale

state of the first simulation has a larger support as the second one.

1The shortest path between two points.
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(b) Simulation on one dimensional manifold with deterministic initial distribution:
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Figure 2.3: Condensing of particles on a one dimensional manifold (sim. (a)).
This figure presents six condensing iterations on the unit circle considered as one
dimensional manifold. We show the spatial positions of the iterations 50, 100, 500,
1000 and 4900. The limit mass (iter. 4900) is constituted of many ε + θ isolated
groups of point masses. We have plotted only the center of mass of each subgroup.
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(b) Simulation on a one dimensional manifold with random initial distribution:
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Figure 2.4: Condensing of particles on a one dimensional manifold (sim. (b)).
This figure presents six condensing iterations on the unit circle considered as one
dimensional manifold. We show spatial position of the particles in many iterations,
namely 100, 200, 300, 2000 and 3950. The limit mass (iter. 3950) is constituted of
eleven ε + θ isolated groups of point masses. We have plotted only the center of
mass of each subgroup.
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Simulation on a one dim. manifold (a) and (b):

Figure 2.5: Condensing of particles on a one dim. manifold (sim. (a) and (b)).
This figure shows each 100 steps of the condensing sequences in simulation (a) and
(b).
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2.3.3 Condensing on the real plane
This section presents simulations on the real plane. In order to compute the density
of the points masses of a measure at each iteration, the space domain is the dis-
cretized into Nx×Nx uniform two dimensional gridpoints. We carry out two tests
of condensing sequences of two measures given as:

m :=
∑

x∈S(m)⊂[0,1]2

m(x)δx. (2.30)

The metric space is constructed as following:

X = [0, 1]2, (2.31)
d(x, y) = ‖x− y‖2, ∀x, y ∈ IR2,

S(m) = {x1, . . . , x441}, (2.32)
Nx = 20.

The emergence of S(m) requires the extension of the computational domain, namely
even if the initial spatial positions are chosen in [0, 1]2, the limit measure has not
necessary positions in [0, 1]. Therefore, the figures are plotted on an extension do-
main of [0, 1]2, namely the domain [−2, 3]2. We run our code after fixing the order
of reactions (the array of 441 index will be randomly permuted). The following
table summarizes the results of the simulations on the real plane:

Parameter/Sim. (a) (b)
ε 0.1 0.1
θ 0.001 0.001

Initial state 441 masses (one) 441 masses (U(0, 4))
Final state condensing condensing

Time in Sec more than 7102 more than 10760
Number of iterations more than 9000 more than 20000

Table 2.3: Results of two simulations on the real plane.

Remark on the results 6. For (ε, θ) = (0.1, 0.001). The figure 2.6 present the
two dimensional density of the measure and in order to show the emergence of the
particle (here consensus), we plot the corresponding contour in figure 2.7. This
simulation needs about 9000 time iterations until the last iteration presented in
the last figure. Our code breaks down, when the total energy will be negligible
(compared with a fixed tolerance). It is clearly shown in figures 2.6 and 2.8 that
the particles build a mass points with hight density in the middle of the computation
domain. This result will be different if we simulate another simulation, even if we
use the same data for the initial measure.
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(a) First simulation on real plane, with stochastic initial distribution:
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Figure 2.6: Density of condensing of particles on real plane (sim. (a))
This figure presents the density of six condensing iterations 100, 500, 1000, 1500
and 9000. We show the condensing of the density on the middle.
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(a) First simulation on real plane, with stochastic initial distribution:
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Figure 2.7: Contour of the density of the condensing on real plane (sim. (a))
This figure presents the contour density of the six condensing iterations (a), we show
the initial and the Final mass and also the iterations 100, 1000, 1500 and 9000.
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(b) Second simulation on real plane, with stochastic initial distribution:
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Figure 2.8: Density of condensing of particles on real plane (sim. (b))
This figure presents the density of six condensing iterations, we show the initial and
the Final mass and also the iteration 1000, 10000, 12000, 15000 and 20000. The
mass is concentrated on one point on the middle of the computational domain.
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(b) Second simulation on real plane, with stochastic initial distribution:
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Figure 2.9: Contour of the density of the condensing on real plane (sim. (b))
This figure presents the contour density of the six condensing iterations (a), we show
the initial and the Final mass and also the iterations 1000, 1500, 12000, 15000
and 20000. The final state looks like a translation of mass in the middle of the
computational domain.
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2.3.4 Segregation sequences
In this section, we construct a segregation sequence. Therefore, we chose NP par-
ticles uniformly distributed and for our computational domain, we use an equidis-
tance space discretization of the domain [0, 1]2. Each gridpoints has a mass one. We
run our code by fixing the non random order of reactions. Each particle changes its
position without collision with other particles for a measure

m :=
∑

x∈S(m)⊂[0,1]2

m(x)δx. (2.33)

The metric space is constructed as follows:

X = [0, 1]2, (2.34)
d(x, y) = ‖x− y‖2, ∀x, y ∈ IR2,

S(m) = {x1, . . . , x400}, (2.35)
Nx = 20.

The organizing process of this group is computed in [−2, 3]2. The following table
summarizes the results of the simulations of segregation sequences:

Parameter/Sim. (a) (b)
ε 0.1 0.2
θ – –

Initial state (Random)400 masses (one) (Uniform) 400 masses (one)
Final state segregation segregation

Time in Sec more than 7102 more than 10760
Number of iterations more than 20000 more than 20000

Table 2.4: Results of two simulations in IR2 (segregation).

Remark on the results 7. In figure 2.10 and 2.11, we plot respectively the geo-
graphical positions of all particles and the corresponding two dimensional densi-
ties. The results obtained by choosing ε = 0.1 resp. ε = 0.2 and NP=400 particles.
Different realizations are plotted. In these figures, we also show the first and the
last time realizations (n = 20000). We also present the corresponding space densi-
ties (rights). The segregation sequences needs a special construction. The order of
reaction must be chosen in despondence of the spatial positions of all particles. It is
important to note also that the final distribution of the particles have similar behav-
ior. The condensing process breaks down by reaching a minimal total energy of the
collection of the particles (fixed with a tolerance). The densities have a stochastic
diffusion behavior, such stochastic diffusion problem was studied in the PDE case
by Manouzi and al. [24].
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(b) Simulation of segregation of a measure with random distribution of mass:
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Figure 2.10: Density (right) and spatial position (left) of segregation. (sim. (a)).
For ε = 0.1, θ = 0.001 and NP=400, we chose a random (uniform) initial distri-
bution of masses. The figures present four iterations of a segregation, we show the
iterations 400, 6000 and 20000. It looks like a stochastic diffusion of mass. (the
density is computed only in [0, 1]2.
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(b) Simulation of segregation of a measure with deterministic distribution of mass:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
 iter. : 0

−2
−1

0
1

2
3

−2

−1

0

1

2

3
0

0.2

0.4

0.6

0.8

1

iter. : 0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
 iter. : 400

−2
−1

0
1

2
3

−2

−1

0

1

2

3
0

0.2

0.4

0.6

0.8

1

iter. : 400

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
 iter. : 6000

−2
−1

0
1

2
3

−2

−1

0

1

2

3
0

0.2

0.4

0.6

0.8

1

iter. : 6000

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
 iter. : 20000

−2
−1

0
1

2
3

−2

−1

0

1

2

3
0

0.2

0.4

0.6

0.8

1

iter. : 20000

Figure 2.11: Density (right) and spatial position (left) of segregation. (sim. (b)).
spatial positions of particles for ε = 0.2, θ = 0.001 and NP=400, where the initial
distribution is a deterministic one. The figures show the special moves of particles,
the number of the support of mi in each iteration is constant. It looks like diffusion
of density.
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2.3.5 simultaneously condensing on the unit circle
For NP = 100 random masses chosen with a uniform random distribution U(0, 1),
we simulate simultaneously condensing sequences on the unit circle. The first one is
the average model (HK model) and the second one is the energy model. For ε = π

8
,

ε = π
16

and θ = 10−4 (only for the energy model), we run our code for a measure:

m :=
∑

x∈S(m)⊂S1

m(x)δx, (2.36)

where ]S(m) = 100. The figures 2.12 and 2.13 present a time iteration plot of
simultaneously condensing sequences on the unit circle (as one dimensional mani-
fold). The following table summarizes the data for this simulation:

Parameter/Sim. Energy model HK model
NP 100 100
ε π

8
and π

16
π
8

and π
16

θ 10−4 –
Initial state 100 masses U(0, 1) 100 masses U(0, 1)
Final state isolated masses isolated masses

Table 2.5: Results of simultaneously condensing sequences in S1.

Simulation of simultaneously condensing on the unit circle:

Figure 2.12: simultaneously condensing on the unit circle for the average model
(HK).
The figures present the condensing process of particles on the unit circle using the
average model (HK model). We show eight time iterations of simultaneously con-
densing of particles. The convergence is achieved after four iterations for ε = π

8

and after five iterations for ε = π
16

and we also show that the limit state is collection
of point masses.
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Simulation of simultaneously condensing on the unit circle:

Figure 2.13: simultaneously condensing on the unit circle for the energy model.
The figures present the condensing process of particles on the unit circle using the
energy model (condensing model). We show eight time iterations of simultaneously
condensing of particles for ε = π

8
and ε = π

16
respectively.

Remark on the results 8. Generally, we have remarked that the limit state (con-
vergence) using the average model is faster than the energy model. The main char-
acteristic of the average model is that the particles maintain the same position in
different groups with distance greater than or equal to epsilon, but in the energy
model the particles does not maintain the same positions: A jump moves is possible
(see the right plot of 2.13).



Concluding remarks

In the present work we have proposed a new model for condensing sequences, with
special interest on the condensing process of particles. In one hand, we have shown
how a collection of particles with a local control rule, forms an isolated distribution
of masses with zero global energy. In the other hand, we have analyzed the model
in different metric spaces. The results of the condensing process in a finite metric
space are also simulated with respect to random metrics, which is a suggestion of
Prof. Sieveking to our best knowledge, this is the first time that random metrics are
implemented and experimented for a class of metric spaces, namely finite metric
spaces. Our main concern is to extent the idea of performing simulations with
respect to random metrics for many numerical phenomena. The present study can
only be considered as and example for explaining the concept of consensus and
emergence phenomena. It should be stressed that the stochastic behavior of our
simulations is due to the random choice of positions minimizing the local energy.

From a computational viewpoint, the implementation of the condensing algo-
rithm in a discrete metric space is very demanding in terms of the number of op-
erations. This complexity is mainly because of the specific definition of the metric
spaces. For instance, one has to store many information to be used for choosing
positions with a minimal energy. In our implementation, we have used a serial C++
code for computations and a Matlab routine for graphical visualizations. For the
random generators used in the computations, we used those proposed in my diploma
thesis carried out at the technical university of Darmstadt [25].

The proposed condensing model can be generalized to metric space with com-
plex structure (complex surface) without major conceptual modifications. As an ap-
plication, we have applied the proposed condensing model in finite metric spaces.
The idea of discrete metrics can also be extended to approximate manifold spaces
with a complex structure. Furthermore, using a stochastic energy-based model. In
this study, to explain the condensing process, we have limited our work to simple
academic and standard examples.

Although we have restricted our model and numerical computations to the time
discrete displacements and discrete measures, the more important extension of our
study concerns the use of continuous measures with nonnegative density and also
the use of the time continuous displacements. As an example, one can consider
the dynamical system in which the position occupied by a member of a group is
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determined by a continuous trajectory. One of our future works is therefore, to
implement this method for solving the gradient problem and also for a continuous
measure.

As a final remark, we have observed that using the model proposed by Hegsel-
mann and Krause in [15] with respect to random metrics, the obtained energy will
be periodic up to a deterministic range. The question is, under which conditions
one can insure the decrease the total energy of this model? and how can one use
the singular condensing to prove the convergence of the HK model? Furthermore,
for which condensing mapping sequence fi the energy E(fi(m)) will be decease?
More interesting problem is the construction and analysis and the convergence of
the extended condensing model in a measure with density function?. Finally, how
can one prove this convergence by modeling the trajectories of the particles as a
gradient system in a continuous metric space? In conclusion, using techniques de-
veloped in the first chapter of the present work, one is able to simulate random
metrics in a finite metric space. Therefore, generalization of these techniques for a
random metric in arbitrary metric spaces (i.e. continuous metric spaces) would be
of great interest.
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